1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "hw/sysbus.h" 16 #include "migration/vmstate.h" 17 #include "qemu/timer.h" 18 #include "hw/intc/armv7m_nvic.h" 19 #include "hw/irq.h" 20 #include "hw/qdev-properties.h" 21 #include "sysemu/runstate.h" 22 #include "target/arm/cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memop.h" 25 #include "qemu/log.h" 26 #include "qemu/module.h" 27 #include "trace.h" 28 29 /* IRQ number counting: 30 * 31 * the num-irq property counts the number of external IRQ lines 32 * 33 * NVICState::num_irq counts the total number of exceptions 34 * (external IRQs, the 15 internal exceptions including reset, 35 * and one for the unused exception number 0). 36 * 37 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 38 * 39 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 40 * 41 * Iterating through all exceptions should typically be done with 42 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 43 * 44 * The external qemu_irq lines are the NVIC's external IRQ lines, 45 * so line 0 is exception 16. 46 * 47 * In the terminology of the architecture manual, "interrupts" are 48 * a subcategory of exception referring to the external interrupts 49 * (which are exception numbers NVIC_FIRST_IRQ and upward). 50 * For historical reasons QEMU tends to use "interrupt" and 51 * "exception" more or less interchangeably. 52 */ 53 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 54 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 55 56 /* Effective running priority of the CPU when no exception is active 57 * (higher than the highest possible priority value) 58 */ 59 #define NVIC_NOEXC_PRIO 0x100 60 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 61 #define NVIC_NS_PRIO_LIMIT 0x80 62 63 static const uint8_t nvic_id[] = { 64 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 65 }; 66 67 static void signal_sysresetreq(NVICState *s) 68 { 69 if (qemu_irq_is_connected(s->sysresetreq)) { 70 qemu_irq_pulse(s->sysresetreq); 71 } else { 72 /* 73 * Default behaviour if the SoC doesn't need to wire up 74 * SYSRESETREQ (eg to a system reset controller of some kind): 75 * perform a system reset via the usual QEMU API. 76 */ 77 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 78 } 79 } 80 81 static int nvic_pending_prio(NVICState *s) 82 { 83 /* return the group priority of the current pending interrupt, 84 * or NVIC_NOEXC_PRIO if no interrupt is pending 85 */ 86 return s->vectpending_prio; 87 } 88 89 /* Return the value of the ISCR RETTOBASE bit: 90 * 1 if there is exactly one active exception 91 * 0 if there is more than one active exception 92 * UNKNOWN if there are no active exceptions (we choose 1, 93 * which matches the choice Cortex-M3 is documented as making). 94 * 95 * NB: some versions of the documentation talk about this 96 * counting "active exceptions other than the one shown by IPSR"; 97 * this is only different in the obscure corner case where guest 98 * code has manually deactivated an exception and is about 99 * to fail an exception-return integrity check. The definition 100 * above is the one from the v8M ARM ARM and is also in line 101 * with the behaviour documented for the Cortex-M3. 102 */ 103 static bool nvic_rettobase(NVICState *s) 104 { 105 int irq, nhand = 0; 106 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 107 108 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 109 if (s->vectors[irq].active || 110 (check_sec && irq < NVIC_INTERNAL_VECTORS && 111 s->sec_vectors[irq].active)) { 112 nhand++; 113 if (nhand == 2) { 114 return 0; 115 } 116 } 117 } 118 119 return 1; 120 } 121 122 /* Return the value of the ISCR ISRPENDING bit: 123 * 1 if an external interrupt is pending 124 * 0 if no external interrupt is pending 125 */ 126 static bool nvic_isrpending(NVICState *s) 127 { 128 int irq; 129 130 /* 131 * We can shortcut if the highest priority pending interrupt 132 * happens to be external; if not we need to check the whole 133 * vectors[] array. 134 */ 135 if (s->vectpending > NVIC_FIRST_IRQ) { 136 return true; 137 } 138 139 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 140 if (s->vectors[irq].pending) { 141 return true; 142 } 143 } 144 return false; 145 } 146 147 static bool exc_is_banked(int exc) 148 { 149 /* Return true if this is one of the limited set of exceptions which 150 * are banked (and thus have state in sec_vectors[]) 151 */ 152 return exc == ARMV7M_EXCP_HARD || 153 exc == ARMV7M_EXCP_MEM || 154 exc == ARMV7M_EXCP_USAGE || 155 exc == ARMV7M_EXCP_SVC || 156 exc == ARMV7M_EXCP_PENDSV || 157 exc == ARMV7M_EXCP_SYSTICK; 158 } 159 160 /* Return a mask word which clears the subpriority bits from 161 * a priority value for an M-profile exception, leaving only 162 * the group priority. 163 */ 164 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 165 { 166 return ~0U << (s->prigroup[secure] + 1); 167 } 168 169 static bool exc_targets_secure(NVICState *s, int exc) 170 { 171 /* Return true if this non-banked exception targets Secure state. */ 172 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 173 return false; 174 } 175 176 if (exc >= NVIC_FIRST_IRQ) { 177 return !s->itns[exc]; 178 } 179 180 /* Function shouldn't be called for banked exceptions. */ 181 assert(!exc_is_banked(exc)); 182 183 switch (exc) { 184 case ARMV7M_EXCP_NMI: 185 case ARMV7M_EXCP_BUS: 186 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 187 case ARMV7M_EXCP_SECURE: 188 return true; 189 case ARMV7M_EXCP_DEBUG: 190 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 191 return false; 192 default: 193 /* reset, and reserved (unused) low exception numbers. 194 * We'll get called by code that loops through all the exception 195 * numbers, but it doesn't matter what we return here as these 196 * non-existent exceptions will never be pended or active. 197 */ 198 return true; 199 } 200 } 201 202 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 203 { 204 /* Return the group priority for this exception, given its raw 205 * (group-and-subgroup) priority value and whether it is targeting 206 * secure state or not. 207 */ 208 if (rawprio < 0) { 209 return rawprio; 210 } 211 rawprio &= nvic_gprio_mask(s, targets_secure); 212 /* AIRCR.PRIS causes us to squash all NS priorities into the 213 * lower half of the total range 214 */ 215 if (!targets_secure && 216 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 217 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 218 } 219 return rawprio; 220 } 221 222 /* Recompute vectpending and exception_prio for a CPU which implements 223 * the Security extension 224 */ 225 static void nvic_recompute_state_secure(NVICState *s) 226 { 227 int i, bank; 228 int pend_prio = NVIC_NOEXC_PRIO; 229 int active_prio = NVIC_NOEXC_PRIO; 230 int pend_irq = 0; 231 bool pending_is_s_banked = false; 232 int pend_subprio = 0; 233 234 /* R_CQRV: precedence is by: 235 * - lowest group priority; if both the same then 236 * - lowest subpriority; if both the same then 237 * - lowest exception number; if both the same (ie banked) then 238 * - secure exception takes precedence 239 * Compare pseudocode RawExecutionPriority. 240 * Annoyingly, now we have two prigroup values (for S and NS) 241 * we can't do the loop comparison on raw priority values. 242 */ 243 for (i = 1; i < s->num_irq; i++) { 244 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 245 VecInfo *vec; 246 int prio, subprio; 247 bool targets_secure; 248 249 if (bank == M_REG_S) { 250 if (!exc_is_banked(i)) { 251 continue; 252 } 253 vec = &s->sec_vectors[i]; 254 targets_secure = true; 255 } else { 256 vec = &s->vectors[i]; 257 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 258 } 259 260 prio = exc_group_prio(s, vec->prio, targets_secure); 261 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 262 if (vec->enabled && vec->pending && 263 ((prio < pend_prio) || 264 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 265 pend_prio = prio; 266 pend_subprio = subprio; 267 pend_irq = i; 268 pending_is_s_banked = (bank == M_REG_S); 269 } 270 if (vec->active && prio < active_prio) { 271 active_prio = prio; 272 } 273 } 274 } 275 276 s->vectpending_is_s_banked = pending_is_s_banked; 277 s->vectpending = pend_irq; 278 s->vectpending_prio = pend_prio; 279 s->exception_prio = active_prio; 280 281 trace_nvic_recompute_state_secure(s->vectpending, 282 s->vectpending_is_s_banked, 283 s->vectpending_prio, 284 s->exception_prio); 285 } 286 287 /* Recompute vectpending and exception_prio */ 288 static void nvic_recompute_state(NVICState *s) 289 { 290 int i; 291 int pend_prio = NVIC_NOEXC_PRIO; 292 int active_prio = NVIC_NOEXC_PRIO; 293 int pend_irq = 0; 294 295 /* In theory we could write one function that handled both 296 * the "security extension present" and "not present"; however 297 * the security related changes significantly complicate the 298 * recomputation just by themselves and mixing both cases together 299 * would be even worse, so we retain a separate non-secure-only 300 * version for CPUs which don't implement the security extension. 301 */ 302 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 303 nvic_recompute_state_secure(s); 304 return; 305 } 306 307 for (i = 1; i < s->num_irq; i++) { 308 VecInfo *vec = &s->vectors[i]; 309 310 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 311 pend_prio = vec->prio; 312 pend_irq = i; 313 } 314 if (vec->active && vec->prio < active_prio) { 315 active_prio = vec->prio; 316 } 317 } 318 319 if (active_prio > 0) { 320 active_prio &= nvic_gprio_mask(s, false); 321 } 322 323 if (pend_prio > 0) { 324 pend_prio &= nvic_gprio_mask(s, false); 325 } 326 327 s->vectpending = pend_irq; 328 s->vectpending_prio = pend_prio; 329 s->exception_prio = active_prio; 330 331 trace_nvic_recompute_state(s->vectpending, 332 s->vectpending_prio, 333 s->exception_prio); 334 } 335 336 /* Return the current execution priority of the CPU 337 * (equivalent to the pseudocode ExecutionPriority function). 338 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 339 */ 340 static inline int nvic_exec_prio(NVICState *s) 341 { 342 CPUARMState *env = &s->cpu->env; 343 int running = NVIC_NOEXC_PRIO; 344 345 if (env->v7m.basepri[M_REG_NS] > 0) { 346 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 347 } 348 349 if (env->v7m.basepri[M_REG_S] > 0) { 350 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 351 if (running > basepri) { 352 running = basepri; 353 } 354 } 355 356 if (env->v7m.primask[M_REG_NS]) { 357 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 358 if (running > NVIC_NS_PRIO_LIMIT) { 359 running = NVIC_NS_PRIO_LIMIT; 360 } 361 } else { 362 running = 0; 363 } 364 } 365 366 if (env->v7m.primask[M_REG_S]) { 367 running = 0; 368 } 369 370 if (env->v7m.faultmask[M_REG_NS]) { 371 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 372 running = -1; 373 } else { 374 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 375 if (running > NVIC_NS_PRIO_LIMIT) { 376 running = NVIC_NS_PRIO_LIMIT; 377 } 378 } else { 379 running = 0; 380 } 381 } 382 } 383 384 if (env->v7m.faultmask[M_REG_S]) { 385 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 386 } 387 388 /* consider priority of active handler */ 389 return MIN(running, s->exception_prio); 390 } 391 392 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 393 { 394 /* Return true if the requested execution priority is negative 395 * for the specified security state, ie that security state 396 * has an active NMI or HardFault or has set its FAULTMASK. 397 * Note that this is not the same as whether the execution 398 * priority is actually negative (for instance AIRCR.PRIS may 399 * mean we don't allow FAULTMASK_NS to actually make the execution 400 * priority negative). Compare pseudocode IsReqExcPriNeg(). 401 */ 402 NVICState *s = opaque; 403 404 if (s->cpu->env.v7m.faultmask[secure]) { 405 return true; 406 } 407 408 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 409 s->vectors[ARMV7M_EXCP_HARD].active) { 410 return true; 411 } 412 413 if (s->vectors[ARMV7M_EXCP_NMI].active && 414 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 415 return true; 416 } 417 418 return false; 419 } 420 421 bool armv7m_nvic_can_take_pending_exception(void *opaque) 422 { 423 NVICState *s = opaque; 424 425 return nvic_exec_prio(s) > nvic_pending_prio(s); 426 } 427 428 int armv7m_nvic_raw_execution_priority(void *opaque) 429 { 430 NVICState *s = opaque; 431 432 return s->exception_prio; 433 } 434 435 /* caller must call nvic_irq_update() after this. 436 * secure indicates the bank to use for banked exceptions (we assert if 437 * we are passed secure=true for a non-banked exception). 438 */ 439 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 440 { 441 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 442 assert(irq < s->num_irq); 443 444 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 445 446 if (secure) { 447 assert(exc_is_banked(irq)); 448 s->sec_vectors[irq].prio = prio; 449 } else { 450 s->vectors[irq].prio = prio; 451 } 452 453 trace_nvic_set_prio(irq, secure, prio); 454 } 455 456 /* Return the current raw priority register value. 457 * secure indicates the bank to use for banked exceptions (we assert if 458 * we are passed secure=true for a non-banked exception). 459 */ 460 static int get_prio(NVICState *s, unsigned irq, bool secure) 461 { 462 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 463 assert(irq < s->num_irq); 464 465 if (secure) { 466 assert(exc_is_banked(irq)); 467 return s->sec_vectors[irq].prio; 468 } else { 469 return s->vectors[irq].prio; 470 } 471 } 472 473 /* Recompute state and assert irq line accordingly. 474 * Must be called after changes to: 475 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 476 * prigroup 477 */ 478 static void nvic_irq_update(NVICState *s) 479 { 480 int lvl; 481 int pend_prio; 482 483 nvic_recompute_state(s); 484 pend_prio = nvic_pending_prio(s); 485 486 /* Raise NVIC output if this IRQ would be taken, except that we 487 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 488 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 489 * to those CPU registers don't cause us to recalculate the NVIC 490 * pending info. 491 */ 492 lvl = (pend_prio < s->exception_prio); 493 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 494 qemu_set_irq(s->excpout, lvl); 495 } 496 497 /** 498 * armv7m_nvic_clear_pending: mark the specified exception as not pending 499 * @opaque: the NVIC 500 * @irq: the exception number to mark as not pending 501 * @secure: false for non-banked exceptions or for the nonsecure 502 * version of a banked exception, true for the secure version of a banked 503 * exception. 504 * 505 * Marks the specified exception as not pending. Note that we will assert() 506 * if @secure is true and @irq does not specify one of the fixed set 507 * of architecturally banked exceptions. 508 */ 509 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 510 { 511 NVICState *s = (NVICState *)opaque; 512 VecInfo *vec; 513 514 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 515 516 if (secure) { 517 assert(exc_is_banked(irq)); 518 vec = &s->sec_vectors[irq]; 519 } else { 520 vec = &s->vectors[irq]; 521 } 522 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 523 if (vec->pending) { 524 vec->pending = 0; 525 nvic_irq_update(s); 526 } 527 } 528 529 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 530 bool derived) 531 { 532 /* Pend an exception, including possibly escalating it to HardFault. 533 * 534 * This function handles both "normal" pending of interrupts and 535 * exceptions, and also derived exceptions (ones which occur as 536 * a result of trying to take some other exception). 537 * 538 * If derived == true, the caller guarantees that we are part way through 539 * trying to take an exception (but have not yet called 540 * armv7m_nvic_acknowledge_irq() to make it active), and so: 541 * - s->vectpending is the "original exception" we were trying to take 542 * - irq is the "derived exception" 543 * - nvic_exec_prio(s) gives the priority before exception entry 544 * Here we handle the prioritization logic which the pseudocode puts 545 * in the DerivedLateArrival() function. 546 */ 547 548 NVICState *s = (NVICState *)opaque; 549 bool banked = exc_is_banked(irq); 550 VecInfo *vec; 551 bool targets_secure; 552 553 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 554 assert(!secure || banked); 555 556 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 557 558 targets_secure = banked ? secure : exc_targets_secure(s, irq); 559 560 trace_nvic_set_pending(irq, secure, targets_secure, 561 derived, vec->enabled, vec->prio); 562 563 if (derived) { 564 /* Derived exceptions are always synchronous. */ 565 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 566 567 if (irq == ARMV7M_EXCP_DEBUG && 568 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 569 /* DebugMonitorFault, but its priority is lower than the 570 * preempted exception priority: just ignore it. 571 */ 572 return; 573 } 574 575 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 576 /* If this is a terminal exception (one which means we cannot 577 * take the original exception, like a failure to read its 578 * vector table entry), then we must take the derived exception. 579 * If the derived exception can't take priority over the 580 * original exception, then we go into Lockup. 581 * 582 * For QEMU, we rely on the fact that a derived exception is 583 * terminal if and only if it's reported to us as HardFault, 584 * which saves having to have an extra argument is_terminal 585 * that we'd only use in one place. 586 */ 587 cpu_abort(&s->cpu->parent_obj, 588 "Lockup: can't take terminal derived exception " 589 "(original exception priority %d)\n", 590 s->vectpending_prio); 591 } 592 /* We now continue with the same code as for a normal pending 593 * exception, which will cause us to pend the derived exception. 594 * We'll then take either the original or the derived exception 595 * based on which is higher priority by the usual mechanism 596 * for selecting the highest priority pending interrupt. 597 */ 598 } 599 600 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 601 /* If a synchronous exception is pending then it may be 602 * escalated to HardFault if: 603 * * it is equal or lower priority to current execution 604 * * it is disabled 605 * (ie we need to take it immediately but we can't do so). 606 * Asynchronous exceptions (and interrupts) simply remain pending. 607 * 608 * For QEMU, we don't have any imprecise (asynchronous) faults, 609 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 610 * synchronous. 611 * Debug exceptions are awkward because only Debug exceptions 612 * resulting from the BKPT instruction should be escalated, 613 * but we don't currently implement any Debug exceptions other 614 * than those that result from BKPT, so we treat all debug exceptions 615 * as needing escalation. 616 * 617 * This all means we can identify whether to escalate based only on 618 * the exception number and don't (yet) need the caller to explicitly 619 * tell us whether this exception is synchronous or not. 620 */ 621 int running = nvic_exec_prio(s); 622 bool escalate = false; 623 624 if (exc_group_prio(s, vec->prio, secure) >= running) { 625 trace_nvic_escalate_prio(irq, vec->prio, running); 626 escalate = true; 627 } else if (!vec->enabled) { 628 trace_nvic_escalate_disabled(irq); 629 escalate = true; 630 } 631 632 if (escalate) { 633 634 /* We need to escalate this exception to a synchronous HardFault. 635 * If BFHFNMINS is set then we escalate to the banked HF for 636 * the target security state of the original exception; otherwise 637 * we take a Secure HardFault. 638 */ 639 irq = ARMV7M_EXCP_HARD; 640 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 641 (targets_secure || 642 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 643 vec = &s->sec_vectors[irq]; 644 } else { 645 vec = &s->vectors[irq]; 646 } 647 if (running <= vec->prio) { 648 /* We want to escalate to HardFault but we can't take the 649 * synchronous HardFault at this point either. This is a 650 * Lockup condition due to a guest bug. We don't model 651 * Lockup, so report via cpu_abort() instead. 652 */ 653 cpu_abort(&s->cpu->parent_obj, 654 "Lockup: can't escalate %d to HardFault " 655 "(current priority %d)\n", irq, running); 656 } 657 658 /* HF may be banked but there is only one shared HFSR */ 659 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 660 } 661 } 662 663 if (!vec->pending) { 664 vec->pending = 1; 665 nvic_irq_update(s); 666 } 667 } 668 669 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 670 { 671 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 672 } 673 674 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 675 { 676 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 677 } 678 679 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 680 { 681 /* 682 * Pend an exception during lazy FP stacking. This differs 683 * from the usual exception pending because the logic for 684 * whether we should escalate depends on the saved context 685 * in the FPCCR register, not on the current state of the CPU/NVIC. 686 */ 687 NVICState *s = (NVICState *)opaque; 688 bool banked = exc_is_banked(irq); 689 VecInfo *vec; 690 bool targets_secure; 691 bool escalate = false; 692 /* 693 * We will only look at bits in fpccr if this is a banked exception 694 * (in which case 'secure' tells us whether it is the S or NS version). 695 * All the bits for the non-banked exceptions are in fpccr_s. 696 */ 697 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 698 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 699 700 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 701 assert(!secure || banked); 702 703 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 704 705 targets_secure = banked ? secure : exc_targets_secure(s, irq); 706 707 switch (irq) { 708 case ARMV7M_EXCP_DEBUG: 709 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 710 /* Ignore DebugMonitor exception */ 711 return; 712 } 713 break; 714 case ARMV7M_EXCP_MEM: 715 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 716 break; 717 case ARMV7M_EXCP_USAGE: 718 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 719 break; 720 case ARMV7M_EXCP_BUS: 721 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 722 break; 723 case ARMV7M_EXCP_SECURE: 724 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 725 break; 726 default: 727 g_assert_not_reached(); 728 } 729 730 if (escalate) { 731 /* 732 * Escalate to HardFault: faults that initially targeted Secure 733 * continue to do so, even if HF normally targets NonSecure. 734 */ 735 irq = ARMV7M_EXCP_HARD; 736 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 737 (targets_secure || 738 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 739 vec = &s->sec_vectors[irq]; 740 } else { 741 vec = &s->vectors[irq]; 742 } 743 } 744 745 if (!vec->enabled || 746 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 747 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 748 /* 749 * We want to escalate to HardFault but the context the 750 * FP state belongs to prevents the exception pre-empting. 751 */ 752 cpu_abort(&s->cpu->parent_obj, 753 "Lockup: can't escalate to HardFault during " 754 "lazy FP register stacking\n"); 755 } 756 } 757 758 if (escalate) { 759 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 760 } 761 if (!vec->pending) { 762 vec->pending = 1; 763 /* 764 * We do not call nvic_irq_update(), because we know our caller 765 * is going to handle causing us to take the exception by 766 * raising EXCP_LAZYFP, so raising the IRQ line would be 767 * pointless extra work. We just need to recompute the 768 * priorities so that armv7m_nvic_can_take_pending_exception() 769 * returns the right answer. 770 */ 771 nvic_recompute_state(s); 772 } 773 } 774 775 /* Make pending IRQ active. */ 776 void armv7m_nvic_acknowledge_irq(void *opaque) 777 { 778 NVICState *s = (NVICState *)opaque; 779 CPUARMState *env = &s->cpu->env; 780 const int pending = s->vectpending; 781 const int running = nvic_exec_prio(s); 782 VecInfo *vec; 783 784 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 785 786 if (s->vectpending_is_s_banked) { 787 vec = &s->sec_vectors[pending]; 788 } else { 789 vec = &s->vectors[pending]; 790 } 791 792 assert(vec->enabled); 793 assert(vec->pending); 794 795 assert(s->vectpending_prio < running); 796 797 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 798 799 vec->active = 1; 800 vec->pending = 0; 801 802 write_v7m_exception(env, s->vectpending); 803 804 nvic_irq_update(s); 805 } 806 807 static bool vectpending_targets_secure(NVICState *s) 808 { 809 /* Return true if s->vectpending targets Secure state */ 810 if (s->vectpending_is_s_banked) { 811 return true; 812 } 813 return !exc_is_banked(s->vectpending) && 814 exc_targets_secure(s, s->vectpending); 815 } 816 817 void armv7m_nvic_get_pending_irq_info(void *opaque, 818 int *pirq, bool *ptargets_secure) 819 { 820 NVICState *s = (NVICState *)opaque; 821 const int pending = s->vectpending; 822 bool targets_secure; 823 824 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 825 826 targets_secure = vectpending_targets_secure(s); 827 828 trace_nvic_get_pending_irq_info(pending, targets_secure); 829 830 *ptargets_secure = targets_secure; 831 *pirq = pending; 832 } 833 834 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 835 { 836 NVICState *s = (NVICState *)opaque; 837 VecInfo *vec = NULL; 838 int ret = 0; 839 840 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 841 842 trace_nvic_complete_irq(irq, secure); 843 844 if (secure && exc_is_banked(irq)) { 845 vec = &s->sec_vectors[irq]; 846 } else { 847 vec = &s->vectors[irq]; 848 } 849 850 /* 851 * Identify illegal exception return cases. We can't immediately 852 * return at this point because we still need to deactivate 853 * (either this exception or NMI/HardFault) first. 854 */ 855 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 856 /* 857 * Return from a configurable exception targeting the opposite 858 * security state from the one we're trying to complete it for. 859 * Clear vec because it's not really the VecInfo for this 860 * (irq, secstate) so we mustn't deactivate it. 861 */ 862 ret = -1; 863 vec = NULL; 864 } else if (!vec->active) { 865 /* Return from an inactive interrupt */ 866 ret = -1; 867 } else { 868 /* Legal return, we will return the RETTOBASE bit value to the caller */ 869 ret = nvic_rettobase(s); 870 } 871 872 /* 873 * For negative priorities, v8M will forcibly deactivate the appropriate 874 * NMI or HardFault regardless of what interrupt we're being asked to 875 * deactivate (compare the DeActivate() pseudocode). This is a guard 876 * against software returning from NMI or HardFault with a corrupted 877 * IPSR and leaving the CPU in a negative-priority state. 878 * v7M does not do this, but simply deactivates the requested interrupt. 879 */ 880 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 881 switch (armv7m_nvic_raw_execution_priority(s)) { 882 case -1: 883 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 884 vec = &s->vectors[ARMV7M_EXCP_HARD]; 885 } else { 886 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 887 } 888 break; 889 case -2: 890 vec = &s->vectors[ARMV7M_EXCP_NMI]; 891 break; 892 case -3: 893 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 894 break; 895 default: 896 break; 897 } 898 } 899 900 if (!vec) { 901 return ret; 902 } 903 904 vec->active = 0; 905 if (vec->level) { 906 /* Re-pend the exception if it's still held high; only 907 * happens for extenal IRQs 908 */ 909 assert(irq >= NVIC_FIRST_IRQ); 910 vec->pending = 1; 911 } 912 913 nvic_irq_update(s); 914 915 return ret; 916 } 917 918 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 919 { 920 /* 921 * Return whether an exception is "ready", i.e. it is enabled and is 922 * configured at a priority which would allow it to interrupt the 923 * current execution priority. 924 * 925 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 926 * for non-banked exceptions secure is always false; for banked exceptions 927 * it indicates which of the exceptions is required. 928 */ 929 NVICState *s = (NVICState *)opaque; 930 bool banked = exc_is_banked(irq); 931 VecInfo *vec; 932 int running = nvic_exec_prio(s); 933 934 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 935 assert(!secure || banked); 936 937 /* 938 * HardFault is an odd special case: we always check against -1, 939 * even if we're secure and HardFault has priority -3; we never 940 * need to check for enabled state. 941 */ 942 if (irq == ARMV7M_EXCP_HARD) { 943 return running > -1; 944 } 945 946 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 947 948 return vec->enabled && 949 exc_group_prio(s, vec->prio, secure) < running; 950 } 951 952 /* callback when external interrupt line is changed */ 953 static void set_irq_level(void *opaque, int n, int level) 954 { 955 NVICState *s = opaque; 956 VecInfo *vec; 957 958 n += NVIC_FIRST_IRQ; 959 960 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 961 962 trace_nvic_set_irq_level(n, level); 963 964 /* The pending status of an external interrupt is 965 * latched on rising edge and exception handler return. 966 * 967 * Pulsing the IRQ will always run the handler 968 * once, and the handler will re-run until the 969 * level is low when the handler completes. 970 */ 971 vec = &s->vectors[n]; 972 if (level != vec->level) { 973 vec->level = level; 974 if (level) { 975 armv7m_nvic_set_pending(s, n, false); 976 } 977 } 978 } 979 980 /* callback when external NMI line is changed */ 981 static void nvic_nmi_trigger(void *opaque, int n, int level) 982 { 983 NVICState *s = opaque; 984 985 trace_nvic_set_nmi_level(level); 986 987 /* 988 * The architecture doesn't specify whether NMI should share 989 * the normal-interrupt behaviour of being resampled on 990 * exception handler return. We choose not to, so just 991 * set NMI pending here and don't track the current level. 992 */ 993 if (level) { 994 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 995 } 996 } 997 998 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 999 { 1000 ARMCPU *cpu = s->cpu; 1001 uint32_t val; 1002 1003 switch (offset) { 1004 case 4: /* Interrupt Control Type. */ 1005 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1006 goto bad_offset; 1007 } 1008 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1009 case 0xc: /* CPPWR */ 1010 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1011 goto bad_offset; 1012 } 1013 /* We make the IMPDEF choice that nothing can ever go into a 1014 * non-retentive power state, which allows us to RAZ/WI this. 1015 */ 1016 return 0; 1017 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1018 { 1019 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1020 int i; 1021 1022 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1023 goto bad_offset; 1024 } 1025 if (!attrs.secure) { 1026 return 0; 1027 } 1028 val = 0; 1029 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1030 if (s->itns[startvec + i]) { 1031 val |= (1 << i); 1032 } 1033 } 1034 return val; 1035 } 1036 case 0xcfc: 1037 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1038 goto bad_offset; 1039 } 1040 return cpu->revidr; 1041 case 0xd00: /* CPUID Base. */ 1042 return cpu->midr; 1043 case 0xd04: /* Interrupt Control State (ICSR) */ 1044 /* VECTACTIVE */ 1045 val = cpu->env.v7m.exception; 1046 /* VECTPENDING */ 1047 if (s->vectpending) { 1048 /* 1049 * From v8.1M VECTPENDING must read as 1 if accessed as 1050 * NonSecure and the highest priority pending and enabled 1051 * exception targets Secure. 1052 */ 1053 int vp = s->vectpending; 1054 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && 1055 vectpending_targets_secure(s)) { 1056 vp = 1; 1057 } 1058 val |= (vp & 0x1ff) << 12; 1059 } 1060 /* ISRPENDING - set if any external IRQ is pending */ 1061 if (nvic_isrpending(s)) { 1062 val |= (1 << 22); 1063 } 1064 /* RETTOBASE - set if only one handler is active */ 1065 if (nvic_rettobase(s)) { 1066 val |= (1 << 11); 1067 } 1068 if (attrs.secure) { 1069 /* PENDSTSET */ 1070 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1071 val |= (1 << 26); 1072 } 1073 /* PENDSVSET */ 1074 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1075 val |= (1 << 28); 1076 } 1077 } else { 1078 /* PENDSTSET */ 1079 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1080 val |= (1 << 26); 1081 } 1082 /* PENDSVSET */ 1083 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1084 val |= (1 << 28); 1085 } 1086 } 1087 /* NMIPENDSET */ 1088 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1089 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1090 val |= (1 << 31); 1091 } 1092 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1093 /* STTNS: RES0 for the Main Extension */ 1094 return val; 1095 case 0xd08: /* Vector Table Offset. */ 1096 return cpu->env.v7m.vecbase[attrs.secure]; 1097 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1098 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1099 if (attrs.secure) { 1100 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1101 val |= cpu->env.v7m.aircr; 1102 } else { 1103 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1104 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1105 * security isn't supported then BFHFNMINS is RAO (and 1106 * the bit in env.v7m.aircr is always set). 1107 */ 1108 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1109 } 1110 } 1111 return val; 1112 case 0xd10: /* System Control. */ 1113 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1114 goto bad_offset; 1115 } 1116 return cpu->env.v7m.scr[attrs.secure]; 1117 case 0xd14: /* Configuration Control. */ 1118 /* 1119 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1120 * and TRD (stored in the S copy of the register) 1121 */ 1122 val = cpu->env.v7m.ccr[attrs.secure]; 1123 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1124 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ 1125 if (!attrs.secure) { 1126 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1127 val &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1128 } 1129 } 1130 return val; 1131 case 0xd24: /* System Handler Control and State (SHCSR) */ 1132 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1133 goto bad_offset; 1134 } 1135 val = 0; 1136 if (attrs.secure) { 1137 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1138 val |= (1 << 0); 1139 } 1140 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1141 val |= (1 << 2); 1142 } 1143 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1144 val |= (1 << 3); 1145 } 1146 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1147 val |= (1 << 7); 1148 } 1149 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1150 val |= (1 << 10); 1151 } 1152 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1153 val |= (1 << 11); 1154 } 1155 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1156 val |= (1 << 12); 1157 } 1158 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1159 val |= (1 << 13); 1160 } 1161 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1162 val |= (1 << 15); 1163 } 1164 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1165 val |= (1 << 16); 1166 } 1167 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1168 val |= (1 << 18); 1169 } 1170 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1171 val |= (1 << 21); 1172 } 1173 /* SecureFault is not banked but is always RAZ/WI to NS */ 1174 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1175 val |= (1 << 4); 1176 } 1177 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1178 val |= (1 << 19); 1179 } 1180 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1181 val |= (1 << 20); 1182 } 1183 } else { 1184 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1185 val |= (1 << 0); 1186 } 1187 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1188 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1189 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1190 val |= (1 << 2); 1191 } 1192 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1193 val |= (1 << 21); 1194 } 1195 } 1196 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1197 val |= (1 << 3); 1198 } 1199 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1200 val |= (1 << 7); 1201 } 1202 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1203 val |= (1 << 10); 1204 } 1205 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1206 val |= (1 << 11); 1207 } 1208 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1209 val |= (1 << 12); 1210 } 1211 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1212 val |= (1 << 13); 1213 } 1214 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1215 val |= (1 << 15); 1216 } 1217 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1218 val |= (1 << 16); 1219 } 1220 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1221 val |= (1 << 18); 1222 } 1223 } 1224 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1225 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1226 val |= (1 << 1); 1227 } 1228 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1229 val |= (1 << 14); 1230 } 1231 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1232 val |= (1 << 17); 1233 } 1234 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1235 s->vectors[ARMV7M_EXCP_NMI].active) { 1236 /* NMIACT is not present in v7M */ 1237 val |= (1 << 5); 1238 } 1239 } 1240 1241 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1242 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1243 val |= (1 << 8); 1244 } 1245 return val; 1246 case 0xd2c: /* Hard Fault Status. */ 1247 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1248 goto bad_offset; 1249 } 1250 return cpu->env.v7m.hfsr; 1251 case 0xd30: /* Debug Fault Status. */ 1252 return cpu->env.v7m.dfsr; 1253 case 0xd34: /* MMFAR MemManage Fault Address */ 1254 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1255 goto bad_offset; 1256 } 1257 return cpu->env.v7m.mmfar[attrs.secure]; 1258 case 0xd38: /* Bus Fault Address. */ 1259 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1260 goto bad_offset; 1261 } 1262 if (!attrs.secure && 1263 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1264 return 0; 1265 } 1266 return cpu->env.v7m.bfar; 1267 case 0xd3c: /* Aux Fault Status. */ 1268 /* TODO: Implement fault status registers. */ 1269 qemu_log_mask(LOG_UNIMP, 1270 "Aux Fault status registers unimplemented\n"); 1271 return 0; 1272 case 0xd40: /* PFR0. */ 1273 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1274 goto bad_offset; 1275 } 1276 return cpu->isar.id_pfr0; 1277 case 0xd44: /* PFR1. */ 1278 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1279 goto bad_offset; 1280 } 1281 return cpu->isar.id_pfr1; 1282 case 0xd48: /* DFR0. */ 1283 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1284 goto bad_offset; 1285 } 1286 return cpu->isar.id_dfr0; 1287 case 0xd4c: /* AFR0. */ 1288 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1289 goto bad_offset; 1290 } 1291 return cpu->id_afr0; 1292 case 0xd50: /* MMFR0. */ 1293 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1294 goto bad_offset; 1295 } 1296 return cpu->isar.id_mmfr0; 1297 case 0xd54: /* MMFR1. */ 1298 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1299 goto bad_offset; 1300 } 1301 return cpu->isar.id_mmfr1; 1302 case 0xd58: /* MMFR2. */ 1303 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1304 goto bad_offset; 1305 } 1306 return cpu->isar.id_mmfr2; 1307 case 0xd5c: /* MMFR3. */ 1308 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1309 goto bad_offset; 1310 } 1311 return cpu->isar.id_mmfr3; 1312 case 0xd60: /* ISAR0. */ 1313 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1314 goto bad_offset; 1315 } 1316 return cpu->isar.id_isar0; 1317 case 0xd64: /* ISAR1. */ 1318 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1319 goto bad_offset; 1320 } 1321 return cpu->isar.id_isar1; 1322 case 0xd68: /* ISAR2. */ 1323 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1324 goto bad_offset; 1325 } 1326 return cpu->isar.id_isar2; 1327 case 0xd6c: /* ISAR3. */ 1328 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1329 goto bad_offset; 1330 } 1331 return cpu->isar.id_isar3; 1332 case 0xd70: /* ISAR4. */ 1333 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1334 goto bad_offset; 1335 } 1336 return cpu->isar.id_isar4; 1337 case 0xd74: /* ISAR5. */ 1338 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1339 goto bad_offset; 1340 } 1341 return cpu->isar.id_isar5; 1342 case 0xd78: /* CLIDR */ 1343 return cpu->clidr; 1344 case 0xd7c: /* CTR */ 1345 return cpu->ctr; 1346 case 0xd80: /* CSSIDR */ 1347 { 1348 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1349 return cpu->ccsidr[idx]; 1350 } 1351 case 0xd84: /* CSSELR */ 1352 return cpu->env.v7m.csselr[attrs.secure]; 1353 case 0xd88: /* CPACR */ 1354 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1355 return 0; 1356 } 1357 return cpu->env.v7m.cpacr[attrs.secure]; 1358 case 0xd8c: /* NSACR */ 1359 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1360 return 0; 1361 } 1362 return cpu->env.v7m.nsacr; 1363 /* TODO: Implement debug registers. */ 1364 case 0xd90: /* MPU_TYPE */ 1365 /* Unified MPU; if the MPU is not present this value is zero */ 1366 return cpu->pmsav7_dregion << 8; 1367 case 0xd94: /* MPU_CTRL */ 1368 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1369 case 0xd98: /* MPU_RNR */ 1370 return cpu->env.pmsav7.rnr[attrs.secure]; 1371 case 0xd9c: /* MPU_RBAR */ 1372 case 0xda4: /* MPU_RBAR_A1 */ 1373 case 0xdac: /* MPU_RBAR_A2 */ 1374 case 0xdb4: /* MPU_RBAR_A3 */ 1375 { 1376 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1377 1378 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1379 /* PMSAv8M handling of the aliases is different from v7M: 1380 * aliases A1, A2, A3 override the low two bits of the region 1381 * number in MPU_RNR, and there is no 'region' field in the 1382 * RBAR register. 1383 */ 1384 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1385 if (aliasno) { 1386 region = deposit32(region, 0, 2, aliasno); 1387 } 1388 if (region >= cpu->pmsav7_dregion) { 1389 return 0; 1390 } 1391 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1392 } 1393 1394 if (region >= cpu->pmsav7_dregion) { 1395 return 0; 1396 } 1397 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1398 } 1399 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1400 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1401 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1402 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1403 { 1404 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1405 1406 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1407 /* PMSAv8M handling of the aliases is different from v7M: 1408 * aliases A1, A2, A3 override the low two bits of the region 1409 * number in MPU_RNR. 1410 */ 1411 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1412 if (aliasno) { 1413 region = deposit32(region, 0, 2, aliasno); 1414 } 1415 if (region >= cpu->pmsav7_dregion) { 1416 return 0; 1417 } 1418 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1419 } 1420 1421 if (region >= cpu->pmsav7_dregion) { 1422 return 0; 1423 } 1424 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1425 (cpu->env.pmsav7.drsr[region] & 0xffff); 1426 } 1427 case 0xdc0: /* MPU_MAIR0 */ 1428 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1429 goto bad_offset; 1430 } 1431 return cpu->env.pmsav8.mair0[attrs.secure]; 1432 case 0xdc4: /* MPU_MAIR1 */ 1433 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1434 goto bad_offset; 1435 } 1436 return cpu->env.pmsav8.mair1[attrs.secure]; 1437 case 0xdd0: /* SAU_CTRL */ 1438 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1439 goto bad_offset; 1440 } 1441 if (!attrs.secure) { 1442 return 0; 1443 } 1444 return cpu->env.sau.ctrl; 1445 case 0xdd4: /* SAU_TYPE */ 1446 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1447 goto bad_offset; 1448 } 1449 if (!attrs.secure) { 1450 return 0; 1451 } 1452 return cpu->sau_sregion; 1453 case 0xdd8: /* SAU_RNR */ 1454 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1455 goto bad_offset; 1456 } 1457 if (!attrs.secure) { 1458 return 0; 1459 } 1460 return cpu->env.sau.rnr; 1461 case 0xddc: /* SAU_RBAR */ 1462 { 1463 int region = cpu->env.sau.rnr; 1464 1465 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1466 goto bad_offset; 1467 } 1468 if (!attrs.secure) { 1469 return 0; 1470 } 1471 if (region >= cpu->sau_sregion) { 1472 return 0; 1473 } 1474 return cpu->env.sau.rbar[region]; 1475 } 1476 case 0xde0: /* SAU_RLAR */ 1477 { 1478 int region = cpu->env.sau.rnr; 1479 1480 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1481 goto bad_offset; 1482 } 1483 if (!attrs.secure) { 1484 return 0; 1485 } 1486 if (region >= cpu->sau_sregion) { 1487 return 0; 1488 } 1489 return cpu->env.sau.rlar[region]; 1490 } 1491 case 0xde4: /* SFSR */ 1492 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1493 goto bad_offset; 1494 } 1495 if (!attrs.secure) { 1496 return 0; 1497 } 1498 return cpu->env.v7m.sfsr; 1499 case 0xde8: /* SFAR */ 1500 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1501 goto bad_offset; 1502 } 1503 if (!attrs.secure) { 1504 return 0; 1505 } 1506 return cpu->env.v7m.sfar; 1507 case 0xf04: /* RFSR */ 1508 if (!cpu_isar_feature(aa32_ras, cpu)) { 1509 goto bad_offset; 1510 } 1511 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1512 return 0; 1513 case 0xf34: /* FPCCR */ 1514 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1515 return 0; 1516 } 1517 if (attrs.secure) { 1518 return cpu->env.v7m.fpccr[M_REG_S]; 1519 } else { 1520 /* 1521 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1522 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1523 * other non-banked bits RAZ. 1524 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1525 */ 1526 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1527 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1528 R_V7M_FPCCR_CLRONRET_MASK | 1529 R_V7M_FPCCR_MONRDY_MASK; 1530 1531 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1532 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1533 } 1534 1535 value &= mask; 1536 1537 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1538 return value; 1539 } 1540 case 0xf38: /* FPCAR */ 1541 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1542 return 0; 1543 } 1544 return cpu->env.v7m.fpcar[attrs.secure]; 1545 case 0xf3c: /* FPDSCR */ 1546 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1547 return 0; 1548 } 1549 return cpu->env.v7m.fpdscr[attrs.secure]; 1550 case 0xf40: /* MVFR0 */ 1551 return cpu->isar.mvfr0; 1552 case 0xf44: /* MVFR1 */ 1553 return cpu->isar.mvfr1; 1554 case 0xf48: /* MVFR2 */ 1555 return cpu->isar.mvfr2; 1556 default: 1557 bad_offset: 1558 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1559 return 0; 1560 } 1561 } 1562 1563 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1564 MemTxAttrs attrs) 1565 { 1566 ARMCPU *cpu = s->cpu; 1567 1568 switch (offset) { 1569 case 0xc: /* CPPWR */ 1570 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1571 goto bad_offset; 1572 } 1573 /* Make the IMPDEF choice to RAZ/WI this. */ 1574 break; 1575 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1576 { 1577 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1578 int i; 1579 1580 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1581 goto bad_offset; 1582 } 1583 if (!attrs.secure) { 1584 break; 1585 } 1586 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1587 s->itns[startvec + i] = (value >> i) & 1; 1588 } 1589 nvic_irq_update(s); 1590 break; 1591 } 1592 case 0xd04: /* Interrupt Control State (ICSR) */ 1593 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1594 if (value & (1 << 31)) { 1595 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1596 } else if (value & (1 << 30) && 1597 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1598 /* PENDNMICLR didn't exist in v7M */ 1599 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1600 } 1601 } 1602 if (value & (1 << 28)) { 1603 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1604 } else if (value & (1 << 27)) { 1605 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1606 } 1607 if (value & (1 << 26)) { 1608 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1609 } else if (value & (1 << 25)) { 1610 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1611 } 1612 break; 1613 case 0xd08: /* Vector Table Offset. */ 1614 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1615 break; 1616 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1617 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1618 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1619 if (attrs.secure || 1620 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1621 signal_sysresetreq(s); 1622 } 1623 } 1624 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1625 qemu_log_mask(LOG_GUEST_ERROR, 1626 "Setting VECTCLRACTIVE when not in DEBUG mode " 1627 "is UNPREDICTABLE\n"); 1628 } 1629 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1630 /* NB: this bit is RES0 in v8M */ 1631 qemu_log_mask(LOG_GUEST_ERROR, 1632 "Setting VECTRESET when not in DEBUG mode " 1633 "is UNPREDICTABLE\n"); 1634 } 1635 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1636 s->prigroup[attrs.secure] = 1637 extract32(value, 1638 R_V7M_AIRCR_PRIGROUP_SHIFT, 1639 R_V7M_AIRCR_PRIGROUP_LENGTH); 1640 } 1641 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1642 if (attrs.secure) { 1643 /* These bits are only writable by secure */ 1644 cpu->env.v7m.aircr = value & 1645 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1646 R_V7M_AIRCR_BFHFNMINS_MASK | 1647 R_V7M_AIRCR_PRIS_MASK); 1648 /* BFHFNMINS changes the priority of Secure HardFault, and 1649 * allows a pending Non-secure HardFault to preempt (which 1650 * we implement by marking it enabled). 1651 */ 1652 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1653 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1654 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1655 } else { 1656 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1657 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1658 } 1659 } 1660 nvic_irq_update(s); 1661 } 1662 break; 1663 case 0xd10: /* System Control. */ 1664 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1665 goto bad_offset; 1666 } 1667 /* We don't implement deep-sleep so these bits are RAZ/WI. 1668 * The other bits in the register are banked. 1669 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1670 * is architecturally permitted. 1671 */ 1672 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1673 cpu->env.v7m.scr[attrs.secure] = value; 1674 break; 1675 case 0xd14: /* Configuration Control. */ 1676 { 1677 uint32_t mask; 1678 1679 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1680 goto bad_offset; 1681 } 1682 1683 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1684 mask = R_V7M_CCR_STKALIGN_MASK | 1685 R_V7M_CCR_BFHFNMIGN_MASK | 1686 R_V7M_CCR_DIV_0_TRP_MASK | 1687 R_V7M_CCR_UNALIGN_TRP_MASK | 1688 R_V7M_CCR_USERSETMPEND_MASK | 1689 R_V7M_CCR_NONBASETHRDENA_MASK; 1690 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1691 /* TRD is always RAZ/WI from NS */ 1692 mask |= R_V7M_CCR_TRD_MASK; 1693 } 1694 value &= mask; 1695 1696 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1697 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1698 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1699 | R_V7M_CCR_STKALIGN_MASK; 1700 } 1701 if (attrs.secure) { 1702 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1703 cpu->env.v7m.ccr[M_REG_NS] = 1704 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1705 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1706 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1707 } else { 1708 /* 1709 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so 1710 * preserve the state currently in the NS element of the array 1711 */ 1712 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1713 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1714 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1715 } 1716 } 1717 1718 cpu->env.v7m.ccr[attrs.secure] = value; 1719 break; 1720 } 1721 case 0xd24: /* System Handler Control and State (SHCSR) */ 1722 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1723 goto bad_offset; 1724 } 1725 if (attrs.secure) { 1726 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1727 /* Secure HardFault active bit cannot be written */ 1728 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1729 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1730 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1731 (value & (1 << 10)) != 0; 1732 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1733 (value & (1 << 11)) != 0; 1734 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1735 (value & (1 << 12)) != 0; 1736 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1737 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1738 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1739 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1740 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1741 (value & (1 << 18)) != 0; 1742 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1743 /* SecureFault not banked, but RAZ/WI to NS */ 1744 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1745 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1746 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1747 } else { 1748 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1749 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1750 /* HARDFAULTPENDED is not present in v7M */ 1751 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1752 } 1753 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1754 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1755 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1756 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1757 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1758 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1759 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1760 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1761 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1762 } 1763 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1764 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1765 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1766 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1767 } 1768 /* NMIACT can only be written if the write is of a zero, with 1769 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1770 */ 1771 if (!attrs.secure && cpu->env.v7m.secure && 1772 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1773 (value & (1 << 5)) == 0) { 1774 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1775 } 1776 /* HARDFAULTACT can only be written if the write is of a zero 1777 * to the non-secure HardFault state by the CPU in secure state. 1778 * The only case where we can be targeting the non-secure HF state 1779 * when in secure state is if this is a write via the NS alias 1780 * and BFHFNMINS is 1. 1781 */ 1782 if (!attrs.secure && cpu->env.v7m.secure && 1783 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1784 (value & (1 << 2)) == 0) { 1785 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1786 } 1787 1788 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1789 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1790 nvic_irq_update(s); 1791 break; 1792 case 0xd2c: /* Hard Fault Status. */ 1793 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1794 goto bad_offset; 1795 } 1796 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1797 break; 1798 case 0xd30: /* Debug Fault Status. */ 1799 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1800 break; 1801 case 0xd34: /* Mem Manage Address. */ 1802 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1803 goto bad_offset; 1804 } 1805 cpu->env.v7m.mmfar[attrs.secure] = value; 1806 return; 1807 case 0xd38: /* Bus Fault Address. */ 1808 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1809 goto bad_offset; 1810 } 1811 if (!attrs.secure && 1812 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1813 return; 1814 } 1815 cpu->env.v7m.bfar = value; 1816 return; 1817 case 0xd3c: /* Aux Fault Status. */ 1818 qemu_log_mask(LOG_UNIMP, 1819 "NVIC: Aux fault status registers unimplemented\n"); 1820 break; 1821 case 0xd84: /* CSSELR */ 1822 if (!arm_v7m_csselr_razwi(cpu)) { 1823 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1824 } 1825 break; 1826 case 0xd88: /* CPACR */ 1827 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1828 /* We implement only the Floating Point extension's CP10/CP11 */ 1829 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1830 } 1831 break; 1832 case 0xd8c: /* NSACR */ 1833 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1834 /* We implement only the Floating Point extension's CP10/CP11 */ 1835 cpu->env.v7m.nsacr = value & (3 << 10); 1836 } 1837 break; 1838 case 0xd90: /* MPU_TYPE */ 1839 return; /* RO */ 1840 case 0xd94: /* MPU_CTRL */ 1841 if ((value & 1842 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1843 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1844 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1845 "UNPREDICTABLE\n"); 1846 } 1847 cpu->env.v7m.mpu_ctrl[attrs.secure] 1848 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1849 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1850 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1851 tlb_flush(CPU(cpu)); 1852 break; 1853 case 0xd98: /* MPU_RNR */ 1854 if (value >= cpu->pmsav7_dregion) { 1855 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1856 PRIu32 "/%" PRIu32 "\n", 1857 value, cpu->pmsav7_dregion); 1858 } else { 1859 cpu->env.pmsav7.rnr[attrs.secure] = value; 1860 } 1861 break; 1862 case 0xd9c: /* MPU_RBAR */ 1863 case 0xda4: /* MPU_RBAR_A1 */ 1864 case 0xdac: /* MPU_RBAR_A2 */ 1865 case 0xdb4: /* MPU_RBAR_A3 */ 1866 { 1867 int region; 1868 1869 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1870 /* PMSAv8M handling of the aliases is different from v7M: 1871 * aliases A1, A2, A3 override the low two bits of the region 1872 * number in MPU_RNR, and there is no 'region' field in the 1873 * RBAR register. 1874 */ 1875 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1876 1877 region = cpu->env.pmsav7.rnr[attrs.secure]; 1878 if (aliasno) { 1879 region = deposit32(region, 0, 2, aliasno); 1880 } 1881 if (region >= cpu->pmsav7_dregion) { 1882 return; 1883 } 1884 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1885 tlb_flush(CPU(cpu)); 1886 return; 1887 } 1888 1889 if (value & (1 << 4)) { 1890 /* VALID bit means use the region number specified in this 1891 * value and also update MPU_RNR.REGION with that value. 1892 */ 1893 region = extract32(value, 0, 4); 1894 if (region >= cpu->pmsav7_dregion) { 1895 qemu_log_mask(LOG_GUEST_ERROR, 1896 "MPU region out of range %u/%" PRIu32 "\n", 1897 region, cpu->pmsav7_dregion); 1898 return; 1899 } 1900 cpu->env.pmsav7.rnr[attrs.secure] = region; 1901 } else { 1902 region = cpu->env.pmsav7.rnr[attrs.secure]; 1903 } 1904 1905 if (region >= cpu->pmsav7_dregion) { 1906 return; 1907 } 1908 1909 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1910 tlb_flush(CPU(cpu)); 1911 break; 1912 } 1913 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1914 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1915 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1916 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1917 { 1918 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1919 1920 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1921 /* PMSAv8M handling of the aliases is different from v7M: 1922 * aliases A1, A2, A3 override the low two bits of the region 1923 * number in MPU_RNR. 1924 */ 1925 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1926 1927 region = cpu->env.pmsav7.rnr[attrs.secure]; 1928 if (aliasno) { 1929 region = deposit32(region, 0, 2, aliasno); 1930 } 1931 if (region >= cpu->pmsav7_dregion) { 1932 return; 1933 } 1934 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1935 tlb_flush(CPU(cpu)); 1936 return; 1937 } 1938 1939 if (region >= cpu->pmsav7_dregion) { 1940 return; 1941 } 1942 1943 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1944 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1945 tlb_flush(CPU(cpu)); 1946 break; 1947 } 1948 case 0xdc0: /* MPU_MAIR0 */ 1949 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1950 goto bad_offset; 1951 } 1952 if (cpu->pmsav7_dregion) { 1953 /* Register is RES0 if no MPU regions are implemented */ 1954 cpu->env.pmsav8.mair0[attrs.secure] = value; 1955 } 1956 /* We don't need to do anything else because memory attributes 1957 * only affect cacheability, and we don't implement caching. 1958 */ 1959 break; 1960 case 0xdc4: /* MPU_MAIR1 */ 1961 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1962 goto bad_offset; 1963 } 1964 if (cpu->pmsav7_dregion) { 1965 /* Register is RES0 if no MPU regions are implemented */ 1966 cpu->env.pmsav8.mair1[attrs.secure] = value; 1967 } 1968 /* We don't need to do anything else because memory attributes 1969 * only affect cacheability, and we don't implement caching. 1970 */ 1971 break; 1972 case 0xdd0: /* SAU_CTRL */ 1973 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1974 goto bad_offset; 1975 } 1976 if (!attrs.secure) { 1977 return; 1978 } 1979 cpu->env.sau.ctrl = value & 3; 1980 break; 1981 case 0xdd4: /* SAU_TYPE */ 1982 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1983 goto bad_offset; 1984 } 1985 break; 1986 case 0xdd8: /* SAU_RNR */ 1987 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1988 goto bad_offset; 1989 } 1990 if (!attrs.secure) { 1991 return; 1992 } 1993 if (value >= cpu->sau_sregion) { 1994 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1995 PRIu32 "/%" PRIu32 "\n", 1996 value, cpu->sau_sregion); 1997 } else { 1998 cpu->env.sau.rnr = value; 1999 } 2000 break; 2001 case 0xddc: /* SAU_RBAR */ 2002 { 2003 int region = cpu->env.sau.rnr; 2004 2005 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2006 goto bad_offset; 2007 } 2008 if (!attrs.secure) { 2009 return; 2010 } 2011 if (region >= cpu->sau_sregion) { 2012 return; 2013 } 2014 cpu->env.sau.rbar[region] = value & ~0x1f; 2015 tlb_flush(CPU(cpu)); 2016 break; 2017 } 2018 case 0xde0: /* SAU_RLAR */ 2019 { 2020 int region = cpu->env.sau.rnr; 2021 2022 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2023 goto bad_offset; 2024 } 2025 if (!attrs.secure) { 2026 return; 2027 } 2028 if (region >= cpu->sau_sregion) { 2029 return; 2030 } 2031 cpu->env.sau.rlar[region] = value & ~0x1c; 2032 tlb_flush(CPU(cpu)); 2033 break; 2034 } 2035 case 0xde4: /* SFSR */ 2036 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2037 goto bad_offset; 2038 } 2039 if (!attrs.secure) { 2040 return; 2041 } 2042 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2043 break; 2044 case 0xde8: /* SFAR */ 2045 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2046 goto bad_offset; 2047 } 2048 if (!attrs.secure) { 2049 return; 2050 } 2051 cpu->env.v7m.sfsr = value; 2052 break; 2053 case 0xf00: /* Software Triggered Interrupt Register */ 2054 { 2055 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2056 2057 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2058 goto bad_offset; 2059 } 2060 2061 if (excnum < s->num_irq) { 2062 armv7m_nvic_set_pending(s, excnum, false); 2063 } 2064 break; 2065 } 2066 case 0xf04: /* RFSR */ 2067 if (!cpu_isar_feature(aa32_ras, cpu)) { 2068 goto bad_offset; 2069 } 2070 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2071 break; 2072 case 0xf34: /* FPCCR */ 2073 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2074 /* Not all bits here are banked. */ 2075 uint32_t fpccr_s; 2076 2077 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2078 /* Don't allow setting of bits not present in v7M */ 2079 value &= (R_V7M_FPCCR_LSPACT_MASK | 2080 R_V7M_FPCCR_USER_MASK | 2081 R_V7M_FPCCR_THREAD_MASK | 2082 R_V7M_FPCCR_HFRDY_MASK | 2083 R_V7M_FPCCR_MMRDY_MASK | 2084 R_V7M_FPCCR_BFRDY_MASK | 2085 R_V7M_FPCCR_MONRDY_MASK | 2086 R_V7M_FPCCR_LSPEN_MASK | 2087 R_V7M_FPCCR_ASPEN_MASK); 2088 } 2089 value &= ~R_V7M_FPCCR_RES0_MASK; 2090 2091 if (!attrs.secure) { 2092 /* Some non-banked bits are configurably writable by NS */ 2093 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2094 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2095 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2096 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2097 } 2098 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2099 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2100 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2101 } 2102 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2103 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2104 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2105 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2106 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2107 } 2108 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2109 { 2110 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2111 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2112 } 2113 2114 /* 2115 * All other non-banked bits are RAZ/WI from NS; write 2116 * just the banked bits to fpccr[M_REG_NS]. 2117 */ 2118 value &= R_V7M_FPCCR_BANKED_MASK; 2119 cpu->env.v7m.fpccr[M_REG_NS] = value; 2120 } else { 2121 fpccr_s = value; 2122 } 2123 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2124 } 2125 break; 2126 case 0xf38: /* FPCAR */ 2127 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2128 value &= ~7; 2129 cpu->env.v7m.fpcar[attrs.secure] = value; 2130 } 2131 break; 2132 case 0xf3c: /* FPDSCR */ 2133 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2134 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2135 if (cpu_isar_feature(any_fp16, cpu)) { 2136 mask |= FPCR_FZ16; 2137 } 2138 value &= mask; 2139 if (cpu_isar_feature(aa32_lob, cpu)) { 2140 value |= 4 << FPCR_LTPSIZE_SHIFT; 2141 } 2142 cpu->env.v7m.fpdscr[attrs.secure] = value; 2143 } 2144 break; 2145 case 0xf50: /* ICIALLU */ 2146 case 0xf58: /* ICIMVAU */ 2147 case 0xf5c: /* DCIMVAC */ 2148 case 0xf60: /* DCISW */ 2149 case 0xf64: /* DCCMVAU */ 2150 case 0xf68: /* DCCMVAC */ 2151 case 0xf6c: /* DCCSW */ 2152 case 0xf70: /* DCCIMVAC */ 2153 case 0xf74: /* DCCISW */ 2154 case 0xf78: /* BPIALL */ 2155 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2156 break; 2157 default: 2158 bad_offset: 2159 qemu_log_mask(LOG_GUEST_ERROR, 2160 "NVIC: Bad write offset 0x%x\n", offset); 2161 } 2162 } 2163 2164 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2165 { 2166 /* Return true if unprivileged access to this register is permitted. */ 2167 switch (offset) { 2168 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2169 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2170 * controls access even though the CPU is in Secure state (I_QDKX). 2171 */ 2172 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2173 default: 2174 /* All other user accesses cause a BusFault unconditionally */ 2175 return false; 2176 } 2177 } 2178 2179 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2180 { 2181 /* Behaviour for the SHPR register field for this exception: 2182 * return M_REG_NS to use the nonsecure vector (including for 2183 * non-banked exceptions), M_REG_S for the secure version of 2184 * a banked exception, and -1 if this field should RAZ/WI. 2185 */ 2186 switch (exc) { 2187 case ARMV7M_EXCP_MEM: 2188 case ARMV7M_EXCP_USAGE: 2189 case ARMV7M_EXCP_SVC: 2190 case ARMV7M_EXCP_PENDSV: 2191 case ARMV7M_EXCP_SYSTICK: 2192 /* Banked exceptions */ 2193 return attrs.secure; 2194 case ARMV7M_EXCP_BUS: 2195 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2196 if (!attrs.secure && 2197 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2198 return -1; 2199 } 2200 return M_REG_NS; 2201 case ARMV7M_EXCP_SECURE: 2202 /* Not banked, RAZ/WI from nonsecure */ 2203 if (!attrs.secure) { 2204 return -1; 2205 } 2206 return M_REG_NS; 2207 case ARMV7M_EXCP_DEBUG: 2208 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2209 return M_REG_NS; 2210 case 8 ... 10: 2211 case 13: 2212 /* RES0 */ 2213 return -1; 2214 default: 2215 /* Not reachable due to decode of SHPR register addresses */ 2216 g_assert_not_reached(); 2217 } 2218 } 2219 2220 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2221 uint64_t *data, unsigned size, 2222 MemTxAttrs attrs) 2223 { 2224 NVICState *s = (NVICState *)opaque; 2225 uint32_t offset = addr; 2226 unsigned i, startvec, end; 2227 uint32_t val; 2228 2229 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2230 /* Generate BusFault for unprivileged accesses */ 2231 return MEMTX_ERROR; 2232 } 2233 2234 switch (offset) { 2235 /* reads of set and clear both return the status */ 2236 case 0x100 ... 0x13f: /* NVIC Set enable */ 2237 offset += 0x80; 2238 /* fall through */ 2239 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2240 val = 0; 2241 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2242 2243 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2244 if (s->vectors[startvec + i].enabled && 2245 (attrs.secure || s->itns[startvec + i])) { 2246 val |= (1 << i); 2247 } 2248 } 2249 break; 2250 case 0x200 ... 0x23f: /* NVIC Set pend */ 2251 offset += 0x80; 2252 /* fall through */ 2253 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2254 val = 0; 2255 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2256 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2257 if (s->vectors[startvec + i].pending && 2258 (attrs.secure || s->itns[startvec + i])) { 2259 val |= (1 << i); 2260 } 2261 } 2262 break; 2263 case 0x300 ... 0x33f: /* NVIC Active */ 2264 val = 0; 2265 2266 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2267 break; 2268 } 2269 2270 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2271 2272 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2273 if (s->vectors[startvec + i].active && 2274 (attrs.secure || s->itns[startvec + i])) { 2275 val |= (1 << i); 2276 } 2277 } 2278 break; 2279 case 0x400 ... 0x5ef: /* NVIC Priority */ 2280 val = 0; 2281 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2282 2283 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2284 if (attrs.secure || s->itns[startvec + i]) { 2285 val |= s->vectors[startvec + i].prio << (8 * i); 2286 } 2287 } 2288 break; 2289 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2290 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2291 val = 0; 2292 break; 2293 } 2294 /* fall through */ 2295 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2296 val = 0; 2297 for (i = 0; i < size; i++) { 2298 unsigned hdlidx = (offset - 0xd14) + i; 2299 int sbank = shpr_bank(s, hdlidx, attrs); 2300 2301 if (sbank < 0) { 2302 continue; 2303 } 2304 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2305 } 2306 break; 2307 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2308 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2309 val = 0; 2310 break; 2311 }; 2312 /* 2313 * The BFSR bits [15:8] are shared between security states 2314 * and we store them in the NS copy. They are RAZ/WI for 2315 * NS code if AIRCR.BFHFNMINS is 0. 2316 */ 2317 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2318 if (!attrs.secure && 2319 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2320 val &= ~R_V7M_CFSR_BFSR_MASK; 2321 } else { 2322 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2323 } 2324 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2325 break; 2326 case 0xfe0 ... 0xfff: /* ID. */ 2327 if (offset & 3) { 2328 val = 0; 2329 } else { 2330 val = nvic_id[(offset - 0xfe0) >> 2]; 2331 } 2332 break; 2333 default: 2334 if (size == 4) { 2335 val = nvic_readl(s, offset, attrs); 2336 } else { 2337 qemu_log_mask(LOG_GUEST_ERROR, 2338 "NVIC: Bad read of size %d at offset 0x%x\n", 2339 size, offset); 2340 val = 0; 2341 } 2342 } 2343 2344 trace_nvic_sysreg_read(addr, val, size); 2345 *data = val; 2346 return MEMTX_OK; 2347 } 2348 2349 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2350 uint64_t value, unsigned size, 2351 MemTxAttrs attrs) 2352 { 2353 NVICState *s = (NVICState *)opaque; 2354 uint32_t offset = addr; 2355 unsigned i, startvec, end; 2356 unsigned setval = 0; 2357 2358 trace_nvic_sysreg_write(addr, value, size); 2359 2360 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2361 /* Generate BusFault for unprivileged accesses */ 2362 return MEMTX_ERROR; 2363 } 2364 2365 switch (offset) { 2366 case 0x100 ... 0x13f: /* NVIC Set enable */ 2367 offset += 0x80; 2368 setval = 1; 2369 /* fall through */ 2370 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2371 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2372 2373 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2374 if (value & (1 << i) && 2375 (attrs.secure || s->itns[startvec + i])) { 2376 s->vectors[startvec + i].enabled = setval; 2377 } 2378 } 2379 nvic_irq_update(s); 2380 goto exit_ok; 2381 case 0x200 ... 0x23f: /* NVIC Set pend */ 2382 /* the special logic in armv7m_nvic_set_pending() 2383 * is not needed since IRQs are never escalated 2384 */ 2385 offset += 0x80; 2386 setval = 1; 2387 /* fall through */ 2388 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2389 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2390 2391 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2392 if (value & (1 << i) && 2393 (attrs.secure || s->itns[startvec + i])) { 2394 s->vectors[startvec + i].pending = setval; 2395 } 2396 } 2397 nvic_irq_update(s); 2398 goto exit_ok; 2399 case 0x300 ... 0x33f: /* NVIC Active */ 2400 goto exit_ok; /* R/O */ 2401 case 0x400 ... 0x5ef: /* NVIC Priority */ 2402 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2403 2404 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2405 if (attrs.secure || s->itns[startvec + i]) { 2406 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2407 } 2408 } 2409 nvic_irq_update(s); 2410 goto exit_ok; 2411 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2412 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2413 goto exit_ok; 2414 } 2415 /* fall through */ 2416 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2417 for (i = 0; i < size; i++) { 2418 unsigned hdlidx = (offset - 0xd14) + i; 2419 int newprio = extract32(value, i * 8, 8); 2420 int sbank = shpr_bank(s, hdlidx, attrs); 2421 2422 if (sbank < 0) { 2423 continue; 2424 } 2425 set_prio(s, hdlidx, sbank, newprio); 2426 } 2427 nvic_irq_update(s); 2428 goto exit_ok; 2429 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2430 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2431 goto exit_ok; 2432 } 2433 /* All bits are W1C, so construct 32 bit value with 0s in 2434 * the parts not written by the access size 2435 */ 2436 value <<= ((offset - 0xd28) * 8); 2437 2438 if (!attrs.secure && 2439 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2440 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2441 value &= ~R_V7M_CFSR_BFSR_MASK; 2442 } 2443 2444 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2445 if (attrs.secure) { 2446 /* The BFSR bits [15:8] are shared between security states 2447 * and we store them in the NS copy. 2448 */ 2449 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2450 } 2451 goto exit_ok; 2452 } 2453 if (size == 4) { 2454 nvic_writel(s, offset, value, attrs); 2455 goto exit_ok; 2456 } 2457 qemu_log_mask(LOG_GUEST_ERROR, 2458 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2459 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2460 2461 exit_ok: 2462 /* Ensure any changes made are reflected in the cached hflags. */ 2463 arm_rebuild_hflags(&s->cpu->env); 2464 return MEMTX_OK; 2465 } 2466 2467 static const MemoryRegionOps nvic_sysreg_ops = { 2468 .read_with_attrs = nvic_sysreg_read, 2469 .write_with_attrs = nvic_sysreg_write, 2470 .endianness = DEVICE_NATIVE_ENDIAN, 2471 }; 2472 2473 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2474 uint64_t value, unsigned size, 2475 MemTxAttrs attrs) 2476 { 2477 MemoryRegion *mr = opaque; 2478 2479 if (attrs.secure) { 2480 /* S accesses to the alias act like NS accesses to the real region */ 2481 attrs.secure = 0; 2482 return memory_region_dispatch_write(mr, addr, value, 2483 size_memop(size) | MO_TE, attrs); 2484 } else { 2485 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2486 if (attrs.user) { 2487 return MEMTX_ERROR; 2488 } 2489 return MEMTX_OK; 2490 } 2491 } 2492 2493 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2494 uint64_t *data, unsigned size, 2495 MemTxAttrs attrs) 2496 { 2497 MemoryRegion *mr = opaque; 2498 2499 if (attrs.secure) { 2500 /* S accesses to the alias act like NS accesses to the real region */ 2501 attrs.secure = 0; 2502 return memory_region_dispatch_read(mr, addr, data, 2503 size_memop(size) | MO_TE, attrs); 2504 } else { 2505 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2506 if (attrs.user) { 2507 return MEMTX_ERROR; 2508 } 2509 *data = 0; 2510 return MEMTX_OK; 2511 } 2512 } 2513 2514 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2515 .read_with_attrs = nvic_sysreg_ns_read, 2516 .write_with_attrs = nvic_sysreg_ns_write, 2517 .endianness = DEVICE_NATIVE_ENDIAN, 2518 }; 2519 2520 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2521 uint64_t value, unsigned size, 2522 MemTxAttrs attrs) 2523 { 2524 NVICState *s = opaque; 2525 MemoryRegion *mr; 2526 2527 /* Direct the access to the correct systick */ 2528 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2529 return memory_region_dispatch_write(mr, addr, value, 2530 size_memop(size) | MO_TE, attrs); 2531 } 2532 2533 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2534 uint64_t *data, unsigned size, 2535 MemTxAttrs attrs) 2536 { 2537 NVICState *s = opaque; 2538 MemoryRegion *mr; 2539 2540 /* Direct the access to the correct systick */ 2541 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2542 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2543 attrs); 2544 } 2545 2546 static const MemoryRegionOps nvic_systick_ops = { 2547 .read_with_attrs = nvic_systick_read, 2548 .write_with_attrs = nvic_systick_write, 2549 .endianness = DEVICE_NATIVE_ENDIAN, 2550 }; 2551 2552 2553 static MemTxResult ras_read(void *opaque, hwaddr addr, 2554 uint64_t *data, unsigned size, 2555 MemTxAttrs attrs) 2556 { 2557 if (attrs.user) { 2558 return MEMTX_ERROR; 2559 } 2560 2561 switch (addr) { 2562 case 0xe10: /* ERRIIDR */ 2563 /* architect field = Arm; product/variant/revision 0 */ 2564 *data = 0x43b; 2565 break; 2566 case 0xfc8: /* ERRDEVID */ 2567 /* Minimal RAS: we implement 0 error record indexes */ 2568 *data = 0; 2569 break; 2570 default: 2571 qemu_log_mask(LOG_UNIMP, "Read RAS register offset 0x%x\n", 2572 (uint32_t)addr); 2573 *data = 0; 2574 break; 2575 } 2576 return MEMTX_OK; 2577 } 2578 2579 static MemTxResult ras_write(void *opaque, hwaddr addr, 2580 uint64_t value, unsigned size, 2581 MemTxAttrs attrs) 2582 { 2583 if (attrs.user) { 2584 return MEMTX_ERROR; 2585 } 2586 2587 switch (addr) { 2588 default: 2589 qemu_log_mask(LOG_UNIMP, "Write to RAS register offset 0x%x\n", 2590 (uint32_t)addr); 2591 break; 2592 } 2593 return MEMTX_OK; 2594 } 2595 2596 static const MemoryRegionOps ras_ops = { 2597 .read_with_attrs = ras_read, 2598 .write_with_attrs = ras_write, 2599 .endianness = DEVICE_NATIVE_ENDIAN, 2600 }; 2601 2602 /* 2603 * Unassigned portions of the PPB space are RAZ/WI for privileged 2604 * accesses, and fault for non-privileged accesses. 2605 */ 2606 static MemTxResult ppb_default_read(void *opaque, hwaddr addr, 2607 uint64_t *data, unsigned size, 2608 MemTxAttrs attrs) 2609 { 2610 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n", 2611 (uint32_t)addr); 2612 if (attrs.user) { 2613 return MEMTX_ERROR; 2614 } 2615 *data = 0; 2616 return MEMTX_OK; 2617 } 2618 2619 static MemTxResult ppb_default_write(void *opaque, hwaddr addr, 2620 uint64_t value, unsigned size, 2621 MemTxAttrs attrs) 2622 { 2623 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n", 2624 (uint32_t)addr); 2625 if (attrs.user) { 2626 return MEMTX_ERROR; 2627 } 2628 return MEMTX_OK; 2629 } 2630 2631 static const MemoryRegionOps ppb_default_ops = { 2632 .read_with_attrs = ppb_default_read, 2633 .write_with_attrs = ppb_default_write, 2634 .endianness = DEVICE_NATIVE_ENDIAN, 2635 .valid.min_access_size = 1, 2636 .valid.max_access_size = 8, 2637 }; 2638 2639 static int nvic_post_load(void *opaque, int version_id) 2640 { 2641 NVICState *s = opaque; 2642 unsigned i; 2643 int resetprio; 2644 2645 /* Check for out of range priority settings */ 2646 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2647 2648 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2649 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2650 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2651 return 1; 2652 } 2653 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2654 if (s->vectors[i].prio & ~0xff) { 2655 return 1; 2656 } 2657 } 2658 2659 nvic_recompute_state(s); 2660 2661 return 0; 2662 } 2663 2664 static const VMStateDescription vmstate_VecInfo = { 2665 .name = "armv7m_nvic_info", 2666 .version_id = 1, 2667 .minimum_version_id = 1, 2668 .fields = (VMStateField[]) { 2669 VMSTATE_INT16(prio, VecInfo), 2670 VMSTATE_UINT8(enabled, VecInfo), 2671 VMSTATE_UINT8(pending, VecInfo), 2672 VMSTATE_UINT8(active, VecInfo), 2673 VMSTATE_UINT8(level, VecInfo), 2674 VMSTATE_END_OF_LIST() 2675 } 2676 }; 2677 2678 static bool nvic_security_needed(void *opaque) 2679 { 2680 NVICState *s = opaque; 2681 2682 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2683 } 2684 2685 static int nvic_security_post_load(void *opaque, int version_id) 2686 { 2687 NVICState *s = opaque; 2688 int i; 2689 2690 /* Check for out of range priority settings */ 2691 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2692 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2693 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2694 * if the CPU state has been migrated yet; a mismatch won't 2695 * cause the emulation to blow up, though. 2696 */ 2697 return 1; 2698 } 2699 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2700 if (s->sec_vectors[i].prio & ~0xff) { 2701 return 1; 2702 } 2703 } 2704 return 0; 2705 } 2706 2707 static const VMStateDescription vmstate_nvic_security = { 2708 .name = "armv7m_nvic/m-security", 2709 .version_id = 1, 2710 .minimum_version_id = 1, 2711 .needed = nvic_security_needed, 2712 .post_load = &nvic_security_post_load, 2713 .fields = (VMStateField[]) { 2714 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2715 vmstate_VecInfo, VecInfo), 2716 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2717 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2718 VMSTATE_END_OF_LIST() 2719 } 2720 }; 2721 2722 static const VMStateDescription vmstate_nvic = { 2723 .name = "armv7m_nvic", 2724 .version_id = 4, 2725 .minimum_version_id = 4, 2726 .post_load = &nvic_post_load, 2727 .fields = (VMStateField[]) { 2728 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2729 vmstate_VecInfo, VecInfo), 2730 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2731 VMSTATE_END_OF_LIST() 2732 }, 2733 .subsections = (const VMStateDescription*[]) { 2734 &vmstate_nvic_security, 2735 NULL 2736 } 2737 }; 2738 2739 static Property props_nvic[] = { 2740 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2741 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2742 DEFINE_PROP_END_OF_LIST() 2743 }; 2744 2745 static void armv7m_nvic_reset(DeviceState *dev) 2746 { 2747 int resetprio; 2748 NVICState *s = NVIC(dev); 2749 2750 memset(s->vectors, 0, sizeof(s->vectors)); 2751 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2752 s->prigroup[M_REG_NS] = 0; 2753 s->prigroup[M_REG_S] = 0; 2754 2755 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2756 /* MEM, BUS, and USAGE are enabled through 2757 * the System Handler Control register 2758 */ 2759 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2760 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2761 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2762 2763 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2764 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2765 2766 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2767 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2768 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2769 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2770 2771 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2772 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2773 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2774 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2775 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2776 2777 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2778 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2779 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2780 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2781 } else { 2782 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2783 } 2784 2785 /* Strictly speaking the reset handler should be enabled. 2786 * However, we don't simulate soft resets through the NVIC, 2787 * and the reset vector should never be pended. 2788 * So we leave it disabled to catch logic errors. 2789 */ 2790 2791 s->exception_prio = NVIC_NOEXC_PRIO; 2792 s->vectpending = 0; 2793 s->vectpending_is_s_banked = false; 2794 s->vectpending_prio = NVIC_NOEXC_PRIO; 2795 2796 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2797 memset(s->itns, 0, sizeof(s->itns)); 2798 } else { 2799 /* This state is constant and not guest accessible in a non-security 2800 * NVIC; we set the bits to true to avoid having to do a feature 2801 * bit check in the NVIC enable/pend/etc register accessors. 2802 */ 2803 int i; 2804 2805 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2806 s->itns[i] = true; 2807 } 2808 } 2809 2810 /* 2811 * We updated state that affects the CPU's MMUidx and thus its hflags; 2812 * and we can't guarantee that we run before the CPU reset function. 2813 */ 2814 arm_rebuild_hflags(&s->cpu->env); 2815 } 2816 2817 static void nvic_systick_trigger(void *opaque, int n, int level) 2818 { 2819 NVICState *s = opaque; 2820 2821 if (level) { 2822 /* SysTick just asked us to pend its exception. 2823 * (This is different from an external interrupt line's 2824 * behaviour.) 2825 * n == 0 : NonSecure systick 2826 * n == 1 : Secure systick 2827 */ 2828 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2829 } 2830 } 2831 2832 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2833 { 2834 NVICState *s = NVIC(dev); 2835 2836 /* The armv7m container object will have set our CPU pointer */ 2837 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2838 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2839 return; 2840 } 2841 2842 if (s->num_irq > NVIC_MAX_IRQ) { 2843 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2844 return; 2845 } 2846 2847 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2848 2849 /* include space for internal exception vectors */ 2850 s->num_irq += NVIC_FIRST_IRQ; 2851 2852 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2853 2854 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 2855 return; 2856 } 2857 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2858 qdev_get_gpio_in_named(dev, "systick-trigger", 2859 M_REG_NS)); 2860 2861 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2862 /* We couldn't init the secure systick device in instance_init 2863 * as we didn't know then if the CPU had the security extensions; 2864 * so we have to do it here. 2865 */ 2866 object_initialize_child(OBJECT(dev), "systick-reg-s", 2867 &s->systick[M_REG_S], TYPE_SYSTICK); 2868 2869 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 2870 return; 2871 } 2872 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2873 qdev_get_gpio_in_named(dev, "systick-trigger", 2874 M_REG_S)); 2875 } 2876 2877 /* 2878 * This device provides a single sysbus memory region which 2879 * represents the whole of the "System PPB" space. This is the 2880 * range from 0xe0000000 to 0xe00fffff and includes the NVIC, 2881 * the System Control Space (system registers), the systick timer, 2882 * and for CPUs with the Security extension an NS banked version 2883 * of all of these. 2884 * 2885 * The default behaviour for unimplemented registers/ranges 2886 * (for instance the Data Watchpoint and Trace unit at 0xe0001000) 2887 * is to RAZ/WI for privileged access and BusFault for non-privileged 2888 * access. 2889 * 2890 * The NVIC and System Control Space (SCS) starts at 0xe000e000 2891 * and looks like this: 2892 * 0x004 - ICTR 2893 * 0x010 - 0xff - systick 2894 * 0x100..0x7ec - NVIC 2895 * 0x7f0..0xcff - Reserved 2896 * 0xd00..0xd3c - SCS registers 2897 * 0xd40..0xeff - Reserved or Not implemented 2898 * 0xf00 - STIR 2899 * 2900 * Some registers within this space are banked between security states. 2901 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2902 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2903 * to the main SCS range, and non-secure accesses (including when 2904 * the security extension is not implemented) are RAZ/WI. 2905 * Note that both the main SCS range and the alias range are defined 2906 * to be exempt from memory attribution (R_BLJT) and so the memory 2907 * transaction attribute always matches the current CPU security 2908 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2909 * wrappers we change attrs.secure to indicate the NS access; so 2910 * generally code determining which banked register to use should 2911 * use attrs.secure; code determining actual behaviour of the system 2912 * should use env->v7m.secure. 2913 * 2914 * The container covers the whole PPB space. Within it the priority 2915 * of overlapping regions is: 2916 * - default region (for RAZ/WI and BusFault) : -1 2917 * - system register regions : 0 2918 * - systick : 1 2919 * This is because the systick device is a small block of registers 2920 * in the middle of the other system control registers. 2921 */ 2922 memory_region_init(&s->container, OBJECT(s), "nvic", 0x100000); 2923 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s, 2924 "nvic-default", 0x100000); 2925 memory_region_add_subregion_overlap(&s->container, 0, &s->defaultmem, -1); 2926 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2927 "nvic_sysregs", 0x1000); 2928 memory_region_add_subregion(&s->container, 0xe000, &s->sysregmem); 2929 2930 memory_region_init_io(&s->systickmem, OBJECT(s), 2931 &nvic_systick_ops, s, 2932 "nvic_systick", 0xe0); 2933 2934 memory_region_add_subregion_overlap(&s->container, 0xe010, 2935 &s->systickmem, 1); 2936 2937 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2938 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2939 &nvic_sysreg_ns_ops, &s->sysregmem, 2940 "nvic_sysregs_ns", 0x1000); 2941 memory_region_add_subregion(&s->container, 0x2e000, &s->sysreg_ns_mem); 2942 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2943 &nvic_sysreg_ns_ops, &s->systickmem, 2944 "nvic_systick_ns", 0xe0); 2945 memory_region_add_subregion_overlap(&s->container, 0x2e010, 2946 &s->systick_ns_mem, 1); 2947 } 2948 2949 if (cpu_isar_feature(aa32_ras, s->cpu)) { 2950 memory_region_init_io(&s->ras_mem, OBJECT(s), 2951 &ras_ops, s, "nvic_ras", 0x1000); 2952 memory_region_add_subregion(&s->container, 0x5000, &s->ras_mem); 2953 } 2954 2955 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2956 } 2957 2958 static void armv7m_nvic_instance_init(Object *obj) 2959 { 2960 DeviceState *dev = DEVICE(obj); 2961 NVICState *nvic = NVIC(obj); 2962 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2963 2964 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2965 TYPE_SYSTICK); 2966 /* We can't initialize the secure systick here, as we don't know 2967 * yet if we need it. 2968 */ 2969 2970 sysbus_init_irq(sbd, &nvic->excpout); 2971 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2972 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2973 M_REG_NUM_BANKS); 2974 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2975 } 2976 2977 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2978 { 2979 DeviceClass *dc = DEVICE_CLASS(klass); 2980 2981 dc->vmsd = &vmstate_nvic; 2982 device_class_set_props(dc, props_nvic); 2983 dc->reset = armv7m_nvic_reset; 2984 dc->realize = armv7m_nvic_realize; 2985 } 2986 2987 static const TypeInfo armv7m_nvic_info = { 2988 .name = TYPE_NVIC, 2989 .parent = TYPE_SYS_BUS_DEVICE, 2990 .instance_init = armv7m_nvic_instance_init, 2991 .instance_size = sizeof(NVICState), 2992 .class_init = armv7m_nvic_class_init, 2993 .class_size = sizeof(SysBusDeviceClass), 2994 }; 2995 2996 static void armv7m_nvic_register_types(void) 2997 { 2998 type_register_static(&armv7m_nvic_info); 2999 } 3000 3001 type_init(armv7m_nvic_register_types) 3002