xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 45db7ba681ede57113a67499840e69ee586bcdf2)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ 16
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 
58 static const uint8_t nvic_id[] = {
59     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
60 };
61 
62 static int nvic_pending_prio(NVICState *s)
63 {
64     /* return the priority of the current pending interrupt,
65      * or NVIC_NOEXC_PRIO if no interrupt is pending
66      */
67     return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO;
68 }
69 
70 /* Return the value of the ISCR RETTOBASE bit:
71  * 1 if there is exactly one active exception
72  * 0 if there is more than one active exception
73  * UNKNOWN if there are no active exceptions (we choose 1,
74  * which matches the choice Cortex-M3 is documented as making).
75  *
76  * NB: some versions of the documentation talk about this
77  * counting "active exceptions other than the one shown by IPSR";
78  * this is only different in the obscure corner case where guest
79  * code has manually deactivated an exception and is about
80  * to fail an exception-return integrity check. The definition
81  * above is the one from the v8M ARM ARM and is also in line
82  * with the behaviour documented for the Cortex-M3.
83  */
84 static bool nvic_rettobase(NVICState *s)
85 {
86     int irq, nhand = 0;
87 
88     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
89         if (s->vectors[irq].active) {
90             nhand++;
91             if (nhand == 2) {
92                 return 0;
93             }
94         }
95     }
96 
97     return 1;
98 }
99 
100 /* Return the value of the ISCR ISRPENDING bit:
101  * 1 if an external interrupt is pending
102  * 0 if no external interrupt is pending
103  */
104 static bool nvic_isrpending(NVICState *s)
105 {
106     int irq;
107 
108     /* We can shortcut if the highest priority pending interrupt
109      * happens to be external or if there is nothing pending.
110      */
111     if (s->vectpending > NVIC_FIRST_IRQ) {
112         return true;
113     }
114     if (s->vectpending == 0) {
115         return false;
116     }
117 
118     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
119         if (s->vectors[irq].pending) {
120             return true;
121         }
122     }
123     return false;
124 }
125 
126 /* Return a mask word which clears the subpriority bits from
127  * a priority value for an M-profile exception, leaving only
128  * the group priority.
129  */
130 static inline uint32_t nvic_gprio_mask(NVICState *s)
131 {
132     return ~0U << (s->prigroup + 1);
133 }
134 
135 /* Recompute vectpending and exception_prio */
136 static void nvic_recompute_state(NVICState *s)
137 {
138     int i;
139     int pend_prio = NVIC_NOEXC_PRIO;
140     int active_prio = NVIC_NOEXC_PRIO;
141     int pend_irq = 0;
142 
143     for (i = 1; i < s->num_irq; i++) {
144         VecInfo *vec = &s->vectors[i];
145 
146         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
147             pend_prio = vec->prio;
148             pend_irq = i;
149         }
150         if (vec->active && vec->prio < active_prio) {
151             active_prio = vec->prio;
152         }
153     }
154 
155     s->vectpending = pend_irq;
156     s->exception_prio = active_prio & nvic_gprio_mask(s);
157 
158     trace_nvic_recompute_state(s->vectpending, s->exception_prio);
159 }
160 
161 /* Return the current execution priority of the CPU
162  * (equivalent to the pseudocode ExecutionPriority function).
163  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
164  */
165 static inline int nvic_exec_prio(NVICState *s)
166 {
167     CPUARMState *env = &s->cpu->env;
168     int running;
169 
170     if (env->v7m.faultmask[env->v7m.secure]) {
171         running = -1;
172     } else if (env->v7m.primask[env->v7m.secure]) {
173         running = 0;
174     } else if (env->v7m.basepri[env->v7m.secure] > 0) {
175         running = env->v7m.basepri[env->v7m.secure] & nvic_gprio_mask(s);
176     } else {
177         running = NVIC_NOEXC_PRIO; /* lower than any possible priority */
178     }
179     /* consider priority of active handler */
180     return MIN(running, s->exception_prio);
181 }
182 
183 bool armv7m_nvic_can_take_pending_exception(void *opaque)
184 {
185     NVICState *s = opaque;
186 
187     return nvic_exec_prio(s) > nvic_pending_prio(s);
188 }
189 
190 int armv7m_nvic_raw_execution_priority(void *opaque)
191 {
192     NVICState *s = opaque;
193 
194     return s->exception_prio;
195 }
196 
197 /* caller must call nvic_irq_update() after this */
198 static void set_prio(NVICState *s, unsigned irq, uint8_t prio)
199 {
200     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
201     assert(irq < s->num_irq);
202 
203     s->vectors[irq].prio = prio;
204 
205     trace_nvic_set_prio(irq, prio);
206 }
207 
208 /* Recompute state and assert irq line accordingly.
209  * Must be called after changes to:
210  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
211  *  prigroup
212  */
213 static void nvic_irq_update(NVICState *s)
214 {
215     int lvl;
216     int pend_prio;
217 
218     nvic_recompute_state(s);
219     pend_prio = nvic_pending_prio(s);
220 
221     /* Raise NVIC output if this IRQ would be taken, except that we
222      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
223      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
224      * to those CPU registers don't cause us to recalculate the NVIC
225      * pending info.
226      */
227     lvl = (pend_prio < s->exception_prio);
228     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
229     qemu_set_irq(s->excpout, lvl);
230 }
231 
232 static void armv7m_nvic_clear_pending(void *opaque, int irq)
233 {
234     NVICState *s = (NVICState *)opaque;
235     VecInfo *vec;
236 
237     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
238 
239     vec = &s->vectors[irq];
240     trace_nvic_clear_pending(irq, vec->enabled, vec->prio);
241     if (vec->pending) {
242         vec->pending = 0;
243         nvic_irq_update(s);
244     }
245 }
246 
247 void armv7m_nvic_set_pending(void *opaque, int irq)
248 {
249     NVICState *s = (NVICState *)opaque;
250     VecInfo *vec;
251 
252     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
253 
254     vec = &s->vectors[irq];
255     trace_nvic_set_pending(irq, vec->enabled, vec->prio);
256 
257 
258     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
259         /* If a synchronous exception is pending then it may be
260          * escalated to HardFault if:
261          *  * it is equal or lower priority to current execution
262          *  * it is disabled
263          * (ie we need to take it immediately but we can't do so).
264          * Asynchronous exceptions (and interrupts) simply remain pending.
265          *
266          * For QEMU, we don't have any imprecise (asynchronous) faults,
267          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
268          * synchronous.
269          * Debug exceptions are awkward because only Debug exceptions
270          * resulting from the BKPT instruction should be escalated,
271          * but we don't currently implement any Debug exceptions other
272          * than those that result from BKPT, so we treat all debug exceptions
273          * as needing escalation.
274          *
275          * This all means we can identify whether to escalate based only on
276          * the exception number and don't (yet) need the caller to explicitly
277          * tell us whether this exception is synchronous or not.
278          */
279         int running = nvic_exec_prio(s);
280         bool escalate = false;
281 
282         if (vec->prio >= running) {
283             trace_nvic_escalate_prio(irq, vec->prio, running);
284             escalate = true;
285         } else if (!vec->enabled) {
286             trace_nvic_escalate_disabled(irq);
287             escalate = true;
288         }
289 
290         if (escalate) {
291             if (running < 0) {
292                 /* We want to escalate to HardFault but we can't take a
293                  * synchronous HardFault at this point either. This is a
294                  * Lockup condition due to a guest bug. We don't model
295                  * Lockup, so report via cpu_abort() instead.
296                  */
297                 cpu_abort(&s->cpu->parent_obj,
298                           "Lockup: can't escalate %d to HardFault "
299                           "(current priority %d)\n", irq, running);
300             }
301 
302             /* We can do the escalation, so we take HardFault instead */
303             irq = ARMV7M_EXCP_HARD;
304             vec = &s->vectors[irq];
305             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
306         }
307     }
308 
309     if (!vec->pending) {
310         vec->pending = 1;
311         nvic_irq_update(s);
312     }
313 }
314 
315 /* Make pending IRQ active.  */
316 void armv7m_nvic_acknowledge_irq(void *opaque)
317 {
318     NVICState *s = (NVICState *)opaque;
319     CPUARMState *env = &s->cpu->env;
320     const int pending = s->vectpending;
321     const int running = nvic_exec_prio(s);
322     int pendgroupprio;
323     VecInfo *vec;
324 
325     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
326 
327     vec = &s->vectors[pending];
328 
329     assert(vec->enabled);
330     assert(vec->pending);
331 
332     pendgroupprio = vec->prio & nvic_gprio_mask(s);
333     assert(pendgroupprio < running);
334 
335     trace_nvic_acknowledge_irq(pending, vec->prio);
336 
337     vec->active = 1;
338     vec->pending = 0;
339 
340     env->v7m.exception = s->vectpending;
341 
342     nvic_irq_update(s);
343 }
344 
345 int armv7m_nvic_complete_irq(void *opaque, int irq)
346 {
347     NVICState *s = (NVICState *)opaque;
348     VecInfo *vec;
349     int ret;
350 
351     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
352 
353     vec = &s->vectors[irq];
354 
355     trace_nvic_complete_irq(irq);
356 
357     if (!vec->active) {
358         /* Tell the caller this was an illegal exception return */
359         return -1;
360     }
361 
362     ret = nvic_rettobase(s);
363 
364     vec->active = 0;
365     if (vec->level) {
366         /* Re-pend the exception if it's still held high; only
367          * happens for extenal IRQs
368          */
369         assert(irq >= NVIC_FIRST_IRQ);
370         vec->pending = 1;
371     }
372 
373     nvic_irq_update(s);
374 
375     return ret;
376 }
377 
378 /* callback when external interrupt line is changed */
379 static void set_irq_level(void *opaque, int n, int level)
380 {
381     NVICState *s = opaque;
382     VecInfo *vec;
383 
384     n += NVIC_FIRST_IRQ;
385 
386     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
387 
388     trace_nvic_set_irq_level(n, level);
389 
390     /* The pending status of an external interrupt is
391      * latched on rising edge and exception handler return.
392      *
393      * Pulsing the IRQ will always run the handler
394      * once, and the handler will re-run until the
395      * level is low when the handler completes.
396      */
397     vec = &s->vectors[n];
398     if (level != vec->level) {
399         vec->level = level;
400         if (level) {
401             armv7m_nvic_set_pending(s, n);
402         }
403     }
404 }
405 
406 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
407 {
408     ARMCPU *cpu = s->cpu;
409     uint32_t val;
410 
411     switch (offset) {
412     case 4: /* Interrupt Control Type.  */
413         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
414     case 0xd00: /* CPUID Base.  */
415         return cpu->midr;
416     case 0xd04: /* Interrupt Control State.  */
417         /* VECTACTIVE */
418         val = cpu->env.v7m.exception;
419         /* VECTPENDING */
420         val |= (s->vectpending & 0xff) << 12;
421         /* ISRPENDING - set if any external IRQ is pending */
422         if (nvic_isrpending(s)) {
423             val |= (1 << 22);
424         }
425         /* RETTOBASE - set if only one handler is active */
426         if (nvic_rettobase(s)) {
427             val |= (1 << 11);
428         }
429         /* PENDSTSET */
430         if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
431             val |= (1 << 26);
432         }
433         /* PENDSVSET */
434         if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
435             val |= (1 << 28);
436         }
437         /* NMIPENDSET */
438         if (s->vectors[ARMV7M_EXCP_NMI].pending) {
439             val |= (1 << 31);
440         }
441         /* ISRPREEMPT not implemented */
442         return val;
443     case 0xd08: /* Vector Table Offset.  */
444         return cpu->env.v7m.vecbase[attrs.secure];
445     case 0xd0c: /* Application Interrupt/Reset Control.  */
446         return 0xfa050000 | (s->prigroup << 8);
447     case 0xd10: /* System Control.  */
448         /* TODO: Implement SLEEPONEXIT.  */
449         return 0;
450     case 0xd14: /* Configuration Control.  */
451         return cpu->env.v7m.ccr;
452     case 0xd24: /* System Handler Status.  */
453         val = 0;
454         if (s->vectors[ARMV7M_EXCP_MEM].active) {
455             val |= (1 << 0);
456         }
457         if (s->vectors[ARMV7M_EXCP_BUS].active) {
458             val |= (1 << 1);
459         }
460         if (s->vectors[ARMV7M_EXCP_USAGE].active) {
461             val |= (1 << 3);
462         }
463         if (s->vectors[ARMV7M_EXCP_SVC].active) {
464             val |= (1 << 7);
465         }
466         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
467             val |= (1 << 8);
468         }
469         if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
470             val |= (1 << 10);
471         }
472         if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
473             val |= (1 << 11);
474         }
475         if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
476             val |= (1 << 12);
477         }
478         if (s->vectors[ARMV7M_EXCP_MEM].pending) {
479             val |= (1 << 13);
480         }
481         if (s->vectors[ARMV7M_EXCP_BUS].pending) {
482             val |= (1 << 14);
483         }
484         if (s->vectors[ARMV7M_EXCP_SVC].pending) {
485             val |= (1 << 15);
486         }
487         if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
488             val |= (1 << 16);
489         }
490         if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
491             val |= (1 << 17);
492         }
493         if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
494             val |= (1 << 18);
495         }
496         return val;
497     case 0xd28: /* Configurable Fault Status.  */
498         return cpu->env.v7m.cfsr;
499     case 0xd2c: /* Hard Fault Status.  */
500         return cpu->env.v7m.hfsr;
501     case 0xd30: /* Debug Fault Status.  */
502         return cpu->env.v7m.dfsr;
503     case 0xd34: /* MMFAR MemManage Fault Address */
504         return cpu->env.v7m.mmfar;
505     case 0xd38: /* Bus Fault Address.  */
506         return cpu->env.v7m.bfar;
507     case 0xd3c: /* Aux Fault Status.  */
508         /* TODO: Implement fault status registers.  */
509         qemu_log_mask(LOG_UNIMP,
510                       "Aux Fault status registers unimplemented\n");
511         return 0;
512     case 0xd40: /* PFR0.  */
513         return 0x00000030;
514     case 0xd44: /* PRF1.  */
515         return 0x00000200;
516     case 0xd48: /* DFR0.  */
517         return 0x00100000;
518     case 0xd4c: /* AFR0.  */
519         return 0x00000000;
520     case 0xd50: /* MMFR0.  */
521         return 0x00000030;
522     case 0xd54: /* MMFR1.  */
523         return 0x00000000;
524     case 0xd58: /* MMFR2.  */
525         return 0x00000000;
526     case 0xd5c: /* MMFR3.  */
527         return 0x00000000;
528     case 0xd60: /* ISAR0.  */
529         return 0x01141110;
530     case 0xd64: /* ISAR1.  */
531         return 0x02111000;
532     case 0xd68: /* ISAR2.  */
533         return 0x21112231;
534     case 0xd6c: /* ISAR3.  */
535         return 0x01111110;
536     case 0xd70: /* ISAR4.  */
537         return 0x01310102;
538     /* TODO: Implement debug registers.  */
539     case 0xd90: /* MPU_TYPE */
540         /* Unified MPU; if the MPU is not present this value is zero */
541         return cpu->pmsav7_dregion << 8;
542         break;
543     case 0xd94: /* MPU_CTRL */
544         return cpu->env.v7m.mpu_ctrl;
545     case 0xd98: /* MPU_RNR */
546         return cpu->env.pmsav7.rnr;
547     case 0xd9c: /* MPU_RBAR */
548     case 0xda4: /* MPU_RBAR_A1 */
549     case 0xdac: /* MPU_RBAR_A2 */
550     case 0xdb4: /* MPU_RBAR_A3 */
551     {
552         int region = cpu->env.pmsav7.rnr;
553 
554         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
555             /* PMSAv8M handling of the aliases is different from v7M:
556              * aliases A1, A2, A3 override the low two bits of the region
557              * number in MPU_RNR, and there is no 'region' field in the
558              * RBAR register.
559              */
560             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
561             if (aliasno) {
562                 region = deposit32(region, 0, 2, aliasno);
563             }
564             if (region >= cpu->pmsav7_dregion) {
565                 return 0;
566             }
567             return cpu->env.pmsav8.rbar[region];
568         }
569 
570         if (region >= cpu->pmsav7_dregion) {
571             return 0;
572         }
573         return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf);
574     }
575     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
576     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
577     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
578     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
579     {
580         int region = cpu->env.pmsav7.rnr;
581 
582         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
583             /* PMSAv8M handling of the aliases is different from v7M:
584              * aliases A1, A2, A3 override the low two bits of the region
585              * number in MPU_RNR.
586              */
587             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
588             if (aliasno) {
589                 region = deposit32(region, 0, 2, aliasno);
590             }
591             if (region >= cpu->pmsav7_dregion) {
592                 return 0;
593             }
594             return cpu->env.pmsav8.rlar[region];
595         }
596 
597         if (region >= cpu->pmsav7_dregion) {
598             return 0;
599         }
600         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
601             (cpu->env.pmsav7.drsr[region] & 0xffff);
602     }
603     case 0xdc0: /* MPU_MAIR0 */
604         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
605             goto bad_offset;
606         }
607         return cpu->env.pmsav8.mair0;
608     case 0xdc4: /* MPU_MAIR1 */
609         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
610             goto bad_offset;
611         }
612         return cpu->env.pmsav8.mair1;
613     default:
614     bad_offset:
615         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
616         return 0;
617     }
618 }
619 
620 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
621                         MemTxAttrs attrs)
622 {
623     ARMCPU *cpu = s->cpu;
624 
625     switch (offset) {
626     case 0xd04: /* Interrupt Control State.  */
627         if (value & (1 << 31)) {
628             armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
629         }
630         if (value & (1 << 28)) {
631             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
632         } else if (value & (1 << 27)) {
633             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV);
634         }
635         if (value & (1 << 26)) {
636             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
637         } else if (value & (1 << 25)) {
638             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK);
639         }
640         break;
641     case 0xd08: /* Vector Table Offset.  */
642         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
643         break;
644     case 0xd0c: /* Application Interrupt/Reset Control.  */
645         if ((value >> 16) == 0x05fa) {
646             if (value & 4) {
647                 qemu_irq_pulse(s->sysresetreq);
648             }
649             if (value & 2) {
650                 qemu_log_mask(LOG_GUEST_ERROR,
651                               "Setting VECTCLRACTIVE when not in DEBUG mode "
652                               "is UNPREDICTABLE\n");
653             }
654             if (value & 1) {
655                 qemu_log_mask(LOG_GUEST_ERROR,
656                               "Setting VECTRESET when not in DEBUG mode "
657                               "is UNPREDICTABLE\n");
658             }
659             s->prigroup = extract32(value, 8, 3);
660             nvic_irq_update(s);
661         }
662         break;
663     case 0xd10: /* System Control.  */
664         /* TODO: Implement control registers.  */
665         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
666         break;
667     case 0xd14: /* Configuration Control.  */
668         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
669         value &= (R_V7M_CCR_STKALIGN_MASK |
670                   R_V7M_CCR_BFHFNMIGN_MASK |
671                   R_V7M_CCR_DIV_0_TRP_MASK |
672                   R_V7M_CCR_UNALIGN_TRP_MASK |
673                   R_V7M_CCR_USERSETMPEND_MASK |
674                   R_V7M_CCR_NONBASETHRDENA_MASK);
675 
676         cpu->env.v7m.ccr = value;
677         break;
678     case 0xd24: /* System Handler Control.  */
679         s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
680         s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
681         s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
682         s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
683         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
684         s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
685         s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
686         s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
687         s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
688         s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
689         s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
690         s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
691         s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
692         s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
693         nvic_irq_update(s);
694         break;
695     case 0xd28: /* Configurable Fault Status.  */
696         cpu->env.v7m.cfsr &= ~value; /* W1C */
697         break;
698     case 0xd2c: /* Hard Fault Status.  */
699         cpu->env.v7m.hfsr &= ~value; /* W1C */
700         break;
701     case 0xd30: /* Debug Fault Status.  */
702         cpu->env.v7m.dfsr &= ~value; /* W1C */
703         break;
704     case 0xd34: /* Mem Manage Address.  */
705         cpu->env.v7m.mmfar = value;
706         return;
707     case 0xd38: /* Bus Fault Address.  */
708         cpu->env.v7m.bfar = value;
709         return;
710     case 0xd3c: /* Aux Fault Status.  */
711         qemu_log_mask(LOG_UNIMP,
712                       "NVIC: Aux fault status registers unimplemented\n");
713         break;
714     case 0xd90: /* MPU_TYPE */
715         return; /* RO */
716     case 0xd94: /* MPU_CTRL */
717         if ((value &
718              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
719             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
720             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
721                           "UNPREDICTABLE\n");
722         }
723         cpu->env.v7m.mpu_ctrl = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
724                                          R_V7M_MPU_CTRL_HFNMIENA_MASK |
725                                          R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
726         tlb_flush(CPU(cpu));
727         break;
728     case 0xd98: /* MPU_RNR */
729         if (value >= cpu->pmsav7_dregion) {
730             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
731                           PRIu32 "/%" PRIu32 "\n",
732                           value, cpu->pmsav7_dregion);
733         } else {
734             cpu->env.pmsav7.rnr = value;
735         }
736         break;
737     case 0xd9c: /* MPU_RBAR */
738     case 0xda4: /* MPU_RBAR_A1 */
739     case 0xdac: /* MPU_RBAR_A2 */
740     case 0xdb4: /* MPU_RBAR_A3 */
741     {
742         int region;
743 
744         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
745             /* PMSAv8M handling of the aliases is different from v7M:
746              * aliases A1, A2, A3 override the low two bits of the region
747              * number in MPU_RNR, and there is no 'region' field in the
748              * RBAR register.
749              */
750             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
751 
752             region = cpu->env.pmsav7.rnr;
753             if (aliasno) {
754                 region = deposit32(region, 0, 2, aliasno);
755             }
756             if (region >= cpu->pmsav7_dregion) {
757                 return;
758             }
759             cpu->env.pmsav8.rbar[region] = value;
760             tlb_flush(CPU(cpu));
761             return;
762         }
763 
764         if (value & (1 << 4)) {
765             /* VALID bit means use the region number specified in this
766              * value and also update MPU_RNR.REGION with that value.
767              */
768             region = extract32(value, 0, 4);
769             if (region >= cpu->pmsav7_dregion) {
770                 qemu_log_mask(LOG_GUEST_ERROR,
771                               "MPU region out of range %u/%" PRIu32 "\n",
772                               region, cpu->pmsav7_dregion);
773                 return;
774             }
775             cpu->env.pmsav7.rnr = region;
776         } else {
777             region = cpu->env.pmsav7.rnr;
778         }
779 
780         if (region >= cpu->pmsav7_dregion) {
781             return;
782         }
783 
784         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
785         tlb_flush(CPU(cpu));
786         break;
787     }
788     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
789     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
790     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
791     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
792     {
793         int region = cpu->env.pmsav7.rnr;
794 
795         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
796             /* PMSAv8M handling of the aliases is different from v7M:
797              * aliases A1, A2, A3 override the low two bits of the region
798              * number in MPU_RNR.
799              */
800             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
801 
802             region = cpu->env.pmsav7.rnr;
803             if (aliasno) {
804                 region = deposit32(region, 0, 2, aliasno);
805             }
806             if (region >= cpu->pmsav7_dregion) {
807                 return;
808             }
809             cpu->env.pmsav8.rlar[region] = value;
810             tlb_flush(CPU(cpu));
811             return;
812         }
813 
814         if (region >= cpu->pmsav7_dregion) {
815             return;
816         }
817 
818         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
819         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
820         tlb_flush(CPU(cpu));
821         break;
822     }
823     case 0xdc0: /* MPU_MAIR0 */
824         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
825             goto bad_offset;
826         }
827         if (cpu->pmsav7_dregion) {
828             /* Register is RES0 if no MPU regions are implemented */
829             cpu->env.pmsav8.mair0 = value;
830         }
831         /* We don't need to do anything else because memory attributes
832          * only affect cacheability, and we don't implement caching.
833          */
834         break;
835     case 0xdc4: /* MPU_MAIR1 */
836         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
837             goto bad_offset;
838         }
839         if (cpu->pmsav7_dregion) {
840             /* Register is RES0 if no MPU regions are implemented */
841             cpu->env.pmsav8.mair1 = value;
842         }
843         /* We don't need to do anything else because memory attributes
844          * only affect cacheability, and we don't implement caching.
845          */
846         break;
847     case 0xf00: /* Software Triggered Interrupt Register */
848     {
849         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
850         if (excnum < s->num_irq) {
851             armv7m_nvic_set_pending(s, excnum);
852         }
853         break;
854     }
855     default:
856     bad_offset:
857         qemu_log_mask(LOG_GUEST_ERROR,
858                       "NVIC: Bad write offset 0x%x\n", offset);
859     }
860 }
861 
862 static bool nvic_user_access_ok(NVICState *s, hwaddr offset)
863 {
864     /* Return true if unprivileged access to this register is permitted. */
865     switch (offset) {
866     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
867         return s->cpu->env.v7m.ccr & R_V7M_CCR_USERSETMPEND_MASK;
868     default:
869         /* All other user accesses cause a BusFault unconditionally */
870         return false;
871     }
872 }
873 
874 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
875                                     uint64_t *data, unsigned size,
876                                     MemTxAttrs attrs)
877 {
878     NVICState *s = (NVICState *)opaque;
879     uint32_t offset = addr;
880     unsigned i, startvec, end;
881     uint32_t val;
882 
883     if (attrs.user && !nvic_user_access_ok(s, addr)) {
884         /* Generate BusFault for unprivileged accesses */
885         return MEMTX_ERROR;
886     }
887 
888     switch (offset) {
889     /* reads of set and clear both return the status */
890     case 0x100 ... 0x13f: /* NVIC Set enable */
891         offset += 0x80;
892         /* fall through */
893     case 0x180 ... 0x1bf: /* NVIC Clear enable */
894         val = 0;
895         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
896 
897         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
898             if (s->vectors[startvec + i].enabled) {
899                 val |= (1 << i);
900             }
901         }
902         break;
903     case 0x200 ... 0x23f: /* NVIC Set pend */
904         offset += 0x80;
905         /* fall through */
906     case 0x280 ... 0x2bf: /* NVIC Clear pend */
907         val = 0;
908         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
909         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
910             if (s->vectors[startvec + i].pending) {
911                 val |= (1 << i);
912             }
913         }
914         break;
915     case 0x300 ... 0x33f: /* NVIC Active */
916         val = 0;
917         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
918 
919         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
920             if (s->vectors[startvec + i].active) {
921                 val |= (1 << i);
922             }
923         }
924         break;
925     case 0x400 ... 0x5ef: /* NVIC Priority */
926         val = 0;
927         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
928 
929         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
930             val |= s->vectors[startvec + i].prio << (8 * i);
931         }
932         break;
933     case 0xd18 ... 0xd23: /* System Handler Priority.  */
934         val = 0;
935         for (i = 0; i < size; i++) {
936             val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8);
937         }
938         break;
939     case 0xfe0 ... 0xfff: /* ID.  */
940         if (offset & 3) {
941             val = 0;
942         } else {
943             val = nvic_id[(offset - 0xfe0) >> 2];
944         }
945         break;
946     default:
947         if (size == 4) {
948             val = nvic_readl(s, offset, attrs);
949         } else {
950             qemu_log_mask(LOG_GUEST_ERROR,
951                           "NVIC: Bad read of size %d at offset 0x%x\n",
952                           size, offset);
953             val = 0;
954         }
955     }
956 
957     trace_nvic_sysreg_read(addr, val, size);
958     *data = val;
959     return MEMTX_OK;
960 }
961 
962 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
963                                      uint64_t value, unsigned size,
964                                      MemTxAttrs attrs)
965 {
966     NVICState *s = (NVICState *)opaque;
967     uint32_t offset = addr;
968     unsigned i, startvec, end;
969     unsigned setval = 0;
970 
971     trace_nvic_sysreg_write(addr, value, size);
972 
973     if (attrs.user && !nvic_user_access_ok(s, addr)) {
974         /* Generate BusFault for unprivileged accesses */
975         return MEMTX_ERROR;
976     }
977 
978     switch (offset) {
979     case 0x100 ... 0x13f: /* NVIC Set enable */
980         offset += 0x80;
981         setval = 1;
982         /* fall through */
983     case 0x180 ... 0x1bf: /* NVIC Clear enable */
984         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
985 
986         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
987             if (value & (1 << i)) {
988                 s->vectors[startvec + i].enabled = setval;
989             }
990         }
991         nvic_irq_update(s);
992         return MEMTX_OK;
993     case 0x200 ... 0x23f: /* NVIC Set pend */
994         /* the special logic in armv7m_nvic_set_pending()
995          * is not needed since IRQs are never escalated
996          */
997         offset += 0x80;
998         setval = 1;
999         /* fall through */
1000     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1001         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1002 
1003         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1004             if (value & (1 << i)) {
1005                 s->vectors[startvec + i].pending = setval;
1006             }
1007         }
1008         nvic_irq_update(s);
1009         return MEMTX_OK;
1010     case 0x300 ... 0x33f: /* NVIC Active */
1011         return MEMTX_OK; /* R/O */
1012     case 0x400 ... 0x5ef: /* NVIC Priority */
1013         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1014 
1015         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1016             set_prio(s, startvec + i, (value >> (i * 8)) & 0xff);
1017         }
1018         nvic_irq_update(s);
1019         return MEMTX_OK;
1020     case 0xd18 ... 0xd23: /* System Handler Priority.  */
1021         for (i = 0; i < size; i++) {
1022             unsigned hdlidx = (offset - 0xd14) + i;
1023             set_prio(s, hdlidx, (value >> (i * 8)) & 0xff);
1024         }
1025         nvic_irq_update(s);
1026         return MEMTX_OK;
1027     }
1028     if (size == 4) {
1029         nvic_writel(s, offset, value, attrs);
1030         return MEMTX_OK;
1031     }
1032     qemu_log_mask(LOG_GUEST_ERROR,
1033                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1034     /* This is UNPREDICTABLE; treat as RAZ/WI */
1035     return MEMTX_OK;
1036 }
1037 
1038 static const MemoryRegionOps nvic_sysreg_ops = {
1039     .read_with_attrs = nvic_sysreg_read,
1040     .write_with_attrs = nvic_sysreg_write,
1041     .endianness = DEVICE_NATIVE_ENDIAN,
1042 };
1043 
1044 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1045                                         uint64_t value, unsigned size,
1046                                         MemTxAttrs attrs)
1047 {
1048     if (attrs.secure) {
1049         /* S accesses to the alias act like NS accesses to the real region */
1050         attrs.secure = 0;
1051         return nvic_sysreg_write(opaque, addr, value, size, attrs);
1052     } else {
1053         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1054         if (attrs.user) {
1055             return MEMTX_ERROR;
1056         }
1057         return MEMTX_OK;
1058     }
1059 }
1060 
1061 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1062                                        uint64_t *data, unsigned size,
1063                                        MemTxAttrs attrs)
1064 {
1065     if (attrs.secure) {
1066         /* S accesses to the alias act like NS accesses to the real region */
1067         attrs.secure = 0;
1068         return nvic_sysreg_read(opaque, addr, data, size, attrs);
1069     } else {
1070         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1071         if (attrs.user) {
1072             return MEMTX_ERROR;
1073         }
1074         *data = 0;
1075         return MEMTX_OK;
1076     }
1077 }
1078 
1079 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1080     .read_with_attrs = nvic_sysreg_ns_read,
1081     .write_with_attrs = nvic_sysreg_ns_write,
1082     .endianness = DEVICE_NATIVE_ENDIAN,
1083 };
1084 
1085 static int nvic_post_load(void *opaque, int version_id)
1086 {
1087     NVICState *s = opaque;
1088     unsigned i;
1089 
1090     /* Check for out of range priority settings */
1091     if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 ||
1092         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1093         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1094         return 1;
1095     }
1096     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1097         if (s->vectors[i].prio & ~0xff) {
1098             return 1;
1099         }
1100     }
1101 
1102     nvic_recompute_state(s);
1103 
1104     return 0;
1105 }
1106 
1107 static const VMStateDescription vmstate_VecInfo = {
1108     .name = "armv7m_nvic_info",
1109     .version_id = 1,
1110     .minimum_version_id = 1,
1111     .fields = (VMStateField[]) {
1112         VMSTATE_INT16(prio, VecInfo),
1113         VMSTATE_UINT8(enabled, VecInfo),
1114         VMSTATE_UINT8(pending, VecInfo),
1115         VMSTATE_UINT8(active, VecInfo),
1116         VMSTATE_UINT8(level, VecInfo),
1117         VMSTATE_END_OF_LIST()
1118     }
1119 };
1120 
1121 static const VMStateDescription vmstate_nvic = {
1122     .name = "armv7m_nvic",
1123     .version_id = 4,
1124     .minimum_version_id = 4,
1125     .post_load = &nvic_post_load,
1126     .fields = (VMStateField[]) {
1127         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
1128                              vmstate_VecInfo, VecInfo),
1129         VMSTATE_UINT32(prigroup, NVICState),
1130         VMSTATE_END_OF_LIST()
1131     }
1132 };
1133 
1134 static Property props_nvic[] = {
1135     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
1136     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
1137     DEFINE_PROP_END_OF_LIST()
1138 };
1139 
1140 static void armv7m_nvic_reset(DeviceState *dev)
1141 {
1142     NVICState *s = NVIC(dev);
1143 
1144     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
1145     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1146     /* MEM, BUS, and USAGE are enabled through
1147      * the System Handler Control register
1148      */
1149     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
1150     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
1151     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
1152     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
1153 
1154     s->vectors[ARMV7M_EXCP_RESET].prio = -3;
1155     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
1156     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
1157 
1158     /* Strictly speaking the reset handler should be enabled.
1159      * However, we don't simulate soft resets through the NVIC,
1160      * and the reset vector should never be pended.
1161      * So we leave it disabled to catch logic errors.
1162      */
1163 
1164     s->exception_prio = NVIC_NOEXC_PRIO;
1165     s->vectpending = 0;
1166 }
1167 
1168 static void nvic_systick_trigger(void *opaque, int n, int level)
1169 {
1170     NVICState *s = opaque;
1171 
1172     if (level) {
1173         /* SysTick just asked us to pend its exception.
1174          * (This is different from an external interrupt line's
1175          * behaviour.)
1176          */
1177         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
1178     }
1179 }
1180 
1181 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
1182 {
1183     NVICState *s = NVIC(dev);
1184     SysBusDevice *systick_sbd;
1185     Error *err = NULL;
1186     int regionlen;
1187 
1188     s->cpu = ARM_CPU(qemu_get_cpu(0));
1189     assert(s->cpu);
1190 
1191     if (s->num_irq > NVIC_MAX_IRQ) {
1192         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
1193         return;
1194     }
1195 
1196     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
1197 
1198     /* include space for internal exception vectors */
1199     s->num_irq += NVIC_FIRST_IRQ;
1200 
1201     object_property_set_bool(OBJECT(&s->systick), true, "realized", &err);
1202     if (err != NULL) {
1203         error_propagate(errp, err);
1204         return;
1205     }
1206     systick_sbd = SYS_BUS_DEVICE(&s->systick);
1207     sysbus_connect_irq(systick_sbd, 0,
1208                        qdev_get_gpio_in_named(dev, "systick-trigger", 0));
1209 
1210     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
1211      * and looks like this:
1212      *  0x004 - ICTR
1213      *  0x010 - 0xff - systick
1214      *  0x100..0x7ec - NVIC
1215      *  0x7f0..0xcff - Reserved
1216      *  0xd00..0xd3c - SCS registers
1217      *  0xd40..0xeff - Reserved or Not implemented
1218      *  0xf00 - STIR
1219      *
1220      * Some registers within this space are banked between security states.
1221      * In v8M there is a second range 0xe002e000..0xe002efff which is the
1222      * NonSecure alias SCS; secure accesses to this behave like NS accesses
1223      * to the main SCS range, and non-secure accesses (including when
1224      * the security extension is not implemented) are RAZ/WI.
1225      * Note that both the main SCS range and the alias range are defined
1226      * to be exempt from memory attribution (R_BLJT) and so the memory
1227      * transaction attribute always matches the current CPU security
1228      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
1229      * wrappers we change attrs.secure to indicate the NS access; so
1230      * generally code determining which banked register to use should
1231      * use attrs.secure; code determining actual behaviour of the system
1232      * should use env->v7m.secure.
1233      */
1234     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
1235     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
1236     /* The system register region goes at the bottom of the priority
1237      * stack as it covers the whole page.
1238      */
1239     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
1240                           "nvic_sysregs", 0x1000);
1241     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
1242     memory_region_add_subregion_overlap(&s->container, 0x10,
1243                                         sysbus_mmio_get_region(systick_sbd, 0),
1244                                         1);
1245 
1246     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
1247         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
1248                               &nvic_sysreg_ns_ops, s,
1249                               "nvic_sysregs_ns", 0x1000);
1250         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
1251     }
1252 
1253     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
1254 }
1255 
1256 static void armv7m_nvic_instance_init(Object *obj)
1257 {
1258     /* We have a different default value for the num-irq property
1259      * than our superclass. This function runs after qdev init
1260      * has set the defaults from the Property array and before
1261      * any user-specified property setting, so just modify the
1262      * value in the GICState struct.
1263      */
1264     DeviceState *dev = DEVICE(obj);
1265     NVICState *nvic = NVIC(obj);
1266     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
1267 
1268     object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK);
1269     qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default());
1270 
1271     sysbus_init_irq(sbd, &nvic->excpout);
1272     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
1273     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1);
1274 }
1275 
1276 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
1277 {
1278     DeviceClass *dc = DEVICE_CLASS(klass);
1279 
1280     dc->vmsd  = &vmstate_nvic;
1281     dc->props = props_nvic;
1282     dc->reset = armv7m_nvic_reset;
1283     dc->realize = armv7m_nvic_realize;
1284 }
1285 
1286 static const TypeInfo armv7m_nvic_info = {
1287     .name          = TYPE_NVIC,
1288     .parent        = TYPE_SYS_BUS_DEVICE,
1289     .instance_init = armv7m_nvic_instance_init,
1290     .instance_size = sizeof(NVICState),
1291     .class_init    = armv7m_nvic_class_init,
1292     .class_size    = sizeof(SysBusDeviceClass),
1293 };
1294 
1295 static void armv7m_nvic_register_types(void)
1296 {
1297     type_register_static(&armv7m_nvic_info);
1298 }
1299 
1300 type_init(armv7m_nvic_register_types)
1301