xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 5cc8767d)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "cpu.h"
16 #include "hw/sysbus.h"
17 #include "qemu/timer.h"
18 #include "hw/intc/armv7m_nvic.h"
19 #include "target/arm/cpu.h"
20 #include "exec/exec-all.h"
21 #include "qemu/log.h"
22 #include "qemu/module.h"
23 #include "trace.h"
24 
25 /* IRQ number counting:
26  *
27  * the num-irq property counts the number of external IRQ lines
28  *
29  * NVICState::num_irq counts the total number of exceptions
30  * (external IRQs, the 15 internal exceptions including reset,
31  * and one for the unused exception number 0).
32  *
33  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
34  *
35  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
36  *
37  * Iterating through all exceptions should typically be done with
38  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
39  *
40  * The external qemu_irq lines are the NVIC's external IRQ lines,
41  * so line 0 is exception 16.
42  *
43  * In the terminology of the architecture manual, "interrupts" are
44  * a subcategory of exception referring to the external interrupts
45  * (which are exception numbers NVIC_FIRST_IRQ and upward).
46  * For historical reasons QEMU tends to use "interrupt" and
47  * "exception" more or less interchangeably.
48  */
49 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
50 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
51 
52 /* Effective running priority of the CPU when no exception is active
53  * (higher than the highest possible priority value)
54  */
55 #define NVIC_NOEXC_PRIO 0x100
56 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
57 #define NVIC_NS_PRIO_LIMIT 0x80
58 
59 static const uint8_t nvic_id[] = {
60     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
61 };
62 
63 static int nvic_pending_prio(NVICState *s)
64 {
65     /* return the group priority of the current pending interrupt,
66      * or NVIC_NOEXC_PRIO if no interrupt is pending
67      */
68     return s->vectpending_prio;
69 }
70 
71 /* Return the value of the ISCR RETTOBASE bit:
72  * 1 if there is exactly one active exception
73  * 0 if there is more than one active exception
74  * UNKNOWN if there are no active exceptions (we choose 1,
75  * which matches the choice Cortex-M3 is documented as making).
76  *
77  * NB: some versions of the documentation talk about this
78  * counting "active exceptions other than the one shown by IPSR";
79  * this is only different in the obscure corner case where guest
80  * code has manually deactivated an exception and is about
81  * to fail an exception-return integrity check. The definition
82  * above is the one from the v8M ARM ARM and is also in line
83  * with the behaviour documented for the Cortex-M3.
84  */
85 static bool nvic_rettobase(NVICState *s)
86 {
87     int irq, nhand = 0;
88     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
89 
90     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
91         if (s->vectors[irq].active ||
92             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
93              s->sec_vectors[irq].active)) {
94             nhand++;
95             if (nhand == 2) {
96                 return 0;
97             }
98         }
99     }
100 
101     return 1;
102 }
103 
104 /* Return the value of the ISCR ISRPENDING bit:
105  * 1 if an external interrupt is pending
106  * 0 if no external interrupt is pending
107  */
108 static bool nvic_isrpending(NVICState *s)
109 {
110     int irq;
111 
112     /* We can shortcut if the highest priority pending interrupt
113      * happens to be external or if there is nothing pending.
114      */
115     if (s->vectpending > NVIC_FIRST_IRQ) {
116         return true;
117     }
118     if (s->vectpending == 0) {
119         return false;
120     }
121 
122     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
123         if (s->vectors[irq].pending) {
124             return true;
125         }
126     }
127     return false;
128 }
129 
130 static bool exc_is_banked(int exc)
131 {
132     /* Return true if this is one of the limited set of exceptions which
133      * are banked (and thus have state in sec_vectors[])
134      */
135     return exc == ARMV7M_EXCP_HARD ||
136         exc == ARMV7M_EXCP_MEM ||
137         exc == ARMV7M_EXCP_USAGE ||
138         exc == ARMV7M_EXCP_SVC ||
139         exc == ARMV7M_EXCP_PENDSV ||
140         exc == ARMV7M_EXCP_SYSTICK;
141 }
142 
143 /* Return a mask word which clears the subpriority bits from
144  * a priority value for an M-profile exception, leaving only
145  * the group priority.
146  */
147 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
148 {
149     return ~0U << (s->prigroup[secure] + 1);
150 }
151 
152 static bool exc_targets_secure(NVICState *s, int exc)
153 {
154     /* Return true if this non-banked exception targets Secure state. */
155     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
156         return false;
157     }
158 
159     if (exc >= NVIC_FIRST_IRQ) {
160         return !s->itns[exc];
161     }
162 
163     /* Function shouldn't be called for banked exceptions. */
164     assert(!exc_is_banked(exc));
165 
166     switch (exc) {
167     case ARMV7M_EXCP_NMI:
168     case ARMV7M_EXCP_BUS:
169         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
170     case ARMV7M_EXCP_SECURE:
171         return true;
172     case ARMV7M_EXCP_DEBUG:
173         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
174         return false;
175     default:
176         /* reset, and reserved (unused) low exception numbers.
177          * We'll get called by code that loops through all the exception
178          * numbers, but it doesn't matter what we return here as these
179          * non-existent exceptions will never be pended or active.
180          */
181         return true;
182     }
183 }
184 
185 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
186 {
187     /* Return the group priority for this exception, given its raw
188      * (group-and-subgroup) priority value and whether it is targeting
189      * secure state or not.
190      */
191     if (rawprio < 0) {
192         return rawprio;
193     }
194     rawprio &= nvic_gprio_mask(s, targets_secure);
195     /* AIRCR.PRIS causes us to squash all NS priorities into the
196      * lower half of the total range
197      */
198     if (!targets_secure &&
199         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
200         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
201     }
202     return rawprio;
203 }
204 
205 /* Recompute vectpending and exception_prio for a CPU which implements
206  * the Security extension
207  */
208 static void nvic_recompute_state_secure(NVICState *s)
209 {
210     int i, bank;
211     int pend_prio = NVIC_NOEXC_PRIO;
212     int active_prio = NVIC_NOEXC_PRIO;
213     int pend_irq = 0;
214     bool pending_is_s_banked = false;
215     int pend_subprio = 0;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio, subprio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure);
245             if (vec->enabled && vec->pending &&
246                 ((prio < pend_prio) ||
247                  (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) {
248                 pend_prio = prio;
249                 pend_subprio = subprio;
250                 pend_irq = i;
251                 pending_is_s_banked = (bank == M_REG_S);
252             }
253             if (vec->active && prio < active_prio) {
254                 active_prio = prio;
255             }
256         }
257     }
258 
259     s->vectpending_is_s_banked = pending_is_s_banked;
260     s->vectpending = pend_irq;
261     s->vectpending_prio = pend_prio;
262     s->exception_prio = active_prio;
263 
264     trace_nvic_recompute_state_secure(s->vectpending,
265                                       s->vectpending_is_s_banked,
266                                       s->vectpending_prio,
267                                       s->exception_prio);
268 }
269 
270 /* Recompute vectpending and exception_prio */
271 static void nvic_recompute_state(NVICState *s)
272 {
273     int i;
274     int pend_prio = NVIC_NOEXC_PRIO;
275     int active_prio = NVIC_NOEXC_PRIO;
276     int pend_irq = 0;
277 
278     /* In theory we could write one function that handled both
279      * the "security extension present" and "not present"; however
280      * the security related changes significantly complicate the
281      * recomputation just by themselves and mixing both cases together
282      * would be even worse, so we retain a separate non-secure-only
283      * version for CPUs which don't implement the security extension.
284      */
285     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
286         nvic_recompute_state_secure(s);
287         return;
288     }
289 
290     for (i = 1; i < s->num_irq; i++) {
291         VecInfo *vec = &s->vectors[i];
292 
293         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
294             pend_prio = vec->prio;
295             pend_irq = i;
296         }
297         if (vec->active && vec->prio < active_prio) {
298             active_prio = vec->prio;
299         }
300     }
301 
302     if (active_prio > 0) {
303         active_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     if (pend_prio > 0) {
307         pend_prio &= nvic_gprio_mask(s, false);
308     }
309 
310     s->vectpending = pend_irq;
311     s->vectpending_prio = pend_prio;
312     s->exception_prio = active_prio;
313 
314     trace_nvic_recompute_state(s->vectpending,
315                                s->vectpending_prio,
316                                s->exception_prio);
317 }
318 
319 /* Return the current execution priority of the CPU
320  * (equivalent to the pseudocode ExecutionPriority function).
321  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
322  */
323 static inline int nvic_exec_prio(NVICState *s)
324 {
325     CPUARMState *env = &s->cpu->env;
326     int running = NVIC_NOEXC_PRIO;
327 
328     if (env->v7m.basepri[M_REG_NS] > 0) {
329         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
330     }
331 
332     if (env->v7m.basepri[M_REG_S] > 0) {
333         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
334         if (running > basepri) {
335             running = basepri;
336         }
337     }
338 
339     if (env->v7m.primask[M_REG_NS]) {
340         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
341             if (running > NVIC_NS_PRIO_LIMIT) {
342                 running = NVIC_NS_PRIO_LIMIT;
343             }
344         } else {
345             running = 0;
346         }
347     }
348 
349     if (env->v7m.primask[M_REG_S]) {
350         running = 0;
351     }
352 
353     if (env->v7m.faultmask[M_REG_NS]) {
354         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
355             running = -1;
356         } else {
357             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
358                 if (running > NVIC_NS_PRIO_LIMIT) {
359                     running = NVIC_NS_PRIO_LIMIT;
360                 }
361             } else {
362                 running = 0;
363             }
364         }
365     }
366 
367     if (env->v7m.faultmask[M_REG_S]) {
368         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
369     }
370 
371     /* consider priority of active handler */
372     return MIN(running, s->exception_prio);
373 }
374 
375 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
376 {
377     /* Return true if the requested execution priority is negative
378      * for the specified security state, ie that security state
379      * has an active NMI or HardFault or has set its FAULTMASK.
380      * Note that this is not the same as whether the execution
381      * priority is actually negative (for instance AIRCR.PRIS may
382      * mean we don't allow FAULTMASK_NS to actually make the execution
383      * priority negative). Compare pseudocode IsReqExcPriNeg().
384      */
385     NVICState *s = opaque;
386 
387     if (s->cpu->env.v7m.faultmask[secure]) {
388         return true;
389     }
390 
391     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
392         s->vectors[ARMV7M_EXCP_HARD].active) {
393         return true;
394     }
395 
396     if (s->vectors[ARMV7M_EXCP_NMI].active &&
397         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
398         return true;
399     }
400 
401     return false;
402 }
403 
404 bool armv7m_nvic_can_take_pending_exception(void *opaque)
405 {
406     NVICState *s = opaque;
407 
408     return nvic_exec_prio(s) > nvic_pending_prio(s);
409 }
410 
411 int armv7m_nvic_raw_execution_priority(void *opaque)
412 {
413     NVICState *s = opaque;
414 
415     return s->exception_prio;
416 }
417 
418 /* caller must call nvic_irq_update() after this.
419  * secure indicates the bank to use for banked exceptions (we assert if
420  * we are passed secure=true for a non-banked exception).
421  */
422 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
423 {
424     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
425     assert(irq < s->num_irq);
426 
427     prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
428 
429     if (secure) {
430         assert(exc_is_banked(irq));
431         s->sec_vectors[irq].prio = prio;
432     } else {
433         s->vectors[irq].prio = prio;
434     }
435 
436     trace_nvic_set_prio(irq, secure, prio);
437 }
438 
439 /* Return the current raw priority register value.
440  * secure indicates the bank to use for banked exceptions (we assert if
441  * we are passed secure=true for a non-banked exception).
442  */
443 static int get_prio(NVICState *s, unsigned irq, bool secure)
444 {
445     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
446     assert(irq < s->num_irq);
447 
448     if (secure) {
449         assert(exc_is_banked(irq));
450         return s->sec_vectors[irq].prio;
451     } else {
452         return s->vectors[irq].prio;
453     }
454 }
455 
456 /* Recompute state and assert irq line accordingly.
457  * Must be called after changes to:
458  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
459  *  prigroup
460  */
461 static void nvic_irq_update(NVICState *s)
462 {
463     int lvl;
464     int pend_prio;
465 
466     nvic_recompute_state(s);
467     pend_prio = nvic_pending_prio(s);
468 
469     /* Raise NVIC output if this IRQ would be taken, except that we
470      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
471      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
472      * to those CPU registers don't cause us to recalculate the NVIC
473      * pending info.
474      */
475     lvl = (pend_prio < s->exception_prio);
476     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
477     qemu_set_irq(s->excpout, lvl);
478 }
479 
480 /**
481  * armv7m_nvic_clear_pending: mark the specified exception as not pending
482  * @opaque: the NVIC
483  * @irq: the exception number to mark as not pending
484  * @secure: false for non-banked exceptions or for the nonsecure
485  * version of a banked exception, true for the secure version of a banked
486  * exception.
487  *
488  * Marks the specified exception as not pending. Note that we will assert()
489  * if @secure is true and @irq does not specify one of the fixed set
490  * of architecturally banked exceptions.
491  */
492 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
493 {
494     NVICState *s = (NVICState *)opaque;
495     VecInfo *vec;
496 
497     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
498 
499     if (secure) {
500         assert(exc_is_banked(irq));
501         vec = &s->sec_vectors[irq];
502     } else {
503         vec = &s->vectors[irq];
504     }
505     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
506     if (vec->pending) {
507         vec->pending = 0;
508         nvic_irq_update(s);
509     }
510 }
511 
512 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
513                                        bool derived)
514 {
515     /* Pend an exception, including possibly escalating it to HardFault.
516      *
517      * This function handles both "normal" pending of interrupts and
518      * exceptions, and also derived exceptions (ones which occur as
519      * a result of trying to take some other exception).
520      *
521      * If derived == true, the caller guarantees that we are part way through
522      * trying to take an exception (but have not yet called
523      * armv7m_nvic_acknowledge_irq() to make it active), and so:
524      *  - s->vectpending is the "original exception" we were trying to take
525      *  - irq is the "derived exception"
526      *  - nvic_exec_prio(s) gives the priority before exception entry
527      * Here we handle the prioritization logic which the pseudocode puts
528      * in the DerivedLateArrival() function.
529      */
530 
531     NVICState *s = (NVICState *)opaque;
532     bool banked = exc_is_banked(irq);
533     VecInfo *vec;
534     bool targets_secure;
535 
536     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
537     assert(!secure || banked);
538 
539     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
540 
541     targets_secure = banked ? secure : exc_targets_secure(s, irq);
542 
543     trace_nvic_set_pending(irq, secure, targets_secure,
544                            derived, vec->enabled, vec->prio);
545 
546     if (derived) {
547         /* Derived exceptions are always synchronous. */
548         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
549 
550         if (irq == ARMV7M_EXCP_DEBUG &&
551             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
552             /* DebugMonitorFault, but its priority is lower than the
553              * preempted exception priority: just ignore it.
554              */
555             return;
556         }
557 
558         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
559             /* If this is a terminal exception (one which means we cannot
560              * take the original exception, like a failure to read its
561              * vector table entry), then we must take the derived exception.
562              * If the derived exception can't take priority over the
563              * original exception, then we go into Lockup.
564              *
565              * For QEMU, we rely on the fact that a derived exception is
566              * terminal if and only if it's reported to us as HardFault,
567              * which saves having to have an extra argument is_terminal
568              * that we'd only use in one place.
569              */
570             cpu_abort(&s->cpu->parent_obj,
571                       "Lockup: can't take terminal derived exception "
572                       "(original exception priority %d)\n",
573                       s->vectpending_prio);
574         }
575         /* We now continue with the same code as for a normal pending
576          * exception, which will cause us to pend the derived exception.
577          * We'll then take either the original or the derived exception
578          * based on which is higher priority by the usual mechanism
579          * for selecting the highest priority pending interrupt.
580          */
581     }
582 
583     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
584         /* If a synchronous exception is pending then it may be
585          * escalated to HardFault if:
586          *  * it is equal or lower priority to current execution
587          *  * it is disabled
588          * (ie we need to take it immediately but we can't do so).
589          * Asynchronous exceptions (and interrupts) simply remain pending.
590          *
591          * For QEMU, we don't have any imprecise (asynchronous) faults,
592          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
593          * synchronous.
594          * Debug exceptions are awkward because only Debug exceptions
595          * resulting from the BKPT instruction should be escalated,
596          * but we don't currently implement any Debug exceptions other
597          * than those that result from BKPT, so we treat all debug exceptions
598          * as needing escalation.
599          *
600          * This all means we can identify whether to escalate based only on
601          * the exception number and don't (yet) need the caller to explicitly
602          * tell us whether this exception is synchronous or not.
603          */
604         int running = nvic_exec_prio(s);
605         bool escalate = false;
606 
607         if (exc_group_prio(s, vec->prio, secure) >= running) {
608             trace_nvic_escalate_prio(irq, vec->prio, running);
609             escalate = true;
610         } else if (!vec->enabled) {
611             trace_nvic_escalate_disabled(irq);
612             escalate = true;
613         }
614 
615         if (escalate) {
616 
617             /* We need to escalate this exception to a synchronous HardFault.
618              * If BFHFNMINS is set then we escalate to the banked HF for
619              * the target security state of the original exception; otherwise
620              * we take a Secure HardFault.
621              */
622             irq = ARMV7M_EXCP_HARD;
623             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
624                 (targets_secure ||
625                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
626                 vec = &s->sec_vectors[irq];
627             } else {
628                 vec = &s->vectors[irq];
629             }
630             if (running <= vec->prio) {
631                 /* We want to escalate to HardFault but we can't take the
632                  * synchronous HardFault at this point either. This is a
633                  * Lockup condition due to a guest bug. We don't model
634                  * Lockup, so report via cpu_abort() instead.
635                  */
636                 cpu_abort(&s->cpu->parent_obj,
637                           "Lockup: can't escalate %d to HardFault "
638                           "(current priority %d)\n", irq, running);
639             }
640 
641             /* HF may be banked but there is only one shared HFSR */
642             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
643         }
644     }
645 
646     if (!vec->pending) {
647         vec->pending = 1;
648         nvic_irq_update(s);
649     }
650 }
651 
652 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
653 {
654     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
655 }
656 
657 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
658 {
659     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
660 }
661 
662 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure)
663 {
664     /*
665      * Pend an exception during lazy FP stacking. This differs
666      * from the usual exception pending because the logic for
667      * whether we should escalate depends on the saved context
668      * in the FPCCR register, not on the current state of the CPU/NVIC.
669      */
670     NVICState *s = (NVICState *)opaque;
671     bool banked = exc_is_banked(irq);
672     VecInfo *vec;
673     bool targets_secure;
674     bool escalate = false;
675     /*
676      * We will only look at bits in fpccr if this is a banked exception
677      * (in which case 'secure' tells us whether it is the S or NS version).
678      * All the bits for the non-banked exceptions are in fpccr_s.
679      */
680     uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S];
681     uint32_t fpccr = s->cpu->env.v7m.fpccr[secure];
682 
683     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
684     assert(!secure || banked);
685 
686     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
687 
688     targets_secure = banked ? secure : exc_targets_secure(s, irq);
689 
690     switch (irq) {
691     case ARMV7M_EXCP_DEBUG:
692         if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) {
693             /* Ignore DebugMonitor exception */
694             return;
695         }
696         break;
697     case ARMV7M_EXCP_MEM:
698         escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK);
699         break;
700     case ARMV7M_EXCP_USAGE:
701         escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK);
702         break;
703     case ARMV7M_EXCP_BUS:
704         escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK);
705         break;
706     case ARMV7M_EXCP_SECURE:
707         escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK);
708         break;
709     default:
710         g_assert_not_reached();
711     }
712 
713     if (escalate) {
714         /*
715          * Escalate to HardFault: faults that initially targeted Secure
716          * continue to do so, even if HF normally targets NonSecure.
717          */
718         irq = ARMV7M_EXCP_HARD;
719         if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
720             (targets_secure ||
721              !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
722             vec = &s->sec_vectors[irq];
723         } else {
724             vec = &s->vectors[irq];
725         }
726     }
727 
728     if (!vec->enabled ||
729         nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) {
730         if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) {
731             /*
732              * We want to escalate to HardFault but the context the
733              * FP state belongs to prevents the exception pre-empting.
734              */
735             cpu_abort(&s->cpu->parent_obj,
736                       "Lockup: can't escalate to HardFault during "
737                       "lazy FP register stacking\n");
738         }
739     }
740 
741     if (escalate) {
742         s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
743     }
744     if (!vec->pending) {
745         vec->pending = 1;
746         /*
747          * We do not call nvic_irq_update(), because we know our caller
748          * is going to handle causing us to take the exception by
749          * raising EXCP_LAZYFP, so raising the IRQ line would be
750          * pointless extra work. We just need to recompute the
751          * priorities so that armv7m_nvic_can_take_pending_exception()
752          * returns the right answer.
753          */
754         nvic_recompute_state(s);
755     }
756 }
757 
758 /* Make pending IRQ active.  */
759 void armv7m_nvic_acknowledge_irq(void *opaque)
760 {
761     NVICState *s = (NVICState *)opaque;
762     CPUARMState *env = &s->cpu->env;
763     const int pending = s->vectpending;
764     const int running = nvic_exec_prio(s);
765     VecInfo *vec;
766 
767     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
768 
769     if (s->vectpending_is_s_banked) {
770         vec = &s->sec_vectors[pending];
771     } else {
772         vec = &s->vectors[pending];
773     }
774 
775     assert(vec->enabled);
776     assert(vec->pending);
777 
778     assert(s->vectpending_prio < running);
779 
780     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
781 
782     vec->active = 1;
783     vec->pending = 0;
784 
785     write_v7m_exception(env, s->vectpending);
786 
787     nvic_irq_update(s);
788 }
789 
790 void armv7m_nvic_get_pending_irq_info(void *opaque,
791                                       int *pirq, bool *ptargets_secure)
792 {
793     NVICState *s = (NVICState *)opaque;
794     const int pending = s->vectpending;
795     bool targets_secure;
796 
797     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
798 
799     if (s->vectpending_is_s_banked) {
800         targets_secure = true;
801     } else {
802         targets_secure = !exc_is_banked(pending) &&
803             exc_targets_secure(s, pending);
804     }
805 
806     trace_nvic_get_pending_irq_info(pending, targets_secure);
807 
808     *ptargets_secure = targets_secure;
809     *pirq = pending;
810 }
811 
812 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
813 {
814     NVICState *s = (NVICState *)opaque;
815     VecInfo *vec = NULL;
816     int ret;
817 
818     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
819 
820     /*
821      * For negative priorities, v8M will forcibly deactivate the appropriate
822      * NMI or HardFault regardless of what interrupt we're being asked to
823      * deactivate (compare the DeActivate() pseudocode). This is a guard
824      * against software returning from NMI or HardFault with a corrupted
825      * IPSR and leaving the CPU in a negative-priority state.
826      * v7M does not do this, but simply deactivates the requested interrupt.
827      */
828     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
829         switch (armv7m_nvic_raw_execution_priority(s)) {
830         case -1:
831             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
832                 vec = &s->vectors[ARMV7M_EXCP_HARD];
833             } else {
834                 vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
835             }
836             break;
837         case -2:
838             vec = &s->vectors[ARMV7M_EXCP_NMI];
839             break;
840         case -3:
841             vec = &s->sec_vectors[ARMV7M_EXCP_HARD];
842             break;
843         default:
844             break;
845         }
846     }
847 
848     if (!vec) {
849         if (secure && exc_is_banked(irq)) {
850             vec = &s->sec_vectors[irq];
851         } else {
852             vec = &s->vectors[irq];
853         }
854     }
855 
856     trace_nvic_complete_irq(irq, secure);
857 
858     if (!vec->active) {
859         /* Tell the caller this was an illegal exception return */
860         return -1;
861     }
862 
863     /*
864      * If this is a configurable exception and it is currently
865      * targeting the opposite security state from the one we're trying
866      * to complete it for, this counts as an illegal exception return.
867      * We still need to deactivate whatever vector the logic above has
868      * selected, though, as it might not be the same as the one for the
869      * requested exception number.
870      */
871     if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) {
872         ret = -1;
873     } else {
874         ret = nvic_rettobase(s);
875     }
876 
877     vec->active = 0;
878     if (vec->level) {
879         /* Re-pend the exception if it's still held high; only
880          * happens for extenal IRQs
881          */
882         assert(irq >= NVIC_FIRST_IRQ);
883         vec->pending = 1;
884     }
885 
886     nvic_irq_update(s);
887 
888     return ret;
889 }
890 
891 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure)
892 {
893     /*
894      * Return whether an exception is "ready", i.e. it is enabled and is
895      * configured at a priority which would allow it to interrupt the
896      * current execution priority.
897      *
898      * irq and secure have the same semantics as for armv7m_nvic_set_pending():
899      * for non-banked exceptions secure is always false; for banked exceptions
900      * it indicates which of the exceptions is required.
901      */
902     NVICState *s = (NVICState *)opaque;
903     bool banked = exc_is_banked(irq);
904     VecInfo *vec;
905     int running = nvic_exec_prio(s);
906 
907     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
908     assert(!secure || banked);
909 
910     /*
911      * HardFault is an odd special case: we always check against -1,
912      * even if we're secure and HardFault has priority -3; we never
913      * need to check for enabled state.
914      */
915     if (irq == ARMV7M_EXCP_HARD) {
916         return running > -1;
917     }
918 
919     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
920 
921     return vec->enabled &&
922         exc_group_prio(s, vec->prio, secure) < running;
923 }
924 
925 /* callback when external interrupt line is changed */
926 static void set_irq_level(void *opaque, int n, int level)
927 {
928     NVICState *s = opaque;
929     VecInfo *vec;
930 
931     n += NVIC_FIRST_IRQ;
932 
933     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
934 
935     trace_nvic_set_irq_level(n, level);
936 
937     /* The pending status of an external interrupt is
938      * latched on rising edge and exception handler return.
939      *
940      * Pulsing the IRQ will always run the handler
941      * once, and the handler will re-run until the
942      * level is low when the handler completes.
943      */
944     vec = &s->vectors[n];
945     if (level != vec->level) {
946         vec->level = level;
947         if (level) {
948             armv7m_nvic_set_pending(s, n, false);
949         }
950     }
951 }
952 
953 /* callback when external NMI line is changed */
954 static void nvic_nmi_trigger(void *opaque, int n, int level)
955 {
956     NVICState *s = opaque;
957 
958     trace_nvic_set_nmi_level(level);
959 
960     /*
961      * The architecture doesn't specify whether NMI should share
962      * the normal-interrupt behaviour of being resampled on
963      * exception handler return. We choose not to, so just
964      * set NMI pending here and don't track the current level.
965      */
966     if (level) {
967         armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
968     }
969 }
970 
971 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
972 {
973     ARMCPU *cpu = s->cpu;
974     uint32_t val;
975 
976     switch (offset) {
977     case 4: /* Interrupt Control Type.  */
978         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
979             goto bad_offset;
980         }
981         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
982     case 0xc: /* CPPWR */
983         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
984             goto bad_offset;
985         }
986         /* We make the IMPDEF choice that nothing can ever go into a
987          * non-retentive power state, which allows us to RAZ/WI this.
988          */
989         return 0;
990     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
991     {
992         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
993         int i;
994 
995         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
996             goto bad_offset;
997         }
998         if (!attrs.secure) {
999             return 0;
1000         }
1001         val = 0;
1002         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1003             if (s->itns[startvec + i]) {
1004                 val |= (1 << i);
1005             }
1006         }
1007         return val;
1008     }
1009     case 0xd00: /* CPUID Base.  */
1010         return cpu->midr;
1011     case 0xd04: /* Interrupt Control State (ICSR) */
1012         /* VECTACTIVE */
1013         val = cpu->env.v7m.exception;
1014         /* VECTPENDING */
1015         val |= (s->vectpending & 0xff) << 12;
1016         /* ISRPENDING - set if any external IRQ is pending */
1017         if (nvic_isrpending(s)) {
1018             val |= (1 << 22);
1019         }
1020         /* RETTOBASE - set if only one handler is active */
1021         if (nvic_rettobase(s)) {
1022             val |= (1 << 11);
1023         }
1024         if (attrs.secure) {
1025             /* PENDSTSET */
1026             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
1027                 val |= (1 << 26);
1028             }
1029             /* PENDSVSET */
1030             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
1031                 val |= (1 << 28);
1032             }
1033         } else {
1034             /* PENDSTSET */
1035             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
1036                 val |= (1 << 26);
1037             }
1038             /* PENDSVSET */
1039             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
1040                 val |= (1 << 28);
1041             }
1042         }
1043         /* NMIPENDSET */
1044         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
1045             && s->vectors[ARMV7M_EXCP_NMI].pending) {
1046             val |= (1 << 31);
1047         }
1048         /* ISRPREEMPT: RES0 when halting debug not implemented */
1049         /* STTNS: RES0 for the Main Extension */
1050         return val;
1051     case 0xd08: /* Vector Table Offset.  */
1052         return cpu->env.v7m.vecbase[attrs.secure];
1053     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1054         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
1055         if (attrs.secure) {
1056             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
1057             val |= cpu->env.v7m.aircr;
1058         } else {
1059             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1060                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
1061                  * security isn't supported then BFHFNMINS is RAO (and
1062                  * the bit in env.v7m.aircr is always set).
1063                  */
1064                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
1065             }
1066         }
1067         return val;
1068     case 0xd10: /* System Control.  */
1069         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1070             goto bad_offset;
1071         }
1072         return cpu->env.v7m.scr[attrs.secure];
1073     case 0xd14: /* Configuration Control.  */
1074         /* The BFHFNMIGN bit is the only non-banked bit; we
1075          * keep it in the non-secure copy of the register.
1076          */
1077         val = cpu->env.v7m.ccr[attrs.secure];
1078         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
1079         return val;
1080     case 0xd24: /* System Handler Control and State (SHCSR) */
1081         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1082             goto bad_offset;
1083         }
1084         val = 0;
1085         if (attrs.secure) {
1086             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
1087                 val |= (1 << 0);
1088             }
1089             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
1090                 val |= (1 << 2);
1091             }
1092             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
1093                 val |= (1 << 3);
1094             }
1095             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
1096                 val |= (1 << 7);
1097             }
1098             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
1099                 val |= (1 << 10);
1100             }
1101             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
1102                 val |= (1 << 11);
1103             }
1104             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
1105                 val |= (1 << 12);
1106             }
1107             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
1108                 val |= (1 << 13);
1109             }
1110             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
1111                 val |= (1 << 15);
1112             }
1113             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
1114                 val |= (1 << 16);
1115             }
1116             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
1117                 val |= (1 << 18);
1118             }
1119             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
1120                 val |= (1 << 21);
1121             }
1122             /* SecureFault is not banked but is always RAZ/WI to NS */
1123             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
1124                 val |= (1 << 4);
1125             }
1126             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
1127                 val |= (1 << 19);
1128             }
1129             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
1130                 val |= (1 << 20);
1131             }
1132         } else {
1133             if (s->vectors[ARMV7M_EXCP_MEM].active) {
1134                 val |= (1 << 0);
1135             }
1136             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1137                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
1138                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
1139                     val |= (1 << 2);
1140                 }
1141                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
1142                     val |= (1 << 21);
1143                 }
1144             }
1145             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
1146                 val |= (1 << 3);
1147             }
1148             if (s->vectors[ARMV7M_EXCP_SVC].active) {
1149                 val |= (1 << 7);
1150             }
1151             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
1152                 val |= (1 << 10);
1153             }
1154             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
1155                 val |= (1 << 11);
1156             }
1157             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
1158                 val |= (1 << 12);
1159             }
1160             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
1161                 val |= (1 << 13);
1162             }
1163             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
1164                 val |= (1 << 15);
1165             }
1166             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
1167                 val |= (1 << 16);
1168             }
1169             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
1170                 val |= (1 << 18);
1171             }
1172         }
1173         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1174             if (s->vectors[ARMV7M_EXCP_BUS].active) {
1175                 val |= (1 << 1);
1176             }
1177             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
1178                 val |= (1 << 14);
1179             }
1180             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
1181                 val |= (1 << 17);
1182             }
1183             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
1184                 s->vectors[ARMV7M_EXCP_NMI].active) {
1185                 /* NMIACT is not present in v7M */
1186                 val |= (1 << 5);
1187             }
1188         }
1189 
1190         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1191         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
1192             val |= (1 << 8);
1193         }
1194         return val;
1195     case 0xd2c: /* Hard Fault Status.  */
1196         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1197             goto bad_offset;
1198         }
1199         return cpu->env.v7m.hfsr;
1200     case 0xd30: /* Debug Fault Status.  */
1201         return cpu->env.v7m.dfsr;
1202     case 0xd34: /* MMFAR MemManage Fault Address */
1203         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1204             goto bad_offset;
1205         }
1206         return cpu->env.v7m.mmfar[attrs.secure];
1207     case 0xd38: /* Bus Fault Address.  */
1208         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1209             goto bad_offset;
1210         }
1211         if (!attrs.secure &&
1212             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1213             return 0;
1214         }
1215         return cpu->env.v7m.bfar;
1216     case 0xd3c: /* Aux Fault Status.  */
1217         /* TODO: Implement fault status registers.  */
1218         qemu_log_mask(LOG_UNIMP,
1219                       "Aux Fault status registers unimplemented\n");
1220         return 0;
1221     case 0xd40: /* PFR0.  */
1222         return cpu->id_pfr0;
1223     case 0xd44: /* PFR1.  */
1224         return cpu->id_pfr1;
1225     case 0xd48: /* DFR0.  */
1226         return cpu->id_dfr0;
1227     case 0xd4c: /* AFR0.  */
1228         return cpu->id_afr0;
1229     case 0xd50: /* MMFR0.  */
1230         return cpu->id_mmfr0;
1231     case 0xd54: /* MMFR1.  */
1232         return cpu->id_mmfr1;
1233     case 0xd58: /* MMFR2.  */
1234         return cpu->id_mmfr2;
1235     case 0xd5c: /* MMFR3.  */
1236         return cpu->id_mmfr3;
1237     case 0xd60: /* ISAR0.  */
1238         return cpu->isar.id_isar0;
1239     case 0xd64: /* ISAR1.  */
1240         return cpu->isar.id_isar1;
1241     case 0xd68: /* ISAR2.  */
1242         return cpu->isar.id_isar2;
1243     case 0xd6c: /* ISAR3.  */
1244         return cpu->isar.id_isar3;
1245     case 0xd70: /* ISAR4.  */
1246         return cpu->isar.id_isar4;
1247     case 0xd74: /* ISAR5.  */
1248         return cpu->isar.id_isar5;
1249     case 0xd78: /* CLIDR */
1250         return cpu->clidr;
1251     case 0xd7c: /* CTR */
1252         return cpu->ctr;
1253     case 0xd80: /* CSSIDR */
1254     {
1255         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1256         return cpu->ccsidr[idx];
1257     }
1258     case 0xd84: /* CSSELR */
1259         return cpu->env.v7m.csselr[attrs.secure];
1260     case 0xd88: /* CPACR */
1261         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1262             return 0;
1263         }
1264         return cpu->env.v7m.cpacr[attrs.secure];
1265     case 0xd8c: /* NSACR */
1266         if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1267             return 0;
1268         }
1269         return cpu->env.v7m.nsacr;
1270     /* TODO: Implement debug registers.  */
1271     case 0xd90: /* MPU_TYPE */
1272         /* Unified MPU; if the MPU is not present this value is zero */
1273         return cpu->pmsav7_dregion << 8;
1274         break;
1275     case 0xd94: /* MPU_CTRL */
1276         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1277     case 0xd98: /* MPU_RNR */
1278         return cpu->env.pmsav7.rnr[attrs.secure];
1279     case 0xd9c: /* MPU_RBAR */
1280     case 0xda4: /* MPU_RBAR_A1 */
1281     case 0xdac: /* MPU_RBAR_A2 */
1282     case 0xdb4: /* MPU_RBAR_A3 */
1283     {
1284         int region = cpu->env.pmsav7.rnr[attrs.secure];
1285 
1286         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1287             /* PMSAv8M handling of the aliases is different from v7M:
1288              * aliases A1, A2, A3 override the low two bits of the region
1289              * number in MPU_RNR, and there is no 'region' field in the
1290              * RBAR register.
1291              */
1292             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1293             if (aliasno) {
1294                 region = deposit32(region, 0, 2, aliasno);
1295             }
1296             if (region >= cpu->pmsav7_dregion) {
1297                 return 0;
1298             }
1299             return cpu->env.pmsav8.rbar[attrs.secure][region];
1300         }
1301 
1302         if (region >= cpu->pmsav7_dregion) {
1303             return 0;
1304         }
1305         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1306     }
1307     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1308     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1309     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1310     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1311     {
1312         int region = cpu->env.pmsav7.rnr[attrs.secure];
1313 
1314         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1315             /* PMSAv8M handling of the aliases is different from v7M:
1316              * aliases A1, A2, A3 override the low two bits of the region
1317              * number in MPU_RNR.
1318              */
1319             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1320             if (aliasno) {
1321                 region = deposit32(region, 0, 2, aliasno);
1322             }
1323             if (region >= cpu->pmsav7_dregion) {
1324                 return 0;
1325             }
1326             return cpu->env.pmsav8.rlar[attrs.secure][region];
1327         }
1328 
1329         if (region >= cpu->pmsav7_dregion) {
1330             return 0;
1331         }
1332         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1333             (cpu->env.pmsav7.drsr[region] & 0xffff);
1334     }
1335     case 0xdc0: /* MPU_MAIR0 */
1336         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1337             goto bad_offset;
1338         }
1339         return cpu->env.pmsav8.mair0[attrs.secure];
1340     case 0xdc4: /* MPU_MAIR1 */
1341         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1342             goto bad_offset;
1343         }
1344         return cpu->env.pmsav8.mair1[attrs.secure];
1345     case 0xdd0: /* SAU_CTRL */
1346         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1347             goto bad_offset;
1348         }
1349         if (!attrs.secure) {
1350             return 0;
1351         }
1352         return cpu->env.sau.ctrl;
1353     case 0xdd4: /* SAU_TYPE */
1354         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1355             goto bad_offset;
1356         }
1357         if (!attrs.secure) {
1358             return 0;
1359         }
1360         return cpu->sau_sregion;
1361     case 0xdd8: /* SAU_RNR */
1362         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1363             goto bad_offset;
1364         }
1365         if (!attrs.secure) {
1366             return 0;
1367         }
1368         return cpu->env.sau.rnr;
1369     case 0xddc: /* SAU_RBAR */
1370     {
1371         int region = cpu->env.sau.rnr;
1372 
1373         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1374             goto bad_offset;
1375         }
1376         if (!attrs.secure) {
1377             return 0;
1378         }
1379         if (region >= cpu->sau_sregion) {
1380             return 0;
1381         }
1382         return cpu->env.sau.rbar[region];
1383     }
1384     case 0xde0: /* SAU_RLAR */
1385     {
1386         int region = cpu->env.sau.rnr;
1387 
1388         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1389             goto bad_offset;
1390         }
1391         if (!attrs.secure) {
1392             return 0;
1393         }
1394         if (region >= cpu->sau_sregion) {
1395             return 0;
1396         }
1397         return cpu->env.sau.rlar[region];
1398     }
1399     case 0xde4: /* SFSR */
1400         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1401             goto bad_offset;
1402         }
1403         if (!attrs.secure) {
1404             return 0;
1405         }
1406         return cpu->env.v7m.sfsr;
1407     case 0xde8: /* SFAR */
1408         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1409             goto bad_offset;
1410         }
1411         if (!attrs.secure) {
1412             return 0;
1413         }
1414         return cpu->env.v7m.sfar;
1415     case 0xf34: /* FPCCR */
1416         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1417             return 0;
1418         }
1419         if (attrs.secure) {
1420             return cpu->env.v7m.fpccr[M_REG_S];
1421         } else {
1422             /*
1423              * NS can read LSPEN, CLRONRET and MONRDY. It can read
1424              * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0;
1425              * other non-banked bits RAZ.
1426              * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set.
1427              */
1428             uint32_t value = cpu->env.v7m.fpccr[M_REG_S];
1429             uint32_t mask = R_V7M_FPCCR_LSPEN_MASK |
1430                 R_V7M_FPCCR_CLRONRET_MASK |
1431                 R_V7M_FPCCR_MONRDY_MASK;
1432 
1433             if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1434                 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK;
1435             }
1436 
1437             value &= mask;
1438 
1439             value |= cpu->env.v7m.fpccr[M_REG_NS];
1440             return value;
1441         }
1442     case 0xf38: /* FPCAR */
1443         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1444             return 0;
1445         }
1446         return cpu->env.v7m.fpcar[attrs.secure];
1447     case 0xf3c: /* FPDSCR */
1448         if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1449             return 0;
1450         }
1451         return cpu->env.v7m.fpdscr[attrs.secure];
1452     case 0xf40: /* MVFR0 */
1453         return cpu->isar.mvfr0;
1454     case 0xf44: /* MVFR1 */
1455         return cpu->isar.mvfr1;
1456     case 0xf48: /* MVFR2 */
1457         return cpu->isar.mvfr2;
1458     default:
1459     bad_offset:
1460         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1461         return 0;
1462     }
1463 }
1464 
1465 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1466                         MemTxAttrs attrs)
1467 {
1468     ARMCPU *cpu = s->cpu;
1469 
1470     switch (offset) {
1471     case 0xc: /* CPPWR */
1472         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1473             goto bad_offset;
1474         }
1475         /* Make the IMPDEF choice to RAZ/WI this. */
1476         break;
1477     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1478     {
1479         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1480         int i;
1481 
1482         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1483             goto bad_offset;
1484         }
1485         if (!attrs.secure) {
1486             break;
1487         }
1488         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1489             s->itns[startvec + i] = (value >> i) & 1;
1490         }
1491         nvic_irq_update(s);
1492         break;
1493     }
1494     case 0xd04: /* Interrupt Control State (ICSR) */
1495         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1496             if (value & (1 << 31)) {
1497                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1498             } else if (value & (1 << 30) &&
1499                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1500                 /* PENDNMICLR didn't exist in v7M */
1501                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1502             }
1503         }
1504         if (value & (1 << 28)) {
1505             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1506         } else if (value & (1 << 27)) {
1507             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1508         }
1509         if (value & (1 << 26)) {
1510             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1511         } else if (value & (1 << 25)) {
1512             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1513         }
1514         break;
1515     case 0xd08: /* Vector Table Offset.  */
1516         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1517         break;
1518     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1519         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1520             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1521                 if (attrs.secure ||
1522                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1523                     qemu_irq_pulse(s->sysresetreq);
1524                 }
1525             }
1526             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1527                 qemu_log_mask(LOG_GUEST_ERROR,
1528                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1529                               "is UNPREDICTABLE\n");
1530             }
1531             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1532                 /* NB: this bit is RES0 in v8M */
1533                 qemu_log_mask(LOG_GUEST_ERROR,
1534                               "Setting VECTRESET when not in DEBUG mode "
1535                               "is UNPREDICTABLE\n");
1536             }
1537             if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1538                 s->prigroup[attrs.secure] =
1539                     extract32(value,
1540                               R_V7M_AIRCR_PRIGROUP_SHIFT,
1541                               R_V7M_AIRCR_PRIGROUP_LENGTH);
1542             }
1543             if (attrs.secure) {
1544                 /* These bits are only writable by secure */
1545                 cpu->env.v7m.aircr = value &
1546                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1547                      R_V7M_AIRCR_BFHFNMINS_MASK |
1548                      R_V7M_AIRCR_PRIS_MASK);
1549                 /* BFHFNMINS changes the priority of Secure HardFault, and
1550                  * allows a pending Non-secure HardFault to preempt (which
1551                  * we implement by marking it enabled).
1552                  */
1553                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1554                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1555                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1556                 } else {
1557                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1558                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1559                 }
1560             }
1561             nvic_irq_update(s);
1562         }
1563         break;
1564     case 0xd10: /* System Control.  */
1565         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1566             goto bad_offset;
1567         }
1568         /* We don't implement deep-sleep so these bits are RAZ/WI.
1569          * The other bits in the register are banked.
1570          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1571          * is architecturally permitted.
1572          */
1573         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1574         cpu->env.v7m.scr[attrs.secure] = value;
1575         break;
1576     case 0xd14: /* Configuration Control.  */
1577         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1578             goto bad_offset;
1579         }
1580 
1581         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1582         value &= (R_V7M_CCR_STKALIGN_MASK |
1583                   R_V7M_CCR_BFHFNMIGN_MASK |
1584                   R_V7M_CCR_DIV_0_TRP_MASK |
1585                   R_V7M_CCR_UNALIGN_TRP_MASK |
1586                   R_V7M_CCR_USERSETMPEND_MASK |
1587                   R_V7M_CCR_NONBASETHRDENA_MASK);
1588 
1589         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1590             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1591             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1592                 | R_V7M_CCR_STKALIGN_MASK;
1593         }
1594         if (attrs.secure) {
1595             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1596             cpu->env.v7m.ccr[M_REG_NS] =
1597                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1598                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1599             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1600         }
1601 
1602         cpu->env.v7m.ccr[attrs.secure] = value;
1603         break;
1604     case 0xd24: /* System Handler Control and State (SHCSR) */
1605         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1606             goto bad_offset;
1607         }
1608         if (attrs.secure) {
1609             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1610             /* Secure HardFault active bit cannot be written */
1611             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1612             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1613             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1614                 (value & (1 << 10)) != 0;
1615             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1616                 (value & (1 << 11)) != 0;
1617             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1618                 (value & (1 << 12)) != 0;
1619             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1620             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1621             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1622             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1623             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1624                 (value & (1 << 18)) != 0;
1625             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1626             /* SecureFault not banked, but RAZ/WI to NS */
1627             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1628             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1629             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1630         } else {
1631             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1632             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1633                 /* HARDFAULTPENDED is not present in v7M */
1634                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1635             }
1636             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1637             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1638             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1639             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1640             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1641             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1642             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1643             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1644             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1645         }
1646         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1647             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1648             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1649             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1650         }
1651         /* NMIACT can only be written if the write is of a zero, with
1652          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1653          */
1654         if (!attrs.secure && cpu->env.v7m.secure &&
1655             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1656             (value & (1 << 5)) == 0) {
1657             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1658         }
1659         /* HARDFAULTACT can only be written if the write is of a zero
1660          * to the non-secure HardFault state by the CPU in secure state.
1661          * The only case where we can be targeting the non-secure HF state
1662          * when in secure state is if this is a write via the NS alias
1663          * and BFHFNMINS is 1.
1664          */
1665         if (!attrs.secure && cpu->env.v7m.secure &&
1666             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1667             (value & (1 << 2)) == 0) {
1668             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1669         }
1670 
1671         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1672         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1673         nvic_irq_update(s);
1674         break;
1675     case 0xd2c: /* Hard Fault Status.  */
1676         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1677             goto bad_offset;
1678         }
1679         cpu->env.v7m.hfsr &= ~value; /* W1C */
1680         break;
1681     case 0xd30: /* Debug Fault Status.  */
1682         cpu->env.v7m.dfsr &= ~value; /* W1C */
1683         break;
1684     case 0xd34: /* Mem Manage Address.  */
1685         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1686             goto bad_offset;
1687         }
1688         cpu->env.v7m.mmfar[attrs.secure] = value;
1689         return;
1690     case 0xd38: /* Bus Fault Address.  */
1691         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1692             goto bad_offset;
1693         }
1694         if (!attrs.secure &&
1695             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1696             return;
1697         }
1698         cpu->env.v7m.bfar = value;
1699         return;
1700     case 0xd3c: /* Aux Fault Status.  */
1701         qemu_log_mask(LOG_UNIMP,
1702                       "NVIC: Aux fault status registers unimplemented\n");
1703         break;
1704     case 0xd84: /* CSSELR */
1705         if (!arm_v7m_csselr_razwi(cpu)) {
1706             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1707         }
1708         break;
1709     case 0xd88: /* CPACR */
1710         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1711             /* We implement only the Floating Point extension's CP10/CP11 */
1712             cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20);
1713         }
1714         break;
1715     case 0xd8c: /* NSACR */
1716         if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1717             /* We implement only the Floating Point extension's CP10/CP11 */
1718             cpu->env.v7m.nsacr = value & (3 << 10);
1719         }
1720         break;
1721     case 0xd90: /* MPU_TYPE */
1722         return; /* RO */
1723     case 0xd94: /* MPU_CTRL */
1724         if ((value &
1725              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1726             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1727             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1728                           "UNPREDICTABLE\n");
1729         }
1730         cpu->env.v7m.mpu_ctrl[attrs.secure]
1731             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1732                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1733                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1734         tlb_flush(CPU(cpu));
1735         break;
1736     case 0xd98: /* MPU_RNR */
1737         if (value >= cpu->pmsav7_dregion) {
1738             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1739                           PRIu32 "/%" PRIu32 "\n",
1740                           value, cpu->pmsav7_dregion);
1741         } else {
1742             cpu->env.pmsav7.rnr[attrs.secure] = value;
1743         }
1744         break;
1745     case 0xd9c: /* MPU_RBAR */
1746     case 0xda4: /* MPU_RBAR_A1 */
1747     case 0xdac: /* MPU_RBAR_A2 */
1748     case 0xdb4: /* MPU_RBAR_A3 */
1749     {
1750         int region;
1751 
1752         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1753             /* PMSAv8M handling of the aliases is different from v7M:
1754              * aliases A1, A2, A3 override the low two bits of the region
1755              * number in MPU_RNR, and there is no 'region' field in the
1756              * RBAR register.
1757              */
1758             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1759 
1760             region = cpu->env.pmsav7.rnr[attrs.secure];
1761             if (aliasno) {
1762                 region = deposit32(region, 0, 2, aliasno);
1763             }
1764             if (region >= cpu->pmsav7_dregion) {
1765                 return;
1766             }
1767             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1768             tlb_flush(CPU(cpu));
1769             return;
1770         }
1771 
1772         if (value & (1 << 4)) {
1773             /* VALID bit means use the region number specified in this
1774              * value and also update MPU_RNR.REGION with that value.
1775              */
1776             region = extract32(value, 0, 4);
1777             if (region >= cpu->pmsav7_dregion) {
1778                 qemu_log_mask(LOG_GUEST_ERROR,
1779                               "MPU region out of range %u/%" PRIu32 "\n",
1780                               region, cpu->pmsav7_dregion);
1781                 return;
1782             }
1783             cpu->env.pmsav7.rnr[attrs.secure] = region;
1784         } else {
1785             region = cpu->env.pmsav7.rnr[attrs.secure];
1786         }
1787 
1788         if (region >= cpu->pmsav7_dregion) {
1789             return;
1790         }
1791 
1792         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1793         tlb_flush(CPU(cpu));
1794         break;
1795     }
1796     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1797     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1798     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1799     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1800     {
1801         int region = cpu->env.pmsav7.rnr[attrs.secure];
1802 
1803         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1804             /* PMSAv8M handling of the aliases is different from v7M:
1805              * aliases A1, A2, A3 override the low two bits of the region
1806              * number in MPU_RNR.
1807              */
1808             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1809 
1810             region = cpu->env.pmsav7.rnr[attrs.secure];
1811             if (aliasno) {
1812                 region = deposit32(region, 0, 2, aliasno);
1813             }
1814             if (region >= cpu->pmsav7_dregion) {
1815                 return;
1816             }
1817             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1818             tlb_flush(CPU(cpu));
1819             return;
1820         }
1821 
1822         if (region >= cpu->pmsav7_dregion) {
1823             return;
1824         }
1825 
1826         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1827         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1828         tlb_flush(CPU(cpu));
1829         break;
1830     }
1831     case 0xdc0: /* MPU_MAIR0 */
1832         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1833             goto bad_offset;
1834         }
1835         if (cpu->pmsav7_dregion) {
1836             /* Register is RES0 if no MPU regions are implemented */
1837             cpu->env.pmsav8.mair0[attrs.secure] = value;
1838         }
1839         /* We don't need to do anything else because memory attributes
1840          * only affect cacheability, and we don't implement caching.
1841          */
1842         break;
1843     case 0xdc4: /* MPU_MAIR1 */
1844         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1845             goto bad_offset;
1846         }
1847         if (cpu->pmsav7_dregion) {
1848             /* Register is RES0 if no MPU regions are implemented */
1849             cpu->env.pmsav8.mair1[attrs.secure] = value;
1850         }
1851         /* We don't need to do anything else because memory attributes
1852          * only affect cacheability, and we don't implement caching.
1853          */
1854         break;
1855     case 0xdd0: /* SAU_CTRL */
1856         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1857             goto bad_offset;
1858         }
1859         if (!attrs.secure) {
1860             return;
1861         }
1862         cpu->env.sau.ctrl = value & 3;
1863         break;
1864     case 0xdd4: /* SAU_TYPE */
1865         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1866             goto bad_offset;
1867         }
1868         break;
1869     case 0xdd8: /* SAU_RNR */
1870         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1871             goto bad_offset;
1872         }
1873         if (!attrs.secure) {
1874             return;
1875         }
1876         if (value >= cpu->sau_sregion) {
1877             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1878                           PRIu32 "/%" PRIu32 "\n",
1879                           value, cpu->sau_sregion);
1880         } else {
1881             cpu->env.sau.rnr = value;
1882         }
1883         break;
1884     case 0xddc: /* SAU_RBAR */
1885     {
1886         int region = cpu->env.sau.rnr;
1887 
1888         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1889             goto bad_offset;
1890         }
1891         if (!attrs.secure) {
1892             return;
1893         }
1894         if (region >= cpu->sau_sregion) {
1895             return;
1896         }
1897         cpu->env.sau.rbar[region] = value & ~0x1f;
1898         tlb_flush(CPU(cpu));
1899         break;
1900     }
1901     case 0xde0: /* SAU_RLAR */
1902     {
1903         int region = cpu->env.sau.rnr;
1904 
1905         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1906             goto bad_offset;
1907         }
1908         if (!attrs.secure) {
1909             return;
1910         }
1911         if (region >= cpu->sau_sregion) {
1912             return;
1913         }
1914         cpu->env.sau.rlar[region] = value & ~0x1c;
1915         tlb_flush(CPU(cpu));
1916         break;
1917     }
1918     case 0xde4: /* SFSR */
1919         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1920             goto bad_offset;
1921         }
1922         if (!attrs.secure) {
1923             return;
1924         }
1925         cpu->env.v7m.sfsr &= ~value; /* W1C */
1926         break;
1927     case 0xde8: /* SFAR */
1928         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1929             goto bad_offset;
1930         }
1931         if (!attrs.secure) {
1932             return;
1933         }
1934         cpu->env.v7m.sfsr = value;
1935         break;
1936     case 0xf00: /* Software Triggered Interrupt Register */
1937     {
1938         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1939 
1940         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1941             goto bad_offset;
1942         }
1943 
1944         if (excnum < s->num_irq) {
1945             armv7m_nvic_set_pending(s, excnum, false);
1946         }
1947         break;
1948     }
1949     case 0xf34: /* FPCCR */
1950         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
1951             /* Not all bits here are banked. */
1952             uint32_t fpccr_s;
1953 
1954             if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1955                 /* Don't allow setting of bits not present in v7M */
1956                 value &= (R_V7M_FPCCR_LSPACT_MASK |
1957                           R_V7M_FPCCR_USER_MASK |
1958                           R_V7M_FPCCR_THREAD_MASK |
1959                           R_V7M_FPCCR_HFRDY_MASK |
1960                           R_V7M_FPCCR_MMRDY_MASK |
1961                           R_V7M_FPCCR_BFRDY_MASK |
1962                           R_V7M_FPCCR_MONRDY_MASK |
1963                           R_V7M_FPCCR_LSPEN_MASK |
1964                           R_V7M_FPCCR_ASPEN_MASK);
1965             }
1966             value &= ~R_V7M_FPCCR_RES0_MASK;
1967 
1968             if (!attrs.secure) {
1969                 /* Some non-banked bits are configurably writable by NS */
1970                 fpccr_s = cpu->env.v7m.fpccr[M_REG_S];
1971                 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) {
1972                     uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN);
1973                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen);
1974                 }
1975                 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) {
1976                     uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET);
1977                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor);
1978                 }
1979                 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1980                     uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY);
1981                     uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY);
1982                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy);
1983                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy);
1984                 }
1985                 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */
1986                 {
1987                     uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY);
1988                     fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy);
1989                 }
1990 
1991                 /*
1992                  * All other non-banked bits are RAZ/WI from NS; write
1993                  * just the banked bits to fpccr[M_REG_NS].
1994                  */
1995                 value &= R_V7M_FPCCR_BANKED_MASK;
1996                 cpu->env.v7m.fpccr[M_REG_NS] = value;
1997             } else {
1998                 fpccr_s = value;
1999             }
2000             cpu->env.v7m.fpccr[M_REG_S] = fpccr_s;
2001         }
2002         break;
2003     case 0xf38: /* FPCAR */
2004         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2005             value &= ~7;
2006             cpu->env.v7m.fpcar[attrs.secure] = value;
2007         }
2008         break;
2009     case 0xf3c: /* FPDSCR */
2010         if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) {
2011             value &= 0x07c00000;
2012             cpu->env.v7m.fpdscr[attrs.secure] = value;
2013         }
2014         break;
2015     case 0xf50: /* ICIALLU */
2016     case 0xf58: /* ICIMVAU */
2017     case 0xf5c: /* DCIMVAC */
2018     case 0xf60: /* DCISW */
2019     case 0xf64: /* DCCMVAU */
2020     case 0xf68: /* DCCMVAC */
2021     case 0xf6c: /* DCCSW */
2022     case 0xf70: /* DCCIMVAC */
2023     case 0xf74: /* DCCISW */
2024     case 0xf78: /* BPIALL */
2025         /* Cache and branch predictor maintenance: for QEMU these always NOP */
2026         break;
2027     default:
2028     bad_offset:
2029         qemu_log_mask(LOG_GUEST_ERROR,
2030                       "NVIC: Bad write offset 0x%x\n", offset);
2031     }
2032 }
2033 
2034 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
2035 {
2036     /* Return true if unprivileged access to this register is permitted. */
2037     switch (offset) {
2038     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
2039         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
2040          * controls access even though the CPU is in Secure state (I_QDKX).
2041          */
2042         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
2043     default:
2044         /* All other user accesses cause a BusFault unconditionally */
2045         return false;
2046     }
2047 }
2048 
2049 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
2050 {
2051     /* Behaviour for the SHPR register field for this exception:
2052      * return M_REG_NS to use the nonsecure vector (including for
2053      * non-banked exceptions), M_REG_S for the secure version of
2054      * a banked exception, and -1 if this field should RAZ/WI.
2055      */
2056     switch (exc) {
2057     case ARMV7M_EXCP_MEM:
2058     case ARMV7M_EXCP_USAGE:
2059     case ARMV7M_EXCP_SVC:
2060     case ARMV7M_EXCP_PENDSV:
2061     case ARMV7M_EXCP_SYSTICK:
2062         /* Banked exceptions */
2063         return attrs.secure;
2064     case ARMV7M_EXCP_BUS:
2065         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
2066         if (!attrs.secure &&
2067             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2068             return -1;
2069         }
2070         return M_REG_NS;
2071     case ARMV7M_EXCP_SECURE:
2072         /* Not banked, RAZ/WI from nonsecure */
2073         if (!attrs.secure) {
2074             return -1;
2075         }
2076         return M_REG_NS;
2077     case ARMV7M_EXCP_DEBUG:
2078         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
2079         return M_REG_NS;
2080     case 8 ... 10:
2081     case 13:
2082         /* RES0 */
2083         return -1;
2084     default:
2085         /* Not reachable due to decode of SHPR register addresses */
2086         g_assert_not_reached();
2087     }
2088 }
2089 
2090 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
2091                                     uint64_t *data, unsigned size,
2092                                     MemTxAttrs attrs)
2093 {
2094     NVICState *s = (NVICState *)opaque;
2095     uint32_t offset = addr;
2096     unsigned i, startvec, end;
2097     uint32_t val;
2098 
2099     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2100         /* Generate BusFault for unprivileged accesses */
2101         return MEMTX_ERROR;
2102     }
2103 
2104     switch (offset) {
2105     /* reads of set and clear both return the status */
2106     case 0x100 ... 0x13f: /* NVIC Set enable */
2107         offset += 0x80;
2108         /* fall through */
2109     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2110         val = 0;
2111         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
2112 
2113         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2114             if (s->vectors[startvec + i].enabled &&
2115                 (attrs.secure || s->itns[startvec + i])) {
2116                 val |= (1 << i);
2117             }
2118         }
2119         break;
2120     case 0x200 ... 0x23f: /* NVIC Set pend */
2121         offset += 0x80;
2122         /* fall through */
2123     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2124         val = 0;
2125         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2126         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2127             if (s->vectors[startvec + i].pending &&
2128                 (attrs.secure || s->itns[startvec + i])) {
2129                 val |= (1 << i);
2130             }
2131         }
2132         break;
2133     case 0x300 ... 0x33f: /* NVIC Active */
2134         val = 0;
2135 
2136         if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
2137             break;
2138         }
2139 
2140         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
2141 
2142         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2143             if (s->vectors[startvec + i].active &&
2144                 (attrs.secure || s->itns[startvec + i])) {
2145                 val |= (1 << i);
2146             }
2147         }
2148         break;
2149     case 0x400 ... 0x5ef: /* NVIC Priority */
2150         val = 0;
2151         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
2152 
2153         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2154             if (attrs.secure || s->itns[startvec + i]) {
2155                 val |= s->vectors[startvec + i].prio << (8 * i);
2156             }
2157         }
2158         break;
2159     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2160         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2161             val = 0;
2162             break;
2163         }
2164         /* fall through */
2165     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2166         val = 0;
2167         for (i = 0; i < size; i++) {
2168             unsigned hdlidx = (offset - 0xd14) + i;
2169             int sbank = shpr_bank(s, hdlidx, attrs);
2170 
2171             if (sbank < 0) {
2172                 continue;
2173             }
2174             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
2175         }
2176         break;
2177     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2178         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2179             val = 0;
2180             break;
2181         };
2182         /*
2183          * The BFSR bits [15:8] are shared between security states
2184          * and we store them in the NS copy. They are RAZ/WI for
2185          * NS code if AIRCR.BFHFNMINS is 0.
2186          */
2187         val = s->cpu->env.v7m.cfsr[attrs.secure];
2188         if (!attrs.secure &&
2189             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2190             val &= ~R_V7M_CFSR_BFSR_MASK;
2191         } else {
2192             val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
2193         }
2194         val = extract32(val, (offset - 0xd28) * 8, size * 8);
2195         break;
2196     case 0xfe0 ... 0xfff: /* ID.  */
2197         if (offset & 3) {
2198             val = 0;
2199         } else {
2200             val = nvic_id[(offset - 0xfe0) >> 2];
2201         }
2202         break;
2203     default:
2204         if (size == 4) {
2205             val = nvic_readl(s, offset, attrs);
2206         } else {
2207             qemu_log_mask(LOG_GUEST_ERROR,
2208                           "NVIC: Bad read of size %d at offset 0x%x\n",
2209                           size, offset);
2210             val = 0;
2211         }
2212     }
2213 
2214     trace_nvic_sysreg_read(addr, val, size);
2215     *data = val;
2216     return MEMTX_OK;
2217 }
2218 
2219 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
2220                                      uint64_t value, unsigned size,
2221                                      MemTxAttrs attrs)
2222 {
2223     NVICState *s = (NVICState *)opaque;
2224     uint32_t offset = addr;
2225     unsigned i, startvec, end;
2226     unsigned setval = 0;
2227 
2228     trace_nvic_sysreg_write(addr, value, size);
2229 
2230     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
2231         /* Generate BusFault for unprivileged accesses */
2232         return MEMTX_ERROR;
2233     }
2234 
2235     switch (offset) {
2236     case 0x100 ... 0x13f: /* NVIC Set enable */
2237         offset += 0x80;
2238         setval = 1;
2239         /* fall through */
2240     case 0x180 ... 0x1bf: /* NVIC Clear enable */
2241         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
2242 
2243         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2244             if (value & (1 << i) &&
2245                 (attrs.secure || s->itns[startvec + i])) {
2246                 s->vectors[startvec + i].enabled = setval;
2247             }
2248         }
2249         nvic_irq_update(s);
2250         return MEMTX_OK;
2251     case 0x200 ... 0x23f: /* NVIC Set pend */
2252         /* the special logic in armv7m_nvic_set_pending()
2253          * is not needed since IRQs are never escalated
2254          */
2255         offset += 0x80;
2256         setval = 1;
2257         /* fall through */
2258     case 0x280 ... 0x2bf: /* NVIC Clear pend */
2259         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
2260 
2261         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
2262             if (value & (1 << i) &&
2263                 (attrs.secure || s->itns[startvec + i])) {
2264                 s->vectors[startvec + i].pending = setval;
2265             }
2266         }
2267         nvic_irq_update(s);
2268         return MEMTX_OK;
2269     case 0x300 ... 0x33f: /* NVIC Active */
2270         return MEMTX_OK; /* R/O */
2271     case 0x400 ... 0x5ef: /* NVIC Priority */
2272         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
2273 
2274         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
2275             if (attrs.secure || s->itns[startvec + i]) {
2276                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
2277             }
2278         }
2279         nvic_irq_update(s);
2280         return MEMTX_OK;
2281     case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */
2282         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2283             return MEMTX_OK;
2284         }
2285         /* fall through */
2286     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
2287         for (i = 0; i < size; i++) {
2288             unsigned hdlidx = (offset - 0xd14) + i;
2289             int newprio = extract32(value, i * 8, 8);
2290             int sbank = shpr_bank(s, hdlidx, attrs);
2291 
2292             if (sbank < 0) {
2293                 continue;
2294             }
2295             set_prio(s, hdlidx, sbank, newprio);
2296         }
2297         nvic_irq_update(s);
2298         return MEMTX_OK;
2299     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
2300         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
2301             return MEMTX_OK;
2302         }
2303         /* All bits are W1C, so construct 32 bit value with 0s in
2304          * the parts not written by the access size
2305          */
2306         value <<= ((offset - 0xd28) * 8);
2307 
2308         if (!attrs.secure &&
2309             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
2310             /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */
2311             value &= ~R_V7M_CFSR_BFSR_MASK;
2312         }
2313 
2314         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
2315         if (attrs.secure) {
2316             /* The BFSR bits [15:8] are shared between security states
2317              * and we store them in the NS copy.
2318              */
2319             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
2320         }
2321         return MEMTX_OK;
2322     }
2323     if (size == 4) {
2324         nvic_writel(s, offset, value, attrs);
2325         return MEMTX_OK;
2326     }
2327     qemu_log_mask(LOG_GUEST_ERROR,
2328                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
2329     /* This is UNPREDICTABLE; treat as RAZ/WI */
2330     return MEMTX_OK;
2331 }
2332 
2333 static const MemoryRegionOps nvic_sysreg_ops = {
2334     .read_with_attrs = nvic_sysreg_read,
2335     .write_with_attrs = nvic_sysreg_write,
2336     .endianness = DEVICE_NATIVE_ENDIAN,
2337 };
2338 
2339 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
2340                                         uint64_t value, unsigned size,
2341                                         MemTxAttrs attrs)
2342 {
2343     MemoryRegion *mr = opaque;
2344 
2345     if (attrs.secure) {
2346         /* S accesses to the alias act like NS accesses to the real region */
2347         attrs.secure = 0;
2348         return memory_region_dispatch_write(mr, addr, value, size, attrs);
2349     } else {
2350         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2351         if (attrs.user) {
2352             return MEMTX_ERROR;
2353         }
2354         return MEMTX_OK;
2355     }
2356 }
2357 
2358 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2359                                        uint64_t *data, unsigned size,
2360                                        MemTxAttrs attrs)
2361 {
2362     MemoryRegion *mr = opaque;
2363 
2364     if (attrs.secure) {
2365         /* S accesses to the alias act like NS accesses to the real region */
2366         attrs.secure = 0;
2367         return memory_region_dispatch_read(mr, addr, data, size, attrs);
2368     } else {
2369         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2370         if (attrs.user) {
2371             return MEMTX_ERROR;
2372         }
2373         *data = 0;
2374         return MEMTX_OK;
2375     }
2376 }
2377 
2378 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2379     .read_with_attrs = nvic_sysreg_ns_read,
2380     .write_with_attrs = nvic_sysreg_ns_write,
2381     .endianness = DEVICE_NATIVE_ENDIAN,
2382 };
2383 
2384 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2385                                       uint64_t value, unsigned size,
2386                                       MemTxAttrs attrs)
2387 {
2388     NVICState *s = opaque;
2389     MemoryRegion *mr;
2390 
2391     /* Direct the access to the correct systick */
2392     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2393     return memory_region_dispatch_write(mr, addr, value, size, attrs);
2394 }
2395 
2396 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2397                                      uint64_t *data, unsigned size,
2398                                      MemTxAttrs attrs)
2399 {
2400     NVICState *s = opaque;
2401     MemoryRegion *mr;
2402 
2403     /* Direct the access to the correct systick */
2404     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2405     return memory_region_dispatch_read(mr, addr, data, size, attrs);
2406 }
2407 
2408 static const MemoryRegionOps nvic_systick_ops = {
2409     .read_with_attrs = nvic_systick_read,
2410     .write_with_attrs = nvic_systick_write,
2411     .endianness = DEVICE_NATIVE_ENDIAN,
2412 };
2413 
2414 static int nvic_post_load(void *opaque, int version_id)
2415 {
2416     NVICState *s = opaque;
2417     unsigned i;
2418     int resetprio;
2419 
2420     /* Check for out of range priority settings */
2421     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2422 
2423     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2424         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2425         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2426         return 1;
2427     }
2428     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2429         if (s->vectors[i].prio & ~0xff) {
2430             return 1;
2431         }
2432     }
2433 
2434     nvic_recompute_state(s);
2435 
2436     return 0;
2437 }
2438 
2439 static const VMStateDescription vmstate_VecInfo = {
2440     .name = "armv7m_nvic_info",
2441     .version_id = 1,
2442     .minimum_version_id = 1,
2443     .fields = (VMStateField[]) {
2444         VMSTATE_INT16(prio, VecInfo),
2445         VMSTATE_UINT8(enabled, VecInfo),
2446         VMSTATE_UINT8(pending, VecInfo),
2447         VMSTATE_UINT8(active, VecInfo),
2448         VMSTATE_UINT8(level, VecInfo),
2449         VMSTATE_END_OF_LIST()
2450     }
2451 };
2452 
2453 static bool nvic_security_needed(void *opaque)
2454 {
2455     NVICState *s = opaque;
2456 
2457     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2458 }
2459 
2460 static int nvic_security_post_load(void *opaque, int version_id)
2461 {
2462     NVICState *s = opaque;
2463     int i;
2464 
2465     /* Check for out of range priority settings */
2466     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2467         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2468         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2469          * if the CPU state has been migrated yet; a mismatch won't
2470          * cause the emulation to blow up, though.
2471          */
2472         return 1;
2473     }
2474     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2475         if (s->sec_vectors[i].prio & ~0xff) {
2476             return 1;
2477         }
2478     }
2479     return 0;
2480 }
2481 
2482 static const VMStateDescription vmstate_nvic_security = {
2483     .name = "armv7m_nvic/m-security",
2484     .version_id = 1,
2485     .minimum_version_id = 1,
2486     .needed = nvic_security_needed,
2487     .post_load = &nvic_security_post_load,
2488     .fields = (VMStateField[]) {
2489         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2490                              vmstate_VecInfo, VecInfo),
2491         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2492         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2493         VMSTATE_END_OF_LIST()
2494     }
2495 };
2496 
2497 static const VMStateDescription vmstate_nvic = {
2498     .name = "armv7m_nvic",
2499     .version_id = 4,
2500     .minimum_version_id = 4,
2501     .post_load = &nvic_post_load,
2502     .fields = (VMStateField[]) {
2503         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2504                              vmstate_VecInfo, VecInfo),
2505         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2506         VMSTATE_END_OF_LIST()
2507     },
2508     .subsections = (const VMStateDescription*[]) {
2509         &vmstate_nvic_security,
2510         NULL
2511     }
2512 };
2513 
2514 static Property props_nvic[] = {
2515     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2516     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2517     DEFINE_PROP_END_OF_LIST()
2518 };
2519 
2520 static void armv7m_nvic_reset(DeviceState *dev)
2521 {
2522     int resetprio;
2523     NVICState *s = NVIC(dev);
2524 
2525     memset(s->vectors, 0, sizeof(s->vectors));
2526     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2527     s->prigroup[M_REG_NS] = 0;
2528     s->prigroup[M_REG_S] = 0;
2529 
2530     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2531     /* MEM, BUS, and USAGE are enabled through
2532      * the System Handler Control register
2533      */
2534     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2535     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2536     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2537 
2538     /* DebugMonitor is enabled via DEMCR.MON_EN */
2539     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0;
2540 
2541     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2542     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2543     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2544     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2545 
2546     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2547         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2548         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2549         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2550         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2551 
2552         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2553         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2554         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2555         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2556     } else {
2557         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2558     }
2559 
2560     /* Strictly speaking the reset handler should be enabled.
2561      * However, we don't simulate soft resets through the NVIC,
2562      * and the reset vector should never be pended.
2563      * So we leave it disabled to catch logic errors.
2564      */
2565 
2566     s->exception_prio = NVIC_NOEXC_PRIO;
2567     s->vectpending = 0;
2568     s->vectpending_is_s_banked = false;
2569     s->vectpending_prio = NVIC_NOEXC_PRIO;
2570 
2571     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2572         memset(s->itns, 0, sizeof(s->itns));
2573     } else {
2574         /* This state is constant and not guest accessible in a non-security
2575          * NVIC; we set the bits to true to avoid having to do a feature
2576          * bit check in the NVIC enable/pend/etc register accessors.
2577          */
2578         int i;
2579 
2580         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2581             s->itns[i] = true;
2582         }
2583     }
2584 }
2585 
2586 static void nvic_systick_trigger(void *opaque, int n, int level)
2587 {
2588     NVICState *s = opaque;
2589 
2590     if (level) {
2591         /* SysTick just asked us to pend its exception.
2592          * (This is different from an external interrupt line's
2593          * behaviour.)
2594          * n == 0 : NonSecure systick
2595          * n == 1 : Secure systick
2596          */
2597         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2598     }
2599 }
2600 
2601 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2602 {
2603     NVICState *s = NVIC(dev);
2604     Error *err = NULL;
2605     int regionlen;
2606 
2607     /* The armv7m container object will have set our CPU pointer */
2608     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2609         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2610         return;
2611     }
2612 
2613     if (s->num_irq > NVIC_MAX_IRQ) {
2614         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2615         return;
2616     }
2617 
2618     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2619 
2620     /* include space for internal exception vectors */
2621     s->num_irq += NVIC_FIRST_IRQ;
2622 
2623     s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
2624 
2625     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2626                              "realized", &err);
2627     if (err != NULL) {
2628         error_propagate(errp, err);
2629         return;
2630     }
2631     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2632                        qdev_get_gpio_in_named(dev, "systick-trigger",
2633                                               M_REG_NS));
2634 
2635     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2636         /* We couldn't init the secure systick device in instance_init
2637          * as we didn't know then if the CPU had the security extensions;
2638          * so we have to do it here.
2639          */
2640         sysbus_init_child_obj(OBJECT(dev), "systick-reg-s",
2641                               &s->systick[M_REG_S],
2642                               sizeof(s->systick[M_REG_S]), TYPE_SYSTICK);
2643 
2644         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2645                                  "realized", &err);
2646         if (err != NULL) {
2647             error_propagate(errp, err);
2648             return;
2649         }
2650         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2651                            qdev_get_gpio_in_named(dev, "systick-trigger",
2652                                                   M_REG_S));
2653     }
2654 
2655     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2656      * and looks like this:
2657      *  0x004 - ICTR
2658      *  0x010 - 0xff - systick
2659      *  0x100..0x7ec - NVIC
2660      *  0x7f0..0xcff - Reserved
2661      *  0xd00..0xd3c - SCS registers
2662      *  0xd40..0xeff - Reserved or Not implemented
2663      *  0xf00 - STIR
2664      *
2665      * Some registers within this space are banked between security states.
2666      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2667      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2668      * to the main SCS range, and non-secure accesses (including when
2669      * the security extension is not implemented) are RAZ/WI.
2670      * Note that both the main SCS range and the alias range are defined
2671      * to be exempt from memory attribution (R_BLJT) and so the memory
2672      * transaction attribute always matches the current CPU security
2673      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2674      * wrappers we change attrs.secure to indicate the NS access; so
2675      * generally code determining which banked register to use should
2676      * use attrs.secure; code determining actual behaviour of the system
2677      * should use env->v7m.secure.
2678      */
2679     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2680     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2681     /* The system register region goes at the bottom of the priority
2682      * stack as it covers the whole page.
2683      */
2684     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2685                           "nvic_sysregs", 0x1000);
2686     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2687 
2688     memory_region_init_io(&s->systickmem, OBJECT(s),
2689                           &nvic_systick_ops, s,
2690                           "nvic_systick", 0xe0);
2691 
2692     memory_region_add_subregion_overlap(&s->container, 0x10,
2693                                         &s->systickmem, 1);
2694 
2695     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2696         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2697                               &nvic_sysreg_ns_ops, &s->sysregmem,
2698                               "nvic_sysregs_ns", 0x1000);
2699         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2700         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2701                               &nvic_sysreg_ns_ops, &s->systickmem,
2702                               "nvic_systick_ns", 0xe0);
2703         memory_region_add_subregion_overlap(&s->container, 0x20010,
2704                                             &s->systick_ns_mem, 1);
2705     }
2706 
2707     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2708 }
2709 
2710 static void armv7m_nvic_instance_init(Object *obj)
2711 {
2712     /* We have a different default value for the num-irq property
2713      * than our superclass. This function runs after qdev init
2714      * has set the defaults from the Property array and before
2715      * any user-specified property setting, so just modify the
2716      * value in the GICState struct.
2717      */
2718     DeviceState *dev = DEVICE(obj);
2719     NVICState *nvic = NVIC(obj);
2720     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2721 
2722     sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2723                           sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2724     /* We can't initialize the secure systick here, as we don't know
2725      * yet if we need it.
2726      */
2727 
2728     sysbus_init_irq(sbd, &nvic->excpout);
2729     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2730     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2731                             M_REG_NUM_BANKS);
2732     qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1);
2733 }
2734 
2735 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2736 {
2737     DeviceClass *dc = DEVICE_CLASS(klass);
2738 
2739     dc->vmsd  = &vmstate_nvic;
2740     dc->props = props_nvic;
2741     dc->reset = armv7m_nvic_reset;
2742     dc->realize = armv7m_nvic_realize;
2743 }
2744 
2745 static const TypeInfo armv7m_nvic_info = {
2746     .name          = TYPE_NVIC,
2747     .parent        = TYPE_SYS_BUS_DEVICE,
2748     .instance_init = armv7m_nvic_instance_init,
2749     .instance_size = sizeof(NVICState),
2750     .class_init    = armv7m_nvic_class_init,
2751     .class_size    = sizeof(SysBusDeviceClass),
2752 };
2753 
2754 static void armv7m_nvic_register_types(void)
2755 {
2756     type_register_static(&armv7m_nvic_info);
2757 }
2758 
2759 type_init(armv7m_nvic_register_types)
2760