1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 58 static const uint8_t nvic_id[] = { 59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 60 }; 61 62 static int nvic_pending_prio(NVICState *s) 63 { 64 /* return the group priority of the current pending interrupt, 65 * or NVIC_NOEXC_PRIO if no interrupt is pending 66 */ 67 return s->vectpending_prio; 68 } 69 70 /* Return the value of the ISCR RETTOBASE bit: 71 * 1 if there is exactly one active exception 72 * 0 if there is more than one active exception 73 * UNKNOWN if there are no active exceptions (we choose 1, 74 * which matches the choice Cortex-M3 is documented as making). 75 * 76 * NB: some versions of the documentation talk about this 77 * counting "active exceptions other than the one shown by IPSR"; 78 * this is only different in the obscure corner case where guest 79 * code has manually deactivated an exception and is about 80 * to fail an exception-return integrity check. The definition 81 * above is the one from the v8M ARM ARM and is also in line 82 * with the behaviour documented for the Cortex-M3. 83 */ 84 static bool nvic_rettobase(NVICState *s) 85 { 86 int irq, nhand = 0; 87 88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 89 if (s->vectors[irq].active) { 90 nhand++; 91 if (nhand == 2) { 92 return 0; 93 } 94 } 95 } 96 97 return 1; 98 } 99 100 /* Return the value of the ISCR ISRPENDING bit: 101 * 1 if an external interrupt is pending 102 * 0 if no external interrupt is pending 103 */ 104 static bool nvic_isrpending(NVICState *s) 105 { 106 int irq; 107 108 /* We can shortcut if the highest priority pending interrupt 109 * happens to be external or if there is nothing pending. 110 */ 111 if (s->vectpending > NVIC_FIRST_IRQ) { 112 return true; 113 } 114 if (s->vectpending == 0) { 115 return false; 116 } 117 118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 119 if (s->vectors[irq].pending) { 120 return true; 121 } 122 } 123 return false; 124 } 125 126 /* Return a mask word which clears the subpriority bits from 127 * a priority value for an M-profile exception, leaving only 128 * the group priority. 129 */ 130 static inline uint32_t nvic_gprio_mask(NVICState *s) 131 { 132 return ~0U << (s->prigroup + 1); 133 } 134 135 /* Recompute vectpending and exception_prio */ 136 static void nvic_recompute_state(NVICState *s) 137 { 138 int i; 139 int pend_prio = NVIC_NOEXC_PRIO; 140 int active_prio = NVIC_NOEXC_PRIO; 141 int pend_irq = 0; 142 143 for (i = 1; i < s->num_irq; i++) { 144 VecInfo *vec = &s->vectors[i]; 145 146 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 147 pend_prio = vec->prio; 148 pend_irq = i; 149 } 150 if (vec->active && vec->prio < active_prio) { 151 active_prio = vec->prio; 152 } 153 } 154 155 if (active_prio > 0) { 156 active_prio &= nvic_gprio_mask(s); 157 } 158 159 if (pend_prio > 0) { 160 pend_prio &= nvic_gprio_mask(s); 161 } 162 163 s->vectpending = pend_irq; 164 s->vectpending_prio = pend_prio; 165 s->exception_prio = active_prio; 166 167 trace_nvic_recompute_state(s->vectpending, 168 s->vectpending_prio, 169 s->exception_prio); 170 } 171 172 /* Return the current execution priority of the CPU 173 * (equivalent to the pseudocode ExecutionPriority function). 174 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 175 */ 176 static inline int nvic_exec_prio(NVICState *s) 177 { 178 CPUARMState *env = &s->cpu->env; 179 int running; 180 181 if (env->v7m.faultmask[env->v7m.secure]) { 182 running = -1; 183 } else if (env->v7m.primask[env->v7m.secure]) { 184 running = 0; 185 } else if (env->v7m.basepri[env->v7m.secure] > 0) { 186 running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s); 187 } else { 188 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ 189 } 190 /* consider priority of active handler */ 191 return MIN(running, s->exception_prio); 192 } 193 194 bool armv7m_nvic_can_take_pending_exception(void *opaque) 195 { 196 NVICState *s = opaque; 197 198 return nvic_exec_prio(s) > nvic_pending_prio(s); 199 } 200 201 int armv7m_nvic_raw_execution_priority(void *opaque) 202 { 203 NVICState *s = opaque; 204 205 return s->exception_prio; 206 } 207 208 /* caller must call nvic_irq_update() after this */ 209 static void set_prio(NVICState *s, unsigned irq, uint8_t prio) 210 { 211 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 212 assert(irq < s->num_irq); 213 214 s->vectors[irq].prio = prio; 215 216 trace_nvic_set_prio(irq, prio); 217 } 218 219 /* Recompute state and assert irq line accordingly. 220 * Must be called after changes to: 221 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 222 * prigroup 223 */ 224 static void nvic_irq_update(NVICState *s) 225 { 226 int lvl; 227 int pend_prio; 228 229 nvic_recompute_state(s); 230 pend_prio = nvic_pending_prio(s); 231 232 /* Raise NVIC output if this IRQ would be taken, except that we 233 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 234 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 235 * to those CPU registers don't cause us to recalculate the NVIC 236 * pending info. 237 */ 238 lvl = (pend_prio < s->exception_prio); 239 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 240 qemu_set_irq(s->excpout, lvl); 241 } 242 243 static void armv7m_nvic_clear_pending(void *opaque, int irq) 244 { 245 NVICState *s = (NVICState *)opaque; 246 VecInfo *vec; 247 248 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 249 250 vec = &s->vectors[irq]; 251 trace_nvic_clear_pending(irq, vec->enabled, vec->prio); 252 if (vec->pending) { 253 vec->pending = 0; 254 nvic_irq_update(s); 255 } 256 } 257 258 void armv7m_nvic_set_pending(void *opaque, int irq) 259 { 260 NVICState *s = (NVICState *)opaque; 261 VecInfo *vec; 262 263 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 264 265 vec = &s->vectors[irq]; 266 trace_nvic_set_pending(irq, vec->enabled, vec->prio); 267 268 269 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 270 /* If a synchronous exception is pending then it may be 271 * escalated to HardFault if: 272 * * it is equal or lower priority to current execution 273 * * it is disabled 274 * (ie we need to take it immediately but we can't do so). 275 * Asynchronous exceptions (and interrupts) simply remain pending. 276 * 277 * For QEMU, we don't have any imprecise (asynchronous) faults, 278 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 279 * synchronous. 280 * Debug exceptions are awkward because only Debug exceptions 281 * resulting from the BKPT instruction should be escalated, 282 * but we don't currently implement any Debug exceptions other 283 * than those that result from BKPT, so we treat all debug exceptions 284 * as needing escalation. 285 * 286 * This all means we can identify whether to escalate based only on 287 * the exception number and don't (yet) need the caller to explicitly 288 * tell us whether this exception is synchronous or not. 289 */ 290 int running = nvic_exec_prio(s); 291 bool escalate = false; 292 293 if (vec->prio >= running) { 294 trace_nvic_escalate_prio(irq, vec->prio, running); 295 escalate = true; 296 } else if (!vec->enabled) { 297 trace_nvic_escalate_disabled(irq); 298 escalate = true; 299 } 300 301 if (escalate) { 302 if (running < 0) { 303 /* We want to escalate to HardFault but we can't take a 304 * synchronous HardFault at this point either. This is a 305 * Lockup condition due to a guest bug. We don't model 306 * Lockup, so report via cpu_abort() instead. 307 */ 308 cpu_abort(&s->cpu->parent_obj, 309 "Lockup: can't escalate %d to HardFault " 310 "(current priority %d)\n", irq, running); 311 } 312 313 /* We can do the escalation, so we take HardFault instead */ 314 irq = ARMV7M_EXCP_HARD; 315 vec = &s->vectors[irq]; 316 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 317 } 318 } 319 320 if (!vec->pending) { 321 vec->pending = 1; 322 nvic_irq_update(s); 323 } 324 } 325 326 /* Make pending IRQ active. */ 327 void armv7m_nvic_acknowledge_irq(void *opaque) 328 { 329 NVICState *s = (NVICState *)opaque; 330 CPUARMState *env = &s->cpu->env; 331 const int pending = s->vectpending; 332 const int running = nvic_exec_prio(s); 333 VecInfo *vec; 334 335 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 336 337 vec = &s->vectors[pending]; 338 339 assert(vec->enabled); 340 assert(vec->pending); 341 342 assert(s->vectpending_prio < running); 343 344 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 345 346 vec->active = 1; 347 vec->pending = 0; 348 349 env->v7m.exception = s->vectpending; 350 351 nvic_irq_update(s); 352 } 353 354 int armv7m_nvic_complete_irq(void *opaque, int irq) 355 { 356 NVICState *s = (NVICState *)opaque; 357 VecInfo *vec; 358 int ret; 359 360 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 361 362 vec = &s->vectors[irq]; 363 364 trace_nvic_complete_irq(irq); 365 366 if (!vec->active) { 367 /* Tell the caller this was an illegal exception return */ 368 return -1; 369 } 370 371 ret = nvic_rettobase(s); 372 373 vec->active = 0; 374 if (vec->level) { 375 /* Re-pend the exception if it's still held high; only 376 * happens for extenal IRQs 377 */ 378 assert(irq >= NVIC_FIRST_IRQ); 379 vec->pending = 1; 380 } 381 382 nvic_irq_update(s); 383 384 return ret; 385 } 386 387 /* callback when external interrupt line is changed */ 388 static void set_irq_level(void *opaque, int n, int level) 389 { 390 NVICState *s = opaque; 391 VecInfo *vec; 392 393 n += NVIC_FIRST_IRQ; 394 395 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 396 397 trace_nvic_set_irq_level(n, level); 398 399 /* The pending status of an external interrupt is 400 * latched on rising edge and exception handler return. 401 * 402 * Pulsing the IRQ will always run the handler 403 * once, and the handler will re-run until the 404 * level is low when the handler completes. 405 */ 406 vec = &s->vectors[n]; 407 if (level != vec->level) { 408 vec->level = level; 409 if (level) { 410 armv7m_nvic_set_pending(s, n); 411 } 412 } 413 } 414 415 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 416 { 417 ARMCPU *cpu = s->cpu; 418 uint32_t val; 419 420 switch (offset) { 421 case 4: /* Interrupt Control Type. */ 422 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 423 case 0xd00: /* CPUID Base. */ 424 return cpu->midr; 425 case 0xd04: /* Interrupt Control State. */ 426 /* VECTACTIVE */ 427 val = cpu->env.v7m.exception; 428 /* VECTPENDING */ 429 val |= (s->vectpending & 0xff) << 12; 430 /* ISRPENDING - set if any external IRQ is pending */ 431 if (nvic_isrpending(s)) { 432 val |= (1 << 22); 433 } 434 /* RETTOBASE - set if only one handler is active */ 435 if (nvic_rettobase(s)) { 436 val |= (1 << 11); 437 } 438 /* PENDSTSET */ 439 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 440 val |= (1 << 26); 441 } 442 /* PENDSVSET */ 443 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 444 val |= (1 << 28); 445 } 446 /* NMIPENDSET */ 447 if (s->vectors[ARMV7M_EXCP_NMI].pending) { 448 val |= (1 << 31); 449 } 450 /* ISRPREEMPT not implemented */ 451 return val; 452 case 0xd08: /* Vector Table Offset. */ 453 return cpu->env.v7m.vecbase[attrs.secure]; 454 case 0xd0c: /* Application Interrupt/Reset Control. */ 455 return 0xfa050000 | (s->prigroup << 8); 456 case 0xd10: /* System Control. */ 457 /* TODO: Implement SLEEPONEXIT. */ 458 return 0; 459 case 0xd14: /* Configuration Control. */ 460 /* The BFHFNMIGN bit is the only non-banked bit; we 461 * keep it in the non-secure copy of the register. 462 */ 463 val = cpu->env.v7m.ccr[attrs.secure]; 464 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 465 return val; 466 case 0xd24: /* System Handler Status. */ 467 val = 0; 468 if (s->vectors[ARMV7M_EXCP_MEM].active) { 469 val |= (1 << 0); 470 } 471 if (s->vectors[ARMV7M_EXCP_BUS].active) { 472 val |= (1 << 1); 473 } 474 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 475 val |= (1 << 3); 476 } 477 if (s->vectors[ARMV7M_EXCP_SVC].active) { 478 val |= (1 << 7); 479 } 480 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 481 val |= (1 << 8); 482 } 483 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 484 val |= (1 << 10); 485 } 486 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 487 val |= (1 << 11); 488 } 489 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 490 val |= (1 << 12); 491 } 492 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 493 val |= (1 << 13); 494 } 495 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 496 val |= (1 << 14); 497 } 498 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 499 val |= (1 << 15); 500 } 501 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 502 val |= (1 << 16); 503 } 504 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 505 val |= (1 << 17); 506 } 507 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 508 val |= (1 << 18); 509 } 510 return val; 511 case 0xd28: /* Configurable Fault Status. */ 512 /* The BFSR bits [15:8] are shared between security states 513 * and we store them in the NS copy 514 */ 515 val = cpu->env.v7m.cfsr[attrs.secure]; 516 val |= cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 517 return val; 518 case 0xd2c: /* Hard Fault Status. */ 519 return cpu->env.v7m.hfsr; 520 case 0xd30: /* Debug Fault Status. */ 521 return cpu->env.v7m.dfsr; 522 case 0xd34: /* MMFAR MemManage Fault Address */ 523 return cpu->env.v7m.mmfar[attrs.secure]; 524 case 0xd38: /* Bus Fault Address. */ 525 return cpu->env.v7m.bfar; 526 case 0xd3c: /* Aux Fault Status. */ 527 /* TODO: Implement fault status registers. */ 528 qemu_log_mask(LOG_UNIMP, 529 "Aux Fault status registers unimplemented\n"); 530 return 0; 531 case 0xd40: /* PFR0. */ 532 return 0x00000030; 533 case 0xd44: /* PRF1. */ 534 return 0x00000200; 535 case 0xd48: /* DFR0. */ 536 return 0x00100000; 537 case 0xd4c: /* AFR0. */ 538 return 0x00000000; 539 case 0xd50: /* MMFR0. */ 540 return 0x00000030; 541 case 0xd54: /* MMFR1. */ 542 return 0x00000000; 543 case 0xd58: /* MMFR2. */ 544 return 0x00000000; 545 case 0xd5c: /* MMFR3. */ 546 return 0x00000000; 547 case 0xd60: /* ISAR0. */ 548 return 0x01141110; 549 case 0xd64: /* ISAR1. */ 550 return 0x02111000; 551 case 0xd68: /* ISAR2. */ 552 return 0x21112231; 553 case 0xd6c: /* ISAR3. */ 554 return 0x01111110; 555 case 0xd70: /* ISAR4. */ 556 return 0x01310102; 557 /* TODO: Implement debug registers. */ 558 case 0xd90: /* MPU_TYPE */ 559 /* Unified MPU; if the MPU is not present this value is zero */ 560 return cpu->pmsav7_dregion << 8; 561 break; 562 case 0xd94: /* MPU_CTRL */ 563 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 564 case 0xd98: /* MPU_RNR */ 565 return cpu->env.pmsav7.rnr[attrs.secure]; 566 case 0xd9c: /* MPU_RBAR */ 567 case 0xda4: /* MPU_RBAR_A1 */ 568 case 0xdac: /* MPU_RBAR_A2 */ 569 case 0xdb4: /* MPU_RBAR_A3 */ 570 { 571 int region = cpu->env.pmsav7.rnr[attrs.secure]; 572 573 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 574 /* PMSAv8M handling of the aliases is different from v7M: 575 * aliases A1, A2, A3 override the low two bits of the region 576 * number in MPU_RNR, and there is no 'region' field in the 577 * RBAR register. 578 */ 579 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 580 if (aliasno) { 581 region = deposit32(region, 0, 2, aliasno); 582 } 583 if (region >= cpu->pmsav7_dregion) { 584 return 0; 585 } 586 return cpu->env.pmsav8.rbar[attrs.secure][region]; 587 } 588 589 if (region >= cpu->pmsav7_dregion) { 590 return 0; 591 } 592 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); 593 } 594 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 595 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 596 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 597 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 598 { 599 int region = cpu->env.pmsav7.rnr[attrs.secure]; 600 601 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 602 /* PMSAv8M handling of the aliases is different from v7M: 603 * aliases A1, A2, A3 override the low two bits of the region 604 * number in MPU_RNR. 605 */ 606 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 607 if (aliasno) { 608 region = deposit32(region, 0, 2, aliasno); 609 } 610 if (region >= cpu->pmsav7_dregion) { 611 return 0; 612 } 613 return cpu->env.pmsav8.rlar[attrs.secure][region]; 614 } 615 616 if (region >= cpu->pmsav7_dregion) { 617 return 0; 618 } 619 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 620 (cpu->env.pmsav7.drsr[region] & 0xffff); 621 } 622 case 0xdc0: /* MPU_MAIR0 */ 623 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 624 goto bad_offset; 625 } 626 return cpu->env.pmsav8.mair0[attrs.secure]; 627 case 0xdc4: /* MPU_MAIR1 */ 628 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 629 goto bad_offset; 630 } 631 return cpu->env.pmsav8.mair1[attrs.secure]; 632 default: 633 bad_offset: 634 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 635 return 0; 636 } 637 } 638 639 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 640 MemTxAttrs attrs) 641 { 642 ARMCPU *cpu = s->cpu; 643 644 switch (offset) { 645 case 0xd04: /* Interrupt Control State. */ 646 if (value & (1 << 31)) { 647 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); 648 } 649 if (value & (1 << 28)) { 650 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); 651 } else if (value & (1 << 27)) { 652 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); 653 } 654 if (value & (1 << 26)) { 655 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 656 } else if (value & (1 << 25)) { 657 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); 658 } 659 break; 660 case 0xd08: /* Vector Table Offset. */ 661 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 662 break; 663 case 0xd0c: /* Application Interrupt/Reset Control. */ 664 if ((value >> 16) == 0x05fa) { 665 if (value & 4) { 666 qemu_irq_pulse(s->sysresetreq); 667 } 668 if (value & 2) { 669 qemu_log_mask(LOG_GUEST_ERROR, 670 "Setting VECTCLRACTIVE when not in DEBUG mode " 671 "is UNPREDICTABLE\n"); 672 } 673 if (value & 1) { 674 qemu_log_mask(LOG_GUEST_ERROR, 675 "Setting VECTRESET when not in DEBUG mode " 676 "is UNPREDICTABLE\n"); 677 } 678 s->prigroup = extract32(value, 8, 3); 679 nvic_irq_update(s); 680 } 681 break; 682 case 0xd10: /* System Control. */ 683 /* TODO: Implement control registers. */ 684 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 685 break; 686 case 0xd14: /* Configuration Control. */ 687 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 688 value &= (R_V7M_CCR_STKALIGN_MASK | 689 R_V7M_CCR_BFHFNMIGN_MASK | 690 R_V7M_CCR_DIV_0_TRP_MASK | 691 R_V7M_CCR_UNALIGN_TRP_MASK | 692 R_V7M_CCR_USERSETMPEND_MASK | 693 R_V7M_CCR_NONBASETHRDENA_MASK); 694 695 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 696 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 697 value |= R_V7M_CCR_NONBASETHRDENA_MASK 698 | R_V7M_CCR_STKALIGN_MASK; 699 } 700 if (attrs.secure) { 701 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 702 cpu->env.v7m.ccr[M_REG_NS] = 703 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 704 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 705 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 706 } 707 708 cpu->env.v7m.ccr[attrs.secure] = value; 709 break; 710 case 0xd24: /* System Handler Control. */ 711 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 712 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 713 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 714 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 715 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 716 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 717 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 718 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 719 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 720 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 721 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 722 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 723 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 724 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 725 nvic_irq_update(s); 726 break; 727 case 0xd28: /* Configurable Fault Status. */ 728 cpu->env.v7m.cfsr[attrs.secure] &= ~value; /* W1C */ 729 if (attrs.secure) { 730 /* The BFSR bits [15:8] are shared between security states 731 * and we store them in the NS copy. 732 */ 733 cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 734 } 735 break; 736 case 0xd2c: /* Hard Fault Status. */ 737 cpu->env.v7m.hfsr &= ~value; /* W1C */ 738 break; 739 case 0xd30: /* Debug Fault Status. */ 740 cpu->env.v7m.dfsr &= ~value; /* W1C */ 741 break; 742 case 0xd34: /* Mem Manage Address. */ 743 cpu->env.v7m.mmfar[attrs.secure] = value; 744 return; 745 case 0xd38: /* Bus Fault Address. */ 746 cpu->env.v7m.bfar = value; 747 return; 748 case 0xd3c: /* Aux Fault Status. */ 749 qemu_log_mask(LOG_UNIMP, 750 "NVIC: Aux fault status registers unimplemented\n"); 751 break; 752 case 0xd90: /* MPU_TYPE */ 753 return; /* RO */ 754 case 0xd94: /* MPU_CTRL */ 755 if ((value & 756 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 757 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 758 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 759 "UNPREDICTABLE\n"); 760 } 761 cpu->env.v7m.mpu_ctrl[attrs.secure] 762 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 763 R_V7M_MPU_CTRL_HFNMIENA_MASK | 764 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 765 tlb_flush(CPU(cpu)); 766 break; 767 case 0xd98: /* MPU_RNR */ 768 if (value >= cpu->pmsav7_dregion) { 769 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 770 PRIu32 "/%" PRIu32 "\n", 771 value, cpu->pmsav7_dregion); 772 } else { 773 cpu->env.pmsav7.rnr[attrs.secure] = value; 774 } 775 break; 776 case 0xd9c: /* MPU_RBAR */ 777 case 0xda4: /* MPU_RBAR_A1 */ 778 case 0xdac: /* MPU_RBAR_A2 */ 779 case 0xdb4: /* MPU_RBAR_A3 */ 780 { 781 int region; 782 783 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 784 /* PMSAv8M handling of the aliases is different from v7M: 785 * aliases A1, A2, A3 override the low two bits of the region 786 * number in MPU_RNR, and there is no 'region' field in the 787 * RBAR register. 788 */ 789 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 790 791 region = cpu->env.pmsav7.rnr[attrs.secure]; 792 if (aliasno) { 793 region = deposit32(region, 0, 2, aliasno); 794 } 795 if (region >= cpu->pmsav7_dregion) { 796 return; 797 } 798 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 799 tlb_flush(CPU(cpu)); 800 return; 801 } 802 803 if (value & (1 << 4)) { 804 /* VALID bit means use the region number specified in this 805 * value and also update MPU_RNR.REGION with that value. 806 */ 807 region = extract32(value, 0, 4); 808 if (region >= cpu->pmsav7_dregion) { 809 qemu_log_mask(LOG_GUEST_ERROR, 810 "MPU region out of range %u/%" PRIu32 "\n", 811 region, cpu->pmsav7_dregion); 812 return; 813 } 814 cpu->env.pmsav7.rnr[attrs.secure] = region; 815 } else { 816 region = cpu->env.pmsav7.rnr[attrs.secure]; 817 } 818 819 if (region >= cpu->pmsav7_dregion) { 820 return; 821 } 822 823 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 824 tlb_flush(CPU(cpu)); 825 break; 826 } 827 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 828 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 829 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 830 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 831 { 832 int region = cpu->env.pmsav7.rnr[attrs.secure]; 833 834 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 835 /* PMSAv8M handling of the aliases is different from v7M: 836 * aliases A1, A2, A3 override the low two bits of the region 837 * number in MPU_RNR. 838 */ 839 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 840 841 region = cpu->env.pmsav7.rnr[attrs.secure]; 842 if (aliasno) { 843 region = deposit32(region, 0, 2, aliasno); 844 } 845 if (region >= cpu->pmsav7_dregion) { 846 return; 847 } 848 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 849 tlb_flush(CPU(cpu)); 850 return; 851 } 852 853 if (region >= cpu->pmsav7_dregion) { 854 return; 855 } 856 857 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 858 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 859 tlb_flush(CPU(cpu)); 860 break; 861 } 862 case 0xdc0: /* MPU_MAIR0 */ 863 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 864 goto bad_offset; 865 } 866 if (cpu->pmsav7_dregion) { 867 /* Register is RES0 if no MPU regions are implemented */ 868 cpu->env.pmsav8.mair0[attrs.secure] = value; 869 } 870 /* We don't need to do anything else because memory attributes 871 * only affect cacheability, and we don't implement caching. 872 */ 873 break; 874 case 0xdc4: /* MPU_MAIR1 */ 875 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 876 goto bad_offset; 877 } 878 if (cpu->pmsav7_dregion) { 879 /* Register is RES0 if no MPU regions are implemented */ 880 cpu->env.pmsav8.mair1[attrs.secure] = value; 881 } 882 /* We don't need to do anything else because memory attributes 883 * only affect cacheability, and we don't implement caching. 884 */ 885 break; 886 case 0xf00: /* Software Triggered Interrupt Register */ 887 { 888 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 889 if (excnum < s->num_irq) { 890 armv7m_nvic_set_pending(s, excnum); 891 } 892 break; 893 } 894 default: 895 bad_offset: 896 qemu_log_mask(LOG_GUEST_ERROR, 897 "NVIC: Bad write offset 0x%x\n", offset); 898 } 899 } 900 901 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 902 { 903 /* Return true if unprivileged access to this register is permitted. */ 904 switch (offset) { 905 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 906 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 907 * controls access even though the CPU is in Secure state (I_QDKX). 908 */ 909 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 910 default: 911 /* All other user accesses cause a BusFault unconditionally */ 912 return false; 913 } 914 } 915 916 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 917 uint64_t *data, unsigned size, 918 MemTxAttrs attrs) 919 { 920 NVICState *s = (NVICState *)opaque; 921 uint32_t offset = addr; 922 unsigned i, startvec, end; 923 uint32_t val; 924 925 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 926 /* Generate BusFault for unprivileged accesses */ 927 return MEMTX_ERROR; 928 } 929 930 switch (offset) { 931 /* reads of set and clear both return the status */ 932 case 0x100 ... 0x13f: /* NVIC Set enable */ 933 offset += 0x80; 934 /* fall through */ 935 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 936 val = 0; 937 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 938 939 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 940 if (s->vectors[startvec + i].enabled) { 941 val |= (1 << i); 942 } 943 } 944 break; 945 case 0x200 ... 0x23f: /* NVIC Set pend */ 946 offset += 0x80; 947 /* fall through */ 948 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 949 val = 0; 950 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 951 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 952 if (s->vectors[startvec + i].pending) { 953 val |= (1 << i); 954 } 955 } 956 break; 957 case 0x300 ... 0x33f: /* NVIC Active */ 958 val = 0; 959 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 960 961 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 962 if (s->vectors[startvec + i].active) { 963 val |= (1 << i); 964 } 965 } 966 break; 967 case 0x400 ... 0x5ef: /* NVIC Priority */ 968 val = 0; 969 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 970 971 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 972 val |= s->vectors[startvec + i].prio << (8 * i); 973 } 974 break; 975 case 0xd18 ... 0xd23: /* System Handler Priority. */ 976 val = 0; 977 for (i = 0; i < size; i++) { 978 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); 979 } 980 break; 981 case 0xfe0 ... 0xfff: /* ID. */ 982 if (offset & 3) { 983 val = 0; 984 } else { 985 val = nvic_id[(offset - 0xfe0) >> 2]; 986 } 987 break; 988 default: 989 if (size == 4) { 990 val = nvic_readl(s, offset, attrs); 991 } else { 992 qemu_log_mask(LOG_GUEST_ERROR, 993 "NVIC: Bad read of size %d at offset 0x%x\n", 994 size, offset); 995 val = 0; 996 } 997 } 998 999 trace_nvic_sysreg_read(addr, val, size); 1000 *data = val; 1001 return MEMTX_OK; 1002 } 1003 1004 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1005 uint64_t value, unsigned size, 1006 MemTxAttrs attrs) 1007 { 1008 NVICState *s = (NVICState *)opaque; 1009 uint32_t offset = addr; 1010 unsigned i, startvec, end; 1011 unsigned setval = 0; 1012 1013 trace_nvic_sysreg_write(addr, value, size); 1014 1015 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1016 /* Generate BusFault for unprivileged accesses */ 1017 return MEMTX_ERROR; 1018 } 1019 1020 switch (offset) { 1021 case 0x100 ... 0x13f: /* NVIC Set enable */ 1022 offset += 0x80; 1023 setval = 1; 1024 /* fall through */ 1025 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1026 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1027 1028 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1029 if (value & (1 << i)) { 1030 s->vectors[startvec + i].enabled = setval; 1031 } 1032 } 1033 nvic_irq_update(s); 1034 return MEMTX_OK; 1035 case 0x200 ... 0x23f: /* NVIC Set pend */ 1036 /* the special logic in armv7m_nvic_set_pending() 1037 * is not needed since IRQs are never escalated 1038 */ 1039 offset += 0x80; 1040 setval = 1; 1041 /* fall through */ 1042 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1043 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1044 1045 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1046 if (value & (1 << i)) { 1047 s->vectors[startvec + i].pending = setval; 1048 } 1049 } 1050 nvic_irq_update(s); 1051 return MEMTX_OK; 1052 case 0x300 ... 0x33f: /* NVIC Active */ 1053 return MEMTX_OK; /* R/O */ 1054 case 0x400 ... 0x5ef: /* NVIC Priority */ 1055 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1056 1057 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1058 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); 1059 } 1060 nvic_irq_update(s); 1061 return MEMTX_OK; 1062 case 0xd18 ... 0xd23: /* System Handler Priority. */ 1063 for (i = 0; i < size; i++) { 1064 unsigned hdlidx = (offset - 0xd14) + i; 1065 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); 1066 } 1067 nvic_irq_update(s); 1068 return MEMTX_OK; 1069 } 1070 if (size == 4) { 1071 nvic_writel(s, offset, value, attrs); 1072 return MEMTX_OK; 1073 } 1074 qemu_log_mask(LOG_GUEST_ERROR, 1075 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1076 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1077 return MEMTX_OK; 1078 } 1079 1080 static const MemoryRegionOps nvic_sysreg_ops = { 1081 .read_with_attrs = nvic_sysreg_read, 1082 .write_with_attrs = nvic_sysreg_write, 1083 .endianness = DEVICE_NATIVE_ENDIAN, 1084 }; 1085 1086 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1087 uint64_t value, unsigned size, 1088 MemTxAttrs attrs) 1089 { 1090 if (attrs.secure) { 1091 /* S accesses to the alias act like NS accesses to the real region */ 1092 attrs.secure = 0; 1093 return nvic_sysreg_write(opaque, addr, value, size, attrs); 1094 } else { 1095 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1096 if (attrs.user) { 1097 return MEMTX_ERROR; 1098 } 1099 return MEMTX_OK; 1100 } 1101 } 1102 1103 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1104 uint64_t *data, unsigned size, 1105 MemTxAttrs attrs) 1106 { 1107 if (attrs.secure) { 1108 /* S accesses to the alias act like NS accesses to the real region */ 1109 attrs.secure = 0; 1110 return nvic_sysreg_read(opaque, addr, data, size, attrs); 1111 } else { 1112 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1113 if (attrs.user) { 1114 return MEMTX_ERROR; 1115 } 1116 *data = 0; 1117 return MEMTX_OK; 1118 } 1119 } 1120 1121 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1122 .read_with_attrs = nvic_sysreg_ns_read, 1123 .write_with_attrs = nvic_sysreg_ns_write, 1124 .endianness = DEVICE_NATIVE_ENDIAN, 1125 }; 1126 1127 static int nvic_post_load(void *opaque, int version_id) 1128 { 1129 NVICState *s = opaque; 1130 unsigned i; 1131 1132 /* Check for out of range priority settings */ 1133 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || 1134 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 1135 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 1136 return 1; 1137 } 1138 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 1139 if (s->vectors[i].prio & ~0xff) { 1140 return 1; 1141 } 1142 } 1143 1144 nvic_recompute_state(s); 1145 1146 return 0; 1147 } 1148 1149 static const VMStateDescription vmstate_VecInfo = { 1150 .name = "armv7m_nvic_info", 1151 .version_id = 1, 1152 .minimum_version_id = 1, 1153 .fields = (VMStateField[]) { 1154 VMSTATE_INT16(prio, VecInfo), 1155 VMSTATE_UINT8(enabled, VecInfo), 1156 VMSTATE_UINT8(pending, VecInfo), 1157 VMSTATE_UINT8(active, VecInfo), 1158 VMSTATE_UINT8(level, VecInfo), 1159 VMSTATE_END_OF_LIST() 1160 } 1161 }; 1162 1163 static bool nvic_security_needed(void *opaque) 1164 { 1165 NVICState *s = opaque; 1166 1167 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 1168 } 1169 1170 static int nvic_security_post_load(void *opaque, int version_id) 1171 { 1172 NVICState *s = opaque; 1173 int i; 1174 1175 /* Check for out of range priority settings */ 1176 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1) { 1177 return 1; 1178 } 1179 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 1180 if (s->sec_vectors[i].prio & ~0xff) { 1181 return 1; 1182 } 1183 } 1184 return 0; 1185 } 1186 1187 static const VMStateDescription vmstate_nvic_security = { 1188 .name = "nvic/m-security", 1189 .version_id = 1, 1190 .minimum_version_id = 1, 1191 .needed = nvic_security_needed, 1192 .post_load = &nvic_security_post_load, 1193 .fields = (VMStateField[]) { 1194 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 1195 vmstate_VecInfo, VecInfo), 1196 VMSTATE_END_OF_LIST() 1197 } 1198 }; 1199 1200 static const VMStateDescription vmstate_nvic = { 1201 .name = "armv7m_nvic", 1202 .version_id = 4, 1203 .minimum_version_id = 4, 1204 .post_load = &nvic_post_load, 1205 .fields = (VMStateField[]) { 1206 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 1207 vmstate_VecInfo, VecInfo), 1208 VMSTATE_UINT32(prigroup, NVICState), 1209 VMSTATE_END_OF_LIST() 1210 }, 1211 .subsections = (const VMStateDescription*[]) { 1212 &vmstate_nvic_security, 1213 NULL 1214 } 1215 }; 1216 1217 static Property props_nvic[] = { 1218 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 1219 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 1220 DEFINE_PROP_END_OF_LIST() 1221 }; 1222 1223 static void armv7m_nvic_reset(DeviceState *dev) 1224 { 1225 NVICState *s = NVIC(dev); 1226 1227 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 1228 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1229 /* MEM, BUS, and USAGE are enabled through 1230 * the System Handler Control register 1231 */ 1232 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 1233 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 1234 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1235 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1236 1237 s->vectors[ARMV7M_EXCP_RESET].prio = -3; 1238 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1239 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1240 1241 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 1242 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 1243 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 1244 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 1245 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 1246 1247 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 1248 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1249 } 1250 1251 /* Strictly speaking the reset handler should be enabled. 1252 * However, we don't simulate soft resets through the NVIC, 1253 * and the reset vector should never be pended. 1254 * So we leave it disabled to catch logic errors. 1255 */ 1256 1257 s->exception_prio = NVIC_NOEXC_PRIO; 1258 s->vectpending = 0; 1259 s->vectpending_is_s_banked = false; 1260 s->vectpending_prio = NVIC_NOEXC_PRIO; 1261 } 1262 1263 static void nvic_systick_trigger(void *opaque, int n, int level) 1264 { 1265 NVICState *s = opaque; 1266 1267 if (level) { 1268 /* SysTick just asked us to pend its exception. 1269 * (This is different from an external interrupt line's 1270 * behaviour.) 1271 */ 1272 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 1273 } 1274 } 1275 1276 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 1277 { 1278 NVICState *s = NVIC(dev); 1279 SysBusDevice *systick_sbd; 1280 Error *err = NULL; 1281 int regionlen; 1282 1283 s->cpu = ARM_CPU(qemu_get_cpu(0)); 1284 assert(s->cpu); 1285 1286 if (s->num_irq > NVIC_MAX_IRQ) { 1287 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 1288 return; 1289 } 1290 1291 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 1292 1293 /* include space for internal exception vectors */ 1294 s->num_irq += NVIC_FIRST_IRQ; 1295 1296 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 1297 if (err != NULL) { 1298 error_propagate(errp, err); 1299 return; 1300 } 1301 systick_sbd = SYS_BUS_DEVICE(&s->systick); 1302 sysbus_connect_irq(systick_sbd, 0, 1303 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 1304 1305 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 1306 * and looks like this: 1307 * 0x004 - ICTR 1308 * 0x010 - 0xff - systick 1309 * 0x100..0x7ec - NVIC 1310 * 0x7f0..0xcff - Reserved 1311 * 0xd00..0xd3c - SCS registers 1312 * 0xd40..0xeff - Reserved or Not implemented 1313 * 0xf00 - STIR 1314 * 1315 * Some registers within this space are banked between security states. 1316 * In v8M there is a second range 0xe002e000..0xe002efff which is the 1317 * NonSecure alias SCS; secure accesses to this behave like NS accesses 1318 * to the main SCS range, and non-secure accesses (including when 1319 * the security extension is not implemented) are RAZ/WI. 1320 * Note that both the main SCS range and the alias range are defined 1321 * to be exempt from memory attribution (R_BLJT) and so the memory 1322 * transaction attribute always matches the current CPU security 1323 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 1324 * wrappers we change attrs.secure to indicate the NS access; so 1325 * generally code determining which banked register to use should 1326 * use attrs.secure; code determining actual behaviour of the system 1327 * should use env->v7m.secure. 1328 */ 1329 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 1330 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 1331 /* The system register region goes at the bottom of the priority 1332 * stack as it covers the whole page. 1333 */ 1334 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 1335 "nvic_sysregs", 0x1000); 1336 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 1337 memory_region_add_subregion_overlap(&s->container, 0x10, 1338 sysbus_mmio_get_region(systick_sbd, 0), 1339 1); 1340 1341 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 1342 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 1343 &nvic_sysreg_ns_ops, s, 1344 "nvic_sysregs_ns", 0x1000); 1345 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 1346 } 1347 1348 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 1349 } 1350 1351 static void armv7m_nvic_instance_init(Object *obj) 1352 { 1353 /* We have a different default value for the num-irq property 1354 * than our superclass. This function runs after qdev init 1355 * has set the defaults from the Property array and before 1356 * any user-specified property setting, so just modify the 1357 * value in the GICState struct. 1358 */ 1359 DeviceState *dev = DEVICE(obj); 1360 NVICState *nvic = NVIC(obj); 1361 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1362 1363 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 1364 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 1365 1366 sysbus_init_irq(sbd, &nvic->excpout); 1367 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 1368 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 1369 } 1370 1371 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 1372 { 1373 DeviceClass *dc = DEVICE_CLASS(klass); 1374 1375 dc->vmsd = &vmstate_nvic; 1376 dc->props = props_nvic; 1377 dc->reset = armv7m_nvic_reset; 1378 dc->realize = armv7m_nvic_realize; 1379 } 1380 1381 static const TypeInfo armv7m_nvic_info = { 1382 .name = TYPE_NVIC, 1383 .parent = TYPE_SYS_BUS_DEVICE, 1384 .instance_init = armv7m_nvic_instance_init, 1385 .instance_size = sizeof(NVICState), 1386 .class_init = armv7m_nvic_class_init, 1387 .class_size = sizeof(SysBusDeviceClass), 1388 }; 1389 1390 static void armv7m_nvic_register_types(void) 1391 { 1392 type_register_static(&armv7m_nvic_info); 1393 } 1394 1395 type_init(armv7m_nvic_register_types) 1396