1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 if (secure) { 424 assert(exc_is_banked(irq)); 425 s->sec_vectors[irq].prio = prio; 426 } else { 427 s->vectors[irq].prio = prio; 428 } 429 430 trace_nvic_set_prio(irq, secure, prio); 431 } 432 433 /* Return the current raw priority register value. 434 * secure indicates the bank to use for banked exceptions (we assert if 435 * we are passed secure=true for a non-banked exception). 436 */ 437 static int get_prio(NVICState *s, unsigned irq, bool secure) 438 { 439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 440 assert(irq < s->num_irq); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 return s->sec_vectors[irq].prio; 445 } else { 446 return s->vectors[irq].prio; 447 } 448 } 449 450 /* Recompute state and assert irq line accordingly. 451 * Must be called after changes to: 452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 453 * prigroup 454 */ 455 static void nvic_irq_update(NVICState *s) 456 { 457 int lvl; 458 int pend_prio; 459 460 nvic_recompute_state(s); 461 pend_prio = nvic_pending_prio(s); 462 463 /* Raise NVIC output if this IRQ would be taken, except that we 464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 466 * to those CPU registers don't cause us to recalculate the NVIC 467 * pending info. 468 */ 469 lvl = (pend_prio < s->exception_prio); 470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 471 qemu_set_irq(s->excpout, lvl); 472 } 473 474 /** 475 * armv7m_nvic_clear_pending: mark the specified exception as not pending 476 * @opaque: the NVIC 477 * @irq: the exception number to mark as not pending 478 * @secure: false for non-banked exceptions or for the nonsecure 479 * version of a banked exception, true for the secure version of a banked 480 * exception. 481 * 482 * Marks the specified exception as not pending. Note that we will assert() 483 * if @secure is true and @irq does not specify one of the fixed set 484 * of architecturally banked exceptions. 485 */ 486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 487 { 488 NVICState *s = (NVICState *)opaque; 489 VecInfo *vec; 490 491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 492 493 if (secure) { 494 assert(exc_is_banked(irq)); 495 vec = &s->sec_vectors[irq]; 496 } else { 497 vec = &s->vectors[irq]; 498 } 499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 500 if (vec->pending) { 501 vec->pending = 0; 502 nvic_irq_update(s); 503 } 504 } 505 506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 507 bool derived) 508 { 509 /* Pend an exception, including possibly escalating it to HardFault. 510 * 511 * This function handles both "normal" pending of interrupts and 512 * exceptions, and also derived exceptions (ones which occur as 513 * a result of trying to take some other exception). 514 * 515 * If derived == true, the caller guarantees that we are part way through 516 * trying to take an exception (but have not yet called 517 * armv7m_nvic_acknowledge_irq() to make it active), and so: 518 * - s->vectpending is the "original exception" we were trying to take 519 * - irq is the "derived exception" 520 * - nvic_exec_prio(s) gives the priority before exception entry 521 * Here we handle the prioritization logic which the pseudocode puts 522 * in the DerivedLateArrival() function. 523 */ 524 525 NVICState *s = (NVICState *)opaque; 526 bool banked = exc_is_banked(irq); 527 VecInfo *vec; 528 529 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 530 assert(!secure || banked); 531 532 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 533 534 trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio); 535 536 if (derived) { 537 /* Derived exceptions are always synchronous. */ 538 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 539 540 if (irq == ARMV7M_EXCP_DEBUG && 541 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 542 /* DebugMonitorFault, but its priority is lower than the 543 * preempted exception priority: just ignore it. 544 */ 545 return; 546 } 547 548 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 549 /* If this is a terminal exception (one which means we cannot 550 * take the original exception, like a failure to read its 551 * vector table entry), then we must take the derived exception. 552 * If the derived exception can't take priority over the 553 * original exception, then we go into Lockup. 554 * 555 * For QEMU, we rely on the fact that a derived exception is 556 * terminal if and only if it's reported to us as HardFault, 557 * which saves having to have an extra argument is_terminal 558 * that we'd only use in one place. 559 */ 560 cpu_abort(&s->cpu->parent_obj, 561 "Lockup: can't take terminal derived exception " 562 "(original exception priority %d)\n", 563 s->vectpending_prio); 564 } 565 /* We now continue with the same code as for a normal pending 566 * exception, which will cause us to pend the derived exception. 567 * We'll then take either the original or the derived exception 568 * based on which is higher priority by the usual mechanism 569 * for selecting the highest priority pending interrupt. 570 */ 571 } 572 573 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 574 /* If a synchronous exception is pending then it may be 575 * escalated to HardFault if: 576 * * it is equal or lower priority to current execution 577 * * it is disabled 578 * (ie we need to take it immediately but we can't do so). 579 * Asynchronous exceptions (and interrupts) simply remain pending. 580 * 581 * For QEMU, we don't have any imprecise (asynchronous) faults, 582 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 583 * synchronous. 584 * Debug exceptions are awkward because only Debug exceptions 585 * resulting from the BKPT instruction should be escalated, 586 * but we don't currently implement any Debug exceptions other 587 * than those that result from BKPT, so we treat all debug exceptions 588 * as needing escalation. 589 * 590 * This all means we can identify whether to escalate based only on 591 * the exception number and don't (yet) need the caller to explicitly 592 * tell us whether this exception is synchronous or not. 593 */ 594 int running = nvic_exec_prio(s); 595 bool escalate = false; 596 597 if (exc_group_prio(s, vec->prio, secure) >= running) { 598 trace_nvic_escalate_prio(irq, vec->prio, running); 599 escalate = true; 600 } else if (!vec->enabled) { 601 trace_nvic_escalate_disabled(irq); 602 escalate = true; 603 } 604 605 if (escalate) { 606 607 /* We need to escalate this exception to a synchronous HardFault. 608 * If BFHFNMINS is set then we escalate to the banked HF for 609 * the target security state of the original exception; otherwise 610 * we take a Secure HardFault. 611 */ 612 irq = ARMV7M_EXCP_HARD; 613 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 614 (secure || 615 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 616 vec = &s->sec_vectors[irq]; 617 } else { 618 vec = &s->vectors[irq]; 619 } 620 if (running <= vec->prio) { 621 /* We want to escalate to HardFault but we can't take the 622 * synchronous HardFault at this point either. This is a 623 * Lockup condition due to a guest bug. We don't model 624 * Lockup, so report via cpu_abort() instead. 625 */ 626 cpu_abort(&s->cpu->parent_obj, 627 "Lockup: can't escalate %d to HardFault " 628 "(current priority %d)\n", irq, running); 629 } 630 631 /* HF may be banked but there is only one shared HFSR */ 632 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 633 } 634 } 635 636 if (!vec->pending) { 637 vec->pending = 1; 638 nvic_irq_update(s); 639 } 640 } 641 642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 643 { 644 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 645 } 646 647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 648 { 649 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 650 } 651 652 /* Make pending IRQ active. */ 653 bool armv7m_nvic_acknowledge_irq(void *opaque) 654 { 655 NVICState *s = (NVICState *)opaque; 656 CPUARMState *env = &s->cpu->env; 657 const int pending = s->vectpending; 658 const int running = nvic_exec_prio(s); 659 VecInfo *vec; 660 bool targets_secure; 661 662 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 663 664 if (s->vectpending_is_s_banked) { 665 vec = &s->sec_vectors[pending]; 666 targets_secure = true; 667 } else { 668 vec = &s->vectors[pending]; 669 targets_secure = !exc_is_banked(s->vectpending) && 670 exc_targets_secure(s, s->vectpending); 671 } 672 673 assert(vec->enabled); 674 assert(vec->pending); 675 676 assert(s->vectpending_prio < running); 677 678 trace_nvic_acknowledge_irq(pending, s->vectpending_prio, targets_secure); 679 680 vec->active = 1; 681 vec->pending = 0; 682 683 write_v7m_exception(env, s->vectpending); 684 685 nvic_irq_update(s); 686 687 return targets_secure; 688 } 689 690 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 691 { 692 NVICState *s = (NVICState *)opaque; 693 VecInfo *vec; 694 int ret; 695 696 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 697 698 if (secure && exc_is_banked(irq)) { 699 vec = &s->sec_vectors[irq]; 700 } else { 701 vec = &s->vectors[irq]; 702 } 703 704 trace_nvic_complete_irq(irq, secure); 705 706 if (!vec->active) { 707 /* Tell the caller this was an illegal exception return */ 708 return -1; 709 } 710 711 ret = nvic_rettobase(s); 712 713 vec->active = 0; 714 if (vec->level) { 715 /* Re-pend the exception if it's still held high; only 716 * happens for extenal IRQs 717 */ 718 assert(irq >= NVIC_FIRST_IRQ); 719 vec->pending = 1; 720 } 721 722 nvic_irq_update(s); 723 724 return ret; 725 } 726 727 /* callback when external interrupt line is changed */ 728 static void set_irq_level(void *opaque, int n, int level) 729 { 730 NVICState *s = opaque; 731 VecInfo *vec; 732 733 n += NVIC_FIRST_IRQ; 734 735 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 736 737 trace_nvic_set_irq_level(n, level); 738 739 /* The pending status of an external interrupt is 740 * latched on rising edge and exception handler return. 741 * 742 * Pulsing the IRQ will always run the handler 743 * once, and the handler will re-run until the 744 * level is low when the handler completes. 745 */ 746 vec = &s->vectors[n]; 747 if (level != vec->level) { 748 vec->level = level; 749 if (level) { 750 armv7m_nvic_set_pending(s, n, false); 751 } 752 } 753 } 754 755 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 756 { 757 ARMCPU *cpu = s->cpu; 758 uint32_t val; 759 760 switch (offset) { 761 case 4: /* Interrupt Control Type. */ 762 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 763 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 764 { 765 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 766 int i; 767 768 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 769 goto bad_offset; 770 } 771 if (!attrs.secure) { 772 return 0; 773 } 774 val = 0; 775 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 776 if (s->itns[startvec + i]) { 777 val |= (1 << i); 778 } 779 } 780 return val; 781 } 782 case 0xd00: /* CPUID Base. */ 783 return cpu->midr; 784 case 0xd04: /* Interrupt Control State (ICSR) */ 785 /* VECTACTIVE */ 786 val = cpu->env.v7m.exception; 787 /* VECTPENDING */ 788 val |= (s->vectpending & 0xff) << 12; 789 /* ISRPENDING - set if any external IRQ is pending */ 790 if (nvic_isrpending(s)) { 791 val |= (1 << 22); 792 } 793 /* RETTOBASE - set if only one handler is active */ 794 if (nvic_rettobase(s)) { 795 val |= (1 << 11); 796 } 797 if (attrs.secure) { 798 /* PENDSTSET */ 799 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 800 val |= (1 << 26); 801 } 802 /* PENDSVSET */ 803 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 804 val |= (1 << 28); 805 } 806 } else { 807 /* PENDSTSET */ 808 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 809 val |= (1 << 26); 810 } 811 /* PENDSVSET */ 812 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 813 val |= (1 << 28); 814 } 815 } 816 /* NMIPENDSET */ 817 if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 818 s->vectors[ARMV7M_EXCP_NMI].pending) { 819 val |= (1 << 31); 820 } 821 /* ISRPREEMPT: RES0 when halting debug not implemented */ 822 /* STTNS: RES0 for the Main Extension */ 823 return val; 824 case 0xd08: /* Vector Table Offset. */ 825 return cpu->env.v7m.vecbase[attrs.secure]; 826 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 827 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 828 if (attrs.secure) { 829 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 830 val |= cpu->env.v7m.aircr; 831 } else { 832 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 833 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 834 * security isn't supported then BFHFNMINS is RAO (and 835 * the bit in env.v7m.aircr is always set). 836 */ 837 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 838 } 839 } 840 return val; 841 case 0xd10: /* System Control. */ 842 /* TODO: Implement SLEEPONEXIT. */ 843 return 0; 844 case 0xd14: /* Configuration Control. */ 845 /* The BFHFNMIGN bit is the only non-banked bit; we 846 * keep it in the non-secure copy of the register. 847 */ 848 val = cpu->env.v7m.ccr[attrs.secure]; 849 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 850 return val; 851 case 0xd24: /* System Handler Control and State (SHCSR) */ 852 val = 0; 853 if (attrs.secure) { 854 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 855 val |= (1 << 0); 856 } 857 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 858 val |= (1 << 2); 859 } 860 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 861 val |= (1 << 3); 862 } 863 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 864 val |= (1 << 7); 865 } 866 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 867 val |= (1 << 10); 868 } 869 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 870 val |= (1 << 11); 871 } 872 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 873 val |= (1 << 12); 874 } 875 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 876 val |= (1 << 13); 877 } 878 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 879 val |= (1 << 15); 880 } 881 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 882 val |= (1 << 16); 883 } 884 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 885 val |= (1 << 18); 886 } 887 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 888 val |= (1 << 21); 889 } 890 /* SecureFault is not banked but is always RAZ/WI to NS */ 891 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 892 val |= (1 << 4); 893 } 894 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 895 val |= (1 << 19); 896 } 897 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 898 val |= (1 << 20); 899 } 900 } else { 901 if (s->vectors[ARMV7M_EXCP_MEM].active) { 902 val |= (1 << 0); 903 } 904 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 905 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 906 if (s->vectors[ARMV7M_EXCP_HARD].active) { 907 val |= (1 << 2); 908 } 909 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 910 val |= (1 << 21); 911 } 912 } 913 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 914 val |= (1 << 3); 915 } 916 if (s->vectors[ARMV7M_EXCP_SVC].active) { 917 val |= (1 << 7); 918 } 919 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 920 val |= (1 << 10); 921 } 922 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 923 val |= (1 << 11); 924 } 925 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 926 val |= (1 << 12); 927 } 928 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 929 val |= (1 << 13); 930 } 931 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 932 val |= (1 << 15); 933 } 934 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 935 val |= (1 << 16); 936 } 937 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 938 val |= (1 << 18); 939 } 940 } 941 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 942 if (s->vectors[ARMV7M_EXCP_BUS].active) { 943 val |= (1 << 1); 944 } 945 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 946 val |= (1 << 14); 947 } 948 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 949 val |= (1 << 17); 950 } 951 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 952 s->vectors[ARMV7M_EXCP_NMI].active) { 953 /* NMIACT is not present in v7M */ 954 val |= (1 << 5); 955 } 956 } 957 958 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 959 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 960 val |= (1 << 8); 961 } 962 return val; 963 case 0xd2c: /* Hard Fault Status. */ 964 return cpu->env.v7m.hfsr; 965 case 0xd30: /* Debug Fault Status. */ 966 return cpu->env.v7m.dfsr; 967 case 0xd34: /* MMFAR MemManage Fault Address */ 968 return cpu->env.v7m.mmfar[attrs.secure]; 969 case 0xd38: /* Bus Fault Address. */ 970 return cpu->env.v7m.bfar; 971 case 0xd3c: /* Aux Fault Status. */ 972 /* TODO: Implement fault status registers. */ 973 qemu_log_mask(LOG_UNIMP, 974 "Aux Fault status registers unimplemented\n"); 975 return 0; 976 case 0xd40: /* PFR0. */ 977 return 0x00000030; 978 case 0xd44: /* PRF1. */ 979 return 0x00000200; 980 case 0xd48: /* DFR0. */ 981 return 0x00100000; 982 case 0xd4c: /* AFR0. */ 983 return 0x00000000; 984 case 0xd50: /* MMFR0. */ 985 return 0x00000030; 986 case 0xd54: /* MMFR1. */ 987 return 0x00000000; 988 case 0xd58: /* MMFR2. */ 989 return 0x00000000; 990 case 0xd5c: /* MMFR3. */ 991 return 0x00000000; 992 case 0xd60: /* ISAR0. */ 993 return 0x01141110; 994 case 0xd64: /* ISAR1. */ 995 return 0x02111000; 996 case 0xd68: /* ISAR2. */ 997 return 0x21112231; 998 case 0xd6c: /* ISAR3. */ 999 return 0x01111110; 1000 case 0xd70: /* ISAR4. */ 1001 return 0x01310102; 1002 /* TODO: Implement debug registers. */ 1003 case 0xd90: /* MPU_TYPE */ 1004 /* Unified MPU; if the MPU is not present this value is zero */ 1005 return cpu->pmsav7_dregion << 8; 1006 break; 1007 case 0xd94: /* MPU_CTRL */ 1008 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1009 case 0xd98: /* MPU_RNR */ 1010 return cpu->env.pmsav7.rnr[attrs.secure]; 1011 case 0xd9c: /* MPU_RBAR */ 1012 case 0xda4: /* MPU_RBAR_A1 */ 1013 case 0xdac: /* MPU_RBAR_A2 */ 1014 case 0xdb4: /* MPU_RBAR_A3 */ 1015 { 1016 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1017 1018 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1019 /* PMSAv8M handling of the aliases is different from v7M: 1020 * aliases A1, A2, A3 override the low two bits of the region 1021 * number in MPU_RNR, and there is no 'region' field in the 1022 * RBAR register. 1023 */ 1024 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1025 if (aliasno) { 1026 region = deposit32(region, 0, 2, aliasno); 1027 } 1028 if (region >= cpu->pmsav7_dregion) { 1029 return 0; 1030 } 1031 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1032 } 1033 1034 if (region >= cpu->pmsav7_dregion) { 1035 return 0; 1036 } 1037 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1038 } 1039 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1040 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1041 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1042 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1043 { 1044 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1045 1046 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1047 /* PMSAv8M handling of the aliases is different from v7M: 1048 * aliases A1, A2, A3 override the low two bits of the region 1049 * number in MPU_RNR. 1050 */ 1051 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1052 if (aliasno) { 1053 region = deposit32(region, 0, 2, aliasno); 1054 } 1055 if (region >= cpu->pmsav7_dregion) { 1056 return 0; 1057 } 1058 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1059 } 1060 1061 if (region >= cpu->pmsav7_dregion) { 1062 return 0; 1063 } 1064 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1065 (cpu->env.pmsav7.drsr[region] & 0xffff); 1066 } 1067 case 0xdc0: /* MPU_MAIR0 */ 1068 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1069 goto bad_offset; 1070 } 1071 return cpu->env.pmsav8.mair0[attrs.secure]; 1072 case 0xdc4: /* MPU_MAIR1 */ 1073 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1074 goto bad_offset; 1075 } 1076 return cpu->env.pmsav8.mair1[attrs.secure]; 1077 case 0xdd0: /* SAU_CTRL */ 1078 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1079 goto bad_offset; 1080 } 1081 if (!attrs.secure) { 1082 return 0; 1083 } 1084 return cpu->env.sau.ctrl; 1085 case 0xdd4: /* SAU_TYPE */ 1086 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1087 goto bad_offset; 1088 } 1089 if (!attrs.secure) { 1090 return 0; 1091 } 1092 return cpu->sau_sregion; 1093 case 0xdd8: /* SAU_RNR */ 1094 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1095 goto bad_offset; 1096 } 1097 if (!attrs.secure) { 1098 return 0; 1099 } 1100 return cpu->env.sau.rnr; 1101 case 0xddc: /* SAU_RBAR */ 1102 { 1103 int region = cpu->env.sau.rnr; 1104 1105 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1106 goto bad_offset; 1107 } 1108 if (!attrs.secure) { 1109 return 0; 1110 } 1111 if (region >= cpu->sau_sregion) { 1112 return 0; 1113 } 1114 return cpu->env.sau.rbar[region]; 1115 } 1116 case 0xde0: /* SAU_RLAR */ 1117 { 1118 int region = cpu->env.sau.rnr; 1119 1120 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1121 goto bad_offset; 1122 } 1123 if (!attrs.secure) { 1124 return 0; 1125 } 1126 if (region >= cpu->sau_sregion) { 1127 return 0; 1128 } 1129 return cpu->env.sau.rlar[region]; 1130 } 1131 case 0xde4: /* SFSR */ 1132 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1133 goto bad_offset; 1134 } 1135 if (!attrs.secure) { 1136 return 0; 1137 } 1138 return cpu->env.v7m.sfsr; 1139 case 0xde8: /* SFAR */ 1140 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1141 goto bad_offset; 1142 } 1143 if (!attrs.secure) { 1144 return 0; 1145 } 1146 return cpu->env.v7m.sfar; 1147 default: 1148 bad_offset: 1149 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1150 return 0; 1151 } 1152 } 1153 1154 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1155 MemTxAttrs attrs) 1156 { 1157 ARMCPU *cpu = s->cpu; 1158 1159 switch (offset) { 1160 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1161 { 1162 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1163 int i; 1164 1165 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1166 goto bad_offset; 1167 } 1168 if (!attrs.secure) { 1169 break; 1170 } 1171 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1172 s->itns[startvec + i] = (value >> i) & 1; 1173 } 1174 nvic_irq_update(s); 1175 break; 1176 } 1177 case 0xd04: /* Interrupt Control State (ICSR) */ 1178 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1179 if (value & (1 << 31)) { 1180 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1181 } else if (value & (1 << 30) && 1182 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1183 /* PENDNMICLR didn't exist in v7M */ 1184 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1185 } 1186 } 1187 if (value & (1 << 28)) { 1188 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1189 } else if (value & (1 << 27)) { 1190 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1191 } 1192 if (value & (1 << 26)) { 1193 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1194 } else if (value & (1 << 25)) { 1195 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1196 } 1197 break; 1198 case 0xd08: /* Vector Table Offset. */ 1199 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1200 break; 1201 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1202 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1203 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1204 if (attrs.secure || 1205 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1206 qemu_irq_pulse(s->sysresetreq); 1207 } 1208 } 1209 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1210 qemu_log_mask(LOG_GUEST_ERROR, 1211 "Setting VECTCLRACTIVE when not in DEBUG mode " 1212 "is UNPREDICTABLE\n"); 1213 } 1214 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1215 /* NB: this bit is RES0 in v8M */ 1216 qemu_log_mask(LOG_GUEST_ERROR, 1217 "Setting VECTRESET when not in DEBUG mode " 1218 "is UNPREDICTABLE\n"); 1219 } 1220 s->prigroup[attrs.secure] = extract32(value, 1221 R_V7M_AIRCR_PRIGROUP_SHIFT, 1222 R_V7M_AIRCR_PRIGROUP_LENGTH); 1223 if (attrs.secure) { 1224 /* These bits are only writable by secure */ 1225 cpu->env.v7m.aircr = value & 1226 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1227 R_V7M_AIRCR_BFHFNMINS_MASK | 1228 R_V7M_AIRCR_PRIS_MASK); 1229 /* BFHFNMINS changes the priority of Secure HardFault, and 1230 * allows a pending Non-secure HardFault to preempt (which 1231 * we implement by marking it enabled). 1232 */ 1233 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1234 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1235 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1236 } else { 1237 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1238 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1239 } 1240 } 1241 nvic_irq_update(s); 1242 } 1243 break; 1244 case 0xd10: /* System Control. */ 1245 /* TODO: Implement control registers. */ 1246 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 1247 break; 1248 case 0xd14: /* Configuration Control. */ 1249 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1250 value &= (R_V7M_CCR_STKALIGN_MASK | 1251 R_V7M_CCR_BFHFNMIGN_MASK | 1252 R_V7M_CCR_DIV_0_TRP_MASK | 1253 R_V7M_CCR_UNALIGN_TRP_MASK | 1254 R_V7M_CCR_USERSETMPEND_MASK | 1255 R_V7M_CCR_NONBASETHRDENA_MASK); 1256 1257 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1258 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1259 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1260 | R_V7M_CCR_STKALIGN_MASK; 1261 } 1262 if (attrs.secure) { 1263 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1264 cpu->env.v7m.ccr[M_REG_NS] = 1265 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1266 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1267 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1268 } 1269 1270 cpu->env.v7m.ccr[attrs.secure] = value; 1271 break; 1272 case 0xd24: /* System Handler Control and State (SHCSR) */ 1273 if (attrs.secure) { 1274 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1275 /* Secure HardFault active bit cannot be written */ 1276 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1277 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1278 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1279 (value & (1 << 10)) != 0; 1280 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1281 (value & (1 << 11)) != 0; 1282 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1283 (value & (1 << 12)) != 0; 1284 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1285 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1286 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1287 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1288 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1289 (value & (1 << 18)) != 0; 1290 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1291 /* SecureFault not banked, but RAZ/WI to NS */ 1292 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1293 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1294 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1295 } else { 1296 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1297 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1298 /* HARDFAULTPENDED is not present in v7M */ 1299 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1300 } 1301 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1302 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1303 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1304 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1305 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1306 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1307 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1308 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1309 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1310 } 1311 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1312 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1313 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1314 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1315 } 1316 /* NMIACT can only be written if the write is of a zero, with 1317 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1318 */ 1319 if (!attrs.secure && cpu->env.v7m.secure && 1320 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1321 (value & (1 << 5)) == 0) { 1322 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1323 } 1324 /* HARDFAULTACT can only be written if the write is of a zero 1325 * to the non-secure HardFault state by the CPU in secure state. 1326 * The only case where we can be targeting the non-secure HF state 1327 * when in secure state is if this is a write via the NS alias 1328 * and BFHFNMINS is 1. 1329 */ 1330 if (!attrs.secure && cpu->env.v7m.secure && 1331 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1332 (value & (1 << 2)) == 0) { 1333 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1334 } 1335 1336 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1337 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1338 nvic_irq_update(s); 1339 break; 1340 case 0xd2c: /* Hard Fault Status. */ 1341 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1342 break; 1343 case 0xd30: /* Debug Fault Status. */ 1344 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1345 break; 1346 case 0xd34: /* Mem Manage Address. */ 1347 cpu->env.v7m.mmfar[attrs.secure] = value; 1348 return; 1349 case 0xd38: /* Bus Fault Address. */ 1350 cpu->env.v7m.bfar = value; 1351 return; 1352 case 0xd3c: /* Aux Fault Status. */ 1353 qemu_log_mask(LOG_UNIMP, 1354 "NVIC: Aux fault status registers unimplemented\n"); 1355 break; 1356 case 0xd90: /* MPU_TYPE */ 1357 return; /* RO */ 1358 case 0xd94: /* MPU_CTRL */ 1359 if ((value & 1360 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1361 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1362 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1363 "UNPREDICTABLE\n"); 1364 } 1365 cpu->env.v7m.mpu_ctrl[attrs.secure] 1366 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1367 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1368 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1369 tlb_flush(CPU(cpu)); 1370 break; 1371 case 0xd98: /* MPU_RNR */ 1372 if (value >= cpu->pmsav7_dregion) { 1373 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1374 PRIu32 "/%" PRIu32 "\n", 1375 value, cpu->pmsav7_dregion); 1376 } else { 1377 cpu->env.pmsav7.rnr[attrs.secure] = value; 1378 } 1379 break; 1380 case 0xd9c: /* MPU_RBAR */ 1381 case 0xda4: /* MPU_RBAR_A1 */ 1382 case 0xdac: /* MPU_RBAR_A2 */ 1383 case 0xdb4: /* MPU_RBAR_A3 */ 1384 { 1385 int region; 1386 1387 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1388 /* PMSAv8M handling of the aliases is different from v7M: 1389 * aliases A1, A2, A3 override the low two bits of the region 1390 * number in MPU_RNR, and there is no 'region' field in the 1391 * RBAR register. 1392 */ 1393 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1394 1395 region = cpu->env.pmsav7.rnr[attrs.secure]; 1396 if (aliasno) { 1397 region = deposit32(region, 0, 2, aliasno); 1398 } 1399 if (region >= cpu->pmsav7_dregion) { 1400 return; 1401 } 1402 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1403 tlb_flush(CPU(cpu)); 1404 return; 1405 } 1406 1407 if (value & (1 << 4)) { 1408 /* VALID bit means use the region number specified in this 1409 * value and also update MPU_RNR.REGION with that value. 1410 */ 1411 region = extract32(value, 0, 4); 1412 if (region >= cpu->pmsav7_dregion) { 1413 qemu_log_mask(LOG_GUEST_ERROR, 1414 "MPU region out of range %u/%" PRIu32 "\n", 1415 region, cpu->pmsav7_dregion); 1416 return; 1417 } 1418 cpu->env.pmsav7.rnr[attrs.secure] = region; 1419 } else { 1420 region = cpu->env.pmsav7.rnr[attrs.secure]; 1421 } 1422 1423 if (region >= cpu->pmsav7_dregion) { 1424 return; 1425 } 1426 1427 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1428 tlb_flush(CPU(cpu)); 1429 break; 1430 } 1431 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1432 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1433 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1434 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1435 { 1436 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1437 1438 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1439 /* PMSAv8M handling of the aliases is different from v7M: 1440 * aliases A1, A2, A3 override the low two bits of the region 1441 * number in MPU_RNR. 1442 */ 1443 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1444 1445 region = cpu->env.pmsav7.rnr[attrs.secure]; 1446 if (aliasno) { 1447 region = deposit32(region, 0, 2, aliasno); 1448 } 1449 if (region >= cpu->pmsav7_dregion) { 1450 return; 1451 } 1452 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1453 tlb_flush(CPU(cpu)); 1454 return; 1455 } 1456 1457 if (region >= cpu->pmsav7_dregion) { 1458 return; 1459 } 1460 1461 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1462 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1463 tlb_flush(CPU(cpu)); 1464 break; 1465 } 1466 case 0xdc0: /* MPU_MAIR0 */ 1467 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1468 goto bad_offset; 1469 } 1470 if (cpu->pmsav7_dregion) { 1471 /* Register is RES0 if no MPU regions are implemented */ 1472 cpu->env.pmsav8.mair0[attrs.secure] = value; 1473 } 1474 /* We don't need to do anything else because memory attributes 1475 * only affect cacheability, and we don't implement caching. 1476 */ 1477 break; 1478 case 0xdc4: /* MPU_MAIR1 */ 1479 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1480 goto bad_offset; 1481 } 1482 if (cpu->pmsav7_dregion) { 1483 /* Register is RES0 if no MPU regions are implemented */ 1484 cpu->env.pmsav8.mair1[attrs.secure] = value; 1485 } 1486 /* We don't need to do anything else because memory attributes 1487 * only affect cacheability, and we don't implement caching. 1488 */ 1489 break; 1490 case 0xdd0: /* SAU_CTRL */ 1491 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1492 goto bad_offset; 1493 } 1494 if (!attrs.secure) { 1495 return; 1496 } 1497 cpu->env.sau.ctrl = value & 3; 1498 break; 1499 case 0xdd4: /* SAU_TYPE */ 1500 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1501 goto bad_offset; 1502 } 1503 break; 1504 case 0xdd8: /* SAU_RNR */ 1505 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1506 goto bad_offset; 1507 } 1508 if (!attrs.secure) { 1509 return; 1510 } 1511 if (value >= cpu->sau_sregion) { 1512 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1513 PRIu32 "/%" PRIu32 "\n", 1514 value, cpu->sau_sregion); 1515 } else { 1516 cpu->env.sau.rnr = value; 1517 } 1518 break; 1519 case 0xddc: /* SAU_RBAR */ 1520 { 1521 int region = cpu->env.sau.rnr; 1522 1523 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1524 goto bad_offset; 1525 } 1526 if (!attrs.secure) { 1527 return; 1528 } 1529 if (region >= cpu->sau_sregion) { 1530 return; 1531 } 1532 cpu->env.sau.rbar[region] = value & ~0x1f; 1533 tlb_flush(CPU(cpu)); 1534 break; 1535 } 1536 case 0xde0: /* SAU_RLAR */ 1537 { 1538 int region = cpu->env.sau.rnr; 1539 1540 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1541 goto bad_offset; 1542 } 1543 if (!attrs.secure) { 1544 return; 1545 } 1546 if (region >= cpu->sau_sregion) { 1547 return; 1548 } 1549 cpu->env.sau.rlar[region] = value & ~0x1c; 1550 tlb_flush(CPU(cpu)); 1551 break; 1552 } 1553 case 0xde4: /* SFSR */ 1554 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1555 goto bad_offset; 1556 } 1557 if (!attrs.secure) { 1558 return; 1559 } 1560 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1561 break; 1562 case 0xde8: /* SFAR */ 1563 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1564 goto bad_offset; 1565 } 1566 if (!attrs.secure) { 1567 return; 1568 } 1569 cpu->env.v7m.sfsr = value; 1570 break; 1571 case 0xf00: /* Software Triggered Interrupt Register */ 1572 { 1573 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1574 if (excnum < s->num_irq) { 1575 armv7m_nvic_set_pending(s, excnum, false); 1576 } 1577 break; 1578 } 1579 default: 1580 bad_offset: 1581 qemu_log_mask(LOG_GUEST_ERROR, 1582 "NVIC: Bad write offset 0x%x\n", offset); 1583 } 1584 } 1585 1586 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1587 { 1588 /* Return true if unprivileged access to this register is permitted. */ 1589 switch (offset) { 1590 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1591 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1592 * controls access even though the CPU is in Secure state (I_QDKX). 1593 */ 1594 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1595 default: 1596 /* All other user accesses cause a BusFault unconditionally */ 1597 return false; 1598 } 1599 } 1600 1601 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1602 { 1603 /* Behaviour for the SHPR register field for this exception: 1604 * return M_REG_NS to use the nonsecure vector (including for 1605 * non-banked exceptions), M_REG_S for the secure version of 1606 * a banked exception, and -1 if this field should RAZ/WI. 1607 */ 1608 switch (exc) { 1609 case ARMV7M_EXCP_MEM: 1610 case ARMV7M_EXCP_USAGE: 1611 case ARMV7M_EXCP_SVC: 1612 case ARMV7M_EXCP_PENDSV: 1613 case ARMV7M_EXCP_SYSTICK: 1614 /* Banked exceptions */ 1615 return attrs.secure; 1616 case ARMV7M_EXCP_BUS: 1617 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1618 if (!attrs.secure && 1619 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1620 return -1; 1621 } 1622 return M_REG_NS; 1623 case ARMV7M_EXCP_SECURE: 1624 /* Not banked, RAZ/WI from nonsecure */ 1625 if (!attrs.secure) { 1626 return -1; 1627 } 1628 return M_REG_NS; 1629 case ARMV7M_EXCP_DEBUG: 1630 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1631 return M_REG_NS; 1632 case 8 ... 10: 1633 case 13: 1634 /* RES0 */ 1635 return -1; 1636 default: 1637 /* Not reachable due to decode of SHPR register addresses */ 1638 g_assert_not_reached(); 1639 } 1640 } 1641 1642 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1643 uint64_t *data, unsigned size, 1644 MemTxAttrs attrs) 1645 { 1646 NVICState *s = (NVICState *)opaque; 1647 uint32_t offset = addr; 1648 unsigned i, startvec, end; 1649 uint32_t val; 1650 1651 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1652 /* Generate BusFault for unprivileged accesses */ 1653 return MEMTX_ERROR; 1654 } 1655 1656 switch (offset) { 1657 /* reads of set and clear both return the status */ 1658 case 0x100 ... 0x13f: /* NVIC Set enable */ 1659 offset += 0x80; 1660 /* fall through */ 1661 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1662 val = 0; 1663 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 1664 1665 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1666 if (s->vectors[startvec + i].enabled && 1667 (attrs.secure || s->itns[startvec + i])) { 1668 val |= (1 << i); 1669 } 1670 } 1671 break; 1672 case 0x200 ... 0x23f: /* NVIC Set pend */ 1673 offset += 0x80; 1674 /* fall through */ 1675 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1676 val = 0; 1677 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 1678 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1679 if (s->vectors[startvec + i].pending && 1680 (attrs.secure || s->itns[startvec + i])) { 1681 val |= (1 << i); 1682 } 1683 } 1684 break; 1685 case 0x300 ... 0x33f: /* NVIC Active */ 1686 val = 0; 1687 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 1688 1689 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1690 if (s->vectors[startvec + i].active && 1691 (attrs.secure || s->itns[startvec + i])) { 1692 val |= (1 << i); 1693 } 1694 } 1695 break; 1696 case 0x400 ... 0x5ef: /* NVIC Priority */ 1697 val = 0; 1698 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1699 1700 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1701 if (attrs.secure || s->itns[startvec + i]) { 1702 val |= s->vectors[startvec + i].prio << (8 * i); 1703 } 1704 } 1705 break; 1706 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1707 val = 0; 1708 for (i = 0; i < size; i++) { 1709 unsigned hdlidx = (offset - 0xd14) + i; 1710 int sbank = shpr_bank(s, hdlidx, attrs); 1711 1712 if (sbank < 0) { 1713 continue; 1714 } 1715 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1716 } 1717 break; 1718 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1719 /* The BFSR bits [15:8] are shared between security states 1720 * and we store them in the NS copy 1721 */ 1722 val = s->cpu->env.v7m.cfsr[attrs.secure]; 1723 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 1724 val = extract32(val, (offset - 0xd28) * 8, size * 8); 1725 break; 1726 case 0xfe0 ... 0xfff: /* ID. */ 1727 if (offset & 3) { 1728 val = 0; 1729 } else { 1730 val = nvic_id[(offset - 0xfe0) >> 2]; 1731 } 1732 break; 1733 default: 1734 if (size == 4) { 1735 val = nvic_readl(s, offset, attrs); 1736 } else { 1737 qemu_log_mask(LOG_GUEST_ERROR, 1738 "NVIC: Bad read of size %d at offset 0x%x\n", 1739 size, offset); 1740 val = 0; 1741 } 1742 } 1743 1744 trace_nvic_sysreg_read(addr, val, size); 1745 *data = val; 1746 return MEMTX_OK; 1747 } 1748 1749 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1750 uint64_t value, unsigned size, 1751 MemTxAttrs attrs) 1752 { 1753 NVICState *s = (NVICState *)opaque; 1754 uint32_t offset = addr; 1755 unsigned i, startvec, end; 1756 unsigned setval = 0; 1757 1758 trace_nvic_sysreg_write(addr, value, size); 1759 1760 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1761 /* Generate BusFault for unprivileged accesses */ 1762 return MEMTX_ERROR; 1763 } 1764 1765 switch (offset) { 1766 case 0x100 ... 0x13f: /* NVIC Set enable */ 1767 offset += 0x80; 1768 setval = 1; 1769 /* fall through */ 1770 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1771 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1772 1773 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1774 if (value & (1 << i) && 1775 (attrs.secure || s->itns[startvec + i])) { 1776 s->vectors[startvec + i].enabled = setval; 1777 } 1778 } 1779 nvic_irq_update(s); 1780 return MEMTX_OK; 1781 case 0x200 ... 0x23f: /* NVIC Set pend */ 1782 /* the special logic in armv7m_nvic_set_pending() 1783 * is not needed since IRQs are never escalated 1784 */ 1785 offset += 0x80; 1786 setval = 1; 1787 /* fall through */ 1788 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1789 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1790 1791 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1792 if (value & (1 << i) && 1793 (attrs.secure || s->itns[startvec + i])) { 1794 s->vectors[startvec + i].pending = setval; 1795 } 1796 } 1797 nvic_irq_update(s); 1798 return MEMTX_OK; 1799 case 0x300 ... 0x33f: /* NVIC Active */ 1800 return MEMTX_OK; /* R/O */ 1801 case 0x400 ... 0x5ef: /* NVIC Priority */ 1802 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1803 1804 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1805 if (attrs.secure || s->itns[startvec + i]) { 1806 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1807 } 1808 } 1809 nvic_irq_update(s); 1810 return MEMTX_OK; 1811 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1812 for (i = 0; i < size; i++) { 1813 unsigned hdlidx = (offset - 0xd14) + i; 1814 int newprio = extract32(value, i * 8, 8); 1815 int sbank = shpr_bank(s, hdlidx, attrs); 1816 1817 if (sbank < 0) { 1818 continue; 1819 } 1820 set_prio(s, hdlidx, sbank, newprio); 1821 } 1822 nvic_irq_update(s); 1823 return MEMTX_OK; 1824 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1825 /* All bits are W1C, so construct 32 bit value with 0s in 1826 * the parts not written by the access size 1827 */ 1828 value <<= ((offset - 0xd28) * 8); 1829 1830 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 1831 if (attrs.secure) { 1832 /* The BFSR bits [15:8] are shared between security states 1833 * and we store them in the NS copy. 1834 */ 1835 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1836 } 1837 return MEMTX_OK; 1838 } 1839 if (size == 4) { 1840 nvic_writel(s, offset, value, attrs); 1841 return MEMTX_OK; 1842 } 1843 qemu_log_mask(LOG_GUEST_ERROR, 1844 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1845 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1846 return MEMTX_OK; 1847 } 1848 1849 static const MemoryRegionOps nvic_sysreg_ops = { 1850 .read_with_attrs = nvic_sysreg_read, 1851 .write_with_attrs = nvic_sysreg_write, 1852 .endianness = DEVICE_NATIVE_ENDIAN, 1853 }; 1854 1855 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1856 uint64_t value, unsigned size, 1857 MemTxAttrs attrs) 1858 { 1859 MemoryRegion *mr = opaque; 1860 1861 if (attrs.secure) { 1862 /* S accesses to the alias act like NS accesses to the real region */ 1863 attrs.secure = 0; 1864 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1865 } else { 1866 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1867 if (attrs.user) { 1868 return MEMTX_ERROR; 1869 } 1870 return MEMTX_OK; 1871 } 1872 } 1873 1874 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1875 uint64_t *data, unsigned size, 1876 MemTxAttrs attrs) 1877 { 1878 MemoryRegion *mr = opaque; 1879 1880 if (attrs.secure) { 1881 /* S accesses to the alias act like NS accesses to the real region */ 1882 attrs.secure = 0; 1883 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1884 } else { 1885 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1886 if (attrs.user) { 1887 return MEMTX_ERROR; 1888 } 1889 *data = 0; 1890 return MEMTX_OK; 1891 } 1892 } 1893 1894 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1895 .read_with_attrs = nvic_sysreg_ns_read, 1896 .write_with_attrs = nvic_sysreg_ns_write, 1897 .endianness = DEVICE_NATIVE_ENDIAN, 1898 }; 1899 1900 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 1901 uint64_t value, unsigned size, 1902 MemTxAttrs attrs) 1903 { 1904 NVICState *s = opaque; 1905 MemoryRegion *mr; 1906 1907 /* Direct the access to the correct systick */ 1908 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1909 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1910 } 1911 1912 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 1913 uint64_t *data, unsigned size, 1914 MemTxAttrs attrs) 1915 { 1916 NVICState *s = opaque; 1917 MemoryRegion *mr; 1918 1919 /* Direct the access to the correct systick */ 1920 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1921 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1922 } 1923 1924 static const MemoryRegionOps nvic_systick_ops = { 1925 .read_with_attrs = nvic_systick_read, 1926 .write_with_attrs = nvic_systick_write, 1927 .endianness = DEVICE_NATIVE_ENDIAN, 1928 }; 1929 1930 static int nvic_post_load(void *opaque, int version_id) 1931 { 1932 NVICState *s = opaque; 1933 unsigned i; 1934 int resetprio; 1935 1936 /* Check for out of range priority settings */ 1937 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 1938 1939 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 1940 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1941 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1942 return 1; 1943 } 1944 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1945 if (s->vectors[i].prio & ~0xff) { 1946 return 1; 1947 } 1948 } 1949 1950 nvic_recompute_state(s); 1951 1952 return 0; 1953 } 1954 1955 static const VMStateDescription vmstate_VecInfo = { 1956 .name = "armv7m_nvic_info", 1957 .version_id = 1, 1958 .minimum_version_id = 1, 1959 .fields = (VMStateField[]) { 1960 VMSTATE_INT16(prio, VecInfo), 1961 VMSTATE_UINT8(enabled, VecInfo), 1962 VMSTATE_UINT8(pending, VecInfo), 1963 VMSTATE_UINT8(active, VecInfo), 1964 VMSTATE_UINT8(level, VecInfo), 1965 VMSTATE_END_OF_LIST() 1966 } 1967 }; 1968 1969 static bool nvic_security_needed(void *opaque) 1970 { 1971 NVICState *s = opaque; 1972 1973 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 1974 } 1975 1976 static int nvic_security_post_load(void *opaque, int version_id) 1977 { 1978 NVICState *s = opaque; 1979 int i; 1980 1981 /* Check for out of range priority settings */ 1982 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 1983 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 1984 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 1985 * if the CPU state has been migrated yet; a mismatch won't 1986 * cause the emulation to blow up, though. 1987 */ 1988 return 1; 1989 } 1990 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 1991 if (s->sec_vectors[i].prio & ~0xff) { 1992 return 1; 1993 } 1994 } 1995 return 0; 1996 } 1997 1998 static const VMStateDescription vmstate_nvic_security = { 1999 .name = "nvic/m-security", 2000 .version_id = 1, 2001 .minimum_version_id = 1, 2002 .needed = nvic_security_needed, 2003 .post_load = &nvic_security_post_load, 2004 .fields = (VMStateField[]) { 2005 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2006 vmstate_VecInfo, VecInfo), 2007 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2008 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2009 VMSTATE_END_OF_LIST() 2010 } 2011 }; 2012 2013 static const VMStateDescription vmstate_nvic = { 2014 .name = "armv7m_nvic", 2015 .version_id = 4, 2016 .minimum_version_id = 4, 2017 .post_load = &nvic_post_load, 2018 .fields = (VMStateField[]) { 2019 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2020 vmstate_VecInfo, VecInfo), 2021 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2022 VMSTATE_END_OF_LIST() 2023 }, 2024 .subsections = (const VMStateDescription*[]) { 2025 &vmstate_nvic_security, 2026 NULL 2027 } 2028 }; 2029 2030 static Property props_nvic[] = { 2031 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2032 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2033 DEFINE_PROP_END_OF_LIST() 2034 }; 2035 2036 static void armv7m_nvic_reset(DeviceState *dev) 2037 { 2038 int resetprio; 2039 NVICState *s = NVIC(dev); 2040 2041 memset(s->vectors, 0, sizeof(s->vectors)); 2042 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2043 s->prigroup[M_REG_NS] = 0; 2044 s->prigroup[M_REG_S] = 0; 2045 2046 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2047 /* MEM, BUS, and USAGE are enabled through 2048 * the System Handler Control register 2049 */ 2050 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2051 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 2052 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2053 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2054 2055 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2056 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2057 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2058 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2059 2060 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2061 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2062 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2063 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2064 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2065 2066 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2067 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2068 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2069 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2070 } else { 2071 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2072 } 2073 2074 /* Strictly speaking the reset handler should be enabled. 2075 * However, we don't simulate soft resets through the NVIC, 2076 * and the reset vector should never be pended. 2077 * So we leave it disabled to catch logic errors. 2078 */ 2079 2080 s->exception_prio = NVIC_NOEXC_PRIO; 2081 s->vectpending = 0; 2082 s->vectpending_is_s_banked = false; 2083 s->vectpending_prio = NVIC_NOEXC_PRIO; 2084 2085 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2086 memset(s->itns, 0, sizeof(s->itns)); 2087 } else { 2088 /* This state is constant and not guest accessible in a non-security 2089 * NVIC; we set the bits to true to avoid having to do a feature 2090 * bit check in the NVIC enable/pend/etc register accessors. 2091 */ 2092 int i; 2093 2094 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2095 s->itns[i] = true; 2096 } 2097 } 2098 } 2099 2100 static void nvic_systick_trigger(void *opaque, int n, int level) 2101 { 2102 NVICState *s = opaque; 2103 2104 if (level) { 2105 /* SysTick just asked us to pend its exception. 2106 * (This is different from an external interrupt line's 2107 * behaviour.) 2108 * n == 0 : NonSecure systick 2109 * n == 1 : Secure systick 2110 */ 2111 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2112 } 2113 } 2114 2115 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2116 { 2117 NVICState *s = NVIC(dev); 2118 Error *err = NULL; 2119 int regionlen; 2120 2121 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2122 assert(s->cpu); 2123 2124 if (s->num_irq > NVIC_MAX_IRQ) { 2125 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2126 return; 2127 } 2128 2129 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2130 2131 /* include space for internal exception vectors */ 2132 s->num_irq += NVIC_FIRST_IRQ; 2133 2134 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2135 "realized", &err); 2136 if (err != NULL) { 2137 error_propagate(errp, err); 2138 return; 2139 } 2140 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2141 qdev_get_gpio_in_named(dev, "systick-trigger", 2142 M_REG_NS)); 2143 2144 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2145 /* We couldn't init the secure systick device in instance_init 2146 * as we didn't know then if the CPU had the security extensions; 2147 * so we have to do it here. 2148 */ 2149 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), 2150 TYPE_SYSTICK); 2151 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); 2152 2153 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2154 "realized", &err); 2155 if (err != NULL) { 2156 error_propagate(errp, err); 2157 return; 2158 } 2159 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2160 qdev_get_gpio_in_named(dev, "systick-trigger", 2161 M_REG_S)); 2162 } 2163 2164 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2165 * and looks like this: 2166 * 0x004 - ICTR 2167 * 0x010 - 0xff - systick 2168 * 0x100..0x7ec - NVIC 2169 * 0x7f0..0xcff - Reserved 2170 * 0xd00..0xd3c - SCS registers 2171 * 0xd40..0xeff - Reserved or Not implemented 2172 * 0xf00 - STIR 2173 * 2174 * Some registers within this space are banked between security states. 2175 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2176 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2177 * to the main SCS range, and non-secure accesses (including when 2178 * the security extension is not implemented) are RAZ/WI. 2179 * Note that both the main SCS range and the alias range are defined 2180 * to be exempt from memory attribution (R_BLJT) and so the memory 2181 * transaction attribute always matches the current CPU security 2182 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2183 * wrappers we change attrs.secure to indicate the NS access; so 2184 * generally code determining which banked register to use should 2185 * use attrs.secure; code determining actual behaviour of the system 2186 * should use env->v7m.secure. 2187 */ 2188 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2189 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2190 /* The system register region goes at the bottom of the priority 2191 * stack as it covers the whole page. 2192 */ 2193 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2194 "nvic_sysregs", 0x1000); 2195 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2196 2197 memory_region_init_io(&s->systickmem, OBJECT(s), 2198 &nvic_systick_ops, s, 2199 "nvic_systick", 0xe0); 2200 2201 memory_region_add_subregion_overlap(&s->container, 0x10, 2202 &s->systickmem, 1); 2203 2204 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2205 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2206 &nvic_sysreg_ns_ops, &s->sysregmem, 2207 "nvic_sysregs_ns", 0x1000); 2208 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2209 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2210 &nvic_sysreg_ns_ops, &s->systickmem, 2211 "nvic_systick_ns", 0xe0); 2212 memory_region_add_subregion_overlap(&s->container, 0x20010, 2213 &s->systick_ns_mem, 1); 2214 } 2215 2216 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2217 } 2218 2219 static void armv7m_nvic_instance_init(Object *obj) 2220 { 2221 /* We have a different default value for the num-irq property 2222 * than our superclass. This function runs after qdev init 2223 * has set the defaults from the Property array and before 2224 * any user-specified property setting, so just modify the 2225 * value in the GICState struct. 2226 */ 2227 DeviceState *dev = DEVICE(obj); 2228 NVICState *nvic = NVIC(obj); 2229 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2230 2231 object_initialize(&nvic->systick[M_REG_NS], 2232 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2233 qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default()); 2234 /* We can't initialize the secure systick here, as we don't know 2235 * yet if we need it. 2236 */ 2237 2238 sysbus_init_irq(sbd, &nvic->excpout); 2239 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2240 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2241 M_REG_NUM_BANKS); 2242 } 2243 2244 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2245 { 2246 DeviceClass *dc = DEVICE_CLASS(klass); 2247 2248 dc->vmsd = &vmstate_nvic; 2249 dc->props = props_nvic; 2250 dc->reset = armv7m_nvic_reset; 2251 dc->realize = armv7m_nvic_realize; 2252 } 2253 2254 static const TypeInfo armv7m_nvic_info = { 2255 .name = TYPE_NVIC, 2256 .parent = TYPE_SYS_BUS_DEVICE, 2257 .instance_init = armv7m_nvic_instance_init, 2258 .instance_size = sizeof(NVICState), 2259 .class_init = armv7m_nvic_class_init, 2260 .class_size = sizeof(SysBusDeviceClass), 2261 }; 2262 2263 static void armv7m_nvic_register_types(void) 2264 { 2265 type_register_static(&armv7m_nvic_info); 2266 } 2267 2268 type_init(armv7m_nvic_register_types) 2269