xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 4f2eff36ad2d8f19a63544ff77b572d307c7f5c9)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528 
529     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
530     assert(!secure || banked);
531 
532     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
533 
534     trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio);
535 
536     if (derived) {
537         /* Derived exceptions are always synchronous. */
538         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
539 
540         if (irq == ARMV7M_EXCP_DEBUG &&
541             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
542             /* DebugMonitorFault, but its priority is lower than the
543              * preempted exception priority: just ignore it.
544              */
545             return;
546         }
547 
548         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
549             /* If this is a terminal exception (one which means we cannot
550              * take the original exception, like a failure to read its
551              * vector table entry), then we must take the derived exception.
552              * If the derived exception can't take priority over the
553              * original exception, then we go into Lockup.
554              *
555              * For QEMU, we rely on the fact that a derived exception is
556              * terminal if and only if it's reported to us as HardFault,
557              * which saves having to have an extra argument is_terminal
558              * that we'd only use in one place.
559              */
560             cpu_abort(&s->cpu->parent_obj,
561                       "Lockup: can't take terminal derived exception "
562                       "(original exception priority %d)\n",
563                       s->vectpending_prio);
564         }
565         /* We now continue with the same code as for a normal pending
566          * exception, which will cause us to pend the derived exception.
567          * We'll then take either the original or the derived exception
568          * based on which is higher priority by the usual mechanism
569          * for selecting the highest priority pending interrupt.
570          */
571     }
572 
573     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
574         /* If a synchronous exception is pending then it may be
575          * escalated to HardFault if:
576          *  * it is equal or lower priority to current execution
577          *  * it is disabled
578          * (ie we need to take it immediately but we can't do so).
579          * Asynchronous exceptions (and interrupts) simply remain pending.
580          *
581          * For QEMU, we don't have any imprecise (asynchronous) faults,
582          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
583          * synchronous.
584          * Debug exceptions are awkward because only Debug exceptions
585          * resulting from the BKPT instruction should be escalated,
586          * but we don't currently implement any Debug exceptions other
587          * than those that result from BKPT, so we treat all debug exceptions
588          * as needing escalation.
589          *
590          * This all means we can identify whether to escalate based only on
591          * the exception number and don't (yet) need the caller to explicitly
592          * tell us whether this exception is synchronous or not.
593          */
594         int running = nvic_exec_prio(s);
595         bool escalate = false;
596 
597         if (exc_group_prio(s, vec->prio, secure) >= running) {
598             trace_nvic_escalate_prio(irq, vec->prio, running);
599             escalate = true;
600         } else if (!vec->enabled) {
601             trace_nvic_escalate_disabled(irq);
602             escalate = true;
603         }
604 
605         if (escalate) {
606 
607             /* We need to escalate this exception to a synchronous HardFault.
608              * If BFHFNMINS is set then we escalate to the banked HF for
609              * the target security state of the original exception; otherwise
610              * we take a Secure HardFault.
611              */
612             irq = ARMV7M_EXCP_HARD;
613             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
614                 (secure ||
615                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
616                 vec = &s->sec_vectors[irq];
617             } else {
618                 vec = &s->vectors[irq];
619             }
620             if (running <= vec->prio) {
621                 /* We want to escalate to HardFault but we can't take the
622                  * synchronous HardFault at this point either. This is a
623                  * Lockup condition due to a guest bug. We don't model
624                  * Lockup, so report via cpu_abort() instead.
625                  */
626                 cpu_abort(&s->cpu->parent_obj,
627                           "Lockup: can't escalate %d to HardFault "
628                           "(current priority %d)\n", irq, running);
629             }
630 
631             /* HF may be banked but there is only one shared HFSR */
632             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
633         }
634     }
635 
636     if (!vec->pending) {
637         vec->pending = 1;
638         nvic_irq_update(s);
639     }
640 }
641 
642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
643 {
644     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
645 }
646 
647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
648 {
649     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
650 }
651 
652 /* Make pending IRQ active.  */
653 void armv7m_nvic_acknowledge_irq(void *opaque)
654 {
655     NVICState *s = (NVICState *)opaque;
656     CPUARMState *env = &s->cpu->env;
657     const int pending = s->vectpending;
658     const int running = nvic_exec_prio(s);
659     VecInfo *vec;
660 
661     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
662 
663     if (s->vectpending_is_s_banked) {
664         vec = &s->sec_vectors[pending];
665     } else {
666         vec = &s->vectors[pending];
667     }
668 
669     assert(vec->enabled);
670     assert(vec->pending);
671 
672     assert(s->vectpending_prio < running);
673 
674     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
675 
676     vec->active = 1;
677     vec->pending = 0;
678 
679     write_v7m_exception(env, s->vectpending);
680 
681     nvic_irq_update(s);
682 }
683 
684 void armv7m_nvic_get_pending_irq_info(void *opaque,
685                                       int *pirq, bool *ptargets_secure)
686 {
687     NVICState *s = (NVICState *)opaque;
688     const int pending = s->vectpending;
689     bool targets_secure;
690 
691     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
692 
693     if (s->vectpending_is_s_banked) {
694         targets_secure = true;
695     } else {
696         targets_secure = !exc_is_banked(pending) &&
697             exc_targets_secure(s, pending);
698     }
699 
700     trace_nvic_get_pending_irq_info(pending, targets_secure);
701 
702     *ptargets_secure = targets_secure;
703     *pirq = pending;
704 }
705 
706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
707 {
708     NVICState *s = (NVICState *)opaque;
709     VecInfo *vec;
710     int ret;
711 
712     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
713 
714     if (secure && exc_is_banked(irq)) {
715         vec = &s->sec_vectors[irq];
716     } else {
717         vec = &s->vectors[irq];
718     }
719 
720     trace_nvic_complete_irq(irq, secure);
721 
722     if (!vec->active) {
723         /* Tell the caller this was an illegal exception return */
724         return -1;
725     }
726 
727     ret = nvic_rettobase(s);
728 
729     vec->active = 0;
730     if (vec->level) {
731         /* Re-pend the exception if it's still held high; only
732          * happens for extenal IRQs
733          */
734         assert(irq >= NVIC_FIRST_IRQ);
735         vec->pending = 1;
736     }
737 
738     nvic_irq_update(s);
739 
740     return ret;
741 }
742 
743 /* callback when external interrupt line is changed */
744 static void set_irq_level(void *opaque, int n, int level)
745 {
746     NVICState *s = opaque;
747     VecInfo *vec;
748 
749     n += NVIC_FIRST_IRQ;
750 
751     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
752 
753     trace_nvic_set_irq_level(n, level);
754 
755     /* The pending status of an external interrupt is
756      * latched on rising edge and exception handler return.
757      *
758      * Pulsing the IRQ will always run the handler
759      * once, and the handler will re-run until the
760      * level is low when the handler completes.
761      */
762     vec = &s->vectors[n];
763     if (level != vec->level) {
764         vec->level = level;
765         if (level) {
766             armv7m_nvic_set_pending(s, n, false);
767         }
768     }
769 }
770 
771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
772 {
773     ARMCPU *cpu = s->cpu;
774     uint32_t val;
775 
776     switch (offset) {
777     case 4: /* Interrupt Control Type.  */
778         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
779     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
780     {
781         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
782         int i;
783 
784         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
785             goto bad_offset;
786         }
787         if (!attrs.secure) {
788             return 0;
789         }
790         val = 0;
791         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
792             if (s->itns[startvec + i]) {
793                 val |= (1 << i);
794             }
795         }
796         return val;
797     }
798     case 0xd00: /* CPUID Base.  */
799         return cpu->midr;
800     case 0xd04: /* Interrupt Control State (ICSR) */
801         /* VECTACTIVE */
802         val = cpu->env.v7m.exception;
803         /* VECTPENDING */
804         val |= (s->vectpending & 0xff) << 12;
805         /* ISRPENDING - set if any external IRQ is pending */
806         if (nvic_isrpending(s)) {
807             val |= (1 << 22);
808         }
809         /* RETTOBASE - set if only one handler is active */
810         if (nvic_rettobase(s)) {
811             val |= (1 << 11);
812         }
813         if (attrs.secure) {
814             /* PENDSTSET */
815             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
816                 val |= (1 << 26);
817             }
818             /* PENDSVSET */
819             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
820                 val |= (1 << 28);
821             }
822         } else {
823             /* PENDSTSET */
824             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
825                 val |= (1 << 26);
826             }
827             /* PENDSVSET */
828             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
829                 val |= (1 << 28);
830             }
831         }
832         /* NMIPENDSET */
833         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
834             && s->vectors[ARMV7M_EXCP_NMI].pending) {
835             val |= (1 << 31);
836         }
837         /* ISRPREEMPT: RES0 when halting debug not implemented */
838         /* STTNS: RES0 for the Main Extension */
839         return val;
840     case 0xd08: /* Vector Table Offset.  */
841         return cpu->env.v7m.vecbase[attrs.secure];
842     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
843         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
844         if (attrs.secure) {
845             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
846             val |= cpu->env.v7m.aircr;
847         } else {
848             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
849                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
850                  * security isn't supported then BFHFNMINS is RAO (and
851                  * the bit in env.v7m.aircr is always set).
852                  */
853                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
854             }
855         }
856         return val;
857     case 0xd10: /* System Control.  */
858         /* TODO: Implement SLEEPONEXIT.  */
859         return 0;
860     case 0xd14: /* Configuration Control.  */
861         /* The BFHFNMIGN bit is the only non-banked bit; we
862          * keep it in the non-secure copy of the register.
863          */
864         val = cpu->env.v7m.ccr[attrs.secure];
865         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
866         return val;
867     case 0xd24: /* System Handler Control and State (SHCSR) */
868         val = 0;
869         if (attrs.secure) {
870             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
871                 val |= (1 << 0);
872             }
873             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
874                 val |= (1 << 2);
875             }
876             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
877                 val |= (1 << 3);
878             }
879             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
880                 val |= (1 << 7);
881             }
882             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
883                 val |= (1 << 10);
884             }
885             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
886                 val |= (1 << 11);
887             }
888             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
889                 val |= (1 << 12);
890             }
891             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
892                 val |= (1 << 13);
893             }
894             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
895                 val |= (1 << 15);
896             }
897             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
898                 val |= (1 << 16);
899             }
900             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
901                 val |= (1 << 18);
902             }
903             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
904                 val |= (1 << 21);
905             }
906             /* SecureFault is not banked but is always RAZ/WI to NS */
907             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
908                 val |= (1 << 4);
909             }
910             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
911                 val |= (1 << 19);
912             }
913             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
914                 val |= (1 << 20);
915             }
916         } else {
917             if (s->vectors[ARMV7M_EXCP_MEM].active) {
918                 val |= (1 << 0);
919             }
920             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
921                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
922                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
923                     val |= (1 << 2);
924                 }
925                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
926                     val |= (1 << 21);
927                 }
928             }
929             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
930                 val |= (1 << 3);
931             }
932             if (s->vectors[ARMV7M_EXCP_SVC].active) {
933                 val |= (1 << 7);
934             }
935             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
936                 val |= (1 << 10);
937             }
938             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
939                 val |= (1 << 11);
940             }
941             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
942                 val |= (1 << 12);
943             }
944             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
945                 val |= (1 << 13);
946             }
947             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
948                 val |= (1 << 15);
949             }
950             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
951                 val |= (1 << 16);
952             }
953             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
954                 val |= (1 << 18);
955             }
956         }
957         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
958             if (s->vectors[ARMV7M_EXCP_BUS].active) {
959                 val |= (1 << 1);
960             }
961             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
962                 val |= (1 << 14);
963             }
964             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
965                 val |= (1 << 17);
966             }
967             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
968                 s->vectors[ARMV7M_EXCP_NMI].active) {
969                 /* NMIACT is not present in v7M */
970                 val |= (1 << 5);
971             }
972         }
973 
974         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
975         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
976             val |= (1 << 8);
977         }
978         return val;
979     case 0xd2c: /* Hard Fault Status.  */
980         return cpu->env.v7m.hfsr;
981     case 0xd30: /* Debug Fault Status.  */
982         return cpu->env.v7m.dfsr;
983     case 0xd34: /* MMFAR MemManage Fault Address */
984         return cpu->env.v7m.mmfar[attrs.secure];
985     case 0xd38: /* Bus Fault Address.  */
986         return cpu->env.v7m.bfar;
987     case 0xd3c: /* Aux Fault Status.  */
988         /* TODO: Implement fault status registers.  */
989         qemu_log_mask(LOG_UNIMP,
990                       "Aux Fault status registers unimplemented\n");
991         return 0;
992     case 0xd40: /* PFR0.  */
993         return cpu->id_pfr0;
994     case 0xd44: /* PFR1.  */
995         return cpu->id_pfr1;
996     case 0xd48: /* DFR0.  */
997         return cpu->id_dfr0;
998     case 0xd4c: /* AFR0.  */
999         return cpu->id_afr0;
1000     case 0xd50: /* MMFR0.  */
1001         return cpu->id_mmfr0;
1002     case 0xd54: /* MMFR1.  */
1003         return cpu->id_mmfr1;
1004     case 0xd58: /* MMFR2.  */
1005         return cpu->id_mmfr2;
1006     case 0xd5c: /* MMFR3.  */
1007         return cpu->id_mmfr3;
1008     case 0xd60: /* ISAR0.  */
1009         return cpu->id_isar0;
1010     case 0xd64: /* ISAR1.  */
1011         return cpu->id_isar1;
1012     case 0xd68: /* ISAR2.  */
1013         return cpu->id_isar2;
1014     case 0xd6c: /* ISAR3.  */
1015         return cpu->id_isar3;
1016     case 0xd70: /* ISAR4.  */
1017         return cpu->id_isar4;
1018     case 0xd74: /* ISAR5.  */
1019         return cpu->id_isar5;
1020     /* TODO: Implement debug registers.  */
1021     case 0xd90: /* MPU_TYPE */
1022         /* Unified MPU; if the MPU is not present this value is zero */
1023         return cpu->pmsav7_dregion << 8;
1024         break;
1025     case 0xd94: /* MPU_CTRL */
1026         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1027     case 0xd98: /* MPU_RNR */
1028         return cpu->env.pmsav7.rnr[attrs.secure];
1029     case 0xd9c: /* MPU_RBAR */
1030     case 0xda4: /* MPU_RBAR_A1 */
1031     case 0xdac: /* MPU_RBAR_A2 */
1032     case 0xdb4: /* MPU_RBAR_A3 */
1033     {
1034         int region = cpu->env.pmsav7.rnr[attrs.secure];
1035 
1036         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1037             /* PMSAv8M handling of the aliases is different from v7M:
1038              * aliases A1, A2, A3 override the low two bits of the region
1039              * number in MPU_RNR, and there is no 'region' field in the
1040              * RBAR register.
1041              */
1042             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1043             if (aliasno) {
1044                 region = deposit32(region, 0, 2, aliasno);
1045             }
1046             if (region >= cpu->pmsav7_dregion) {
1047                 return 0;
1048             }
1049             return cpu->env.pmsav8.rbar[attrs.secure][region];
1050         }
1051 
1052         if (region >= cpu->pmsav7_dregion) {
1053             return 0;
1054         }
1055         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1056     }
1057     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1058     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1059     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1060     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1061     {
1062         int region = cpu->env.pmsav7.rnr[attrs.secure];
1063 
1064         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1065             /* PMSAv8M handling of the aliases is different from v7M:
1066              * aliases A1, A2, A3 override the low two bits of the region
1067              * number in MPU_RNR.
1068              */
1069             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1070             if (aliasno) {
1071                 region = deposit32(region, 0, 2, aliasno);
1072             }
1073             if (region >= cpu->pmsav7_dregion) {
1074                 return 0;
1075             }
1076             return cpu->env.pmsav8.rlar[attrs.secure][region];
1077         }
1078 
1079         if (region >= cpu->pmsav7_dregion) {
1080             return 0;
1081         }
1082         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1083             (cpu->env.pmsav7.drsr[region] & 0xffff);
1084     }
1085     case 0xdc0: /* MPU_MAIR0 */
1086         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1087             goto bad_offset;
1088         }
1089         return cpu->env.pmsav8.mair0[attrs.secure];
1090     case 0xdc4: /* MPU_MAIR1 */
1091         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1092             goto bad_offset;
1093         }
1094         return cpu->env.pmsav8.mair1[attrs.secure];
1095     case 0xdd0: /* SAU_CTRL */
1096         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1097             goto bad_offset;
1098         }
1099         if (!attrs.secure) {
1100             return 0;
1101         }
1102         return cpu->env.sau.ctrl;
1103     case 0xdd4: /* SAU_TYPE */
1104         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1105             goto bad_offset;
1106         }
1107         if (!attrs.secure) {
1108             return 0;
1109         }
1110         return cpu->sau_sregion;
1111     case 0xdd8: /* SAU_RNR */
1112         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1113             goto bad_offset;
1114         }
1115         if (!attrs.secure) {
1116             return 0;
1117         }
1118         return cpu->env.sau.rnr;
1119     case 0xddc: /* SAU_RBAR */
1120     {
1121         int region = cpu->env.sau.rnr;
1122 
1123         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1124             goto bad_offset;
1125         }
1126         if (!attrs.secure) {
1127             return 0;
1128         }
1129         if (region >= cpu->sau_sregion) {
1130             return 0;
1131         }
1132         return cpu->env.sau.rbar[region];
1133     }
1134     case 0xde0: /* SAU_RLAR */
1135     {
1136         int region = cpu->env.sau.rnr;
1137 
1138         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1139             goto bad_offset;
1140         }
1141         if (!attrs.secure) {
1142             return 0;
1143         }
1144         if (region >= cpu->sau_sregion) {
1145             return 0;
1146         }
1147         return cpu->env.sau.rlar[region];
1148     }
1149     case 0xde4: /* SFSR */
1150         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1151             goto bad_offset;
1152         }
1153         if (!attrs.secure) {
1154             return 0;
1155         }
1156         return cpu->env.v7m.sfsr;
1157     case 0xde8: /* SFAR */
1158         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1159             goto bad_offset;
1160         }
1161         if (!attrs.secure) {
1162             return 0;
1163         }
1164         return cpu->env.v7m.sfar;
1165     default:
1166     bad_offset:
1167         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1168         return 0;
1169     }
1170 }
1171 
1172 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1173                         MemTxAttrs attrs)
1174 {
1175     ARMCPU *cpu = s->cpu;
1176 
1177     switch (offset) {
1178     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1179     {
1180         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1181         int i;
1182 
1183         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1184             goto bad_offset;
1185         }
1186         if (!attrs.secure) {
1187             break;
1188         }
1189         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1190             s->itns[startvec + i] = (value >> i) & 1;
1191         }
1192         nvic_irq_update(s);
1193         break;
1194     }
1195     case 0xd04: /* Interrupt Control State (ICSR) */
1196         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1197             if (value & (1 << 31)) {
1198                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1199             } else if (value & (1 << 30) &&
1200                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1201                 /* PENDNMICLR didn't exist in v7M */
1202                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1203             }
1204         }
1205         if (value & (1 << 28)) {
1206             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1207         } else if (value & (1 << 27)) {
1208             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1209         }
1210         if (value & (1 << 26)) {
1211             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1212         } else if (value & (1 << 25)) {
1213             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1214         }
1215         break;
1216     case 0xd08: /* Vector Table Offset.  */
1217         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1218         break;
1219     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1220         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1221             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1222                 if (attrs.secure ||
1223                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1224                     qemu_irq_pulse(s->sysresetreq);
1225                 }
1226             }
1227             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1228                 qemu_log_mask(LOG_GUEST_ERROR,
1229                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1230                               "is UNPREDICTABLE\n");
1231             }
1232             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1233                 /* NB: this bit is RES0 in v8M */
1234                 qemu_log_mask(LOG_GUEST_ERROR,
1235                               "Setting VECTRESET when not in DEBUG mode "
1236                               "is UNPREDICTABLE\n");
1237             }
1238             s->prigroup[attrs.secure] = extract32(value,
1239                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1240                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1241             if (attrs.secure) {
1242                 /* These bits are only writable by secure */
1243                 cpu->env.v7m.aircr = value &
1244                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1245                      R_V7M_AIRCR_BFHFNMINS_MASK |
1246                      R_V7M_AIRCR_PRIS_MASK);
1247                 /* BFHFNMINS changes the priority of Secure HardFault, and
1248                  * allows a pending Non-secure HardFault to preempt (which
1249                  * we implement by marking it enabled).
1250                  */
1251                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1252                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1253                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1254                 } else {
1255                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1256                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1257                 }
1258             }
1259             nvic_irq_update(s);
1260         }
1261         break;
1262     case 0xd10: /* System Control.  */
1263         /* TODO: Implement control registers.  */
1264         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1265         break;
1266     case 0xd14: /* Configuration Control.  */
1267         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1268         value &= (R_V7M_CCR_STKALIGN_MASK |
1269                   R_V7M_CCR_BFHFNMIGN_MASK |
1270                   R_V7M_CCR_DIV_0_TRP_MASK |
1271                   R_V7M_CCR_UNALIGN_TRP_MASK |
1272                   R_V7M_CCR_USERSETMPEND_MASK |
1273                   R_V7M_CCR_NONBASETHRDENA_MASK);
1274 
1275         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1276             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1277             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1278                 | R_V7M_CCR_STKALIGN_MASK;
1279         }
1280         if (attrs.secure) {
1281             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1282             cpu->env.v7m.ccr[M_REG_NS] =
1283                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1284                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1285             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1286         }
1287 
1288         cpu->env.v7m.ccr[attrs.secure] = value;
1289         break;
1290     case 0xd24: /* System Handler Control and State (SHCSR) */
1291         if (attrs.secure) {
1292             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1293             /* Secure HardFault active bit cannot be written */
1294             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1295             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1296             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1297                 (value & (1 << 10)) != 0;
1298             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1299                 (value & (1 << 11)) != 0;
1300             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1301                 (value & (1 << 12)) != 0;
1302             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1303             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1304             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1305             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1306             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1307                 (value & (1 << 18)) != 0;
1308             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1309             /* SecureFault not banked, but RAZ/WI to NS */
1310             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1311             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1312             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1313         } else {
1314             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1315             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1316                 /* HARDFAULTPENDED is not present in v7M */
1317                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1318             }
1319             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1320             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1321             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1322             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1323             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1324             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1325             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1326             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1327             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1328         }
1329         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1330             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1331             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1332             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1333         }
1334         /* NMIACT can only be written if the write is of a zero, with
1335          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1336          */
1337         if (!attrs.secure && cpu->env.v7m.secure &&
1338             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1339             (value & (1 << 5)) == 0) {
1340             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1341         }
1342         /* HARDFAULTACT can only be written if the write is of a zero
1343          * to the non-secure HardFault state by the CPU in secure state.
1344          * The only case where we can be targeting the non-secure HF state
1345          * when in secure state is if this is a write via the NS alias
1346          * and BFHFNMINS is 1.
1347          */
1348         if (!attrs.secure && cpu->env.v7m.secure &&
1349             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1350             (value & (1 << 2)) == 0) {
1351             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1352         }
1353 
1354         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1355         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1356         nvic_irq_update(s);
1357         break;
1358     case 0xd2c: /* Hard Fault Status.  */
1359         cpu->env.v7m.hfsr &= ~value; /* W1C */
1360         break;
1361     case 0xd30: /* Debug Fault Status.  */
1362         cpu->env.v7m.dfsr &= ~value; /* W1C */
1363         break;
1364     case 0xd34: /* Mem Manage Address.  */
1365         cpu->env.v7m.mmfar[attrs.secure] = value;
1366         return;
1367     case 0xd38: /* Bus Fault Address.  */
1368         cpu->env.v7m.bfar = value;
1369         return;
1370     case 0xd3c: /* Aux Fault Status.  */
1371         qemu_log_mask(LOG_UNIMP,
1372                       "NVIC: Aux fault status registers unimplemented\n");
1373         break;
1374     case 0xd90: /* MPU_TYPE */
1375         return; /* RO */
1376     case 0xd94: /* MPU_CTRL */
1377         if ((value &
1378              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1379             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1380             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1381                           "UNPREDICTABLE\n");
1382         }
1383         cpu->env.v7m.mpu_ctrl[attrs.secure]
1384             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1385                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1386                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1387         tlb_flush(CPU(cpu));
1388         break;
1389     case 0xd98: /* MPU_RNR */
1390         if (value >= cpu->pmsav7_dregion) {
1391             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1392                           PRIu32 "/%" PRIu32 "\n",
1393                           value, cpu->pmsav7_dregion);
1394         } else {
1395             cpu->env.pmsav7.rnr[attrs.secure] = value;
1396         }
1397         break;
1398     case 0xd9c: /* MPU_RBAR */
1399     case 0xda4: /* MPU_RBAR_A1 */
1400     case 0xdac: /* MPU_RBAR_A2 */
1401     case 0xdb4: /* MPU_RBAR_A3 */
1402     {
1403         int region;
1404 
1405         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1406             /* PMSAv8M handling of the aliases is different from v7M:
1407              * aliases A1, A2, A3 override the low two bits of the region
1408              * number in MPU_RNR, and there is no 'region' field in the
1409              * RBAR register.
1410              */
1411             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1412 
1413             region = cpu->env.pmsav7.rnr[attrs.secure];
1414             if (aliasno) {
1415                 region = deposit32(region, 0, 2, aliasno);
1416             }
1417             if (region >= cpu->pmsav7_dregion) {
1418                 return;
1419             }
1420             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1421             tlb_flush(CPU(cpu));
1422             return;
1423         }
1424 
1425         if (value & (1 << 4)) {
1426             /* VALID bit means use the region number specified in this
1427              * value and also update MPU_RNR.REGION with that value.
1428              */
1429             region = extract32(value, 0, 4);
1430             if (region >= cpu->pmsav7_dregion) {
1431                 qemu_log_mask(LOG_GUEST_ERROR,
1432                               "MPU region out of range %u/%" PRIu32 "\n",
1433                               region, cpu->pmsav7_dregion);
1434                 return;
1435             }
1436             cpu->env.pmsav7.rnr[attrs.secure] = region;
1437         } else {
1438             region = cpu->env.pmsav7.rnr[attrs.secure];
1439         }
1440 
1441         if (region >= cpu->pmsav7_dregion) {
1442             return;
1443         }
1444 
1445         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1446         tlb_flush(CPU(cpu));
1447         break;
1448     }
1449     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1450     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1451     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1452     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1453     {
1454         int region = cpu->env.pmsav7.rnr[attrs.secure];
1455 
1456         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1457             /* PMSAv8M handling of the aliases is different from v7M:
1458              * aliases A1, A2, A3 override the low two bits of the region
1459              * number in MPU_RNR.
1460              */
1461             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1462 
1463             region = cpu->env.pmsav7.rnr[attrs.secure];
1464             if (aliasno) {
1465                 region = deposit32(region, 0, 2, aliasno);
1466             }
1467             if (region >= cpu->pmsav7_dregion) {
1468                 return;
1469             }
1470             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1471             tlb_flush(CPU(cpu));
1472             return;
1473         }
1474 
1475         if (region >= cpu->pmsav7_dregion) {
1476             return;
1477         }
1478 
1479         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1480         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1481         tlb_flush(CPU(cpu));
1482         break;
1483     }
1484     case 0xdc0: /* MPU_MAIR0 */
1485         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1486             goto bad_offset;
1487         }
1488         if (cpu->pmsav7_dregion) {
1489             /* Register is RES0 if no MPU regions are implemented */
1490             cpu->env.pmsav8.mair0[attrs.secure] = value;
1491         }
1492         /* We don't need to do anything else because memory attributes
1493          * only affect cacheability, and we don't implement caching.
1494          */
1495         break;
1496     case 0xdc4: /* MPU_MAIR1 */
1497         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1498             goto bad_offset;
1499         }
1500         if (cpu->pmsav7_dregion) {
1501             /* Register is RES0 if no MPU regions are implemented */
1502             cpu->env.pmsav8.mair1[attrs.secure] = value;
1503         }
1504         /* We don't need to do anything else because memory attributes
1505          * only affect cacheability, and we don't implement caching.
1506          */
1507         break;
1508     case 0xdd0: /* SAU_CTRL */
1509         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1510             goto bad_offset;
1511         }
1512         if (!attrs.secure) {
1513             return;
1514         }
1515         cpu->env.sau.ctrl = value & 3;
1516         break;
1517     case 0xdd4: /* SAU_TYPE */
1518         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1519             goto bad_offset;
1520         }
1521         break;
1522     case 0xdd8: /* SAU_RNR */
1523         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1524             goto bad_offset;
1525         }
1526         if (!attrs.secure) {
1527             return;
1528         }
1529         if (value >= cpu->sau_sregion) {
1530             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1531                           PRIu32 "/%" PRIu32 "\n",
1532                           value, cpu->sau_sregion);
1533         } else {
1534             cpu->env.sau.rnr = value;
1535         }
1536         break;
1537     case 0xddc: /* SAU_RBAR */
1538     {
1539         int region = cpu->env.sau.rnr;
1540 
1541         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1542             goto bad_offset;
1543         }
1544         if (!attrs.secure) {
1545             return;
1546         }
1547         if (region >= cpu->sau_sregion) {
1548             return;
1549         }
1550         cpu->env.sau.rbar[region] = value & ~0x1f;
1551         tlb_flush(CPU(cpu));
1552         break;
1553     }
1554     case 0xde0: /* SAU_RLAR */
1555     {
1556         int region = cpu->env.sau.rnr;
1557 
1558         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1559             goto bad_offset;
1560         }
1561         if (!attrs.secure) {
1562             return;
1563         }
1564         if (region >= cpu->sau_sregion) {
1565             return;
1566         }
1567         cpu->env.sau.rlar[region] = value & ~0x1c;
1568         tlb_flush(CPU(cpu));
1569         break;
1570     }
1571     case 0xde4: /* SFSR */
1572         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1573             goto bad_offset;
1574         }
1575         if (!attrs.secure) {
1576             return;
1577         }
1578         cpu->env.v7m.sfsr &= ~value; /* W1C */
1579         break;
1580     case 0xde8: /* SFAR */
1581         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1582             goto bad_offset;
1583         }
1584         if (!attrs.secure) {
1585             return;
1586         }
1587         cpu->env.v7m.sfsr = value;
1588         break;
1589     case 0xf00: /* Software Triggered Interrupt Register */
1590     {
1591         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1592         if (excnum < s->num_irq) {
1593             armv7m_nvic_set_pending(s, excnum, false);
1594         }
1595         break;
1596     }
1597     default:
1598     bad_offset:
1599         qemu_log_mask(LOG_GUEST_ERROR,
1600                       "NVIC: Bad write offset 0x%x\n", offset);
1601     }
1602 }
1603 
1604 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1605 {
1606     /* Return true if unprivileged access to this register is permitted. */
1607     switch (offset) {
1608     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1609         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1610          * controls access even though the CPU is in Secure state (I_QDKX).
1611          */
1612         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1613     default:
1614         /* All other user accesses cause a BusFault unconditionally */
1615         return false;
1616     }
1617 }
1618 
1619 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1620 {
1621     /* Behaviour for the SHPR register field for this exception:
1622      * return M_REG_NS to use the nonsecure vector (including for
1623      * non-banked exceptions), M_REG_S for the secure version of
1624      * a banked exception, and -1 if this field should RAZ/WI.
1625      */
1626     switch (exc) {
1627     case ARMV7M_EXCP_MEM:
1628     case ARMV7M_EXCP_USAGE:
1629     case ARMV7M_EXCP_SVC:
1630     case ARMV7M_EXCP_PENDSV:
1631     case ARMV7M_EXCP_SYSTICK:
1632         /* Banked exceptions */
1633         return attrs.secure;
1634     case ARMV7M_EXCP_BUS:
1635         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1636         if (!attrs.secure &&
1637             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1638             return -1;
1639         }
1640         return M_REG_NS;
1641     case ARMV7M_EXCP_SECURE:
1642         /* Not banked, RAZ/WI from nonsecure */
1643         if (!attrs.secure) {
1644             return -1;
1645         }
1646         return M_REG_NS;
1647     case ARMV7M_EXCP_DEBUG:
1648         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1649         return M_REG_NS;
1650     case 8 ... 10:
1651     case 13:
1652         /* RES0 */
1653         return -1;
1654     default:
1655         /* Not reachable due to decode of SHPR register addresses */
1656         g_assert_not_reached();
1657     }
1658 }
1659 
1660 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1661                                     uint64_t *data, unsigned size,
1662                                     MemTxAttrs attrs)
1663 {
1664     NVICState *s = (NVICState *)opaque;
1665     uint32_t offset = addr;
1666     unsigned i, startvec, end;
1667     uint32_t val;
1668 
1669     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1670         /* Generate BusFault for unprivileged accesses */
1671         return MEMTX_ERROR;
1672     }
1673 
1674     switch (offset) {
1675     /* reads of set and clear both return the status */
1676     case 0x100 ... 0x13f: /* NVIC Set enable */
1677         offset += 0x80;
1678         /* fall through */
1679     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1680         val = 0;
1681         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1682 
1683         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1684             if (s->vectors[startvec + i].enabled &&
1685                 (attrs.secure || s->itns[startvec + i])) {
1686                 val |= (1 << i);
1687             }
1688         }
1689         break;
1690     case 0x200 ... 0x23f: /* NVIC Set pend */
1691         offset += 0x80;
1692         /* fall through */
1693     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1694         val = 0;
1695         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1696         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1697             if (s->vectors[startvec + i].pending &&
1698                 (attrs.secure || s->itns[startvec + i])) {
1699                 val |= (1 << i);
1700             }
1701         }
1702         break;
1703     case 0x300 ... 0x33f: /* NVIC Active */
1704         val = 0;
1705         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1706 
1707         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1708             if (s->vectors[startvec + i].active &&
1709                 (attrs.secure || s->itns[startvec + i])) {
1710                 val |= (1 << i);
1711             }
1712         }
1713         break;
1714     case 0x400 ... 0x5ef: /* NVIC Priority */
1715         val = 0;
1716         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1717 
1718         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1719             if (attrs.secure || s->itns[startvec + i]) {
1720                 val |= s->vectors[startvec + i].prio << (8 * i);
1721             }
1722         }
1723         break;
1724     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1725         val = 0;
1726         for (i = 0; i < size; i++) {
1727             unsigned hdlidx = (offset - 0xd14) + i;
1728             int sbank = shpr_bank(s, hdlidx, attrs);
1729 
1730             if (sbank < 0) {
1731                 continue;
1732             }
1733             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1734         }
1735         break;
1736     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1737         /* The BFSR bits [15:8] are shared between security states
1738          * and we store them in the NS copy
1739          */
1740         val = s->cpu->env.v7m.cfsr[attrs.secure];
1741         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1742         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1743         break;
1744     case 0xfe0 ... 0xfff: /* ID.  */
1745         if (offset & 3) {
1746             val = 0;
1747         } else {
1748             val = nvic_id[(offset - 0xfe0) >> 2];
1749         }
1750         break;
1751     default:
1752         if (size == 4) {
1753             val = nvic_readl(s, offset, attrs);
1754         } else {
1755             qemu_log_mask(LOG_GUEST_ERROR,
1756                           "NVIC: Bad read of size %d at offset 0x%x\n",
1757                           size, offset);
1758             val = 0;
1759         }
1760     }
1761 
1762     trace_nvic_sysreg_read(addr, val, size);
1763     *data = val;
1764     return MEMTX_OK;
1765 }
1766 
1767 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1768                                      uint64_t value, unsigned size,
1769                                      MemTxAttrs attrs)
1770 {
1771     NVICState *s = (NVICState *)opaque;
1772     uint32_t offset = addr;
1773     unsigned i, startvec, end;
1774     unsigned setval = 0;
1775 
1776     trace_nvic_sysreg_write(addr, value, size);
1777 
1778     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1779         /* Generate BusFault for unprivileged accesses */
1780         return MEMTX_ERROR;
1781     }
1782 
1783     switch (offset) {
1784     case 0x100 ... 0x13f: /* NVIC Set enable */
1785         offset += 0x80;
1786         setval = 1;
1787         /* fall through */
1788     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1789         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1790 
1791         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1792             if (value & (1 << i) &&
1793                 (attrs.secure || s->itns[startvec + i])) {
1794                 s->vectors[startvec + i].enabled = setval;
1795             }
1796         }
1797         nvic_irq_update(s);
1798         return MEMTX_OK;
1799     case 0x200 ... 0x23f: /* NVIC Set pend */
1800         /* the special logic in armv7m_nvic_set_pending()
1801          * is not needed since IRQs are never escalated
1802          */
1803         offset += 0x80;
1804         setval = 1;
1805         /* fall through */
1806     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1807         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1808 
1809         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1810             if (value & (1 << i) &&
1811                 (attrs.secure || s->itns[startvec + i])) {
1812                 s->vectors[startvec + i].pending = setval;
1813             }
1814         }
1815         nvic_irq_update(s);
1816         return MEMTX_OK;
1817     case 0x300 ... 0x33f: /* NVIC Active */
1818         return MEMTX_OK; /* R/O */
1819     case 0x400 ... 0x5ef: /* NVIC Priority */
1820         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1821 
1822         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1823             if (attrs.secure || s->itns[startvec + i]) {
1824                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1825             }
1826         }
1827         nvic_irq_update(s);
1828         return MEMTX_OK;
1829     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1830         for (i = 0; i < size; i++) {
1831             unsigned hdlidx = (offset - 0xd14) + i;
1832             int newprio = extract32(value, i * 8, 8);
1833             int sbank = shpr_bank(s, hdlidx, attrs);
1834 
1835             if (sbank < 0) {
1836                 continue;
1837             }
1838             set_prio(s, hdlidx, sbank, newprio);
1839         }
1840         nvic_irq_update(s);
1841         return MEMTX_OK;
1842     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1843         /* All bits are W1C, so construct 32 bit value with 0s in
1844          * the parts not written by the access size
1845          */
1846         value <<= ((offset - 0xd28) * 8);
1847 
1848         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1849         if (attrs.secure) {
1850             /* The BFSR bits [15:8] are shared between security states
1851              * and we store them in the NS copy.
1852              */
1853             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1854         }
1855         return MEMTX_OK;
1856     }
1857     if (size == 4) {
1858         nvic_writel(s, offset, value, attrs);
1859         return MEMTX_OK;
1860     }
1861     qemu_log_mask(LOG_GUEST_ERROR,
1862                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1863     /* This is UNPREDICTABLE; treat as RAZ/WI */
1864     return MEMTX_OK;
1865 }
1866 
1867 static const MemoryRegionOps nvic_sysreg_ops = {
1868     .read_with_attrs = nvic_sysreg_read,
1869     .write_with_attrs = nvic_sysreg_write,
1870     .endianness = DEVICE_NATIVE_ENDIAN,
1871 };
1872 
1873 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1874                                         uint64_t value, unsigned size,
1875                                         MemTxAttrs attrs)
1876 {
1877     MemoryRegion *mr = opaque;
1878 
1879     if (attrs.secure) {
1880         /* S accesses to the alias act like NS accesses to the real region */
1881         attrs.secure = 0;
1882         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1883     } else {
1884         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1885         if (attrs.user) {
1886             return MEMTX_ERROR;
1887         }
1888         return MEMTX_OK;
1889     }
1890 }
1891 
1892 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1893                                        uint64_t *data, unsigned size,
1894                                        MemTxAttrs attrs)
1895 {
1896     MemoryRegion *mr = opaque;
1897 
1898     if (attrs.secure) {
1899         /* S accesses to the alias act like NS accesses to the real region */
1900         attrs.secure = 0;
1901         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1902     } else {
1903         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1904         if (attrs.user) {
1905             return MEMTX_ERROR;
1906         }
1907         *data = 0;
1908         return MEMTX_OK;
1909     }
1910 }
1911 
1912 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1913     .read_with_attrs = nvic_sysreg_ns_read,
1914     .write_with_attrs = nvic_sysreg_ns_write,
1915     .endianness = DEVICE_NATIVE_ENDIAN,
1916 };
1917 
1918 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1919                                       uint64_t value, unsigned size,
1920                                       MemTxAttrs attrs)
1921 {
1922     NVICState *s = opaque;
1923     MemoryRegion *mr;
1924 
1925     /* Direct the access to the correct systick */
1926     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1927     return memory_region_dispatch_write(mr, addr, value, size, attrs);
1928 }
1929 
1930 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1931                                      uint64_t *data, unsigned size,
1932                                      MemTxAttrs attrs)
1933 {
1934     NVICState *s = opaque;
1935     MemoryRegion *mr;
1936 
1937     /* Direct the access to the correct systick */
1938     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1939     return memory_region_dispatch_read(mr, addr, data, size, attrs);
1940 }
1941 
1942 static const MemoryRegionOps nvic_systick_ops = {
1943     .read_with_attrs = nvic_systick_read,
1944     .write_with_attrs = nvic_systick_write,
1945     .endianness = DEVICE_NATIVE_ENDIAN,
1946 };
1947 
1948 static int nvic_post_load(void *opaque, int version_id)
1949 {
1950     NVICState *s = opaque;
1951     unsigned i;
1952     int resetprio;
1953 
1954     /* Check for out of range priority settings */
1955     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1956 
1957     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
1958         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1959         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1960         return 1;
1961     }
1962     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1963         if (s->vectors[i].prio & ~0xff) {
1964             return 1;
1965         }
1966     }
1967 
1968     nvic_recompute_state(s);
1969 
1970     return 0;
1971 }
1972 
1973 static const VMStateDescription vmstate_VecInfo = {
1974     .name = "armv7m_nvic_info",
1975     .version_id = 1,
1976     .minimum_version_id = 1,
1977     .fields = (VMStateField[]) {
1978         VMSTATE_INT16(prio, VecInfo),
1979         VMSTATE_UINT8(enabled, VecInfo),
1980         VMSTATE_UINT8(pending, VecInfo),
1981         VMSTATE_UINT8(active, VecInfo),
1982         VMSTATE_UINT8(level, VecInfo),
1983         VMSTATE_END_OF_LIST()
1984     }
1985 };
1986 
1987 static bool nvic_security_needed(void *opaque)
1988 {
1989     NVICState *s = opaque;
1990 
1991     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1992 }
1993 
1994 static int nvic_security_post_load(void *opaque, int version_id)
1995 {
1996     NVICState *s = opaque;
1997     int i;
1998 
1999     /* Check for out of range priority settings */
2000     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2001         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2002         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2003          * if the CPU state has been migrated yet; a mismatch won't
2004          * cause the emulation to blow up, though.
2005          */
2006         return 1;
2007     }
2008     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2009         if (s->sec_vectors[i].prio & ~0xff) {
2010             return 1;
2011         }
2012     }
2013     return 0;
2014 }
2015 
2016 static const VMStateDescription vmstate_nvic_security = {
2017     .name = "nvic/m-security",
2018     .version_id = 1,
2019     .minimum_version_id = 1,
2020     .needed = nvic_security_needed,
2021     .post_load = &nvic_security_post_load,
2022     .fields = (VMStateField[]) {
2023         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2024                              vmstate_VecInfo, VecInfo),
2025         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2026         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2027         VMSTATE_END_OF_LIST()
2028     }
2029 };
2030 
2031 static const VMStateDescription vmstate_nvic = {
2032     .name = "armv7m_nvic",
2033     .version_id = 4,
2034     .minimum_version_id = 4,
2035     .post_load = &nvic_post_load,
2036     .fields = (VMStateField[]) {
2037         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2038                              vmstate_VecInfo, VecInfo),
2039         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2040         VMSTATE_END_OF_LIST()
2041     },
2042     .subsections = (const VMStateDescription*[]) {
2043         &vmstate_nvic_security,
2044         NULL
2045     }
2046 };
2047 
2048 static Property props_nvic[] = {
2049     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2050     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2051     DEFINE_PROP_END_OF_LIST()
2052 };
2053 
2054 static void armv7m_nvic_reset(DeviceState *dev)
2055 {
2056     int resetprio;
2057     NVICState *s = NVIC(dev);
2058 
2059     memset(s->vectors, 0, sizeof(s->vectors));
2060     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2061     s->prigroup[M_REG_NS] = 0;
2062     s->prigroup[M_REG_S] = 0;
2063 
2064     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2065     /* MEM, BUS, and USAGE are enabled through
2066      * the System Handler Control register
2067      */
2068     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2069     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2070     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2071     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2072 
2073     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2074     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2075     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2076     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2077 
2078     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2079         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2080         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2081         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2082         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2083 
2084         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2085         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2086         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2087         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2088     } else {
2089         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2090     }
2091 
2092     /* Strictly speaking the reset handler should be enabled.
2093      * However, we don't simulate soft resets through the NVIC,
2094      * and the reset vector should never be pended.
2095      * So we leave it disabled to catch logic errors.
2096      */
2097 
2098     s->exception_prio = NVIC_NOEXC_PRIO;
2099     s->vectpending = 0;
2100     s->vectpending_is_s_banked = false;
2101     s->vectpending_prio = NVIC_NOEXC_PRIO;
2102 
2103     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2104         memset(s->itns, 0, sizeof(s->itns));
2105     } else {
2106         /* This state is constant and not guest accessible in a non-security
2107          * NVIC; we set the bits to true to avoid having to do a feature
2108          * bit check in the NVIC enable/pend/etc register accessors.
2109          */
2110         int i;
2111 
2112         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2113             s->itns[i] = true;
2114         }
2115     }
2116 }
2117 
2118 static void nvic_systick_trigger(void *opaque, int n, int level)
2119 {
2120     NVICState *s = opaque;
2121 
2122     if (level) {
2123         /* SysTick just asked us to pend its exception.
2124          * (This is different from an external interrupt line's
2125          * behaviour.)
2126          * n == 0 : NonSecure systick
2127          * n == 1 : Secure systick
2128          */
2129         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2130     }
2131 }
2132 
2133 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2134 {
2135     NVICState *s = NVIC(dev);
2136     Error *err = NULL;
2137     int regionlen;
2138 
2139     s->cpu = ARM_CPU(qemu_get_cpu(0));
2140     assert(s->cpu);
2141 
2142     if (s->num_irq > NVIC_MAX_IRQ) {
2143         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2144         return;
2145     }
2146 
2147     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2148 
2149     /* include space for internal exception vectors */
2150     s->num_irq += NVIC_FIRST_IRQ;
2151 
2152     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2153                              "realized", &err);
2154     if (err != NULL) {
2155         error_propagate(errp, err);
2156         return;
2157     }
2158     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2159                        qdev_get_gpio_in_named(dev, "systick-trigger",
2160                                               M_REG_NS));
2161 
2162     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2163         /* We couldn't init the secure systick device in instance_init
2164          * as we didn't know then if the CPU had the security extensions;
2165          * so we have to do it here.
2166          */
2167         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2168                           TYPE_SYSTICK);
2169         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2170 
2171         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2172                                  "realized", &err);
2173         if (err != NULL) {
2174             error_propagate(errp, err);
2175             return;
2176         }
2177         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2178                            qdev_get_gpio_in_named(dev, "systick-trigger",
2179                                                   M_REG_S));
2180     }
2181 
2182     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2183      * and looks like this:
2184      *  0x004 - ICTR
2185      *  0x010 - 0xff - systick
2186      *  0x100..0x7ec - NVIC
2187      *  0x7f0..0xcff - Reserved
2188      *  0xd00..0xd3c - SCS registers
2189      *  0xd40..0xeff - Reserved or Not implemented
2190      *  0xf00 - STIR
2191      *
2192      * Some registers within this space are banked between security states.
2193      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2194      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2195      * to the main SCS range, and non-secure accesses (including when
2196      * the security extension is not implemented) are RAZ/WI.
2197      * Note that both the main SCS range and the alias range are defined
2198      * to be exempt from memory attribution (R_BLJT) and so the memory
2199      * transaction attribute always matches the current CPU security
2200      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2201      * wrappers we change attrs.secure to indicate the NS access; so
2202      * generally code determining which banked register to use should
2203      * use attrs.secure; code determining actual behaviour of the system
2204      * should use env->v7m.secure.
2205      */
2206     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2207     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2208     /* The system register region goes at the bottom of the priority
2209      * stack as it covers the whole page.
2210      */
2211     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2212                           "nvic_sysregs", 0x1000);
2213     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2214 
2215     memory_region_init_io(&s->systickmem, OBJECT(s),
2216                           &nvic_systick_ops, s,
2217                           "nvic_systick", 0xe0);
2218 
2219     memory_region_add_subregion_overlap(&s->container, 0x10,
2220                                         &s->systickmem, 1);
2221 
2222     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2223         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2224                               &nvic_sysreg_ns_ops, &s->sysregmem,
2225                               "nvic_sysregs_ns", 0x1000);
2226         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2227         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2228                               &nvic_sysreg_ns_ops, &s->systickmem,
2229                               "nvic_systick_ns", 0xe0);
2230         memory_region_add_subregion_overlap(&s->container, 0x20010,
2231                                             &s->systick_ns_mem, 1);
2232     }
2233 
2234     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2235 }
2236 
2237 static void armv7m_nvic_instance_init(Object *obj)
2238 {
2239     /* We have a different default value for the num-irq property
2240      * than our superclass. This function runs after qdev init
2241      * has set the defaults from the Property array and before
2242      * any user-specified property setting, so just modify the
2243      * value in the GICState struct.
2244      */
2245     DeviceState *dev = DEVICE(obj);
2246     NVICState *nvic = NVIC(obj);
2247     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2248 
2249     object_initialize(&nvic->systick[M_REG_NS],
2250                       sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2251     qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2252     /* We can't initialize the secure systick here, as we don't know
2253      * yet if we need it.
2254      */
2255 
2256     sysbus_init_irq(sbd, &nvic->excpout);
2257     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2258     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2259                             M_REG_NUM_BANKS);
2260 }
2261 
2262 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2263 {
2264     DeviceClass *dc = DEVICE_CLASS(klass);
2265 
2266     dc->vmsd  = &vmstate_nvic;
2267     dc->props = props_nvic;
2268     dc->reset = armv7m_nvic_reset;
2269     dc->realize = armv7m_nvic_realize;
2270 }
2271 
2272 static const TypeInfo armv7m_nvic_info = {
2273     .name          = TYPE_NVIC,
2274     .parent        = TYPE_SYS_BUS_DEVICE,
2275     .instance_init = armv7m_nvic_instance_init,
2276     .instance_size = sizeof(NVICState),
2277     .class_init    = armv7m_nvic_class_init,
2278     .class_size    = sizeof(SysBusDeviceClass),
2279 };
2280 
2281 static void armv7m_nvic_register_types(void)
2282 {
2283     type_register_static(&armv7m_nvic_info);
2284 }
2285 
2286 type_init(armv7m_nvic_register_types)
2287