1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "hw/sysbus.h" 16 #include "migration/vmstate.h" 17 #include "qemu/timer.h" 18 #include "hw/intc/armv7m_nvic.h" 19 #include "hw/irq.h" 20 #include "hw/qdev-properties.h" 21 #include "sysemu/tcg.h" 22 #include "sysemu/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "target/arm/cpu-features.h" 25 #include "exec/exec-all.h" 26 #include "exec/memop.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "trace.h" 30 31 /* IRQ number counting: 32 * 33 * the num-irq property counts the number of external IRQ lines 34 * 35 * NVICState::num_irq counts the total number of exceptions 36 * (external IRQs, the 15 internal exceptions including reset, 37 * and one for the unused exception number 0). 38 * 39 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 40 * 41 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 42 * 43 * Iterating through all exceptions should typically be done with 44 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 45 * 46 * The external qemu_irq lines are the NVIC's external IRQ lines, 47 * so line 0 is exception 16. 48 * 49 * In the terminology of the architecture manual, "interrupts" are 50 * a subcategory of exception referring to the external interrupts 51 * (which are exception numbers NVIC_FIRST_IRQ and upward). 52 * For historical reasons QEMU tends to use "interrupt" and 53 * "exception" more or less interchangeably. 54 */ 55 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 56 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 57 58 /* Effective running priority of the CPU when no exception is active 59 * (higher than the highest possible priority value) 60 */ 61 #define NVIC_NOEXC_PRIO 0x100 62 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 63 #define NVIC_NS_PRIO_LIMIT 0x80 64 65 static const uint8_t nvic_id[] = { 66 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 67 }; 68 69 static void signal_sysresetreq(NVICState *s) 70 { 71 if (qemu_irq_is_connected(s->sysresetreq)) { 72 qemu_irq_pulse(s->sysresetreq); 73 } else { 74 /* 75 * Default behaviour if the SoC doesn't need to wire up 76 * SYSRESETREQ (eg to a system reset controller of some kind): 77 * perform a system reset via the usual QEMU API. 78 */ 79 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 80 } 81 } 82 83 static int nvic_pending_prio(NVICState *s) 84 { 85 /* return the group priority of the current pending interrupt, 86 * or NVIC_NOEXC_PRIO if no interrupt is pending 87 */ 88 return s->vectpending_prio; 89 } 90 91 /* Return the value of the ISCR RETTOBASE bit: 92 * 1 if there is exactly one active exception 93 * 0 if there is more than one active exception 94 * UNKNOWN if there are no active exceptions (we choose 1, 95 * which matches the choice Cortex-M3 is documented as making). 96 * 97 * NB: some versions of the documentation talk about this 98 * counting "active exceptions other than the one shown by IPSR"; 99 * this is only different in the obscure corner case where guest 100 * code has manually deactivated an exception and is about 101 * to fail an exception-return integrity check. The definition 102 * above is the one from the v8M ARM ARM and is also in line 103 * with the behaviour documented for the Cortex-M3. 104 */ 105 static bool nvic_rettobase(NVICState *s) 106 { 107 int irq, nhand = 0; 108 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 109 110 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 111 if (s->vectors[irq].active || 112 (check_sec && irq < NVIC_INTERNAL_VECTORS && 113 s->sec_vectors[irq].active)) { 114 nhand++; 115 if (nhand == 2) { 116 return 0; 117 } 118 } 119 } 120 121 return 1; 122 } 123 124 /* Return the value of the ISCR ISRPENDING bit: 125 * 1 if an external interrupt is pending 126 * 0 if no external interrupt is pending 127 */ 128 static bool nvic_isrpending(NVICState *s) 129 { 130 int irq; 131 132 /* 133 * We can shortcut if the highest priority pending interrupt 134 * happens to be external; if not we need to check the whole 135 * vectors[] array. 136 */ 137 if (s->vectpending > NVIC_FIRST_IRQ) { 138 return true; 139 } 140 141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 142 if (s->vectors[irq].pending) { 143 return true; 144 } 145 } 146 return false; 147 } 148 149 static bool exc_is_banked(int exc) 150 { 151 /* Return true if this is one of the limited set of exceptions which 152 * are banked (and thus have state in sec_vectors[]) 153 */ 154 return exc == ARMV7M_EXCP_HARD || 155 exc == ARMV7M_EXCP_MEM || 156 exc == ARMV7M_EXCP_USAGE || 157 exc == ARMV7M_EXCP_SVC || 158 exc == ARMV7M_EXCP_PENDSV || 159 exc == ARMV7M_EXCP_SYSTICK; 160 } 161 162 /* Return a mask word which clears the subpriority bits from 163 * a priority value for an M-profile exception, leaving only 164 * the group priority. 165 */ 166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 167 { 168 return ~0U << (s->prigroup[secure] + 1); 169 } 170 171 static bool exc_targets_secure(NVICState *s, int exc) 172 { 173 /* Return true if this non-banked exception targets Secure state. */ 174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 175 return false; 176 } 177 178 if (exc >= NVIC_FIRST_IRQ) { 179 return !s->itns[exc]; 180 } 181 182 /* Function shouldn't be called for banked exceptions. */ 183 assert(!exc_is_banked(exc)); 184 185 switch (exc) { 186 case ARMV7M_EXCP_NMI: 187 case ARMV7M_EXCP_BUS: 188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 189 case ARMV7M_EXCP_SECURE: 190 return true; 191 case ARMV7M_EXCP_DEBUG: 192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 193 return false; 194 default: 195 /* reset, and reserved (unused) low exception numbers. 196 * We'll get called by code that loops through all the exception 197 * numbers, but it doesn't matter what we return here as these 198 * non-existent exceptions will never be pended or active. 199 */ 200 return true; 201 } 202 } 203 204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 205 { 206 /* Return the group priority for this exception, given its raw 207 * (group-and-subgroup) priority value and whether it is targeting 208 * secure state or not. 209 */ 210 if (rawprio < 0) { 211 return rawprio; 212 } 213 rawprio &= nvic_gprio_mask(s, targets_secure); 214 /* AIRCR.PRIS causes us to squash all NS priorities into the 215 * lower half of the total range 216 */ 217 if (!targets_secure && 218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 220 } 221 return rawprio; 222 } 223 224 /* Recompute vectpending and exception_prio for a CPU which implements 225 * the Security extension 226 */ 227 static void nvic_recompute_state_secure(NVICState *s) 228 { 229 int i, bank; 230 int pend_prio = NVIC_NOEXC_PRIO; 231 int active_prio = NVIC_NOEXC_PRIO; 232 int pend_irq = 0; 233 bool pending_is_s_banked = false; 234 int pend_subprio = 0; 235 236 /* R_CQRV: precedence is by: 237 * - lowest group priority; if both the same then 238 * - lowest subpriority; if both the same then 239 * - lowest exception number; if both the same (ie banked) then 240 * - secure exception takes precedence 241 * Compare pseudocode RawExecutionPriority. 242 * Annoyingly, now we have two prigroup values (for S and NS) 243 * we can't do the loop comparison on raw priority values. 244 */ 245 for (i = 1; i < s->num_irq; i++) { 246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 247 VecInfo *vec; 248 int prio, subprio; 249 bool targets_secure; 250 251 if (bank == M_REG_S) { 252 if (!exc_is_banked(i)) { 253 continue; 254 } 255 vec = &s->sec_vectors[i]; 256 targets_secure = true; 257 } else { 258 vec = &s->vectors[i]; 259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 260 } 261 262 prio = exc_group_prio(s, vec->prio, targets_secure); 263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 264 if (vec->enabled && vec->pending && 265 ((prio < pend_prio) || 266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 267 pend_prio = prio; 268 pend_subprio = subprio; 269 pend_irq = i; 270 pending_is_s_banked = (bank == M_REG_S); 271 } 272 if (vec->active && prio < active_prio) { 273 active_prio = prio; 274 } 275 } 276 } 277 278 s->vectpending_is_s_banked = pending_is_s_banked; 279 s->vectpending = pend_irq; 280 s->vectpending_prio = pend_prio; 281 s->exception_prio = active_prio; 282 283 trace_nvic_recompute_state_secure(s->vectpending, 284 s->vectpending_is_s_banked, 285 s->vectpending_prio, 286 s->exception_prio); 287 } 288 289 /* Recompute vectpending and exception_prio */ 290 static void nvic_recompute_state(NVICState *s) 291 { 292 int i; 293 int pend_prio = NVIC_NOEXC_PRIO; 294 int active_prio = NVIC_NOEXC_PRIO; 295 int pend_irq = 0; 296 297 /* In theory we could write one function that handled both 298 * the "security extension present" and "not present"; however 299 * the security related changes significantly complicate the 300 * recomputation just by themselves and mixing both cases together 301 * would be even worse, so we retain a separate non-secure-only 302 * version for CPUs which don't implement the security extension. 303 */ 304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 305 nvic_recompute_state_secure(s); 306 return; 307 } 308 309 for (i = 1; i < s->num_irq; i++) { 310 VecInfo *vec = &s->vectors[i]; 311 312 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 313 pend_prio = vec->prio; 314 pend_irq = i; 315 } 316 if (vec->active && vec->prio < active_prio) { 317 active_prio = vec->prio; 318 } 319 } 320 321 if (active_prio > 0) { 322 active_prio &= nvic_gprio_mask(s, false); 323 } 324 325 if (pend_prio > 0) { 326 pend_prio &= nvic_gprio_mask(s, false); 327 } 328 329 s->vectpending = pend_irq; 330 s->vectpending_prio = pend_prio; 331 s->exception_prio = active_prio; 332 333 trace_nvic_recompute_state(s->vectpending, 334 s->vectpending_prio, 335 s->exception_prio); 336 } 337 338 /* Return the current execution priority of the CPU 339 * (equivalent to the pseudocode ExecutionPriority function). 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 341 */ 342 static inline int nvic_exec_prio(NVICState *s) 343 { 344 CPUARMState *env = &s->cpu->env; 345 int running = NVIC_NOEXC_PRIO; 346 347 if (env->v7m.basepri[M_REG_NS] > 0) { 348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 349 } 350 351 if (env->v7m.basepri[M_REG_S] > 0) { 352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 353 if (running > basepri) { 354 running = basepri; 355 } 356 } 357 358 if (env->v7m.primask[M_REG_NS]) { 359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 360 if (running > NVIC_NS_PRIO_LIMIT) { 361 running = NVIC_NS_PRIO_LIMIT; 362 } 363 } else { 364 running = 0; 365 } 366 } 367 368 if (env->v7m.primask[M_REG_S]) { 369 running = 0; 370 } 371 372 if (env->v7m.faultmask[M_REG_NS]) { 373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 374 running = -1; 375 } else { 376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 377 if (running > NVIC_NS_PRIO_LIMIT) { 378 running = NVIC_NS_PRIO_LIMIT; 379 } 380 } else { 381 running = 0; 382 } 383 } 384 } 385 386 if (env->v7m.faultmask[M_REG_S]) { 387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 388 } 389 390 /* consider priority of active handler */ 391 return MIN(running, s->exception_prio); 392 } 393 394 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure) 395 { 396 /* Return true if the requested execution priority is negative 397 * for the specified security state, ie that security state 398 * has an active NMI or HardFault or has set its FAULTMASK. 399 * Note that this is not the same as whether the execution 400 * priority is actually negative (for instance AIRCR.PRIS may 401 * mean we don't allow FAULTMASK_NS to actually make the execution 402 * priority negative). Compare pseudocode IsReqExcPriNeg(). 403 */ 404 if (s->cpu->env.v7m.faultmask[secure]) { 405 return true; 406 } 407 408 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 409 s->vectors[ARMV7M_EXCP_HARD].active) { 410 return true; 411 } 412 413 if (s->vectors[ARMV7M_EXCP_NMI].active && 414 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 415 return true; 416 } 417 418 return false; 419 } 420 421 bool armv7m_nvic_can_take_pending_exception(NVICState *s) 422 { 423 return nvic_exec_prio(s) > nvic_pending_prio(s); 424 } 425 426 int armv7m_nvic_raw_execution_priority(NVICState *s) 427 { 428 return s->exception_prio; 429 } 430 431 /* caller must call nvic_irq_update() after this. 432 * secure indicates the bank to use for banked exceptions (we assert if 433 * we are passed secure=true for a non-banked exception). 434 */ 435 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 436 { 437 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 438 assert(irq < s->num_irq); 439 440 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 s->sec_vectors[irq].prio = prio; 445 } else { 446 s->vectors[irq].prio = prio; 447 } 448 449 trace_nvic_set_prio(irq, secure, prio); 450 } 451 452 /* Return the current raw priority register value. 453 * secure indicates the bank to use for banked exceptions (we assert if 454 * we are passed secure=true for a non-banked exception). 455 */ 456 static int get_prio(NVICState *s, unsigned irq, bool secure) 457 { 458 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 459 assert(irq < s->num_irq); 460 461 if (secure) { 462 assert(exc_is_banked(irq)); 463 return s->sec_vectors[irq].prio; 464 } else { 465 return s->vectors[irq].prio; 466 } 467 } 468 469 /* Recompute state and assert irq line accordingly. 470 * Must be called after changes to: 471 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 472 * prigroup 473 */ 474 static void nvic_irq_update(NVICState *s) 475 { 476 int lvl; 477 int pend_prio; 478 479 nvic_recompute_state(s); 480 pend_prio = nvic_pending_prio(s); 481 482 /* Raise NVIC output if this IRQ would be taken, except that we 483 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 484 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 485 * to those CPU registers don't cause us to recalculate the NVIC 486 * pending info. 487 */ 488 lvl = (pend_prio < s->exception_prio); 489 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 490 qemu_set_irq(s->excpout, lvl); 491 } 492 493 /** 494 * armv7m_nvic_clear_pending: mark the specified exception as not pending 495 * @opaque: the NVIC 496 * @irq: the exception number to mark as not pending 497 * @secure: false for non-banked exceptions or for the nonsecure 498 * version of a banked exception, true for the secure version of a banked 499 * exception. 500 * 501 * Marks the specified exception as not pending. Note that we will assert() 502 * if @secure is true and @irq does not specify one of the fixed set 503 * of architecturally banked exceptions. 504 */ 505 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure) 506 { 507 VecInfo *vec; 508 509 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 510 511 if (secure) { 512 assert(exc_is_banked(irq)); 513 vec = &s->sec_vectors[irq]; 514 } else { 515 vec = &s->vectors[irq]; 516 } 517 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 518 if (vec->pending) { 519 vec->pending = 0; 520 nvic_irq_update(s); 521 } 522 } 523 524 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 525 bool derived) 526 { 527 /* Pend an exception, including possibly escalating it to HardFault. 528 * 529 * This function handles both "normal" pending of interrupts and 530 * exceptions, and also derived exceptions (ones which occur as 531 * a result of trying to take some other exception). 532 * 533 * If derived == true, the caller guarantees that we are part way through 534 * trying to take an exception (but have not yet called 535 * armv7m_nvic_acknowledge_irq() to make it active), and so: 536 * - s->vectpending is the "original exception" we were trying to take 537 * - irq is the "derived exception" 538 * - nvic_exec_prio(s) gives the priority before exception entry 539 * Here we handle the prioritization logic which the pseudocode puts 540 * in the DerivedLateArrival() function. 541 */ 542 543 NVICState *s = (NVICState *)opaque; 544 bool banked = exc_is_banked(irq); 545 VecInfo *vec; 546 bool targets_secure; 547 548 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 549 assert(!secure || banked); 550 551 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 552 553 targets_secure = banked ? secure : exc_targets_secure(s, irq); 554 555 trace_nvic_set_pending(irq, secure, targets_secure, 556 derived, vec->enabled, vec->prio); 557 558 if (derived) { 559 /* Derived exceptions are always synchronous. */ 560 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 561 562 if (irq == ARMV7M_EXCP_DEBUG && 563 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 564 /* DebugMonitorFault, but its priority is lower than the 565 * preempted exception priority: just ignore it. 566 */ 567 return; 568 } 569 570 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 571 /* If this is a terminal exception (one which means we cannot 572 * take the original exception, like a failure to read its 573 * vector table entry), then we must take the derived exception. 574 * If the derived exception can't take priority over the 575 * original exception, then we go into Lockup. 576 * 577 * For QEMU, we rely on the fact that a derived exception is 578 * terminal if and only if it's reported to us as HardFault, 579 * which saves having to have an extra argument is_terminal 580 * that we'd only use in one place. 581 */ 582 cpu_abort(CPU(s->cpu), 583 "Lockup: can't take terminal derived exception " 584 "(original exception priority %d)\n", 585 s->vectpending_prio); 586 } 587 /* We now continue with the same code as for a normal pending 588 * exception, which will cause us to pend the derived exception. 589 * We'll then take either the original or the derived exception 590 * based on which is higher priority by the usual mechanism 591 * for selecting the highest priority pending interrupt. 592 */ 593 } 594 595 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 596 /* If a synchronous exception is pending then it may be 597 * escalated to HardFault if: 598 * * it is equal or lower priority to current execution 599 * * it is disabled 600 * (ie we need to take it immediately but we can't do so). 601 * Asynchronous exceptions (and interrupts) simply remain pending. 602 * 603 * For QEMU, we don't have any imprecise (asynchronous) faults, 604 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 605 * synchronous. 606 * Debug exceptions are awkward because only Debug exceptions 607 * resulting from the BKPT instruction should be escalated, 608 * but we don't currently implement any Debug exceptions other 609 * than those that result from BKPT, so we treat all debug exceptions 610 * as needing escalation. 611 * 612 * This all means we can identify whether to escalate based only on 613 * the exception number and don't (yet) need the caller to explicitly 614 * tell us whether this exception is synchronous or not. 615 */ 616 int running = nvic_exec_prio(s); 617 bool escalate = false; 618 619 if (exc_group_prio(s, vec->prio, secure) >= running) { 620 trace_nvic_escalate_prio(irq, vec->prio, running); 621 escalate = true; 622 } else if (!vec->enabled) { 623 trace_nvic_escalate_disabled(irq); 624 escalate = true; 625 } 626 627 if (escalate) { 628 629 /* We need to escalate this exception to a synchronous HardFault. 630 * If BFHFNMINS is set then we escalate to the banked HF for 631 * the target security state of the original exception; otherwise 632 * we take a Secure HardFault. 633 */ 634 irq = ARMV7M_EXCP_HARD; 635 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 636 (targets_secure || 637 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 638 vec = &s->sec_vectors[irq]; 639 } else { 640 vec = &s->vectors[irq]; 641 } 642 if (running <= vec->prio) { 643 /* We want to escalate to HardFault but we can't take the 644 * synchronous HardFault at this point either. This is a 645 * Lockup condition due to a guest bug. We don't model 646 * Lockup, so report via cpu_abort() instead. 647 */ 648 cpu_abort(CPU(s->cpu), 649 "Lockup: can't escalate %d to HardFault " 650 "(current priority %d)\n", irq, running); 651 } 652 653 /* HF may be banked but there is only one shared HFSR */ 654 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 655 } 656 } 657 658 if (!vec->pending) { 659 vec->pending = 1; 660 nvic_irq_update(s); 661 } 662 } 663 664 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure) 665 { 666 do_armv7m_nvic_set_pending(s, irq, secure, false); 667 } 668 669 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure) 670 { 671 do_armv7m_nvic_set_pending(s, irq, secure, true); 672 } 673 674 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure) 675 { 676 /* 677 * Pend an exception during lazy FP stacking. This differs 678 * from the usual exception pending because the logic for 679 * whether we should escalate depends on the saved context 680 * in the FPCCR register, not on the current state of the CPU/NVIC. 681 */ 682 bool banked = exc_is_banked(irq); 683 VecInfo *vec; 684 bool targets_secure; 685 bool escalate = false; 686 /* 687 * We will only look at bits in fpccr if this is a banked exception 688 * (in which case 'secure' tells us whether it is the S or NS version). 689 * All the bits for the non-banked exceptions are in fpccr_s. 690 */ 691 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 692 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 693 694 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 695 assert(!secure || banked); 696 697 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 698 699 targets_secure = banked ? secure : exc_targets_secure(s, irq); 700 701 switch (irq) { 702 case ARMV7M_EXCP_DEBUG: 703 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 704 /* Ignore DebugMonitor exception */ 705 return; 706 } 707 break; 708 case ARMV7M_EXCP_MEM: 709 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 710 break; 711 case ARMV7M_EXCP_USAGE: 712 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 713 break; 714 case ARMV7M_EXCP_BUS: 715 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 716 break; 717 case ARMV7M_EXCP_SECURE: 718 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 719 break; 720 default: 721 g_assert_not_reached(); 722 } 723 724 if (escalate) { 725 /* 726 * Escalate to HardFault: faults that initially targeted Secure 727 * continue to do so, even if HF normally targets NonSecure. 728 */ 729 irq = ARMV7M_EXCP_HARD; 730 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 731 (targets_secure || 732 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 733 vec = &s->sec_vectors[irq]; 734 } else { 735 vec = &s->vectors[irq]; 736 } 737 } 738 739 if (!vec->enabled || 740 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 741 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 742 /* 743 * We want to escalate to HardFault but the context the 744 * FP state belongs to prevents the exception pre-empting. 745 */ 746 cpu_abort(CPU(s->cpu), 747 "Lockup: can't escalate to HardFault during " 748 "lazy FP register stacking\n"); 749 } 750 } 751 752 if (escalate) { 753 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 754 } 755 if (!vec->pending) { 756 vec->pending = 1; 757 /* 758 * We do not call nvic_irq_update(), because we know our caller 759 * is going to handle causing us to take the exception by 760 * raising EXCP_LAZYFP, so raising the IRQ line would be 761 * pointless extra work. We just need to recompute the 762 * priorities so that armv7m_nvic_can_take_pending_exception() 763 * returns the right answer. 764 */ 765 nvic_recompute_state(s); 766 } 767 } 768 769 /* Make pending IRQ active. */ 770 void armv7m_nvic_acknowledge_irq(NVICState *s) 771 { 772 CPUARMState *env = &s->cpu->env; 773 const int pending = s->vectpending; 774 const int running = nvic_exec_prio(s); 775 VecInfo *vec; 776 777 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 778 779 if (s->vectpending_is_s_banked) { 780 vec = &s->sec_vectors[pending]; 781 } else { 782 vec = &s->vectors[pending]; 783 } 784 785 assert(vec->enabled); 786 assert(vec->pending); 787 788 assert(s->vectpending_prio < running); 789 790 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 791 792 vec->active = 1; 793 vec->pending = 0; 794 795 write_v7m_exception(env, s->vectpending); 796 797 nvic_irq_update(s); 798 } 799 800 static bool vectpending_targets_secure(NVICState *s) 801 { 802 /* Return true if s->vectpending targets Secure state */ 803 if (s->vectpending_is_s_banked) { 804 return true; 805 } 806 return !exc_is_banked(s->vectpending) && 807 exc_targets_secure(s, s->vectpending); 808 } 809 810 void armv7m_nvic_get_pending_irq_info(NVICState *s, 811 int *pirq, bool *ptargets_secure) 812 { 813 const int pending = s->vectpending; 814 bool targets_secure; 815 816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 817 818 targets_secure = vectpending_targets_secure(s); 819 820 trace_nvic_get_pending_irq_info(pending, targets_secure); 821 822 *ptargets_secure = targets_secure; 823 *pirq = pending; 824 } 825 826 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure) 827 { 828 VecInfo *vec = NULL; 829 int ret = 0; 830 831 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 832 833 trace_nvic_complete_irq(irq, secure); 834 835 if (secure && exc_is_banked(irq)) { 836 vec = &s->sec_vectors[irq]; 837 } else { 838 vec = &s->vectors[irq]; 839 } 840 841 /* 842 * Identify illegal exception return cases. We can't immediately 843 * return at this point because we still need to deactivate 844 * (either this exception or NMI/HardFault) first. 845 */ 846 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 847 /* 848 * Return from a configurable exception targeting the opposite 849 * security state from the one we're trying to complete it for. 850 * Clear vec because it's not really the VecInfo for this 851 * (irq, secstate) so we mustn't deactivate it. 852 */ 853 ret = -1; 854 vec = NULL; 855 } else if (!vec->active) { 856 /* Return from an inactive interrupt */ 857 ret = -1; 858 } else { 859 /* Legal return, we will return the RETTOBASE bit value to the caller */ 860 ret = nvic_rettobase(s); 861 } 862 863 /* 864 * For negative priorities, v8M will forcibly deactivate the appropriate 865 * NMI or HardFault regardless of what interrupt we're being asked to 866 * deactivate (compare the DeActivate() pseudocode). This is a guard 867 * against software returning from NMI or HardFault with a corrupted 868 * IPSR and leaving the CPU in a negative-priority state. 869 * v7M does not do this, but simply deactivates the requested interrupt. 870 */ 871 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 872 switch (armv7m_nvic_raw_execution_priority(s)) { 873 case -1: 874 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 875 vec = &s->vectors[ARMV7M_EXCP_HARD]; 876 } else { 877 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 878 } 879 break; 880 case -2: 881 vec = &s->vectors[ARMV7M_EXCP_NMI]; 882 break; 883 case -3: 884 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 885 break; 886 default: 887 break; 888 } 889 } 890 891 if (!vec) { 892 return ret; 893 } 894 895 vec->active = 0; 896 if (vec->level) { 897 /* Re-pend the exception if it's still held high; only 898 * happens for external IRQs 899 */ 900 assert(irq >= NVIC_FIRST_IRQ); 901 vec->pending = 1; 902 } 903 904 nvic_irq_update(s); 905 906 return ret; 907 } 908 909 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure) 910 { 911 /* 912 * Return whether an exception is "ready", i.e. it is enabled and is 913 * configured at a priority which would allow it to interrupt the 914 * current execution priority. 915 * 916 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 917 * for non-banked exceptions secure is always false; for banked exceptions 918 * it indicates which of the exceptions is required. 919 */ 920 bool banked = exc_is_banked(irq); 921 VecInfo *vec; 922 int running = nvic_exec_prio(s); 923 924 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 925 assert(!secure || banked); 926 927 /* 928 * HardFault is an odd special case: we always check against -1, 929 * even if we're secure and HardFault has priority -3; we never 930 * need to check for enabled state. 931 */ 932 if (irq == ARMV7M_EXCP_HARD) { 933 return running > -1; 934 } 935 936 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 937 938 return vec->enabled && 939 exc_group_prio(s, vec->prio, secure) < running; 940 } 941 942 /* callback when external interrupt line is changed */ 943 static void set_irq_level(void *opaque, int n, int level) 944 { 945 NVICState *s = opaque; 946 VecInfo *vec; 947 948 n += NVIC_FIRST_IRQ; 949 950 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 951 952 trace_nvic_set_irq_level(n, level); 953 954 /* The pending status of an external interrupt is 955 * latched on rising edge and exception handler return. 956 * 957 * Pulsing the IRQ will always run the handler 958 * once, and the handler will re-run until the 959 * level is low when the handler completes. 960 */ 961 vec = &s->vectors[n]; 962 if (level != vec->level) { 963 vec->level = level; 964 if (level) { 965 armv7m_nvic_set_pending(s, n, false); 966 } 967 } 968 } 969 970 /* callback when external NMI line is changed */ 971 static void nvic_nmi_trigger(void *opaque, int n, int level) 972 { 973 NVICState *s = opaque; 974 975 trace_nvic_set_nmi_level(level); 976 977 /* 978 * The architecture doesn't specify whether NMI should share 979 * the normal-interrupt behaviour of being resampled on 980 * exception handler return. We choose not to, so just 981 * set NMI pending here and don't track the current level. 982 */ 983 if (level) { 984 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 985 } 986 } 987 988 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 989 { 990 ARMCPU *cpu = s->cpu; 991 uint32_t val; 992 993 switch (offset) { 994 case 4: /* Interrupt Control Type. */ 995 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 996 goto bad_offset; 997 } 998 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 999 case 0xc: /* CPPWR */ 1000 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1001 goto bad_offset; 1002 } 1003 /* We make the IMPDEF choice that nothing can ever go into a 1004 * non-retentive power state, which allows us to RAZ/WI this. 1005 */ 1006 return 0; 1007 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1008 { 1009 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1010 int i; 1011 1012 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1013 goto bad_offset; 1014 } 1015 if (!attrs.secure) { 1016 return 0; 1017 } 1018 val = 0; 1019 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1020 if (s->itns[startvec + i]) { 1021 val |= (1 << i); 1022 } 1023 } 1024 return val; 1025 } 1026 case 0xcfc: 1027 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1028 goto bad_offset; 1029 } 1030 return cpu->revidr; 1031 case 0xd00: /* CPUID Base. */ 1032 return cpu->midr; 1033 case 0xd04: /* Interrupt Control State (ICSR) */ 1034 /* VECTACTIVE */ 1035 val = cpu->env.v7m.exception; 1036 /* VECTPENDING */ 1037 if (s->vectpending) { 1038 /* 1039 * From v8.1M VECTPENDING must read as 1 if accessed as 1040 * NonSecure and the highest priority pending and enabled 1041 * exception targets Secure. 1042 */ 1043 int vp = s->vectpending; 1044 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && 1045 vectpending_targets_secure(s)) { 1046 vp = 1; 1047 } 1048 val |= (vp & 0x1ff) << 12; 1049 } 1050 /* ISRPENDING - set if any external IRQ is pending */ 1051 if (nvic_isrpending(s)) { 1052 val |= (1 << 22); 1053 } 1054 /* RETTOBASE - set if only one handler is active */ 1055 if (nvic_rettobase(s)) { 1056 val |= (1 << 11); 1057 } 1058 if (attrs.secure) { 1059 /* PENDSTSET */ 1060 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1061 val |= (1 << 26); 1062 } 1063 /* PENDSVSET */ 1064 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1065 val |= (1 << 28); 1066 } 1067 } else { 1068 /* PENDSTSET */ 1069 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1070 val |= (1 << 26); 1071 } 1072 /* PENDSVSET */ 1073 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1074 val |= (1 << 28); 1075 } 1076 } 1077 /* NMIPENDSET */ 1078 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1079 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1080 val |= (1 << 31); 1081 } 1082 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1083 /* STTNS: RES0 for the Main Extension */ 1084 return val; 1085 case 0xd08: /* Vector Table Offset. */ 1086 return cpu->env.v7m.vecbase[attrs.secure]; 1087 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1088 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1089 if (attrs.secure) { 1090 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1091 val |= cpu->env.v7m.aircr; 1092 } else { 1093 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1094 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1095 * security isn't supported then BFHFNMINS is RAO (and 1096 * the bit in env.v7m.aircr is always set). 1097 */ 1098 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1099 } 1100 } 1101 return val; 1102 case 0xd10: /* System Control. */ 1103 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1104 goto bad_offset; 1105 } 1106 return cpu->env.v7m.scr[attrs.secure]; 1107 case 0xd14: /* Configuration Control. */ 1108 /* 1109 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1110 * and TRD (stored in the S copy of the register) 1111 */ 1112 val = cpu->env.v7m.ccr[attrs.secure]; 1113 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1114 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ 1115 if (!attrs.secure) { 1116 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1117 val &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1118 } 1119 } 1120 return val; 1121 case 0xd24: /* System Handler Control and State (SHCSR) */ 1122 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1123 goto bad_offset; 1124 } 1125 val = 0; 1126 if (attrs.secure) { 1127 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1128 val |= (1 << 0); 1129 } 1130 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1131 val |= (1 << 2); 1132 } 1133 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1134 val |= (1 << 3); 1135 } 1136 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1137 val |= (1 << 7); 1138 } 1139 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1140 val |= (1 << 10); 1141 } 1142 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1143 val |= (1 << 11); 1144 } 1145 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1146 val |= (1 << 12); 1147 } 1148 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1149 val |= (1 << 13); 1150 } 1151 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1152 val |= (1 << 15); 1153 } 1154 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1155 val |= (1 << 16); 1156 } 1157 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1158 val |= (1 << 18); 1159 } 1160 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1161 val |= (1 << 21); 1162 } 1163 /* SecureFault is not banked but is always RAZ/WI to NS */ 1164 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1165 val |= (1 << 4); 1166 } 1167 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1168 val |= (1 << 19); 1169 } 1170 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1171 val |= (1 << 20); 1172 } 1173 } else { 1174 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1175 val |= (1 << 0); 1176 } 1177 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1178 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1179 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1180 val |= (1 << 2); 1181 } 1182 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1183 val |= (1 << 21); 1184 } 1185 } 1186 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1187 val |= (1 << 3); 1188 } 1189 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1190 val |= (1 << 7); 1191 } 1192 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1193 val |= (1 << 10); 1194 } 1195 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1196 val |= (1 << 11); 1197 } 1198 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1199 val |= (1 << 12); 1200 } 1201 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1202 val |= (1 << 13); 1203 } 1204 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1205 val |= (1 << 15); 1206 } 1207 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1208 val |= (1 << 16); 1209 } 1210 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1211 val |= (1 << 18); 1212 } 1213 } 1214 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1215 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1216 val |= (1 << 1); 1217 } 1218 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1219 val |= (1 << 14); 1220 } 1221 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1222 val |= (1 << 17); 1223 } 1224 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1225 s->vectors[ARMV7M_EXCP_NMI].active) { 1226 /* NMIACT is not present in v7M */ 1227 val |= (1 << 5); 1228 } 1229 } 1230 1231 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1232 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1233 val |= (1 << 8); 1234 } 1235 return val; 1236 case 0xd2c: /* Hard Fault Status. */ 1237 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1238 goto bad_offset; 1239 } 1240 return cpu->env.v7m.hfsr; 1241 case 0xd30: /* Debug Fault Status. */ 1242 return cpu->env.v7m.dfsr; 1243 case 0xd34: /* MMFAR MemManage Fault Address */ 1244 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1245 goto bad_offset; 1246 } 1247 return cpu->env.v7m.mmfar[attrs.secure]; 1248 case 0xd38: /* Bus Fault Address. */ 1249 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1250 goto bad_offset; 1251 } 1252 if (!attrs.secure && 1253 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1254 return 0; 1255 } 1256 return cpu->env.v7m.bfar; 1257 case 0xd3c: /* Aux Fault Status. */ 1258 /* TODO: Implement fault status registers. */ 1259 qemu_log_mask(LOG_UNIMP, 1260 "Aux Fault status registers unimplemented\n"); 1261 return 0; 1262 case 0xd40: /* PFR0. */ 1263 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1264 goto bad_offset; 1265 } 1266 return cpu->isar.id_pfr0; 1267 case 0xd44: /* PFR1. */ 1268 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1269 goto bad_offset; 1270 } 1271 return cpu->isar.id_pfr1; 1272 case 0xd48: /* DFR0. */ 1273 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1274 goto bad_offset; 1275 } 1276 return cpu->isar.id_dfr0; 1277 case 0xd4c: /* AFR0. */ 1278 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1279 goto bad_offset; 1280 } 1281 return cpu->id_afr0; 1282 case 0xd50: /* MMFR0. */ 1283 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1284 goto bad_offset; 1285 } 1286 return cpu->isar.id_mmfr0; 1287 case 0xd54: /* MMFR1. */ 1288 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1289 goto bad_offset; 1290 } 1291 return cpu->isar.id_mmfr1; 1292 case 0xd58: /* MMFR2. */ 1293 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1294 goto bad_offset; 1295 } 1296 return cpu->isar.id_mmfr2; 1297 case 0xd5c: /* MMFR3. */ 1298 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1299 goto bad_offset; 1300 } 1301 return cpu->isar.id_mmfr3; 1302 case 0xd60: /* ISAR0. */ 1303 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1304 goto bad_offset; 1305 } 1306 return cpu->isar.id_isar0; 1307 case 0xd64: /* ISAR1. */ 1308 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1309 goto bad_offset; 1310 } 1311 return cpu->isar.id_isar1; 1312 case 0xd68: /* ISAR2. */ 1313 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1314 goto bad_offset; 1315 } 1316 return cpu->isar.id_isar2; 1317 case 0xd6c: /* ISAR3. */ 1318 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1319 goto bad_offset; 1320 } 1321 return cpu->isar.id_isar3; 1322 case 0xd70: /* ISAR4. */ 1323 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1324 goto bad_offset; 1325 } 1326 return cpu->isar.id_isar4; 1327 case 0xd74: /* ISAR5. */ 1328 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1329 goto bad_offset; 1330 } 1331 return cpu->isar.id_isar5; 1332 case 0xd78: /* CLIDR */ 1333 return cpu->clidr; 1334 case 0xd7c: /* CTR */ 1335 return cpu->ctr; 1336 case 0xd80: /* CSSIDR */ 1337 { 1338 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1339 return cpu->ccsidr[idx]; 1340 } 1341 case 0xd84: /* CSSELR */ 1342 return cpu->env.v7m.csselr[attrs.secure]; 1343 case 0xd88: /* CPACR */ 1344 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1345 return 0; 1346 } 1347 return cpu->env.v7m.cpacr[attrs.secure]; 1348 case 0xd8c: /* NSACR */ 1349 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1350 return 0; 1351 } 1352 return cpu->env.v7m.nsacr; 1353 /* TODO: Implement debug registers. */ 1354 case 0xd90: /* MPU_TYPE */ 1355 /* Unified MPU; if the MPU is not present this value is zero */ 1356 return cpu->pmsav7_dregion << 8; 1357 case 0xd94: /* MPU_CTRL */ 1358 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1359 case 0xd98: /* MPU_RNR */ 1360 return cpu->env.pmsav7.rnr[attrs.secure]; 1361 case 0xd9c: /* MPU_RBAR */ 1362 case 0xda4: /* MPU_RBAR_A1 */ 1363 case 0xdac: /* MPU_RBAR_A2 */ 1364 case 0xdb4: /* MPU_RBAR_A3 */ 1365 { 1366 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1367 1368 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1369 /* PMSAv8M handling of the aliases is different from v7M: 1370 * aliases A1, A2, A3 override the low two bits of the region 1371 * number in MPU_RNR, and there is no 'region' field in the 1372 * RBAR register. 1373 */ 1374 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1375 if (aliasno) { 1376 region = deposit32(region, 0, 2, aliasno); 1377 } 1378 if (region >= cpu->pmsav7_dregion) { 1379 return 0; 1380 } 1381 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1382 } 1383 1384 if (region >= cpu->pmsav7_dregion) { 1385 return 0; 1386 } 1387 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1388 } 1389 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1390 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1391 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1392 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1393 { 1394 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1395 1396 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1397 /* PMSAv8M handling of the aliases is different from v7M: 1398 * aliases A1, A2, A3 override the low two bits of the region 1399 * number in MPU_RNR. 1400 */ 1401 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1402 if (aliasno) { 1403 region = deposit32(region, 0, 2, aliasno); 1404 } 1405 if (region >= cpu->pmsav7_dregion) { 1406 return 0; 1407 } 1408 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1409 } 1410 1411 if (region >= cpu->pmsav7_dregion) { 1412 return 0; 1413 } 1414 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1415 (cpu->env.pmsav7.drsr[region] & 0xffff); 1416 } 1417 case 0xdc0: /* MPU_MAIR0 */ 1418 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1419 goto bad_offset; 1420 } 1421 return cpu->env.pmsav8.mair0[attrs.secure]; 1422 case 0xdc4: /* MPU_MAIR1 */ 1423 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1424 goto bad_offset; 1425 } 1426 return cpu->env.pmsav8.mair1[attrs.secure]; 1427 case 0xdd0: /* SAU_CTRL */ 1428 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1429 goto bad_offset; 1430 } 1431 if (!attrs.secure) { 1432 return 0; 1433 } 1434 return cpu->env.sau.ctrl; 1435 case 0xdd4: /* SAU_TYPE */ 1436 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1437 goto bad_offset; 1438 } 1439 if (!attrs.secure) { 1440 return 0; 1441 } 1442 return cpu->sau_sregion; 1443 case 0xdd8: /* SAU_RNR */ 1444 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1445 goto bad_offset; 1446 } 1447 if (!attrs.secure) { 1448 return 0; 1449 } 1450 return cpu->env.sau.rnr; 1451 case 0xddc: /* SAU_RBAR */ 1452 { 1453 int region = cpu->env.sau.rnr; 1454 1455 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1456 goto bad_offset; 1457 } 1458 if (!attrs.secure) { 1459 return 0; 1460 } 1461 if (region >= cpu->sau_sregion) { 1462 return 0; 1463 } 1464 return cpu->env.sau.rbar[region]; 1465 } 1466 case 0xde0: /* SAU_RLAR */ 1467 { 1468 int region = cpu->env.sau.rnr; 1469 1470 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1471 goto bad_offset; 1472 } 1473 if (!attrs.secure) { 1474 return 0; 1475 } 1476 if (region >= cpu->sau_sregion) { 1477 return 0; 1478 } 1479 return cpu->env.sau.rlar[region]; 1480 } 1481 case 0xde4: /* SFSR */ 1482 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1483 goto bad_offset; 1484 } 1485 if (!attrs.secure) { 1486 return 0; 1487 } 1488 return cpu->env.v7m.sfsr; 1489 case 0xde8: /* SFAR */ 1490 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1491 goto bad_offset; 1492 } 1493 if (!attrs.secure) { 1494 return 0; 1495 } 1496 return cpu->env.v7m.sfar; 1497 case 0xf04: /* RFSR */ 1498 if (!cpu_isar_feature(aa32_ras, cpu)) { 1499 goto bad_offset; 1500 } 1501 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1502 return 0; 1503 case 0xf34: /* FPCCR */ 1504 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1505 return 0; 1506 } 1507 if (attrs.secure) { 1508 return cpu->env.v7m.fpccr[M_REG_S]; 1509 } else { 1510 /* 1511 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1512 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1513 * other non-banked bits RAZ. 1514 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1515 */ 1516 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1517 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1518 R_V7M_FPCCR_CLRONRET_MASK | 1519 R_V7M_FPCCR_MONRDY_MASK; 1520 1521 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1522 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1523 } 1524 1525 value &= mask; 1526 1527 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1528 return value; 1529 } 1530 case 0xf38: /* FPCAR */ 1531 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1532 return 0; 1533 } 1534 return cpu->env.v7m.fpcar[attrs.secure]; 1535 case 0xf3c: /* FPDSCR */ 1536 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1537 return 0; 1538 } 1539 return cpu->env.v7m.fpdscr[attrs.secure]; 1540 case 0xf40: /* MVFR0 */ 1541 return cpu->isar.mvfr0; 1542 case 0xf44: /* MVFR1 */ 1543 return cpu->isar.mvfr1; 1544 case 0xf48: /* MVFR2 */ 1545 return cpu->isar.mvfr2; 1546 default: 1547 bad_offset: 1548 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1549 return 0; 1550 } 1551 } 1552 1553 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1554 MemTxAttrs attrs) 1555 { 1556 ARMCPU *cpu = s->cpu; 1557 1558 switch (offset) { 1559 case 0xc: /* CPPWR */ 1560 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1561 goto bad_offset; 1562 } 1563 /* Make the IMPDEF choice to RAZ/WI this. */ 1564 break; 1565 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1566 { 1567 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1568 int i; 1569 1570 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1571 goto bad_offset; 1572 } 1573 if (!attrs.secure) { 1574 break; 1575 } 1576 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1577 s->itns[startvec + i] = (value >> i) & 1; 1578 } 1579 nvic_irq_update(s); 1580 break; 1581 } 1582 case 0xd04: /* Interrupt Control State (ICSR) */ 1583 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1584 if (value & (1 << 31)) { 1585 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1586 } else if (value & (1 << 30) && 1587 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1588 /* PENDNMICLR didn't exist in v7M */ 1589 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1590 } 1591 } 1592 if (value & (1 << 28)) { 1593 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1594 } else if (value & (1 << 27)) { 1595 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1596 } 1597 if (value & (1 << 26)) { 1598 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1599 } else if (value & (1 << 25)) { 1600 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1601 } 1602 break; 1603 case 0xd08: /* Vector Table Offset. */ 1604 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1605 break; 1606 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1607 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1608 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1609 if (attrs.secure || 1610 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1611 signal_sysresetreq(s); 1612 } 1613 } 1614 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1615 qemu_log_mask(LOG_GUEST_ERROR, 1616 "Setting VECTCLRACTIVE when not in DEBUG mode " 1617 "is UNPREDICTABLE\n"); 1618 } 1619 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1620 /* NB: this bit is RES0 in v8M */ 1621 qemu_log_mask(LOG_GUEST_ERROR, 1622 "Setting VECTRESET when not in DEBUG mode " 1623 "is UNPREDICTABLE\n"); 1624 } 1625 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1626 s->prigroup[attrs.secure] = 1627 extract32(value, 1628 R_V7M_AIRCR_PRIGROUP_SHIFT, 1629 R_V7M_AIRCR_PRIGROUP_LENGTH); 1630 } 1631 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1632 if (attrs.secure) { 1633 /* These bits are only writable by secure */ 1634 cpu->env.v7m.aircr = value & 1635 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1636 R_V7M_AIRCR_BFHFNMINS_MASK | 1637 R_V7M_AIRCR_PRIS_MASK); 1638 /* BFHFNMINS changes the priority of Secure HardFault, and 1639 * allows a pending Non-secure HardFault to preempt (which 1640 * we implement by marking it enabled). 1641 */ 1642 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1643 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1644 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1645 } else { 1646 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1647 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1648 } 1649 } 1650 nvic_irq_update(s); 1651 } 1652 break; 1653 case 0xd10: /* System Control. */ 1654 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1655 goto bad_offset; 1656 } 1657 /* We don't implement deep-sleep so these bits are RAZ/WI. 1658 * The other bits in the register are banked. 1659 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1660 * is architecturally permitted. 1661 */ 1662 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1663 cpu->env.v7m.scr[attrs.secure] = value; 1664 break; 1665 case 0xd14: /* Configuration Control. */ 1666 { 1667 uint32_t mask; 1668 1669 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1670 goto bad_offset; 1671 } 1672 1673 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1674 mask = R_V7M_CCR_STKALIGN_MASK | 1675 R_V7M_CCR_BFHFNMIGN_MASK | 1676 R_V7M_CCR_DIV_0_TRP_MASK | 1677 R_V7M_CCR_UNALIGN_TRP_MASK | 1678 R_V7M_CCR_USERSETMPEND_MASK | 1679 R_V7M_CCR_NONBASETHRDENA_MASK; 1680 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1681 /* TRD is always RAZ/WI from NS */ 1682 mask |= R_V7M_CCR_TRD_MASK; 1683 } 1684 value &= mask; 1685 1686 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1687 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1688 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1689 | R_V7M_CCR_STKALIGN_MASK; 1690 } 1691 if (attrs.secure) { 1692 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1693 cpu->env.v7m.ccr[M_REG_NS] = 1694 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1695 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1696 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1697 } else { 1698 /* 1699 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so 1700 * preserve the state currently in the NS element of the array 1701 */ 1702 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1703 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1704 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1705 } 1706 } 1707 1708 cpu->env.v7m.ccr[attrs.secure] = value; 1709 break; 1710 } 1711 case 0xd24: /* System Handler Control and State (SHCSR) */ 1712 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1713 goto bad_offset; 1714 } 1715 if (attrs.secure) { 1716 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1717 /* Secure HardFault active bit cannot be written */ 1718 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1719 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1720 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1721 (value & (1 << 10)) != 0; 1722 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1723 (value & (1 << 11)) != 0; 1724 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1725 (value & (1 << 12)) != 0; 1726 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1727 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1728 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1729 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1730 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1731 (value & (1 << 18)) != 0; 1732 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1733 /* SecureFault not banked, but RAZ/WI to NS */ 1734 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1735 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1736 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1737 } else { 1738 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1739 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1740 /* HARDFAULTPENDED is not present in v7M */ 1741 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1742 } 1743 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1744 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1745 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1746 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1747 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1748 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1749 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1750 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1751 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1752 } 1753 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1754 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1755 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1756 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1757 } 1758 /* NMIACT can only be written if the write is of a zero, with 1759 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1760 */ 1761 if (!attrs.secure && cpu->env.v7m.secure && 1762 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1763 (value & (1 << 5)) == 0) { 1764 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1765 } 1766 /* HARDFAULTACT can only be written if the write is of a zero 1767 * to the non-secure HardFault state by the CPU in secure state. 1768 * The only case where we can be targeting the non-secure HF state 1769 * when in secure state is if this is a write via the NS alias 1770 * and BFHFNMINS is 1. 1771 */ 1772 if (!attrs.secure && cpu->env.v7m.secure && 1773 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1774 (value & (1 << 2)) == 0) { 1775 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1776 } 1777 1778 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1779 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1780 nvic_irq_update(s); 1781 break; 1782 case 0xd2c: /* Hard Fault Status. */ 1783 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1784 goto bad_offset; 1785 } 1786 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1787 break; 1788 case 0xd30: /* Debug Fault Status. */ 1789 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1790 break; 1791 case 0xd34: /* Mem Manage Address. */ 1792 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1793 goto bad_offset; 1794 } 1795 cpu->env.v7m.mmfar[attrs.secure] = value; 1796 return; 1797 case 0xd38: /* Bus Fault Address. */ 1798 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1799 goto bad_offset; 1800 } 1801 if (!attrs.secure && 1802 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1803 return; 1804 } 1805 cpu->env.v7m.bfar = value; 1806 return; 1807 case 0xd3c: /* Aux Fault Status. */ 1808 qemu_log_mask(LOG_UNIMP, 1809 "NVIC: Aux fault status registers unimplemented\n"); 1810 break; 1811 case 0xd84: /* CSSELR */ 1812 if (!arm_v7m_csselr_razwi(cpu)) { 1813 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1814 } 1815 break; 1816 case 0xd88: /* CPACR */ 1817 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1818 /* We implement only the Floating Point extension's CP10/CP11 */ 1819 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1820 } 1821 break; 1822 case 0xd8c: /* NSACR */ 1823 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1824 /* We implement only the Floating Point extension's CP10/CP11 */ 1825 cpu->env.v7m.nsacr = value & (3 << 10); 1826 } 1827 break; 1828 case 0xd90: /* MPU_TYPE */ 1829 return; /* RO */ 1830 case 0xd94: /* MPU_CTRL */ 1831 if ((value & 1832 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1833 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1834 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1835 "UNPREDICTABLE\n"); 1836 } 1837 cpu->env.v7m.mpu_ctrl[attrs.secure] 1838 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1839 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1840 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1841 tlb_flush(CPU(cpu)); 1842 break; 1843 case 0xd98: /* MPU_RNR */ 1844 if (value >= cpu->pmsav7_dregion) { 1845 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1846 PRIu32 "/%" PRIu32 "\n", 1847 value, cpu->pmsav7_dregion); 1848 } else { 1849 cpu->env.pmsav7.rnr[attrs.secure] = value; 1850 } 1851 break; 1852 case 0xd9c: /* MPU_RBAR */ 1853 case 0xda4: /* MPU_RBAR_A1 */ 1854 case 0xdac: /* MPU_RBAR_A2 */ 1855 case 0xdb4: /* MPU_RBAR_A3 */ 1856 { 1857 int region; 1858 1859 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1860 /* PMSAv8M handling of the aliases is different from v7M: 1861 * aliases A1, A2, A3 override the low two bits of the region 1862 * number in MPU_RNR, and there is no 'region' field in the 1863 * RBAR register. 1864 */ 1865 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1866 1867 region = cpu->env.pmsav7.rnr[attrs.secure]; 1868 if (aliasno) { 1869 region = deposit32(region, 0, 2, aliasno); 1870 } 1871 if (region >= cpu->pmsav7_dregion) { 1872 return; 1873 } 1874 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1875 tlb_flush(CPU(cpu)); 1876 return; 1877 } 1878 1879 if (value & (1 << 4)) { 1880 /* VALID bit means use the region number specified in this 1881 * value and also update MPU_RNR.REGION with that value. 1882 */ 1883 region = extract32(value, 0, 4); 1884 if (region >= cpu->pmsav7_dregion) { 1885 qemu_log_mask(LOG_GUEST_ERROR, 1886 "MPU region out of range %u/%" PRIu32 "\n", 1887 region, cpu->pmsav7_dregion); 1888 return; 1889 } 1890 cpu->env.pmsav7.rnr[attrs.secure] = region; 1891 } else { 1892 region = cpu->env.pmsav7.rnr[attrs.secure]; 1893 } 1894 1895 if (region >= cpu->pmsav7_dregion) { 1896 return; 1897 } 1898 1899 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1900 tlb_flush(CPU(cpu)); 1901 break; 1902 } 1903 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1904 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1905 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1906 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1907 { 1908 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1909 1910 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1911 /* PMSAv8M handling of the aliases is different from v7M: 1912 * aliases A1, A2, A3 override the low two bits of the region 1913 * number in MPU_RNR. 1914 */ 1915 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1916 1917 region = cpu->env.pmsav7.rnr[attrs.secure]; 1918 if (aliasno) { 1919 region = deposit32(region, 0, 2, aliasno); 1920 } 1921 if (region >= cpu->pmsav7_dregion) { 1922 return; 1923 } 1924 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1925 tlb_flush(CPU(cpu)); 1926 return; 1927 } 1928 1929 if (region >= cpu->pmsav7_dregion) { 1930 return; 1931 } 1932 1933 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1934 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1935 tlb_flush(CPU(cpu)); 1936 break; 1937 } 1938 case 0xdc0: /* MPU_MAIR0 */ 1939 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1940 goto bad_offset; 1941 } 1942 if (cpu->pmsav7_dregion) { 1943 /* Register is RES0 if no MPU regions are implemented */ 1944 cpu->env.pmsav8.mair0[attrs.secure] = value; 1945 } 1946 /* We don't need to do anything else because memory attributes 1947 * only affect cacheability, and we don't implement caching. 1948 */ 1949 break; 1950 case 0xdc4: /* MPU_MAIR1 */ 1951 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1952 goto bad_offset; 1953 } 1954 if (cpu->pmsav7_dregion) { 1955 /* Register is RES0 if no MPU regions are implemented */ 1956 cpu->env.pmsav8.mair1[attrs.secure] = value; 1957 } 1958 /* We don't need to do anything else because memory attributes 1959 * only affect cacheability, and we don't implement caching. 1960 */ 1961 break; 1962 case 0xdd0: /* SAU_CTRL */ 1963 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1964 goto bad_offset; 1965 } 1966 if (!attrs.secure) { 1967 return; 1968 } 1969 cpu->env.sau.ctrl = value & 3; 1970 break; 1971 case 0xdd4: /* SAU_TYPE */ 1972 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1973 goto bad_offset; 1974 } 1975 break; 1976 case 0xdd8: /* SAU_RNR */ 1977 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1978 goto bad_offset; 1979 } 1980 if (!attrs.secure) { 1981 return; 1982 } 1983 if (value >= cpu->sau_sregion) { 1984 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1985 PRIu32 "/%" PRIu32 "\n", 1986 value, cpu->sau_sregion); 1987 } else { 1988 cpu->env.sau.rnr = value; 1989 } 1990 break; 1991 case 0xddc: /* SAU_RBAR */ 1992 { 1993 int region = cpu->env.sau.rnr; 1994 1995 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1996 goto bad_offset; 1997 } 1998 if (!attrs.secure) { 1999 return; 2000 } 2001 if (region >= cpu->sau_sregion) { 2002 return; 2003 } 2004 cpu->env.sau.rbar[region] = value & ~0x1f; 2005 tlb_flush(CPU(cpu)); 2006 break; 2007 } 2008 case 0xde0: /* SAU_RLAR */ 2009 { 2010 int region = cpu->env.sau.rnr; 2011 2012 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2013 goto bad_offset; 2014 } 2015 if (!attrs.secure) { 2016 return; 2017 } 2018 if (region >= cpu->sau_sregion) { 2019 return; 2020 } 2021 cpu->env.sau.rlar[region] = value & ~0x1c; 2022 tlb_flush(CPU(cpu)); 2023 break; 2024 } 2025 case 0xde4: /* SFSR */ 2026 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2027 goto bad_offset; 2028 } 2029 if (!attrs.secure) { 2030 return; 2031 } 2032 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2033 break; 2034 case 0xde8: /* SFAR */ 2035 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2036 goto bad_offset; 2037 } 2038 if (!attrs.secure) { 2039 return; 2040 } 2041 cpu->env.v7m.sfsr = value; 2042 break; 2043 case 0xf00: /* Software Triggered Interrupt Register */ 2044 { 2045 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2046 2047 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2048 goto bad_offset; 2049 } 2050 2051 if (excnum < s->num_irq) { 2052 armv7m_nvic_set_pending(s, excnum, false); 2053 } 2054 break; 2055 } 2056 case 0xf04: /* RFSR */ 2057 if (!cpu_isar_feature(aa32_ras, cpu)) { 2058 goto bad_offset; 2059 } 2060 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2061 break; 2062 case 0xf34: /* FPCCR */ 2063 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2064 /* Not all bits here are banked. */ 2065 uint32_t fpccr_s; 2066 2067 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2068 /* Don't allow setting of bits not present in v7M */ 2069 value &= (R_V7M_FPCCR_LSPACT_MASK | 2070 R_V7M_FPCCR_USER_MASK | 2071 R_V7M_FPCCR_THREAD_MASK | 2072 R_V7M_FPCCR_HFRDY_MASK | 2073 R_V7M_FPCCR_MMRDY_MASK | 2074 R_V7M_FPCCR_BFRDY_MASK | 2075 R_V7M_FPCCR_MONRDY_MASK | 2076 R_V7M_FPCCR_LSPEN_MASK | 2077 R_V7M_FPCCR_ASPEN_MASK); 2078 } 2079 value &= ~R_V7M_FPCCR_RES0_MASK; 2080 2081 if (!attrs.secure) { 2082 /* Some non-banked bits are configurably writable by NS */ 2083 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2084 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2085 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2086 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2087 } 2088 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2089 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2090 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2091 } 2092 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2093 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2094 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2095 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2096 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2097 } 2098 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2099 { 2100 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2101 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2102 } 2103 2104 /* 2105 * All other non-banked bits are RAZ/WI from NS; write 2106 * just the banked bits to fpccr[M_REG_NS]. 2107 */ 2108 value &= R_V7M_FPCCR_BANKED_MASK; 2109 cpu->env.v7m.fpccr[M_REG_NS] = value; 2110 } else { 2111 fpccr_s = value; 2112 } 2113 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2114 } 2115 break; 2116 case 0xf38: /* FPCAR */ 2117 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2118 value &= ~7; 2119 cpu->env.v7m.fpcar[attrs.secure] = value; 2120 } 2121 break; 2122 case 0xf3c: /* FPDSCR */ 2123 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2124 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2125 if (cpu_isar_feature(any_fp16, cpu)) { 2126 mask |= FPCR_FZ16; 2127 } 2128 value &= mask; 2129 if (cpu_isar_feature(aa32_lob, cpu)) { 2130 value |= 4 << FPCR_LTPSIZE_SHIFT; 2131 } 2132 cpu->env.v7m.fpdscr[attrs.secure] = value; 2133 } 2134 break; 2135 case 0xf50: /* ICIALLU */ 2136 case 0xf58: /* ICIMVAU */ 2137 case 0xf5c: /* DCIMVAC */ 2138 case 0xf60: /* DCISW */ 2139 case 0xf64: /* DCCMVAU */ 2140 case 0xf68: /* DCCMVAC */ 2141 case 0xf6c: /* DCCSW */ 2142 case 0xf70: /* DCCIMVAC */ 2143 case 0xf74: /* DCCISW */ 2144 case 0xf78: /* BPIALL */ 2145 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2146 break; 2147 default: 2148 bad_offset: 2149 qemu_log_mask(LOG_GUEST_ERROR, 2150 "NVIC: Bad write offset 0x%x\n", offset); 2151 } 2152 } 2153 2154 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2155 { 2156 /* Return true if unprivileged access to this register is permitted. */ 2157 switch (offset) { 2158 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2159 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2160 * controls access even though the CPU is in Secure state (I_QDKX). 2161 */ 2162 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2163 default: 2164 /* All other user accesses cause a BusFault unconditionally */ 2165 return false; 2166 } 2167 } 2168 2169 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2170 { 2171 /* Behaviour for the SHPR register field for this exception: 2172 * return M_REG_NS to use the nonsecure vector (including for 2173 * non-banked exceptions), M_REG_S for the secure version of 2174 * a banked exception, and -1 if this field should RAZ/WI. 2175 */ 2176 switch (exc) { 2177 case ARMV7M_EXCP_MEM: 2178 case ARMV7M_EXCP_USAGE: 2179 case ARMV7M_EXCP_SVC: 2180 case ARMV7M_EXCP_PENDSV: 2181 case ARMV7M_EXCP_SYSTICK: 2182 /* Banked exceptions */ 2183 return attrs.secure; 2184 case ARMV7M_EXCP_BUS: 2185 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2186 if (!attrs.secure && 2187 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2188 return -1; 2189 } 2190 return M_REG_NS; 2191 case ARMV7M_EXCP_SECURE: 2192 /* Not banked, RAZ/WI from nonsecure */ 2193 if (!attrs.secure) { 2194 return -1; 2195 } 2196 return M_REG_NS; 2197 case ARMV7M_EXCP_DEBUG: 2198 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2199 return M_REG_NS; 2200 case 8 ... 10: 2201 case 13: 2202 /* RES0 */ 2203 return -1; 2204 default: 2205 /* Not reachable due to decode of SHPR register addresses */ 2206 g_assert_not_reached(); 2207 } 2208 } 2209 2210 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2211 uint64_t *data, unsigned size, 2212 MemTxAttrs attrs) 2213 { 2214 NVICState *s = (NVICState *)opaque; 2215 uint32_t offset = addr; 2216 unsigned i, startvec, end; 2217 uint32_t val; 2218 2219 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2220 /* Generate BusFault for unprivileged accesses */ 2221 return MEMTX_ERROR; 2222 } 2223 2224 switch (offset) { 2225 /* reads of set and clear both return the status */ 2226 case 0x100 ... 0x13f: /* NVIC Set enable */ 2227 offset += 0x80; 2228 /* fall through */ 2229 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2230 val = 0; 2231 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2232 2233 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2234 if (s->vectors[startvec + i].enabled && 2235 (attrs.secure || s->itns[startvec + i])) { 2236 val |= (1 << i); 2237 } 2238 } 2239 break; 2240 case 0x200 ... 0x23f: /* NVIC Set pend */ 2241 offset += 0x80; 2242 /* fall through */ 2243 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2244 val = 0; 2245 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2246 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2247 if (s->vectors[startvec + i].pending && 2248 (attrs.secure || s->itns[startvec + i])) { 2249 val |= (1 << i); 2250 } 2251 } 2252 break; 2253 case 0x300 ... 0x33f: /* NVIC Active */ 2254 val = 0; 2255 2256 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2257 break; 2258 } 2259 2260 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2261 2262 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2263 if (s->vectors[startvec + i].active && 2264 (attrs.secure || s->itns[startvec + i])) { 2265 val |= (1 << i); 2266 } 2267 } 2268 break; 2269 case 0x400 ... 0x5ef: /* NVIC Priority */ 2270 val = 0; 2271 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2272 2273 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2274 if (attrs.secure || s->itns[startvec + i]) { 2275 val |= s->vectors[startvec + i].prio << (8 * i); 2276 } 2277 } 2278 break; 2279 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2280 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2281 val = 0; 2282 break; 2283 } 2284 /* fall through */ 2285 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2286 val = 0; 2287 for (i = 0; i < size; i++) { 2288 unsigned hdlidx = (offset - 0xd14) + i; 2289 int sbank = shpr_bank(s, hdlidx, attrs); 2290 2291 if (sbank < 0) { 2292 continue; 2293 } 2294 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2295 } 2296 break; 2297 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2298 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2299 val = 0; 2300 break; 2301 }; 2302 /* 2303 * The BFSR bits [15:8] are shared between security states 2304 * and we store them in the NS copy. They are RAZ/WI for 2305 * NS code if AIRCR.BFHFNMINS is 0. 2306 */ 2307 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2308 if (!attrs.secure && 2309 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2310 val &= ~R_V7M_CFSR_BFSR_MASK; 2311 } else { 2312 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2313 } 2314 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2315 break; 2316 case 0xfe0 ... 0xfff: /* ID. */ 2317 if (offset & 3) { 2318 val = 0; 2319 } else { 2320 val = nvic_id[(offset - 0xfe0) >> 2]; 2321 } 2322 break; 2323 default: 2324 if (size == 4) { 2325 val = nvic_readl(s, offset, attrs); 2326 } else { 2327 qemu_log_mask(LOG_GUEST_ERROR, 2328 "NVIC: Bad read of size %d at offset 0x%x\n", 2329 size, offset); 2330 val = 0; 2331 } 2332 } 2333 2334 trace_nvic_sysreg_read(addr, val, size); 2335 *data = val; 2336 return MEMTX_OK; 2337 } 2338 2339 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2340 uint64_t value, unsigned size, 2341 MemTxAttrs attrs) 2342 { 2343 NVICState *s = (NVICState *)opaque; 2344 uint32_t offset = addr; 2345 unsigned i, startvec, end; 2346 unsigned setval = 0; 2347 2348 trace_nvic_sysreg_write(addr, value, size); 2349 2350 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2351 /* Generate BusFault for unprivileged accesses */ 2352 return MEMTX_ERROR; 2353 } 2354 2355 switch (offset) { 2356 case 0x100 ... 0x13f: /* NVIC Set enable */ 2357 offset += 0x80; 2358 setval = 1; 2359 /* fall through */ 2360 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2361 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2362 2363 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2364 if (value & (1 << i) && 2365 (attrs.secure || s->itns[startvec + i])) { 2366 s->vectors[startvec + i].enabled = setval; 2367 } 2368 } 2369 nvic_irq_update(s); 2370 goto exit_ok; 2371 case 0x200 ... 0x23f: /* NVIC Set pend */ 2372 /* the special logic in armv7m_nvic_set_pending() 2373 * is not needed since IRQs are never escalated 2374 */ 2375 offset += 0x80; 2376 setval = 1; 2377 /* fall through */ 2378 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2379 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2380 2381 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2382 /* 2383 * Note that if the input line is still held high and the interrupt 2384 * is not active then rule R_CVJS requires that the Pending state 2385 * remains set; in that case we mustn't let it be cleared. 2386 */ 2387 if (value & (1 << i) && 2388 (attrs.secure || s->itns[startvec + i]) && 2389 !(setval == 0 && s->vectors[startvec + i].level && 2390 !s->vectors[startvec + i].active)) { 2391 s->vectors[startvec + i].pending = setval; 2392 } 2393 } 2394 nvic_irq_update(s); 2395 goto exit_ok; 2396 case 0x300 ... 0x33f: /* NVIC Active */ 2397 goto exit_ok; /* R/O */ 2398 case 0x400 ... 0x5ef: /* NVIC Priority */ 2399 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2400 2401 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2402 if (attrs.secure || s->itns[startvec + i]) { 2403 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2404 } 2405 } 2406 nvic_irq_update(s); 2407 goto exit_ok; 2408 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2409 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2410 goto exit_ok; 2411 } 2412 /* fall through */ 2413 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2414 for (i = 0; i < size; i++) { 2415 unsigned hdlidx = (offset - 0xd14) + i; 2416 int newprio = extract32(value, i * 8, 8); 2417 int sbank = shpr_bank(s, hdlidx, attrs); 2418 2419 if (sbank < 0) { 2420 continue; 2421 } 2422 set_prio(s, hdlidx, sbank, newprio); 2423 } 2424 nvic_irq_update(s); 2425 goto exit_ok; 2426 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2427 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2428 goto exit_ok; 2429 } 2430 /* All bits are W1C, so construct 32 bit value with 0s in 2431 * the parts not written by the access size 2432 */ 2433 value <<= ((offset - 0xd28) * 8); 2434 2435 if (!attrs.secure && 2436 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2437 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2438 value &= ~R_V7M_CFSR_BFSR_MASK; 2439 } 2440 2441 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2442 if (attrs.secure) { 2443 /* The BFSR bits [15:8] are shared between security states 2444 * and we store them in the NS copy. 2445 */ 2446 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2447 } 2448 goto exit_ok; 2449 } 2450 if (size == 4) { 2451 nvic_writel(s, offset, value, attrs); 2452 goto exit_ok; 2453 } 2454 qemu_log_mask(LOG_GUEST_ERROR, 2455 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2456 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2457 2458 exit_ok: 2459 if (tcg_enabled()) { 2460 /* Ensure any changes made are reflected in the cached hflags. */ 2461 arm_rebuild_hflags(&s->cpu->env); 2462 } 2463 return MEMTX_OK; 2464 } 2465 2466 static const MemoryRegionOps nvic_sysreg_ops = { 2467 .read_with_attrs = nvic_sysreg_read, 2468 .write_with_attrs = nvic_sysreg_write, 2469 .endianness = DEVICE_NATIVE_ENDIAN, 2470 }; 2471 2472 static int nvic_post_load(void *opaque, int version_id) 2473 { 2474 NVICState *s = opaque; 2475 unsigned i; 2476 int resetprio; 2477 2478 /* Check for out of range priority settings */ 2479 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2480 2481 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2482 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2483 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2484 return 1; 2485 } 2486 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2487 if (s->vectors[i].prio & ~0xff) { 2488 return 1; 2489 } 2490 } 2491 2492 nvic_recompute_state(s); 2493 2494 return 0; 2495 } 2496 2497 static const VMStateDescription vmstate_VecInfo = { 2498 .name = "armv7m_nvic_info", 2499 .version_id = 1, 2500 .minimum_version_id = 1, 2501 .fields = (const VMStateField[]) { 2502 VMSTATE_INT16(prio, VecInfo), 2503 VMSTATE_UINT8(enabled, VecInfo), 2504 VMSTATE_UINT8(pending, VecInfo), 2505 VMSTATE_UINT8(active, VecInfo), 2506 VMSTATE_UINT8(level, VecInfo), 2507 VMSTATE_END_OF_LIST() 2508 } 2509 }; 2510 2511 static bool nvic_security_needed(void *opaque) 2512 { 2513 NVICState *s = opaque; 2514 2515 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2516 } 2517 2518 static int nvic_security_post_load(void *opaque, int version_id) 2519 { 2520 NVICState *s = opaque; 2521 int i; 2522 2523 /* Check for out of range priority settings */ 2524 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2525 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2526 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2527 * if the CPU state has been migrated yet; a mismatch won't 2528 * cause the emulation to blow up, though. 2529 */ 2530 return 1; 2531 } 2532 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2533 if (s->sec_vectors[i].prio & ~0xff) { 2534 return 1; 2535 } 2536 } 2537 return 0; 2538 } 2539 2540 static const VMStateDescription vmstate_nvic_security = { 2541 .name = "armv7m_nvic/m-security", 2542 .version_id = 1, 2543 .minimum_version_id = 1, 2544 .needed = nvic_security_needed, 2545 .post_load = &nvic_security_post_load, 2546 .fields = (const VMStateField[]) { 2547 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2548 vmstate_VecInfo, VecInfo), 2549 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2550 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2551 VMSTATE_END_OF_LIST() 2552 } 2553 }; 2554 2555 static const VMStateDescription vmstate_nvic = { 2556 .name = "armv7m_nvic", 2557 .version_id = 4, 2558 .minimum_version_id = 4, 2559 .post_load = &nvic_post_load, 2560 .fields = (const VMStateField[]) { 2561 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2562 vmstate_VecInfo, VecInfo), 2563 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2564 VMSTATE_END_OF_LIST() 2565 }, 2566 .subsections = (const VMStateDescription * const []) { 2567 &vmstate_nvic_security, 2568 NULL 2569 } 2570 }; 2571 2572 static Property props_nvic[] = { 2573 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2574 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2575 DEFINE_PROP_END_OF_LIST() 2576 }; 2577 2578 static void armv7m_nvic_reset(DeviceState *dev) 2579 { 2580 int resetprio; 2581 NVICState *s = NVIC(dev); 2582 2583 memset(s->vectors, 0, sizeof(s->vectors)); 2584 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2585 s->prigroup[M_REG_NS] = 0; 2586 s->prigroup[M_REG_S] = 0; 2587 2588 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2589 /* MEM, BUS, and USAGE are enabled through 2590 * the System Handler Control register 2591 */ 2592 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2593 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2594 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2595 2596 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2597 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2598 2599 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2600 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2601 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2602 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2603 2604 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2605 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2606 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2607 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2608 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2609 2610 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2611 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2612 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2613 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2614 } else { 2615 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2616 } 2617 2618 /* Strictly speaking the reset handler should be enabled. 2619 * However, we don't simulate soft resets through the NVIC, 2620 * and the reset vector should never be pended. 2621 * So we leave it disabled to catch logic errors. 2622 */ 2623 2624 s->exception_prio = NVIC_NOEXC_PRIO; 2625 s->vectpending = 0; 2626 s->vectpending_is_s_banked = false; 2627 s->vectpending_prio = NVIC_NOEXC_PRIO; 2628 2629 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2630 memset(s->itns, 0, sizeof(s->itns)); 2631 } else { 2632 /* This state is constant and not guest accessible in a non-security 2633 * NVIC; we set the bits to true to avoid having to do a feature 2634 * bit check in the NVIC enable/pend/etc register accessors. 2635 */ 2636 int i; 2637 2638 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2639 s->itns[i] = true; 2640 } 2641 } 2642 2643 if (tcg_enabled()) { 2644 /* 2645 * We updated state that affects the CPU's MMUidx and thus its 2646 * hflags; and we can't guarantee that we run before the CPU 2647 * reset function. 2648 */ 2649 arm_rebuild_hflags(&s->cpu->env); 2650 } 2651 } 2652 2653 static void nvic_systick_trigger(void *opaque, int n, int level) 2654 { 2655 NVICState *s = opaque; 2656 2657 if (level) { 2658 /* SysTick just asked us to pend its exception. 2659 * (This is different from an external interrupt line's 2660 * behaviour.) 2661 * n == 0 : NonSecure systick 2662 * n == 1 : Secure systick 2663 */ 2664 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2665 } 2666 } 2667 2668 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2669 { 2670 NVICState *s = NVIC(dev); 2671 2672 /* The armv7m container object will have set our CPU pointer */ 2673 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2674 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2675 return; 2676 } 2677 2678 if (s->num_irq > NVIC_MAX_IRQ) { 2679 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2680 return; 2681 } 2682 2683 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2684 2685 /* include space for internal exception vectors */ 2686 s->num_irq += NVIC_FIRST_IRQ; 2687 2688 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2689 2690 /* 2691 * This device provides a single memory region which covers the 2692 * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the 2693 * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF. 2694 */ 2695 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2696 "nvic_sysregs", 0x1000); 2697 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem); 2698 } 2699 2700 static void armv7m_nvic_instance_init(Object *obj) 2701 { 2702 DeviceState *dev = DEVICE(obj); 2703 NVICState *nvic = NVIC(obj); 2704 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2705 2706 sysbus_init_irq(sbd, &nvic->excpout); 2707 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2708 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2709 M_REG_NUM_BANKS); 2710 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2711 } 2712 2713 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2714 { 2715 DeviceClass *dc = DEVICE_CLASS(klass); 2716 2717 dc->vmsd = &vmstate_nvic; 2718 device_class_set_props(dc, props_nvic); 2719 dc->reset = armv7m_nvic_reset; 2720 dc->realize = armv7m_nvic_realize; 2721 } 2722 2723 static const TypeInfo armv7m_nvic_info = { 2724 .name = TYPE_NVIC, 2725 .parent = TYPE_SYS_BUS_DEVICE, 2726 .instance_init = armv7m_nvic_instance_init, 2727 .instance_size = sizeof(NVICState), 2728 .class_init = armv7m_nvic_class_init, 2729 .class_size = sizeof(SysBusDeviceClass), 2730 }; 2731 2732 static void armv7m_nvic_register_types(void) 2733 { 2734 type_register_static(&armv7m_nvic_info); 2735 } 2736 2737 type_init(armv7m_nvic_register_types) 2738