1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "hw/sysbus.h" 16 #include "migration/vmstate.h" 17 #include "qemu/timer.h" 18 #include "hw/intc/armv7m_nvic.h" 19 #include "hw/irq.h" 20 #include "hw/qdev-properties.h" 21 #include "system/tcg.h" 22 #include "system/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "target/arm/cpu-features.h" 25 #include "exec/cputlb.h" 26 #include "exec/memop.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "trace.h" 30 31 /* IRQ number counting: 32 * 33 * the num-irq property counts the number of external IRQ lines 34 * 35 * NVICState::num_irq counts the total number of exceptions 36 * (external IRQs, the 15 internal exceptions including reset, 37 * and one for the unused exception number 0). 38 * 39 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 40 * 41 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 42 * 43 * Iterating through all exceptions should typically be done with 44 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 45 * 46 * The external qemu_irq lines are the NVIC's external IRQ lines, 47 * so line 0 is exception 16. 48 * 49 * In the terminology of the architecture manual, "interrupts" are 50 * a subcategory of exception referring to the external interrupts 51 * (which are exception numbers NVIC_FIRST_IRQ and upward). 52 * For historical reasons QEMU tends to use "interrupt" and 53 * "exception" more or less interchangeably. 54 */ 55 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 56 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 57 58 /* Effective running priority of the CPU when no exception is active 59 * (higher than the highest possible priority value) 60 */ 61 #define NVIC_NOEXC_PRIO 0x100 62 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 63 #define NVIC_NS_PRIO_LIMIT 0x80 64 65 static const uint8_t nvic_id[] = { 66 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 67 }; 68 69 static void signal_sysresetreq(NVICState *s) 70 { 71 if (qemu_irq_is_connected(s->sysresetreq)) { 72 qemu_irq_pulse(s->sysresetreq); 73 } else { 74 /* 75 * Default behaviour if the SoC doesn't need to wire up 76 * SYSRESETREQ (eg to a system reset controller of some kind): 77 * perform a system reset via the usual QEMU API. 78 */ 79 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 80 } 81 } 82 83 static int nvic_pending_prio(NVICState *s) 84 { 85 /* return the group priority of the current pending interrupt, 86 * or NVIC_NOEXC_PRIO if no interrupt is pending 87 */ 88 return s->vectpending_prio; 89 } 90 91 /* Return the value of the ISCR RETTOBASE bit: 92 * 1 if there is exactly one active exception 93 * 0 if there is more than one active exception 94 * UNKNOWN if there are no active exceptions (we choose 1, 95 * which matches the choice Cortex-M3 is documented as making). 96 * 97 * NB: some versions of the documentation talk about this 98 * counting "active exceptions other than the one shown by IPSR"; 99 * this is only different in the obscure corner case where guest 100 * code has manually deactivated an exception and is about 101 * to fail an exception-return integrity check. The definition 102 * above is the one from the v8M ARM ARM and is also in line 103 * with the behaviour documented for the Cortex-M3. 104 */ 105 static bool nvic_rettobase(NVICState *s) 106 { 107 int irq, nhand = 0; 108 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 109 110 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 111 if (s->vectors[irq].active || 112 (check_sec && irq < NVIC_INTERNAL_VECTORS && 113 s->sec_vectors[irq].active)) { 114 nhand++; 115 if (nhand == 2) { 116 return 0; 117 } 118 } 119 } 120 121 return 1; 122 } 123 124 /* Return the value of the ISCR ISRPENDING bit: 125 * 1 if an external interrupt is pending 126 * 0 if no external interrupt is pending 127 */ 128 static bool nvic_isrpending(NVICState *s) 129 { 130 int irq; 131 132 /* 133 * We can shortcut if the highest priority pending interrupt 134 * happens to be external; if not we need to check the whole 135 * vectors[] array. 136 */ 137 if (s->vectpending > NVIC_FIRST_IRQ) { 138 return true; 139 } 140 141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 142 if (s->vectors[irq].pending) { 143 return true; 144 } 145 } 146 return false; 147 } 148 149 static bool exc_is_banked(int exc) 150 { 151 /* Return true if this is one of the limited set of exceptions which 152 * are banked (and thus have state in sec_vectors[]) 153 */ 154 return exc == ARMV7M_EXCP_HARD || 155 exc == ARMV7M_EXCP_MEM || 156 exc == ARMV7M_EXCP_USAGE || 157 exc == ARMV7M_EXCP_SVC || 158 exc == ARMV7M_EXCP_PENDSV || 159 exc == ARMV7M_EXCP_SYSTICK; 160 } 161 162 /* Return a mask word which clears the subpriority bits from 163 * a priority value for an M-profile exception, leaving only 164 * the group priority. 165 */ 166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 167 { 168 return ~0U << (s->prigroup[secure] + 1); 169 } 170 171 static bool exc_targets_secure(NVICState *s, int exc) 172 { 173 /* Return true if this non-banked exception targets Secure state. */ 174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 175 return false; 176 } 177 178 if (exc >= NVIC_FIRST_IRQ) { 179 return !s->itns[exc]; 180 } 181 182 /* Function shouldn't be called for banked exceptions. */ 183 assert(!exc_is_banked(exc)); 184 185 switch (exc) { 186 case ARMV7M_EXCP_NMI: 187 case ARMV7M_EXCP_BUS: 188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 189 case ARMV7M_EXCP_SECURE: 190 return true; 191 case ARMV7M_EXCP_DEBUG: 192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 193 return false; 194 default: 195 /* reset, and reserved (unused) low exception numbers. 196 * We'll get called by code that loops through all the exception 197 * numbers, but it doesn't matter what we return here as these 198 * non-existent exceptions will never be pended or active. 199 */ 200 return true; 201 } 202 } 203 204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 205 { 206 /* Return the group priority for this exception, given its raw 207 * (group-and-subgroup) priority value and whether it is targeting 208 * secure state or not. 209 */ 210 if (rawprio < 0) { 211 return rawprio; 212 } 213 rawprio &= nvic_gprio_mask(s, targets_secure); 214 /* AIRCR.PRIS causes us to squash all NS priorities into the 215 * lower half of the total range 216 */ 217 if (!targets_secure && 218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 220 } 221 return rawprio; 222 } 223 224 /* Recompute vectpending and exception_prio for a CPU which implements 225 * the Security extension 226 */ 227 static void nvic_recompute_state_secure(NVICState *s) 228 { 229 int i, bank; 230 int pend_prio = NVIC_NOEXC_PRIO; 231 int active_prio = NVIC_NOEXC_PRIO; 232 int pend_irq = 0; 233 bool pending_is_s_banked = false; 234 int pend_subprio = 0; 235 236 /* R_CQRV: precedence is by: 237 * - lowest group priority; if both the same then 238 * - lowest subpriority; if both the same then 239 * - lowest exception number; if both the same (ie banked) then 240 * - secure exception takes precedence 241 * Compare pseudocode RawExecutionPriority. 242 * Annoyingly, now we have two prigroup values (for S and NS) 243 * we can't do the loop comparison on raw priority values. 244 */ 245 for (i = 1; i < s->num_irq; i++) { 246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 247 VecInfo *vec; 248 int prio, subprio; 249 bool targets_secure; 250 251 if (bank == M_REG_S) { 252 if (!exc_is_banked(i)) { 253 continue; 254 } 255 vec = &s->sec_vectors[i]; 256 targets_secure = true; 257 } else { 258 vec = &s->vectors[i]; 259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 260 } 261 262 prio = exc_group_prio(s, vec->prio, targets_secure); 263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 264 if (vec->enabled && vec->pending && 265 ((prio < pend_prio) || 266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 267 pend_prio = prio; 268 pend_subprio = subprio; 269 pend_irq = i; 270 pending_is_s_banked = (bank == M_REG_S); 271 } 272 if (vec->active && prio < active_prio) { 273 active_prio = prio; 274 } 275 } 276 } 277 278 s->vectpending_is_s_banked = pending_is_s_banked; 279 s->vectpending = pend_irq; 280 s->vectpending_prio = pend_prio; 281 s->exception_prio = active_prio; 282 283 trace_nvic_recompute_state_secure(s->vectpending, 284 s->vectpending_is_s_banked, 285 s->vectpending_prio, 286 s->exception_prio); 287 } 288 289 /* Recompute vectpending and exception_prio */ 290 static void nvic_recompute_state(NVICState *s) 291 { 292 int i; 293 int pend_prio = NVIC_NOEXC_PRIO; 294 int active_prio = NVIC_NOEXC_PRIO; 295 int pend_irq = 0; 296 297 /* In theory we could write one function that handled both 298 * the "security extension present" and "not present"; however 299 * the security related changes significantly complicate the 300 * recomputation just by themselves and mixing both cases together 301 * would be even worse, so we retain a separate non-secure-only 302 * version for CPUs which don't implement the security extension. 303 */ 304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 305 nvic_recompute_state_secure(s); 306 return; 307 } 308 309 for (i = 1; i < s->num_irq; i++) { 310 VecInfo *vec = &s->vectors[i]; 311 312 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 313 pend_prio = vec->prio; 314 pend_irq = i; 315 } 316 if (vec->active && vec->prio < active_prio) { 317 active_prio = vec->prio; 318 } 319 } 320 321 if (active_prio > 0) { 322 active_prio &= nvic_gprio_mask(s, false); 323 } 324 325 if (pend_prio > 0) { 326 pend_prio &= nvic_gprio_mask(s, false); 327 } 328 329 s->vectpending = pend_irq; 330 s->vectpending_prio = pend_prio; 331 s->exception_prio = active_prio; 332 333 trace_nvic_recompute_state(s->vectpending, 334 s->vectpending_prio, 335 s->exception_prio); 336 } 337 338 /* Return the current execution priority of the CPU 339 * (equivalent to the pseudocode ExecutionPriority function). 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 341 */ 342 static inline int nvic_exec_prio(NVICState *s) 343 { 344 CPUARMState *env = &s->cpu->env; 345 int running = NVIC_NOEXC_PRIO; 346 347 if (env->v7m.basepri[M_REG_NS] > 0) { 348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 349 } 350 351 if (env->v7m.basepri[M_REG_S] > 0) { 352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 353 if (running > basepri) { 354 running = basepri; 355 } 356 } 357 358 if (env->v7m.primask[M_REG_NS]) { 359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 360 if (running > NVIC_NS_PRIO_LIMIT) { 361 running = NVIC_NS_PRIO_LIMIT; 362 } 363 } else { 364 running = 0; 365 } 366 } 367 368 if (env->v7m.primask[M_REG_S]) { 369 running = 0; 370 } 371 372 if (env->v7m.faultmask[M_REG_NS]) { 373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 374 running = -1; 375 } else { 376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 377 if (running > NVIC_NS_PRIO_LIMIT) { 378 running = NVIC_NS_PRIO_LIMIT; 379 } 380 } else { 381 running = 0; 382 } 383 } 384 } 385 386 if (env->v7m.faultmask[M_REG_S]) { 387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 388 } 389 390 /* consider priority of active handler */ 391 return MIN(running, s->exception_prio); 392 } 393 394 bool armv7m_nvic_neg_prio_requested(NVICState *s, bool secure) 395 { 396 /* Return true if the requested execution priority is negative 397 * for the specified security state, ie that security state 398 * has an active NMI or HardFault or has set its FAULTMASK. 399 * Note that this is not the same as whether the execution 400 * priority is actually negative (for instance AIRCR.PRIS may 401 * mean we don't allow FAULTMASK_NS to actually make the execution 402 * priority negative). Compare pseudocode IsReqExcPriNeg(). 403 */ 404 if (s->cpu->env.v7m.faultmask[secure]) { 405 return true; 406 } 407 408 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 409 s->vectors[ARMV7M_EXCP_HARD].active) { 410 return true; 411 } 412 413 if (s->vectors[ARMV7M_EXCP_NMI].active && 414 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 415 return true; 416 } 417 418 return false; 419 } 420 421 bool armv7m_nvic_can_take_pending_exception(NVICState *s) 422 { 423 return nvic_exec_prio(s) > nvic_pending_prio(s); 424 } 425 426 int armv7m_nvic_raw_execution_priority(NVICState *s) 427 { 428 return s->exception_prio; 429 } 430 431 /* caller must call nvic_irq_update() after this. 432 * secure indicates the bank to use for banked exceptions (we assert if 433 * we are passed secure=true for a non-banked exception). 434 */ 435 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 436 { 437 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 438 assert(irq < s->num_irq); 439 440 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 s->sec_vectors[irq].prio = prio; 445 } else { 446 s->vectors[irq].prio = prio; 447 } 448 449 trace_nvic_set_prio(irq, secure, prio); 450 } 451 452 /* Return the current raw priority register value. 453 * secure indicates the bank to use for banked exceptions (we assert if 454 * we are passed secure=true for a non-banked exception). 455 */ 456 static int get_prio(NVICState *s, unsigned irq, bool secure) 457 { 458 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 459 assert(irq < s->num_irq); 460 461 if (secure) { 462 assert(exc_is_banked(irq)); 463 return s->sec_vectors[irq].prio; 464 } else { 465 return s->vectors[irq].prio; 466 } 467 } 468 469 /* Recompute state and assert irq line accordingly. 470 * Must be called after changes to: 471 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 472 * prigroup 473 */ 474 static void nvic_irq_update(NVICState *s) 475 { 476 int lvl; 477 int pend_prio; 478 479 nvic_recompute_state(s); 480 pend_prio = nvic_pending_prio(s); 481 482 /* Raise NVIC output if this IRQ would be taken, except that we 483 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 484 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 485 * to those CPU registers don't cause us to recalculate the NVIC 486 * pending info. 487 */ 488 lvl = (pend_prio < s->exception_prio); 489 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 490 qemu_set_irq(s->excpout, lvl); 491 } 492 493 /** 494 * armv7m_nvic_clear_pending: mark the specified exception as not pending 495 * @opaque: the NVIC 496 * @irq: the exception number to mark as not pending 497 * @secure: false for non-banked exceptions or for the nonsecure 498 * version of a banked exception, true for the secure version of a banked 499 * exception. 500 * 501 * Marks the specified exception as not pending. Note that we will assert() 502 * if @secure is true and @irq does not specify one of the fixed set 503 * of architecturally banked exceptions. 504 */ 505 static void armv7m_nvic_clear_pending(NVICState *s, int irq, bool secure) 506 { 507 VecInfo *vec; 508 509 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 510 511 if (secure) { 512 assert(exc_is_banked(irq)); 513 vec = &s->sec_vectors[irq]; 514 } else { 515 vec = &s->vectors[irq]; 516 } 517 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 518 if (vec->pending) { 519 vec->pending = 0; 520 nvic_irq_update(s); 521 } 522 } 523 524 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 525 bool derived) 526 { 527 /* Pend an exception, including possibly escalating it to HardFault. 528 * 529 * This function handles both "normal" pending of interrupts and 530 * exceptions, and also derived exceptions (ones which occur as 531 * a result of trying to take some other exception). 532 * 533 * If derived == true, the caller guarantees that we are part way through 534 * trying to take an exception (but have not yet called 535 * armv7m_nvic_acknowledge_irq() to make it active), and so: 536 * - s->vectpending is the "original exception" we were trying to take 537 * - irq is the "derived exception" 538 * - nvic_exec_prio(s) gives the priority before exception entry 539 * Here we handle the prioritization logic which the pseudocode puts 540 * in the DerivedLateArrival() function. 541 */ 542 543 NVICState *s = (NVICState *)opaque; 544 bool banked = exc_is_banked(irq); 545 VecInfo *vec; 546 bool targets_secure; 547 548 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 549 assert(!secure || banked); 550 551 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 552 553 targets_secure = banked ? secure : exc_targets_secure(s, irq); 554 555 trace_nvic_set_pending(irq, secure, targets_secure, 556 derived, vec->enabled, vec->prio); 557 558 if (derived) { 559 /* Derived exceptions are always synchronous. */ 560 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 561 562 if (irq == ARMV7M_EXCP_DEBUG && 563 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 564 /* DebugMonitorFault, but its priority is lower than the 565 * preempted exception priority: just ignore it. 566 */ 567 return; 568 } 569 570 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 571 /* If this is a terminal exception (one which means we cannot 572 * take the original exception, like a failure to read its 573 * vector table entry), then we must take the derived exception. 574 * If the derived exception can't take priority over the 575 * original exception, then we go into Lockup. 576 * 577 * For QEMU, we rely on the fact that a derived exception is 578 * terminal if and only if it's reported to us as HardFault, 579 * which saves having to have an extra argument is_terminal 580 * that we'd only use in one place. 581 */ 582 cpu_abort(CPU(s->cpu), 583 "Lockup: can't take terminal derived exception " 584 "(original exception priority %d)\n", 585 s->vectpending_prio); 586 } 587 /* We now continue with the same code as for a normal pending 588 * exception, which will cause us to pend the derived exception. 589 * We'll then take either the original or the derived exception 590 * based on which is higher priority by the usual mechanism 591 * for selecting the highest priority pending interrupt. 592 */ 593 } 594 595 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 596 /* If a synchronous exception is pending then it may be 597 * escalated to HardFault if: 598 * * it is equal or lower priority to current execution 599 * * it is disabled 600 * (ie we need to take it immediately but we can't do so). 601 * Asynchronous exceptions (and interrupts) simply remain pending. 602 * 603 * For QEMU, we don't have any imprecise (asynchronous) faults, 604 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 605 * synchronous. 606 * Debug exceptions are awkward because only Debug exceptions 607 * resulting from the BKPT instruction should be escalated, 608 * but we don't currently implement any Debug exceptions other 609 * than those that result from BKPT, so we treat all debug exceptions 610 * as needing escalation. 611 * 612 * This all means we can identify whether to escalate based only on 613 * the exception number and don't (yet) need the caller to explicitly 614 * tell us whether this exception is synchronous or not. 615 */ 616 int running = nvic_exec_prio(s); 617 bool escalate = false; 618 619 if (exc_group_prio(s, vec->prio, secure) >= running) { 620 trace_nvic_escalate_prio(irq, vec->prio, running); 621 escalate = true; 622 } else if (!vec->enabled) { 623 trace_nvic_escalate_disabled(irq); 624 escalate = true; 625 } 626 627 if (escalate) { 628 629 /* We need to escalate this exception to a synchronous HardFault. 630 * If BFHFNMINS is set then we escalate to the banked HF for 631 * the target security state of the original exception; otherwise 632 * we take a Secure HardFault. 633 */ 634 irq = ARMV7M_EXCP_HARD; 635 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 636 (targets_secure || 637 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 638 vec = &s->sec_vectors[irq]; 639 } else { 640 vec = &s->vectors[irq]; 641 } 642 if (running <= vec->prio) { 643 /* We want to escalate to HardFault but we can't take the 644 * synchronous HardFault at this point either. This is a 645 * Lockup condition due to a guest bug. We don't model 646 * Lockup, so report via cpu_abort() instead. 647 */ 648 cpu_abort(CPU(s->cpu), 649 "Lockup: can't escalate %d to HardFault " 650 "(current priority %d)\n", irq, running); 651 } 652 653 /* HF may be banked but there is only one shared HFSR */ 654 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 655 } 656 } 657 658 if (!vec->pending) { 659 vec->pending = 1; 660 nvic_irq_update(s); 661 } 662 } 663 664 void armv7m_nvic_set_pending(NVICState *s, int irq, bool secure) 665 { 666 do_armv7m_nvic_set_pending(s, irq, secure, false); 667 } 668 669 void armv7m_nvic_set_pending_derived(NVICState *s, int irq, bool secure) 670 { 671 do_armv7m_nvic_set_pending(s, irq, secure, true); 672 } 673 674 void armv7m_nvic_set_pending_lazyfp(NVICState *s, int irq, bool secure) 675 { 676 /* 677 * Pend an exception during lazy FP stacking. This differs 678 * from the usual exception pending because the logic for 679 * whether we should escalate depends on the saved context 680 * in the FPCCR register, not on the current state of the CPU/NVIC. 681 */ 682 bool banked = exc_is_banked(irq); 683 VecInfo *vec; 684 bool targets_secure; 685 bool escalate = false; 686 /* 687 * We will only look at bits in fpccr if this is a banked exception 688 * (in which case 'secure' tells us whether it is the S or NS version). 689 * All the bits for the non-banked exceptions are in fpccr_s. 690 */ 691 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 692 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 693 694 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 695 assert(!secure || banked); 696 697 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 698 699 targets_secure = banked ? secure : exc_targets_secure(s, irq); 700 701 switch (irq) { 702 case ARMV7M_EXCP_DEBUG: 703 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 704 /* Ignore DebugMonitor exception */ 705 return; 706 } 707 break; 708 case ARMV7M_EXCP_MEM: 709 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 710 break; 711 case ARMV7M_EXCP_USAGE: 712 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 713 break; 714 case ARMV7M_EXCP_BUS: 715 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 716 break; 717 case ARMV7M_EXCP_SECURE: 718 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 719 break; 720 default: 721 g_assert_not_reached(); 722 } 723 724 if (escalate) { 725 /* 726 * Escalate to HardFault: faults that initially targeted Secure 727 * continue to do so, even if HF normally targets NonSecure. 728 */ 729 irq = ARMV7M_EXCP_HARD; 730 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 731 (targets_secure || 732 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 733 vec = &s->sec_vectors[irq]; 734 } else { 735 vec = &s->vectors[irq]; 736 } 737 } 738 739 if (!vec->enabled || 740 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 741 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 742 /* 743 * We want to escalate to HardFault but the context the 744 * FP state belongs to prevents the exception pre-empting. 745 */ 746 cpu_abort(CPU(s->cpu), 747 "Lockup: can't escalate to HardFault during " 748 "lazy FP register stacking\n"); 749 } 750 } 751 752 if (escalate) { 753 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 754 } 755 if (!vec->pending) { 756 vec->pending = 1; 757 /* 758 * We do not call nvic_irq_update(), because we know our caller 759 * is going to handle causing us to take the exception by 760 * raising EXCP_LAZYFP, so raising the IRQ line would be 761 * pointless extra work. We just need to recompute the 762 * priorities so that armv7m_nvic_can_take_pending_exception() 763 * returns the right answer. 764 */ 765 nvic_recompute_state(s); 766 } 767 } 768 769 /* Make pending IRQ active. */ 770 void armv7m_nvic_acknowledge_irq(NVICState *s) 771 { 772 CPUARMState *env = &s->cpu->env; 773 const int pending = s->vectpending; 774 const int running = nvic_exec_prio(s); 775 VecInfo *vec; 776 777 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 778 779 if (s->vectpending_is_s_banked) { 780 vec = &s->sec_vectors[pending]; 781 } else { 782 vec = &s->vectors[pending]; 783 } 784 785 assert(vec->enabled); 786 assert(vec->pending); 787 788 assert(s->vectpending_prio < running); 789 790 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 791 792 vec->active = 1; 793 vec->pending = 0; 794 795 write_v7m_exception(env, s->vectpending); 796 797 nvic_irq_update(s); 798 } 799 800 static bool vectpending_targets_secure(NVICState *s) 801 { 802 /* Return true if s->vectpending targets Secure state */ 803 if (s->vectpending_is_s_banked) { 804 return true; 805 } 806 return !exc_is_banked(s->vectpending) && 807 exc_targets_secure(s, s->vectpending); 808 } 809 810 void armv7m_nvic_get_pending_irq_info(NVICState *s, 811 int *pirq, bool *ptargets_secure) 812 { 813 const int pending = s->vectpending; 814 bool targets_secure; 815 816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 817 818 targets_secure = vectpending_targets_secure(s); 819 820 trace_nvic_get_pending_irq_info(pending, targets_secure); 821 822 *ptargets_secure = targets_secure; 823 *pirq = pending; 824 } 825 826 int armv7m_nvic_complete_irq(NVICState *s, int irq, bool secure) 827 { 828 VecInfo *vec = NULL; 829 int ret = 0; 830 831 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 832 833 trace_nvic_complete_irq(irq, secure); 834 835 if (secure && exc_is_banked(irq)) { 836 vec = &s->sec_vectors[irq]; 837 } else { 838 vec = &s->vectors[irq]; 839 } 840 841 /* 842 * Identify illegal exception return cases. We can't immediately 843 * return at this point because we still need to deactivate 844 * (either this exception or NMI/HardFault) first. 845 */ 846 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 847 /* 848 * Return from a configurable exception targeting the opposite 849 * security state from the one we're trying to complete it for. 850 * Clear vec because it's not really the VecInfo for this 851 * (irq, secstate) so we mustn't deactivate it. 852 */ 853 ret = -1; 854 vec = NULL; 855 } else if (!vec->active) { 856 /* Return from an inactive interrupt */ 857 ret = -1; 858 } else { 859 /* Legal return, we will return the RETTOBASE bit value to the caller */ 860 ret = nvic_rettobase(s); 861 } 862 863 /* 864 * For negative priorities, v8M will forcibly deactivate the appropriate 865 * NMI or HardFault regardless of what interrupt we're being asked to 866 * deactivate (compare the DeActivate() pseudocode). This is a guard 867 * against software returning from NMI or HardFault with a corrupted 868 * IPSR and leaving the CPU in a negative-priority state. 869 * v7M does not do this, but simply deactivates the requested interrupt. 870 */ 871 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 872 switch (armv7m_nvic_raw_execution_priority(s)) { 873 case -1: 874 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 875 vec = &s->vectors[ARMV7M_EXCP_HARD]; 876 } else { 877 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 878 } 879 break; 880 case -2: 881 vec = &s->vectors[ARMV7M_EXCP_NMI]; 882 break; 883 case -3: 884 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 885 break; 886 default: 887 break; 888 } 889 } 890 891 if (!vec) { 892 return ret; 893 } 894 895 vec->active = 0; 896 if (vec->level) { 897 /* Re-pend the exception if it's still held high; only 898 * happens for external IRQs 899 */ 900 assert(irq >= NVIC_FIRST_IRQ); 901 vec->pending = 1; 902 } 903 904 nvic_irq_update(s); 905 906 return ret; 907 } 908 909 bool armv7m_nvic_get_ready_status(NVICState *s, int irq, bool secure) 910 { 911 /* 912 * Return whether an exception is "ready", i.e. it is enabled and is 913 * configured at a priority which would allow it to interrupt the 914 * current execution priority. 915 * 916 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 917 * for non-banked exceptions secure is always false; for banked exceptions 918 * it indicates which of the exceptions is required. 919 */ 920 bool banked = exc_is_banked(irq); 921 VecInfo *vec; 922 int running = nvic_exec_prio(s); 923 924 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 925 assert(!secure || banked); 926 927 /* 928 * HardFault is an odd special case: we always check against -1, 929 * even if we're secure and HardFault has priority -3; we never 930 * need to check for enabled state. 931 */ 932 if (irq == ARMV7M_EXCP_HARD) { 933 return running > -1; 934 } 935 936 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 937 938 return vec->enabled && 939 exc_group_prio(s, vec->prio, secure) < running; 940 } 941 942 /* callback when external interrupt line is changed */ 943 static void set_irq_level(void *opaque, int n, int level) 944 { 945 NVICState *s = opaque; 946 VecInfo *vec; 947 948 n += NVIC_FIRST_IRQ; 949 950 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 951 952 trace_nvic_set_irq_level(n, level); 953 954 /* The pending status of an external interrupt is 955 * latched on rising edge and exception handler return. 956 * 957 * Pulsing the IRQ will always run the handler 958 * once, and the handler will re-run until the 959 * level is low when the handler completes. 960 */ 961 vec = &s->vectors[n]; 962 if (level != vec->level) { 963 vec->level = level; 964 if (level) { 965 armv7m_nvic_set_pending(s, n, false); 966 } 967 } 968 } 969 970 /* callback when external NMI line is changed */ 971 static void nvic_nmi_trigger(void *opaque, int n, int level) 972 { 973 NVICState *s = opaque; 974 975 trace_nvic_set_nmi_level(level); 976 977 /* 978 * The architecture doesn't specify whether NMI should share 979 * the normal-interrupt behaviour of being resampled on 980 * exception handler return. We choose not to, so just 981 * set NMI pending here and don't track the current level. 982 */ 983 if (level) { 984 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 985 } 986 } 987 988 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 989 { 990 ARMCPU *cpu = s->cpu; 991 ARMISARegisters *isar = &cpu->isar; 992 uint32_t val; 993 994 switch (offset) { 995 case 4: /* Interrupt Control Type. */ 996 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 997 goto bad_offset; 998 } 999 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1000 case 0xc: /* CPPWR */ 1001 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1002 goto bad_offset; 1003 } 1004 /* We make the IMPDEF choice that nothing can ever go into a 1005 * non-retentive power state, which allows us to RAZ/WI this. 1006 */ 1007 return 0; 1008 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1009 { 1010 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1011 int i; 1012 1013 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1014 goto bad_offset; 1015 } 1016 if (!attrs.secure) { 1017 return 0; 1018 } 1019 val = 0; 1020 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1021 if (s->itns[startvec + i]) { 1022 val |= (1 << i); 1023 } 1024 } 1025 return val; 1026 } 1027 case 0xcfc: 1028 if (!arm_feature(&cpu->env, ARM_FEATURE_V8_1M)) { 1029 goto bad_offset; 1030 } 1031 return cpu->revidr; 1032 case 0xd00: /* CPUID Base. */ 1033 return cpu->midr; 1034 case 0xd04: /* Interrupt Control State (ICSR) */ 1035 /* VECTACTIVE */ 1036 val = cpu->env.v7m.exception; 1037 /* VECTPENDING */ 1038 if (s->vectpending) { 1039 /* 1040 * From v8.1M VECTPENDING must read as 1 if accessed as 1041 * NonSecure and the highest priority pending and enabled 1042 * exception targets Secure. 1043 */ 1044 int vp = s->vectpending; 1045 if (!attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && 1046 vectpending_targets_secure(s)) { 1047 vp = 1; 1048 } 1049 val |= (vp & 0x1ff) << 12; 1050 } 1051 /* ISRPENDING - set if any external IRQ is pending */ 1052 if (nvic_isrpending(s)) { 1053 val |= (1 << 22); 1054 } 1055 /* RETTOBASE - set if only one handler is active */ 1056 if (nvic_rettobase(s)) { 1057 val |= (1 << 11); 1058 } 1059 if (attrs.secure) { 1060 /* PENDSTSET */ 1061 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1062 val |= (1 << 26); 1063 } 1064 /* PENDSVSET */ 1065 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1066 val |= (1 << 28); 1067 } 1068 } else { 1069 /* PENDSTSET */ 1070 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1071 val |= (1 << 26); 1072 } 1073 /* PENDSVSET */ 1074 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1075 val |= (1 << 28); 1076 } 1077 } 1078 /* NMIPENDSET */ 1079 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1080 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1081 val |= (1 << 31); 1082 } 1083 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1084 /* STTNS: RES0 for the Main Extension */ 1085 return val; 1086 case 0xd08: /* Vector Table Offset. */ 1087 return cpu->env.v7m.vecbase[attrs.secure]; 1088 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1089 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1090 if (attrs.secure) { 1091 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1092 val |= cpu->env.v7m.aircr; 1093 } else { 1094 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1095 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1096 * security isn't supported then BFHFNMINS is RAO (and 1097 * the bit in env.v7m.aircr is always set). 1098 */ 1099 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1100 } 1101 } 1102 return val; 1103 case 0xd10: /* System Control. */ 1104 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1105 goto bad_offset; 1106 } 1107 return cpu->env.v7m.scr[attrs.secure]; 1108 case 0xd14: /* Configuration Control. */ 1109 /* 1110 * Non-banked bits: BFHFNMIGN (stored in the NS copy of the register) 1111 * and TRD (stored in the S copy of the register) 1112 */ 1113 val = cpu->env.v7m.ccr[attrs.secure]; 1114 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1115 /* BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0 */ 1116 if (!attrs.secure) { 1117 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1118 val &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1119 } 1120 } 1121 return val; 1122 case 0xd24: /* System Handler Control and State (SHCSR) */ 1123 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1124 goto bad_offset; 1125 } 1126 val = 0; 1127 if (attrs.secure) { 1128 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1129 val |= (1 << 0); 1130 } 1131 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1132 val |= (1 << 2); 1133 } 1134 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1135 val |= (1 << 3); 1136 } 1137 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1138 val |= (1 << 7); 1139 } 1140 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1141 val |= (1 << 10); 1142 } 1143 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1144 val |= (1 << 11); 1145 } 1146 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1147 val |= (1 << 12); 1148 } 1149 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1150 val |= (1 << 13); 1151 } 1152 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1153 val |= (1 << 15); 1154 } 1155 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1156 val |= (1 << 16); 1157 } 1158 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1159 val |= (1 << 18); 1160 } 1161 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1162 val |= (1 << 21); 1163 } 1164 /* SecureFault is not banked but is always RAZ/WI to NS */ 1165 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1166 val |= (1 << 4); 1167 } 1168 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1169 val |= (1 << 19); 1170 } 1171 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1172 val |= (1 << 20); 1173 } 1174 } else { 1175 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1176 val |= (1 << 0); 1177 } 1178 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1179 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1180 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1181 val |= (1 << 2); 1182 } 1183 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1184 val |= (1 << 21); 1185 } 1186 } 1187 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1188 val |= (1 << 3); 1189 } 1190 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1191 val |= (1 << 7); 1192 } 1193 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1194 val |= (1 << 10); 1195 } 1196 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1197 val |= (1 << 11); 1198 } 1199 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1200 val |= (1 << 12); 1201 } 1202 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1203 val |= (1 << 13); 1204 } 1205 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1206 val |= (1 << 15); 1207 } 1208 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1209 val |= (1 << 16); 1210 } 1211 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1212 val |= (1 << 18); 1213 } 1214 } 1215 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1216 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1217 val |= (1 << 1); 1218 } 1219 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1220 val |= (1 << 14); 1221 } 1222 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1223 val |= (1 << 17); 1224 } 1225 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1226 s->vectors[ARMV7M_EXCP_NMI].active) { 1227 /* NMIACT is not present in v7M */ 1228 val |= (1 << 5); 1229 } 1230 } 1231 1232 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1233 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1234 val |= (1 << 8); 1235 } 1236 return val; 1237 case 0xd2c: /* Hard Fault Status. */ 1238 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1239 goto bad_offset; 1240 } 1241 return cpu->env.v7m.hfsr; 1242 case 0xd30: /* Debug Fault Status. */ 1243 return cpu->env.v7m.dfsr; 1244 case 0xd34: /* MMFAR MemManage Fault Address */ 1245 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1246 goto bad_offset; 1247 } 1248 return cpu->env.v7m.mmfar[attrs.secure]; 1249 case 0xd38: /* Bus Fault Address. */ 1250 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1251 goto bad_offset; 1252 } 1253 if (!attrs.secure && 1254 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1255 return 0; 1256 } 1257 return cpu->env.v7m.bfar; 1258 case 0xd3c: /* Aux Fault Status. */ 1259 /* TODO: Implement fault status registers. */ 1260 qemu_log_mask(LOG_UNIMP, 1261 "Aux Fault status registers unimplemented\n"); 1262 return 0; 1263 case 0xd40: /* PFR0. */ 1264 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1265 goto bad_offset; 1266 } 1267 return GET_IDREG(isar, ID_PFR0); 1268 case 0xd44: /* PFR1. */ 1269 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1270 goto bad_offset; 1271 } 1272 return GET_IDREG(isar, ID_PFR1); 1273 case 0xd48: /* DFR0. */ 1274 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1275 goto bad_offset; 1276 } 1277 return GET_IDREG(isar, ID_DFR0); 1278 case 0xd4c: /* AFR0. */ 1279 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1280 goto bad_offset; 1281 } 1282 return GET_IDREG(isar, ID_AFR0); 1283 case 0xd50: /* MMFR0. */ 1284 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1285 goto bad_offset; 1286 } 1287 return GET_IDREG(isar, ID_MMFR0); 1288 case 0xd54: /* MMFR1. */ 1289 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1290 goto bad_offset; 1291 } 1292 return GET_IDREG(isar, ID_MMFR1); 1293 case 0xd58: /* MMFR2. */ 1294 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1295 goto bad_offset; 1296 } 1297 return GET_IDREG(isar, ID_MMFR2); 1298 case 0xd5c: /* MMFR3. */ 1299 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1300 goto bad_offset; 1301 } 1302 return GET_IDREG(isar, ID_MMFR3); 1303 case 0xd60: /* ISAR0. */ 1304 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1305 goto bad_offset; 1306 } 1307 return GET_IDREG(&cpu->isar, ID_ISAR0); 1308 case 0xd64: /* ISAR1. */ 1309 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1310 goto bad_offset; 1311 } 1312 return GET_IDREG(&cpu->isar, ID_ISAR1); 1313 case 0xd68: /* ISAR2. */ 1314 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1315 goto bad_offset; 1316 } 1317 return GET_IDREG(&cpu->isar, ID_ISAR2); 1318 case 0xd6c: /* ISAR3. */ 1319 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1320 goto bad_offset; 1321 } 1322 return GET_IDREG(&cpu->isar, ID_ISAR3); 1323 case 0xd70: /* ISAR4. */ 1324 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1325 goto bad_offset; 1326 } 1327 return GET_IDREG(&cpu->isar, ID_ISAR4); 1328 case 0xd74: /* ISAR5. */ 1329 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1330 goto bad_offset; 1331 } 1332 return GET_IDREG(&cpu->isar, ID_ISAR5); 1333 case 0xd78: /* CLIDR */ 1334 return GET_IDREG(&cpu->isar, CLIDR); 1335 case 0xd7c: /* CTR */ 1336 return cpu->ctr; 1337 case 0xd80: /* CSSIDR */ 1338 { 1339 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1340 return cpu->ccsidr[idx]; 1341 } 1342 case 0xd84: /* CSSELR */ 1343 return cpu->env.v7m.csselr[attrs.secure]; 1344 case 0xd88: /* CPACR */ 1345 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1346 return 0; 1347 } 1348 return cpu->env.v7m.cpacr[attrs.secure]; 1349 case 0xd8c: /* NSACR */ 1350 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1351 return 0; 1352 } 1353 return cpu->env.v7m.nsacr; 1354 /* TODO: Implement debug registers. */ 1355 case 0xd90: /* MPU_TYPE */ 1356 /* Unified MPU; if the MPU is not present this value is zero */ 1357 return cpu->pmsav7_dregion << 8; 1358 case 0xd94: /* MPU_CTRL */ 1359 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1360 case 0xd98: /* MPU_RNR */ 1361 return cpu->env.pmsav7.rnr[attrs.secure]; 1362 case 0xd9c: /* MPU_RBAR */ 1363 case 0xda4: /* MPU_RBAR_A1 */ 1364 case 0xdac: /* MPU_RBAR_A2 */ 1365 case 0xdb4: /* MPU_RBAR_A3 */ 1366 { 1367 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1368 1369 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1370 /* PMSAv8M handling of the aliases is different from v7M: 1371 * aliases A1, A2, A3 override the low two bits of the region 1372 * number in MPU_RNR, and there is no 'region' field in the 1373 * RBAR register. 1374 */ 1375 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1376 if (aliasno) { 1377 region = deposit32(region, 0, 2, aliasno); 1378 } 1379 if (region >= cpu->pmsav7_dregion) { 1380 return 0; 1381 } 1382 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1383 } 1384 1385 if (region >= cpu->pmsav7_dregion) { 1386 return 0; 1387 } 1388 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1389 } 1390 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1391 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1392 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1393 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1394 { 1395 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1396 1397 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1398 /* PMSAv8M handling of the aliases is different from v7M: 1399 * aliases A1, A2, A3 override the low two bits of the region 1400 * number in MPU_RNR. 1401 */ 1402 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1403 if (aliasno) { 1404 region = deposit32(region, 0, 2, aliasno); 1405 } 1406 if (region >= cpu->pmsav7_dregion) { 1407 return 0; 1408 } 1409 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1410 } 1411 1412 if (region >= cpu->pmsav7_dregion) { 1413 return 0; 1414 } 1415 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1416 (cpu->env.pmsav7.drsr[region] & 0xffff); 1417 } 1418 case 0xdc0: /* MPU_MAIR0 */ 1419 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1420 goto bad_offset; 1421 } 1422 return cpu->env.pmsav8.mair0[attrs.secure]; 1423 case 0xdc4: /* MPU_MAIR1 */ 1424 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1425 goto bad_offset; 1426 } 1427 return cpu->env.pmsav8.mair1[attrs.secure]; 1428 case 0xdd0: /* SAU_CTRL */ 1429 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1430 goto bad_offset; 1431 } 1432 if (!attrs.secure) { 1433 return 0; 1434 } 1435 return cpu->env.sau.ctrl; 1436 case 0xdd4: /* SAU_TYPE */ 1437 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1438 goto bad_offset; 1439 } 1440 if (!attrs.secure) { 1441 return 0; 1442 } 1443 return cpu->sau_sregion; 1444 case 0xdd8: /* SAU_RNR */ 1445 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1446 goto bad_offset; 1447 } 1448 if (!attrs.secure) { 1449 return 0; 1450 } 1451 return cpu->env.sau.rnr; 1452 case 0xddc: /* SAU_RBAR */ 1453 { 1454 int region = cpu->env.sau.rnr; 1455 1456 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1457 goto bad_offset; 1458 } 1459 if (!attrs.secure) { 1460 return 0; 1461 } 1462 if (region >= cpu->sau_sregion) { 1463 return 0; 1464 } 1465 return cpu->env.sau.rbar[region]; 1466 } 1467 case 0xde0: /* SAU_RLAR */ 1468 { 1469 int region = cpu->env.sau.rnr; 1470 1471 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1472 goto bad_offset; 1473 } 1474 if (!attrs.secure) { 1475 return 0; 1476 } 1477 if (region >= cpu->sau_sregion) { 1478 return 0; 1479 } 1480 return cpu->env.sau.rlar[region]; 1481 } 1482 case 0xde4: /* SFSR */ 1483 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1484 goto bad_offset; 1485 } 1486 if (!attrs.secure) { 1487 return 0; 1488 } 1489 return cpu->env.v7m.sfsr; 1490 case 0xde8: /* SFAR */ 1491 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1492 goto bad_offset; 1493 } 1494 if (!attrs.secure) { 1495 return 0; 1496 } 1497 return cpu->env.v7m.sfar; 1498 case 0xf04: /* RFSR */ 1499 if (!cpu_isar_feature(aa32_ras, cpu)) { 1500 goto bad_offset; 1501 } 1502 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 1503 return 0; 1504 case 0xf34: /* FPCCR */ 1505 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1506 return 0; 1507 } 1508 if (attrs.secure) { 1509 return cpu->env.v7m.fpccr[M_REG_S]; 1510 } else { 1511 /* 1512 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1513 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1514 * other non-banked bits RAZ. 1515 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1516 */ 1517 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1518 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1519 R_V7M_FPCCR_CLRONRET_MASK | 1520 R_V7M_FPCCR_MONRDY_MASK; 1521 1522 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1523 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1524 } 1525 1526 value &= mask; 1527 1528 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1529 return value; 1530 } 1531 case 0xf38: /* FPCAR */ 1532 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1533 return 0; 1534 } 1535 return cpu->env.v7m.fpcar[attrs.secure]; 1536 case 0xf3c: /* FPDSCR */ 1537 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1538 return 0; 1539 } 1540 return cpu->env.v7m.fpdscr[attrs.secure]; 1541 case 0xf40: /* MVFR0 */ 1542 return cpu->isar.mvfr0; 1543 case 0xf44: /* MVFR1 */ 1544 return cpu->isar.mvfr1; 1545 case 0xf48: /* MVFR2 */ 1546 return cpu->isar.mvfr2; 1547 default: 1548 bad_offset: 1549 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1550 return 0; 1551 } 1552 } 1553 1554 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1555 MemTxAttrs attrs) 1556 { 1557 ARMCPU *cpu = s->cpu; 1558 1559 switch (offset) { 1560 case 0xc: /* CPPWR */ 1561 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1562 goto bad_offset; 1563 } 1564 /* Make the IMPDEF choice to RAZ/WI this. */ 1565 break; 1566 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1567 { 1568 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1569 int i; 1570 1571 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1572 goto bad_offset; 1573 } 1574 if (!attrs.secure) { 1575 break; 1576 } 1577 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1578 s->itns[startvec + i] = (value >> i) & 1; 1579 } 1580 nvic_irq_update(s); 1581 break; 1582 } 1583 case 0xd04: /* Interrupt Control State (ICSR) */ 1584 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1585 if (value & (1 << 31)) { 1586 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1587 } else if (value & (1 << 30) && 1588 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1589 /* PENDNMICLR didn't exist in v7M */ 1590 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1591 } 1592 } 1593 if (value & (1 << 28)) { 1594 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1595 } else if (value & (1 << 27)) { 1596 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1597 } 1598 if (value & (1 << 26)) { 1599 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1600 } else if (value & (1 << 25)) { 1601 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1602 } 1603 break; 1604 case 0xd08: /* Vector Table Offset. */ 1605 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1606 break; 1607 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1608 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1609 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1610 if (attrs.secure || 1611 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1612 signal_sysresetreq(s); 1613 } 1614 } 1615 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1616 qemu_log_mask(LOG_GUEST_ERROR, 1617 "Setting VECTCLRACTIVE when not in DEBUG mode " 1618 "is UNPREDICTABLE\n"); 1619 } 1620 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1621 /* NB: this bit is RES0 in v8M */ 1622 qemu_log_mask(LOG_GUEST_ERROR, 1623 "Setting VECTRESET when not in DEBUG mode " 1624 "is UNPREDICTABLE\n"); 1625 } 1626 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1627 s->prigroup[attrs.secure] = 1628 extract32(value, 1629 R_V7M_AIRCR_PRIGROUP_SHIFT, 1630 R_V7M_AIRCR_PRIGROUP_LENGTH); 1631 } 1632 /* AIRCR.IESB is RAZ/WI because we implement only minimal RAS */ 1633 if (attrs.secure) { 1634 /* These bits are only writable by secure */ 1635 cpu->env.v7m.aircr = value & 1636 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1637 R_V7M_AIRCR_BFHFNMINS_MASK | 1638 R_V7M_AIRCR_PRIS_MASK); 1639 /* BFHFNMINS changes the priority of Secure HardFault, and 1640 * allows a pending Non-secure HardFault to preempt (which 1641 * we implement by marking it enabled). 1642 */ 1643 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1644 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1645 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1646 } else { 1647 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1648 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1649 } 1650 } 1651 nvic_irq_update(s); 1652 } 1653 break; 1654 case 0xd10: /* System Control. */ 1655 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1656 goto bad_offset; 1657 } 1658 /* We don't implement deep-sleep so these bits are RAZ/WI. 1659 * The other bits in the register are banked. 1660 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1661 * is architecturally permitted. 1662 */ 1663 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1664 cpu->env.v7m.scr[attrs.secure] = value; 1665 break; 1666 case 0xd14: /* Configuration Control. */ 1667 { 1668 uint32_t mask; 1669 1670 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1671 goto bad_offset; 1672 } 1673 1674 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1675 mask = R_V7M_CCR_STKALIGN_MASK | 1676 R_V7M_CCR_BFHFNMIGN_MASK | 1677 R_V7M_CCR_DIV_0_TRP_MASK | 1678 R_V7M_CCR_UNALIGN_TRP_MASK | 1679 R_V7M_CCR_USERSETMPEND_MASK | 1680 R_V7M_CCR_NONBASETHRDENA_MASK; 1681 if (arm_feature(&cpu->env, ARM_FEATURE_V8_1M) && attrs.secure) { 1682 /* TRD is always RAZ/WI from NS */ 1683 mask |= R_V7M_CCR_TRD_MASK; 1684 } 1685 value &= mask; 1686 1687 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1688 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1689 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1690 | R_V7M_CCR_STKALIGN_MASK; 1691 } 1692 if (attrs.secure) { 1693 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1694 cpu->env.v7m.ccr[M_REG_NS] = 1695 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1696 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1697 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1698 } else { 1699 /* 1700 * BFHFNMIGN is RAZ/WI from NS if AIRCR.BFHFNMINS is 0, so 1701 * preserve the state currently in the NS element of the array 1702 */ 1703 if (!(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1704 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1705 value |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1706 } 1707 } 1708 1709 cpu->env.v7m.ccr[attrs.secure] = value; 1710 break; 1711 } 1712 case 0xd24: /* System Handler Control and State (SHCSR) */ 1713 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1714 goto bad_offset; 1715 } 1716 if (attrs.secure) { 1717 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1718 /* Secure HardFault active bit cannot be written */ 1719 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1720 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1721 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1722 (value & (1 << 10)) != 0; 1723 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1724 (value & (1 << 11)) != 0; 1725 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1726 (value & (1 << 12)) != 0; 1727 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1728 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1729 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1730 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1731 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1732 (value & (1 << 18)) != 0; 1733 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1734 /* SecureFault not banked, but RAZ/WI to NS */ 1735 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1736 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1737 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1738 } else { 1739 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1740 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1741 /* HARDFAULTPENDED is not present in v7M */ 1742 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1743 } 1744 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1745 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1746 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1747 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1748 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1749 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1750 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1751 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1752 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1753 } 1754 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1755 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1756 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1757 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1758 } 1759 /* NMIACT can only be written if the write is of a zero, with 1760 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1761 */ 1762 if (!attrs.secure && cpu->env.v7m.secure && 1763 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1764 (value & (1 << 5)) == 0) { 1765 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1766 } 1767 /* HARDFAULTACT can only be written if the write is of a zero 1768 * to the non-secure HardFault state by the CPU in secure state. 1769 * The only case where we can be targeting the non-secure HF state 1770 * when in secure state is if this is a write via the NS alias 1771 * and BFHFNMINS is 1. 1772 */ 1773 if (!attrs.secure && cpu->env.v7m.secure && 1774 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1775 (value & (1 << 2)) == 0) { 1776 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1777 } 1778 1779 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1780 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1781 nvic_irq_update(s); 1782 break; 1783 case 0xd2c: /* Hard Fault Status. */ 1784 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1785 goto bad_offset; 1786 } 1787 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1788 break; 1789 case 0xd30: /* Debug Fault Status. */ 1790 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1791 break; 1792 case 0xd34: /* Mem Manage Address. */ 1793 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1794 goto bad_offset; 1795 } 1796 cpu->env.v7m.mmfar[attrs.secure] = value; 1797 return; 1798 case 0xd38: /* Bus Fault Address. */ 1799 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1800 goto bad_offset; 1801 } 1802 if (!attrs.secure && 1803 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1804 return; 1805 } 1806 cpu->env.v7m.bfar = value; 1807 return; 1808 case 0xd3c: /* Aux Fault Status. */ 1809 qemu_log_mask(LOG_UNIMP, 1810 "NVIC: Aux fault status registers unimplemented\n"); 1811 break; 1812 case 0xd84: /* CSSELR */ 1813 if (!arm_v7m_csselr_razwi(cpu)) { 1814 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1815 } 1816 break; 1817 case 0xd88: /* CPACR */ 1818 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1819 /* We implement only the Floating Point extension's CP10/CP11 */ 1820 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1821 } 1822 break; 1823 case 0xd8c: /* NSACR */ 1824 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1825 /* We implement only the Floating Point extension's CP10/CP11 */ 1826 cpu->env.v7m.nsacr = value & (3 << 10); 1827 } 1828 break; 1829 case 0xd90: /* MPU_TYPE */ 1830 return; /* RO */ 1831 case 0xd94: /* MPU_CTRL */ 1832 if ((value & 1833 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1834 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1835 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1836 "UNPREDICTABLE\n"); 1837 } 1838 cpu->env.v7m.mpu_ctrl[attrs.secure] 1839 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1840 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1841 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1842 tlb_flush(CPU(cpu)); 1843 break; 1844 case 0xd98: /* MPU_RNR */ 1845 if (value >= cpu->pmsav7_dregion) { 1846 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1847 PRIu32 "/%" PRIu32 "\n", 1848 value, cpu->pmsav7_dregion); 1849 } else { 1850 cpu->env.pmsav7.rnr[attrs.secure] = value; 1851 } 1852 break; 1853 case 0xd9c: /* MPU_RBAR */ 1854 case 0xda4: /* MPU_RBAR_A1 */ 1855 case 0xdac: /* MPU_RBAR_A2 */ 1856 case 0xdb4: /* MPU_RBAR_A3 */ 1857 { 1858 int region; 1859 1860 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1861 /* PMSAv8M handling of the aliases is different from v7M: 1862 * aliases A1, A2, A3 override the low two bits of the region 1863 * number in MPU_RNR, and there is no 'region' field in the 1864 * RBAR register. 1865 */ 1866 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1867 1868 region = cpu->env.pmsav7.rnr[attrs.secure]; 1869 if (aliasno) { 1870 region = deposit32(region, 0, 2, aliasno); 1871 } 1872 if (region >= cpu->pmsav7_dregion) { 1873 return; 1874 } 1875 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1876 tlb_flush(CPU(cpu)); 1877 return; 1878 } 1879 1880 if (value & (1 << 4)) { 1881 /* VALID bit means use the region number specified in this 1882 * value and also update MPU_RNR.REGION with that value. 1883 */ 1884 region = extract32(value, 0, 4); 1885 if (region >= cpu->pmsav7_dregion) { 1886 qemu_log_mask(LOG_GUEST_ERROR, 1887 "MPU region out of range %u/%" PRIu32 "\n", 1888 region, cpu->pmsav7_dregion); 1889 return; 1890 } 1891 cpu->env.pmsav7.rnr[attrs.secure] = region; 1892 } else { 1893 region = cpu->env.pmsav7.rnr[attrs.secure]; 1894 } 1895 1896 if (region >= cpu->pmsav7_dregion) { 1897 return; 1898 } 1899 1900 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1901 tlb_flush(CPU(cpu)); 1902 break; 1903 } 1904 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1905 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1906 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1907 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1908 { 1909 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1910 1911 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1912 /* PMSAv8M handling of the aliases is different from v7M: 1913 * aliases A1, A2, A3 override the low two bits of the region 1914 * number in MPU_RNR. 1915 */ 1916 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1917 1918 region = cpu->env.pmsav7.rnr[attrs.secure]; 1919 if (aliasno) { 1920 region = deposit32(region, 0, 2, aliasno); 1921 } 1922 if (region >= cpu->pmsav7_dregion) { 1923 return; 1924 } 1925 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1926 tlb_flush(CPU(cpu)); 1927 return; 1928 } 1929 1930 if (region >= cpu->pmsav7_dregion) { 1931 return; 1932 } 1933 1934 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1935 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1936 tlb_flush(CPU(cpu)); 1937 break; 1938 } 1939 case 0xdc0: /* MPU_MAIR0 */ 1940 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1941 goto bad_offset; 1942 } 1943 if (cpu->pmsav7_dregion) { 1944 /* Register is RES0 if no MPU regions are implemented */ 1945 cpu->env.pmsav8.mair0[attrs.secure] = value; 1946 } 1947 /* We don't need to do anything else because memory attributes 1948 * only affect cacheability, and we don't implement caching. 1949 */ 1950 break; 1951 case 0xdc4: /* MPU_MAIR1 */ 1952 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1953 goto bad_offset; 1954 } 1955 if (cpu->pmsav7_dregion) { 1956 /* Register is RES0 if no MPU regions are implemented */ 1957 cpu->env.pmsav8.mair1[attrs.secure] = value; 1958 } 1959 /* We don't need to do anything else because memory attributes 1960 * only affect cacheability, and we don't implement caching. 1961 */ 1962 break; 1963 case 0xdd0: /* SAU_CTRL */ 1964 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1965 goto bad_offset; 1966 } 1967 if (!attrs.secure) { 1968 return; 1969 } 1970 cpu->env.sau.ctrl = value & 3; 1971 break; 1972 case 0xdd4: /* SAU_TYPE */ 1973 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1974 goto bad_offset; 1975 } 1976 break; 1977 case 0xdd8: /* SAU_RNR */ 1978 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1979 goto bad_offset; 1980 } 1981 if (!attrs.secure) { 1982 return; 1983 } 1984 if (value >= cpu->sau_sregion) { 1985 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1986 PRIu32 "/%" PRIu32 "\n", 1987 value, cpu->sau_sregion); 1988 } else { 1989 cpu->env.sau.rnr = value; 1990 } 1991 break; 1992 case 0xddc: /* SAU_RBAR */ 1993 { 1994 int region = cpu->env.sau.rnr; 1995 1996 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1997 goto bad_offset; 1998 } 1999 if (!attrs.secure) { 2000 return; 2001 } 2002 if (region >= cpu->sau_sregion) { 2003 return; 2004 } 2005 cpu->env.sau.rbar[region] = value & ~0x1f; 2006 tlb_flush(CPU(cpu)); 2007 break; 2008 } 2009 case 0xde0: /* SAU_RLAR */ 2010 { 2011 int region = cpu->env.sau.rnr; 2012 2013 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2014 goto bad_offset; 2015 } 2016 if (!attrs.secure) { 2017 return; 2018 } 2019 if (region >= cpu->sau_sregion) { 2020 return; 2021 } 2022 cpu->env.sau.rlar[region] = value & ~0x1c; 2023 tlb_flush(CPU(cpu)); 2024 break; 2025 } 2026 case 0xde4: /* SFSR */ 2027 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2028 goto bad_offset; 2029 } 2030 if (!attrs.secure) { 2031 return; 2032 } 2033 cpu->env.v7m.sfsr &= ~value; /* W1C */ 2034 break; 2035 case 0xde8: /* SFAR */ 2036 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2037 goto bad_offset; 2038 } 2039 if (!attrs.secure) { 2040 return; 2041 } 2042 cpu->env.v7m.sfsr = value; 2043 break; 2044 case 0xf00: /* Software Triggered Interrupt Register */ 2045 { 2046 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 2047 2048 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 2049 goto bad_offset; 2050 } 2051 2052 if (excnum < s->num_irq) { 2053 armv7m_nvic_set_pending(s, excnum, false); 2054 } 2055 break; 2056 } 2057 case 0xf04: /* RFSR */ 2058 if (!cpu_isar_feature(aa32_ras, cpu)) { 2059 goto bad_offset; 2060 } 2061 /* We provide minimal-RAS only: RFSR is RAZ/WI */ 2062 break; 2063 case 0xf34: /* FPCCR */ 2064 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2065 /* Not all bits here are banked. */ 2066 uint32_t fpccr_s; 2067 2068 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 2069 /* Don't allow setting of bits not present in v7M */ 2070 value &= (R_V7M_FPCCR_LSPACT_MASK | 2071 R_V7M_FPCCR_USER_MASK | 2072 R_V7M_FPCCR_THREAD_MASK | 2073 R_V7M_FPCCR_HFRDY_MASK | 2074 R_V7M_FPCCR_MMRDY_MASK | 2075 R_V7M_FPCCR_BFRDY_MASK | 2076 R_V7M_FPCCR_MONRDY_MASK | 2077 R_V7M_FPCCR_LSPEN_MASK | 2078 R_V7M_FPCCR_ASPEN_MASK); 2079 } 2080 value &= ~R_V7M_FPCCR_RES0_MASK; 2081 2082 if (!attrs.secure) { 2083 /* Some non-banked bits are configurably writable by NS */ 2084 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 2085 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 2086 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 2087 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 2088 } 2089 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 2090 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 2091 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 2092 } 2093 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2094 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2095 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2096 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2097 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2098 } 2099 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2100 { 2101 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2102 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2103 } 2104 2105 /* 2106 * All other non-banked bits are RAZ/WI from NS; write 2107 * just the banked bits to fpccr[M_REG_NS]. 2108 */ 2109 value &= R_V7M_FPCCR_BANKED_MASK; 2110 cpu->env.v7m.fpccr[M_REG_NS] = value; 2111 } else { 2112 fpccr_s = value; 2113 } 2114 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2115 } 2116 break; 2117 case 0xf38: /* FPCAR */ 2118 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2119 value &= ~7; 2120 cpu->env.v7m.fpcar[attrs.secure] = value; 2121 } 2122 break; 2123 case 0xf3c: /* FPDSCR */ 2124 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2125 uint32_t mask = FPCR_AHP | FPCR_DN | FPCR_FZ | FPCR_RMODE_MASK; 2126 if (cpu_isar_feature(any_fp16, cpu)) { 2127 mask |= FPCR_FZ16; 2128 } 2129 value &= mask; 2130 if (cpu_isar_feature(aa32_lob, cpu)) { 2131 value |= 4 << FPCR_LTPSIZE_SHIFT; 2132 } 2133 cpu->env.v7m.fpdscr[attrs.secure] = value; 2134 } 2135 break; 2136 case 0xf50: /* ICIALLU */ 2137 case 0xf58: /* ICIMVAU */ 2138 case 0xf5c: /* DCIMVAC */ 2139 case 0xf60: /* DCISW */ 2140 case 0xf64: /* DCCMVAU */ 2141 case 0xf68: /* DCCMVAC */ 2142 case 0xf6c: /* DCCSW */ 2143 case 0xf70: /* DCCIMVAC */ 2144 case 0xf74: /* DCCISW */ 2145 case 0xf78: /* BPIALL */ 2146 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2147 break; 2148 default: 2149 bad_offset: 2150 qemu_log_mask(LOG_GUEST_ERROR, 2151 "NVIC: Bad write offset 0x%x\n", offset); 2152 } 2153 } 2154 2155 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2156 { 2157 /* Return true if unprivileged access to this register is permitted. */ 2158 switch (offset) { 2159 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2160 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2161 * controls access even though the CPU is in Secure state (I_QDKX). 2162 */ 2163 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2164 default: 2165 /* All other user accesses cause a BusFault unconditionally */ 2166 return false; 2167 } 2168 } 2169 2170 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2171 { 2172 /* Behaviour for the SHPR register field for this exception: 2173 * return M_REG_NS to use the nonsecure vector (including for 2174 * non-banked exceptions), M_REG_S for the secure version of 2175 * a banked exception, and -1 if this field should RAZ/WI. 2176 */ 2177 switch (exc) { 2178 case ARMV7M_EXCP_MEM: 2179 case ARMV7M_EXCP_USAGE: 2180 case ARMV7M_EXCP_SVC: 2181 case ARMV7M_EXCP_PENDSV: 2182 case ARMV7M_EXCP_SYSTICK: 2183 /* Banked exceptions */ 2184 return attrs.secure; 2185 case ARMV7M_EXCP_BUS: 2186 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2187 if (!attrs.secure && 2188 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2189 return -1; 2190 } 2191 return M_REG_NS; 2192 case ARMV7M_EXCP_SECURE: 2193 /* Not banked, RAZ/WI from nonsecure */ 2194 if (!attrs.secure) { 2195 return -1; 2196 } 2197 return M_REG_NS; 2198 case ARMV7M_EXCP_DEBUG: 2199 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2200 return M_REG_NS; 2201 case 8 ... 10: 2202 case 13: 2203 /* RES0 */ 2204 return -1; 2205 default: 2206 /* Not reachable due to decode of SHPR register addresses */ 2207 g_assert_not_reached(); 2208 } 2209 } 2210 2211 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2212 uint64_t *data, unsigned size, 2213 MemTxAttrs attrs) 2214 { 2215 NVICState *s = (NVICState *)opaque; 2216 uint32_t offset = addr; 2217 unsigned i, startvec, end; 2218 uint32_t val; 2219 2220 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2221 /* Generate BusFault for unprivileged accesses */ 2222 return MEMTX_ERROR; 2223 } 2224 2225 switch (offset) { 2226 /* reads of set and clear both return the status */ 2227 case 0x100 ... 0x13f: /* NVIC Set enable */ 2228 offset += 0x80; 2229 /* fall through */ 2230 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2231 val = 0; 2232 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2233 2234 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2235 if (s->vectors[startvec + i].enabled && 2236 (attrs.secure || s->itns[startvec + i])) { 2237 val |= (1 << i); 2238 } 2239 } 2240 break; 2241 case 0x200 ... 0x23f: /* NVIC Set pend */ 2242 offset += 0x80; 2243 /* fall through */ 2244 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2245 val = 0; 2246 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2247 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2248 if (s->vectors[startvec + i].pending && 2249 (attrs.secure || s->itns[startvec + i])) { 2250 val |= (1 << i); 2251 } 2252 } 2253 break; 2254 case 0x300 ... 0x33f: /* NVIC Active */ 2255 val = 0; 2256 2257 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2258 break; 2259 } 2260 2261 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2262 2263 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2264 if (s->vectors[startvec + i].active && 2265 (attrs.secure || s->itns[startvec + i])) { 2266 val |= (1 << i); 2267 } 2268 } 2269 break; 2270 case 0x400 ... 0x5ef: /* NVIC Priority */ 2271 val = 0; 2272 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2273 2274 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2275 if (attrs.secure || s->itns[startvec + i]) { 2276 val |= s->vectors[startvec + i].prio << (8 * i); 2277 } 2278 } 2279 break; 2280 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2281 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2282 val = 0; 2283 break; 2284 } 2285 /* fall through */ 2286 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2287 val = 0; 2288 for (i = 0; i < size; i++) { 2289 unsigned hdlidx = (offset - 0xd14) + i; 2290 int sbank = shpr_bank(s, hdlidx, attrs); 2291 2292 if (sbank < 0) { 2293 continue; 2294 } 2295 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2296 } 2297 break; 2298 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2299 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2300 val = 0; 2301 break; 2302 }; 2303 /* 2304 * The BFSR bits [15:8] are shared between security states 2305 * and we store them in the NS copy. They are RAZ/WI for 2306 * NS code if AIRCR.BFHFNMINS is 0. 2307 */ 2308 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2309 if (!attrs.secure && 2310 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2311 val &= ~R_V7M_CFSR_BFSR_MASK; 2312 } else { 2313 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2314 } 2315 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2316 break; 2317 case 0xfe0 ... 0xfff: /* ID. */ 2318 if (offset & 3) { 2319 val = 0; 2320 } else { 2321 val = nvic_id[(offset - 0xfe0) >> 2]; 2322 } 2323 break; 2324 default: 2325 if (size == 4) { 2326 val = nvic_readl(s, offset, attrs); 2327 } else { 2328 qemu_log_mask(LOG_GUEST_ERROR, 2329 "NVIC: Bad read of size %d at offset 0x%x\n", 2330 size, offset); 2331 val = 0; 2332 } 2333 } 2334 2335 trace_nvic_sysreg_read(addr, val, size); 2336 *data = val; 2337 return MEMTX_OK; 2338 } 2339 2340 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2341 uint64_t value, unsigned size, 2342 MemTxAttrs attrs) 2343 { 2344 NVICState *s = (NVICState *)opaque; 2345 uint32_t offset = addr; 2346 unsigned i, startvec, end; 2347 unsigned setval = 0; 2348 2349 trace_nvic_sysreg_write(addr, value, size); 2350 2351 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2352 /* Generate BusFault for unprivileged accesses */ 2353 return MEMTX_ERROR; 2354 } 2355 2356 switch (offset) { 2357 case 0x100 ... 0x13f: /* NVIC Set enable */ 2358 offset += 0x80; 2359 setval = 1; 2360 /* fall through */ 2361 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2362 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2363 2364 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2365 if (value & (1 << i) && 2366 (attrs.secure || s->itns[startvec + i])) { 2367 s->vectors[startvec + i].enabled = setval; 2368 } 2369 } 2370 nvic_irq_update(s); 2371 goto exit_ok; 2372 case 0x200 ... 0x23f: /* NVIC Set pend */ 2373 /* the special logic in armv7m_nvic_set_pending() 2374 * is not needed since IRQs are never escalated 2375 */ 2376 offset += 0x80; 2377 setval = 1; 2378 /* fall through */ 2379 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2380 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2381 2382 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2383 /* 2384 * Note that if the input line is still held high and the interrupt 2385 * is not active then rule R_CVJS requires that the Pending state 2386 * remains set; in that case we mustn't let it be cleared. 2387 */ 2388 if (value & (1 << i) && 2389 (attrs.secure || s->itns[startvec + i]) && 2390 !(setval == 0 && s->vectors[startvec + i].level && 2391 !s->vectors[startvec + i].active)) { 2392 s->vectors[startvec + i].pending = setval; 2393 } 2394 } 2395 nvic_irq_update(s); 2396 goto exit_ok; 2397 case 0x300 ... 0x33f: /* NVIC Active */ 2398 goto exit_ok; /* R/O */ 2399 case 0x400 ... 0x5ef: /* NVIC Priority */ 2400 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2401 2402 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2403 if (attrs.secure || s->itns[startvec + i]) { 2404 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2405 } 2406 } 2407 nvic_irq_update(s); 2408 goto exit_ok; 2409 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2410 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2411 goto exit_ok; 2412 } 2413 /* fall through */ 2414 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2415 for (i = 0; i < size; i++) { 2416 unsigned hdlidx = (offset - 0xd14) + i; 2417 int newprio = extract32(value, i * 8, 8); 2418 int sbank = shpr_bank(s, hdlidx, attrs); 2419 2420 if (sbank < 0) { 2421 continue; 2422 } 2423 set_prio(s, hdlidx, sbank, newprio); 2424 } 2425 nvic_irq_update(s); 2426 goto exit_ok; 2427 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2428 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2429 goto exit_ok; 2430 } 2431 /* All bits are W1C, so construct 32 bit value with 0s in 2432 * the parts not written by the access size 2433 */ 2434 value <<= ((offset - 0xd28) * 8); 2435 2436 if (!attrs.secure && 2437 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2438 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2439 value &= ~R_V7M_CFSR_BFSR_MASK; 2440 } 2441 2442 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2443 if (attrs.secure) { 2444 /* The BFSR bits [15:8] are shared between security states 2445 * and we store them in the NS copy. 2446 */ 2447 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2448 } 2449 goto exit_ok; 2450 } 2451 if (size == 4) { 2452 nvic_writel(s, offset, value, attrs); 2453 goto exit_ok; 2454 } 2455 qemu_log_mask(LOG_GUEST_ERROR, 2456 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2457 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2458 2459 exit_ok: 2460 if (tcg_enabled()) { 2461 /* Ensure any changes made are reflected in the cached hflags. */ 2462 arm_rebuild_hflags(&s->cpu->env); 2463 } 2464 return MEMTX_OK; 2465 } 2466 2467 static const MemoryRegionOps nvic_sysreg_ops = { 2468 .read_with_attrs = nvic_sysreg_read, 2469 .write_with_attrs = nvic_sysreg_write, 2470 .endianness = DEVICE_NATIVE_ENDIAN, 2471 }; 2472 2473 static int nvic_post_load(void *opaque, int version_id) 2474 { 2475 NVICState *s = opaque; 2476 unsigned i; 2477 int resetprio; 2478 2479 /* Check for out of range priority settings */ 2480 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2481 2482 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2483 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2484 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2485 return 1; 2486 } 2487 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2488 if (s->vectors[i].prio & ~0xff) { 2489 return 1; 2490 } 2491 } 2492 2493 nvic_recompute_state(s); 2494 2495 return 0; 2496 } 2497 2498 static const VMStateDescription vmstate_VecInfo = { 2499 .name = "armv7m_nvic_info", 2500 .version_id = 1, 2501 .minimum_version_id = 1, 2502 .fields = (const VMStateField[]) { 2503 VMSTATE_INT16(prio, VecInfo), 2504 VMSTATE_UINT8(enabled, VecInfo), 2505 VMSTATE_UINT8(pending, VecInfo), 2506 VMSTATE_UINT8(active, VecInfo), 2507 VMSTATE_UINT8(level, VecInfo), 2508 VMSTATE_END_OF_LIST() 2509 } 2510 }; 2511 2512 static bool nvic_security_needed(void *opaque) 2513 { 2514 NVICState *s = opaque; 2515 2516 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2517 } 2518 2519 static int nvic_security_post_load(void *opaque, int version_id) 2520 { 2521 NVICState *s = opaque; 2522 int i; 2523 2524 /* Check for out of range priority settings */ 2525 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2526 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2527 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2528 * if the CPU state has been migrated yet; a mismatch won't 2529 * cause the emulation to blow up, though. 2530 */ 2531 return 1; 2532 } 2533 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2534 if (s->sec_vectors[i].prio & ~0xff) { 2535 return 1; 2536 } 2537 } 2538 return 0; 2539 } 2540 2541 static const VMStateDescription vmstate_nvic_security = { 2542 .name = "armv7m_nvic/m-security", 2543 .version_id = 1, 2544 .minimum_version_id = 1, 2545 .needed = nvic_security_needed, 2546 .post_load = &nvic_security_post_load, 2547 .fields = (const VMStateField[]) { 2548 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2549 vmstate_VecInfo, VecInfo), 2550 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2551 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2552 VMSTATE_END_OF_LIST() 2553 } 2554 }; 2555 2556 static const VMStateDescription vmstate_nvic = { 2557 .name = "armv7m_nvic", 2558 .version_id = 4, 2559 .minimum_version_id = 4, 2560 .post_load = &nvic_post_load, 2561 .fields = (const VMStateField[]) { 2562 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2563 vmstate_VecInfo, VecInfo), 2564 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2565 VMSTATE_END_OF_LIST() 2566 }, 2567 .subsections = (const VMStateDescription * const []) { 2568 &vmstate_nvic_security, 2569 NULL 2570 } 2571 }; 2572 2573 static const Property props_nvic[] = { 2574 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2575 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2576 /* 2577 * Number of the maximum priority bits that can be used. 0 means 2578 * to use a reasonable default. 2579 */ 2580 DEFINE_PROP_UINT8("num-prio-bits", NVICState, num_prio_bits, 0), 2581 }; 2582 2583 static void armv7m_nvic_reset(DeviceState *dev) 2584 { 2585 int resetprio; 2586 NVICState *s = NVIC(dev); 2587 2588 memset(s->vectors, 0, sizeof(s->vectors)); 2589 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2590 s->prigroup[M_REG_NS] = 0; 2591 s->prigroup[M_REG_S] = 0; 2592 2593 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2594 /* MEM, BUS, and USAGE are enabled through 2595 * the System Handler Control register 2596 */ 2597 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2598 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2599 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2600 2601 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2602 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2603 2604 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2605 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2606 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2607 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2608 2609 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2610 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2611 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2612 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2613 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2614 2615 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2616 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2617 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2618 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2619 } else { 2620 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2621 } 2622 2623 /* Strictly speaking the reset handler should be enabled. 2624 * However, we don't simulate soft resets through the NVIC, 2625 * and the reset vector should never be pended. 2626 * So we leave it disabled to catch logic errors. 2627 */ 2628 2629 s->exception_prio = NVIC_NOEXC_PRIO; 2630 s->vectpending = 0; 2631 s->vectpending_is_s_banked = false; 2632 s->vectpending_prio = NVIC_NOEXC_PRIO; 2633 2634 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2635 memset(s->itns, 0, sizeof(s->itns)); 2636 } else { 2637 /* This state is constant and not guest accessible in a non-security 2638 * NVIC; we set the bits to true to avoid having to do a feature 2639 * bit check in the NVIC enable/pend/etc register accessors. 2640 */ 2641 int i; 2642 2643 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2644 s->itns[i] = true; 2645 } 2646 } 2647 2648 if (tcg_enabled()) { 2649 /* 2650 * We updated state that affects the CPU's MMUidx and thus its 2651 * hflags; and we can't guarantee that we run before the CPU 2652 * reset function. 2653 */ 2654 arm_rebuild_hflags(&s->cpu->env); 2655 } 2656 } 2657 2658 static void nvic_systick_trigger(void *opaque, int n, int level) 2659 { 2660 NVICState *s = opaque; 2661 2662 if (level) { 2663 /* SysTick just asked us to pend its exception. 2664 * (This is different from an external interrupt line's 2665 * behaviour.) 2666 * n == 0 : NonSecure systick 2667 * n == 1 : Secure systick 2668 */ 2669 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2670 } 2671 } 2672 2673 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2674 { 2675 NVICState *s = NVIC(dev); 2676 2677 /* The armv7m container object will have set our CPU pointer */ 2678 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2679 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2680 return; 2681 } 2682 2683 if (s->num_irq > NVIC_MAX_IRQ) { 2684 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2685 return; 2686 } 2687 2688 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2689 2690 /* include space for internal exception vectors */ 2691 s->num_irq += NVIC_FIRST_IRQ; 2692 2693 if (s->num_prio_bits == 0) { 2694 /* 2695 * If left unspecified, use 2 bits by default on Cortex-M0/M0+/M1 2696 * and 8 bits otherwise. 2697 */ 2698 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2699 } else { 2700 uint8_t min_prio_bits = 2701 arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 3 : 2; 2702 if (s->num_prio_bits < min_prio_bits || s->num_prio_bits > 8) { 2703 error_setg(errp, 2704 "num-prio-bits %d is outside " 2705 "NVIC acceptable range [%d-8]", 2706 s->num_prio_bits, min_prio_bits); 2707 return; 2708 } 2709 } 2710 2711 /* 2712 * This device provides a single memory region which covers the 2713 * sysreg/NVIC registers from 0xE000E000 .. 0xE000EFFF, with the 2714 * exception of the systick timer registers 0xE000E010 .. 0xE000E0FF. 2715 */ 2716 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2717 "nvic_sysregs", 0x1000); 2718 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->sysregmem); 2719 } 2720 2721 static void armv7m_nvic_instance_init(Object *obj) 2722 { 2723 DeviceState *dev = DEVICE(obj); 2724 NVICState *nvic = NVIC(obj); 2725 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2726 2727 sysbus_init_irq(sbd, &nvic->excpout); 2728 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2729 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2730 M_REG_NUM_BANKS); 2731 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2732 } 2733 2734 static void armv7m_nvic_class_init(ObjectClass *klass, const void *data) 2735 { 2736 DeviceClass *dc = DEVICE_CLASS(klass); 2737 2738 dc->vmsd = &vmstate_nvic; 2739 device_class_set_props(dc, props_nvic); 2740 device_class_set_legacy_reset(dc, armv7m_nvic_reset); 2741 dc->realize = armv7m_nvic_realize; 2742 } 2743 2744 static const TypeInfo armv7m_nvic_info = { 2745 .name = TYPE_NVIC, 2746 .parent = TYPE_SYS_BUS_DEVICE, 2747 .instance_init = armv7m_nvic_instance_init, 2748 .instance_size = sizeof(NVICState), 2749 .class_init = armv7m_nvic_class_init, 2750 .class_size = sizeof(SysBusDeviceClass), 2751 }; 2752 2753 static void armv7m_nvic_register_types(void) 2754 { 2755 type_register_static(&armv7m_nvic_info); 2756 } 2757 2758 type_init(armv7m_nvic_register_types) 2759