xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 43bbce7fbef22adf687dd84934fd0b2f8df807a8)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528 
529     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
530     assert(!secure || banked);
531 
532     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
533 
534     trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio);
535 
536     if (derived) {
537         /* Derived exceptions are always synchronous. */
538         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
539 
540         if (irq == ARMV7M_EXCP_DEBUG &&
541             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
542             /* DebugMonitorFault, but its priority is lower than the
543              * preempted exception priority: just ignore it.
544              */
545             return;
546         }
547 
548         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
549             /* If this is a terminal exception (one which means we cannot
550              * take the original exception, like a failure to read its
551              * vector table entry), then we must take the derived exception.
552              * If the derived exception can't take priority over the
553              * original exception, then we go into Lockup.
554              *
555              * For QEMU, we rely on the fact that a derived exception is
556              * terminal if and only if it's reported to us as HardFault,
557              * which saves having to have an extra argument is_terminal
558              * that we'd only use in one place.
559              */
560             cpu_abort(&s->cpu->parent_obj,
561                       "Lockup: can't take terminal derived exception "
562                       "(original exception priority %d)\n",
563                       s->vectpending_prio);
564         }
565         /* We now continue with the same code as for a normal pending
566          * exception, which will cause us to pend the derived exception.
567          * We'll then take either the original or the derived exception
568          * based on which is higher priority by the usual mechanism
569          * for selecting the highest priority pending interrupt.
570          */
571     }
572 
573     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
574         /* If a synchronous exception is pending then it may be
575          * escalated to HardFault if:
576          *  * it is equal or lower priority to current execution
577          *  * it is disabled
578          * (ie we need to take it immediately but we can't do so).
579          * Asynchronous exceptions (and interrupts) simply remain pending.
580          *
581          * For QEMU, we don't have any imprecise (asynchronous) faults,
582          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
583          * synchronous.
584          * Debug exceptions are awkward because only Debug exceptions
585          * resulting from the BKPT instruction should be escalated,
586          * but we don't currently implement any Debug exceptions other
587          * than those that result from BKPT, so we treat all debug exceptions
588          * as needing escalation.
589          *
590          * This all means we can identify whether to escalate based only on
591          * the exception number and don't (yet) need the caller to explicitly
592          * tell us whether this exception is synchronous or not.
593          */
594         int running = nvic_exec_prio(s);
595         bool escalate = false;
596 
597         if (exc_group_prio(s, vec->prio, secure) >= running) {
598             trace_nvic_escalate_prio(irq, vec->prio, running);
599             escalate = true;
600         } else if (!vec->enabled) {
601             trace_nvic_escalate_disabled(irq);
602             escalate = true;
603         }
604 
605         if (escalate) {
606 
607             /* We need to escalate this exception to a synchronous HardFault.
608              * If BFHFNMINS is set then we escalate to the banked HF for
609              * the target security state of the original exception; otherwise
610              * we take a Secure HardFault.
611              */
612             irq = ARMV7M_EXCP_HARD;
613             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
614                 (secure ||
615                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
616                 vec = &s->sec_vectors[irq];
617             } else {
618                 vec = &s->vectors[irq];
619             }
620             if (running <= vec->prio) {
621                 /* We want to escalate to HardFault but we can't take the
622                  * synchronous HardFault at this point either. This is a
623                  * Lockup condition due to a guest bug. We don't model
624                  * Lockup, so report via cpu_abort() instead.
625                  */
626                 cpu_abort(&s->cpu->parent_obj,
627                           "Lockup: can't escalate %d to HardFault "
628                           "(current priority %d)\n", irq, running);
629             }
630 
631             /* HF may be banked but there is only one shared HFSR */
632             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
633         }
634     }
635 
636     if (!vec->pending) {
637         vec->pending = 1;
638         nvic_irq_update(s);
639     }
640 }
641 
642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
643 {
644     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
645 }
646 
647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
648 {
649     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
650 }
651 
652 /* Make pending IRQ active.  */
653 void armv7m_nvic_acknowledge_irq(void *opaque)
654 {
655     NVICState *s = (NVICState *)opaque;
656     CPUARMState *env = &s->cpu->env;
657     const int pending = s->vectpending;
658     const int running = nvic_exec_prio(s);
659     VecInfo *vec;
660 
661     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
662 
663     if (s->vectpending_is_s_banked) {
664         vec = &s->sec_vectors[pending];
665     } else {
666         vec = &s->vectors[pending];
667     }
668 
669     assert(vec->enabled);
670     assert(vec->pending);
671 
672     assert(s->vectpending_prio < running);
673 
674     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
675 
676     vec->active = 1;
677     vec->pending = 0;
678 
679     write_v7m_exception(env, s->vectpending);
680 
681     nvic_irq_update(s);
682 }
683 
684 void armv7m_nvic_get_pending_irq_info(void *opaque,
685                                       int *pirq, bool *ptargets_secure)
686 {
687     NVICState *s = (NVICState *)opaque;
688     const int pending = s->vectpending;
689     bool targets_secure;
690 
691     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
692 
693     if (s->vectpending_is_s_banked) {
694         targets_secure = true;
695     } else {
696         targets_secure = !exc_is_banked(pending) &&
697             exc_targets_secure(s, pending);
698     }
699 
700     trace_nvic_get_pending_irq_info(pending, targets_secure);
701 
702     *ptargets_secure = targets_secure;
703     *pirq = pending;
704 }
705 
706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
707 {
708     NVICState *s = (NVICState *)opaque;
709     VecInfo *vec;
710     int ret;
711 
712     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
713 
714     if (secure && exc_is_banked(irq)) {
715         vec = &s->sec_vectors[irq];
716     } else {
717         vec = &s->vectors[irq];
718     }
719 
720     trace_nvic_complete_irq(irq, secure);
721 
722     if (!vec->active) {
723         /* Tell the caller this was an illegal exception return */
724         return -1;
725     }
726 
727     ret = nvic_rettobase(s);
728 
729     vec->active = 0;
730     if (vec->level) {
731         /* Re-pend the exception if it's still held high; only
732          * happens for extenal IRQs
733          */
734         assert(irq >= NVIC_FIRST_IRQ);
735         vec->pending = 1;
736     }
737 
738     nvic_irq_update(s);
739 
740     return ret;
741 }
742 
743 /* callback when external interrupt line is changed */
744 static void set_irq_level(void *opaque, int n, int level)
745 {
746     NVICState *s = opaque;
747     VecInfo *vec;
748 
749     n += NVIC_FIRST_IRQ;
750 
751     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
752 
753     trace_nvic_set_irq_level(n, level);
754 
755     /* The pending status of an external interrupt is
756      * latched on rising edge and exception handler return.
757      *
758      * Pulsing the IRQ will always run the handler
759      * once, and the handler will re-run until the
760      * level is low when the handler completes.
761      */
762     vec = &s->vectors[n];
763     if (level != vec->level) {
764         vec->level = level;
765         if (level) {
766             armv7m_nvic_set_pending(s, n, false);
767         }
768     }
769 }
770 
771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
772 {
773     ARMCPU *cpu = s->cpu;
774     uint32_t val;
775 
776     switch (offset) {
777     case 4: /* Interrupt Control Type.  */
778         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
779     case 0xc: /* CPPWR */
780         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
781             goto bad_offset;
782         }
783         /* We make the IMPDEF choice that nothing can ever go into a
784          * non-retentive power state, which allows us to RAZ/WI this.
785          */
786         return 0;
787     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
788     {
789         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
790         int i;
791 
792         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
793             goto bad_offset;
794         }
795         if (!attrs.secure) {
796             return 0;
797         }
798         val = 0;
799         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
800             if (s->itns[startvec + i]) {
801                 val |= (1 << i);
802             }
803         }
804         return val;
805     }
806     case 0xd00: /* CPUID Base.  */
807         return cpu->midr;
808     case 0xd04: /* Interrupt Control State (ICSR) */
809         /* VECTACTIVE */
810         val = cpu->env.v7m.exception;
811         /* VECTPENDING */
812         val |= (s->vectpending & 0xff) << 12;
813         /* ISRPENDING - set if any external IRQ is pending */
814         if (nvic_isrpending(s)) {
815             val |= (1 << 22);
816         }
817         /* RETTOBASE - set if only one handler is active */
818         if (nvic_rettobase(s)) {
819             val |= (1 << 11);
820         }
821         if (attrs.secure) {
822             /* PENDSTSET */
823             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
824                 val |= (1 << 26);
825             }
826             /* PENDSVSET */
827             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
828                 val |= (1 << 28);
829             }
830         } else {
831             /* PENDSTSET */
832             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
833                 val |= (1 << 26);
834             }
835             /* PENDSVSET */
836             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
837                 val |= (1 << 28);
838             }
839         }
840         /* NMIPENDSET */
841         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
842             && s->vectors[ARMV7M_EXCP_NMI].pending) {
843             val |= (1 << 31);
844         }
845         /* ISRPREEMPT: RES0 when halting debug not implemented */
846         /* STTNS: RES0 for the Main Extension */
847         return val;
848     case 0xd08: /* Vector Table Offset.  */
849         return cpu->env.v7m.vecbase[attrs.secure];
850     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
851         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
852         if (attrs.secure) {
853             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
854             val |= cpu->env.v7m.aircr;
855         } else {
856             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
857                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
858                  * security isn't supported then BFHFNMINS is RAO (and
859                  * the bit in env.v7m.aircr is always set).
860                  */
861                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
862             }
863         }
864         return val;
865     case 0xd10: /* System Control.  */
866         /* TODO: Implement SLEEPONEXIT.  */
867         return 0;
868     case 0xd14: /* Configuration Control.  */
869         /* The BFHFNMIGN bit is the only non-banked bit; we
870          * keep it in the non-secure copy of the register.
871          */
872         val = cpu->env.v7m.ccr[attrs.secure];
873         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
874         return val;
875     case 0xd24: /* System Handler Control and State (SHCSR) */
876         val = 0;
877         if (attrs.secure) {
878             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
879                 val |= (1 << 0);
880             }
881             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
882                 val |= (1 << 2);
883             }
884             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
885                 val |= (1 << 3);
886             }
887             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
888                 val |= (1 << 7);
889             }
890             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
891                 val |= (1 << 10);
892             }
893             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
894                 val |= (1 << 11);
895             }
896             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
897                 val |= (1 << 12);
898             }
899             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
900                 val |= (1 << 13);
901             }
902             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
903                 val |= (1 << 15);
904             }
905             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
906                 val |= (1 << 16);
907             }
908             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
909                 val |= (1 << 18);
910             }
911             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
912                 val |= (1 << 21);
913             }
914             /* SecureFault is not banked but is always RAZ/WI to NS */
915             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
916                 val |= (1 << 4);
917             }
918             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
919                 val |= (1 << 19);
920             }
921             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
922                 val |= (1 << 20);
923             }
924         } else {
925             if (s->vectors[ARMV7M_EXCP_MEM].active) {
926                 val |= (1 << 0);
927             }
928             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
929                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
930                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
931                     val |= (1 << 2);
932                 }
933                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
934                     val |= (1 << 21);
935                 }
936             }
937             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
938                 val |= (1 << 3);
939             }
940             if (s->vectors[ARMV7M_EXCP_SVC].active) {
941                 val |= (1 << 7);
942             }
943             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
944                 val |= (1 << 10);
945             }
946             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
947                 val |= (1 << 11);
948             }
949             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
950                 val |= (1 << 12);
951             }
952             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
953                 val |= (1 << 13);
954             }
955             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
956                 val |= (1 << 15);
957             }
958             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
959                 val |= (1 << 16);
960             }
961             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
962                 val |= (1 << 18);
963             }
964         }
965         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
966             if (s->vectors[ARMV7M_EXCP_BUS].active) {
967                 val |= (1 << 1);
968             }
969             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
970                 val |= (1 << 14);
971             }
972             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
973                 val |= (1 << 17);
974             }
975             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
976                 s->vectors[ARMV7M_EXCP_NMI].active) {
977                 /* NMIACT is not present in v7M */
978                 val |= (1 << 5);
979             }
980         }
981 
982         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
983         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
984             val |= (1 << 8);
985         }
986         return val;
987     case 0xd2c: /* Hard Fault Status.  */
988         return cpu->env.v7m.hfsr;
989     case 0xd30: /* Debug Fault Status.  */
990         return cpu->env.v7m.dfsr;
991     case 0xd34: /* MMFAR MemManage Fault Address */
992         return cpu->env.v7m.mmfar[attrs.secure];
993     case 0xd38: /* Bus Fault Address.  */
994         return cpu->env.v7m.bfar;
995     case 0xd3c: /* Aux Fault Status.  */
996         /* TODO: Implement fault status registers.  */
997         qemu_log_mask(LOG_UNIMP,
998                       "Aux Fault status registers unimplemented\n");
999         return 0;
1000     case 0xd40: /* PFR0.  */
1001         return cpu->id_pfr0;
1002     case 0xd44: /* PFR1.  */
1003         return cpu->id_pfr1;
1004     case 0xd48: /* DFR0.  */
1005         return cpu->id_dfr0;
1006     case 0xd4c: /* AFR0.  */
1007         return cpu->id_afr0;
1008     case 0xd50: /* MMFR0.  */
1009         return cpu->id_mmfr0;
1010     case 0xd54: /* MMFR1.  */
1011         return cpu->id_mmfr1;
1012     case 0xd58: /* MMFR2.  */
1013         return cpu->id_mmfr2;
1014     case 0xd5c: /* MMFR3.  */
1015         return cpu->id_mmfr3;
1016     case 0xd60: /* ISAR0.  */
1017         return cpu->id_isar0;
1018     case 0xd64: /* ISAR1.  */
1019         return cpu->id_isar1;
1020     case 0xd68: /* ISAR2.  */
1021         return cpu->id_isar2;
1022     case 0xd6c: /* ISAR3.  */
1023         return cpu->id_isar3;
1024     case 0xd70: /* ISAR4.  */
1025         return cpu->id_isar4;
1026     case 0xd74: /* ISAR5.  */
1027         return cpu->id_isar5;
1028     case 0xd78: /* CLIDR */
1029         return cpu->clidr;
1030     case 0xd7c: /* CTR */
1031         return cpu->ctr;
1032     case 0xd80: /* CSSIDR */
1033     {
1034         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1035         return cpu->ccsidr[idx];
1036     }
1037     case 0xd84: /* CSSELR */
1038         return cpu->env.v7m.csselr[attrs.secure];
1039     /* TODO: Implement debug registers.  */
1040     case 0xd90: /* MPU_TYPE */
1041         /* Unified MPU; if the MPU is not present this value is zero */
1042         return cpu->pmsav7_dregion << 8;
1043         break;
1044     case 0xd94: /* MPU_CTRL */
1045         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1046     case 0xd98: /* MPU_RNR */
1047         return cpu->env.pmsav7.rnr[attrs.secure];
1048     case 0xd9c: /* MPU_RBAR */
1049     case 0xda4: /* MPU_RBAR_A1 */
1050     case 0xdac: /* MPU_RBAR_A2 */
1051     case 0xdb4: /* MPU_RBAR_A3 */
1052     {
1053         int region = cpu->env.pmsav7.rnr[attrs.secure];
1054 
1055         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1056             /* PMSAv8M handling of the aliases is different from v7M:
1057              * aliases A1, A2, A3 override the low two bits of the region
1058              * number in MPU_RNR, and there is no 'region' field in the
1059              * RBAR register.
1060              */
1061             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1062             if (aliasno) {
1063                 region = deposit32(region, 0, 2, aliasno);
1064             }
1065             if (region >= cpu->pmsav7_dregion) {
1066                 return 0;
1067             }
1068             return cpu->env.pmsav8.rbar[attrs.secure][region];
1069         }
1070 
1071         if (region >= cpu->pmsav7_dregion) {
1072             return 0;
1073         }
1074         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1075     }
1076     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1077     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1078     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1079     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1080     {
1081         int region = cpu->env.pmsav7.rnr[attrs.secure];
1082 
1083         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1084             /* PMSAv8M handling of the aliases is different from v7M:
1085              * aliases A1, A2, A3 override the low two bits of the region
1086              * number in MPU_RNR.
1087              */
1088             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1089             if (aliasno) {
1090                 region = deposit32(region, 0, 2, aliasno);
1091             }
1092             if (region >= cpu->pmsav7_dregion) {
1093                 return 0;
1094             }
1095             return cpu->env.pmsav8.rlar[attrs.secure][region];
1096         }
1097 
1098         if (region >= cpu->pmsav7_dregion) {
1099             return 0;
1100         }
1101         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1102             (cpu->env.pmsav7.drsr[region] & 0xffff);
1103     }
1104     case 0xdc0: /* MPU_MAIR0 */
1105         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1106             goto bad_offset;
1107         }
1108         return cpu->env.pmsav8.mair0[attrs.secure];
1109     case 0xdc4: /* MPU_MAIR1 */
1110         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1111             goto bad_offset;
1112         }
1113         return cpu->env.pmsav8.mair1[attrs.secure];
1114     case 0xdd0: /* SAU_CTRL */
1115         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1116             goto bad_offset;
1117         }
1118         if (!attrs.secure) {
1119             return 0;
1120         }
1121         return cpu->env.sau.ctrl;
1122     case 0xdd4: /* SAU_TYPE */
1123         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1124             goto bad_offset;
1125         }
1126         if (!attrs.secure) {
1127             return 0;
1128         }
1129         return cpu->sau_sregion;
1130     case 0xdd8: /* SAU_RNR */
1131         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1132             goto bad_offset;
1133         }
1134         if (!attrs.secure) {
1135             return 0;
1136         }
1137         return cpu->env.sau.rnr;
1138     case 0xddc: /* SAU_RBAR */
1139     {
1140         int region = cpu->env.sau.rnr;
1141 
1142         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1143             goto bad_offset;
1144         }
1145         if (!attrs.secure) {
1146             return 0;
1147         }
1148         if (region >= cpu->sau_sregion) {
1149             return 0;
1150         }
1151         return cpu->env.sau.rbar[region];
1152     }
1153     case 0xde0: /* SAU_RLAR */
1154     {
1155         int region = cpu->env.sau.rnr;
1156 
1157         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1158             goto bad_offset;
1159         }
1160         if (!attrs.secure) {
1161             return 0;
1162         }
1163         if (region >= cpu->sau_sregion) {
1164             return 0;
1165         }
1166         return cpu->env.sau.rlar[region];
1167     }
1168     case 0xde4: /* SFSR */
1169         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1170             goto bad_offset;
1171         }
1172         if (!attrs.secure) {
1173             return 0;
1174         }
1175         return cpu->env.v7m.sfsr;
1176     case 0xde8: /* SFAR */
1177         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1178             goto bad_offset;
1179         }
1180         if (!attrs.secure) {
1181             return 0;
1182         }
1183         return cpu->env.v7m.sfar;
1184     default:
1185     bad_offset:
1186         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1187         return 0;
1188     }
1189 }
1190 
1191 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1192                         MemTxAttrs attrs)
1193 {
1194     ARMCPU *cpu = s->cpu;
1195 
1196     switch (offset) {
1197     case 0xc: /* CPPWR */
1198         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1199             goto bad_offset;
1200         }
1201         /* Make the IMPDEF choice to RAZ/WI this. */
1202         break;
1203     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1204     {
1205         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1206         int i;
1207 
1208         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1209             goto bad_offset;
1210         }
1211         if (!attrs.secure) {
1212             break;
1213         }
1214         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1215             s->itns[startvec + i] = (value >> i) & 1;
1216         }
1217         nvic_irq_update(s);
1218         break;
1219     }
1220     case 0xd04: /* Interrupt Control State (ICSR) */
1221         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1222             if (value & (1 << 31)) {
1223                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1224             } else if (value & (1 << 30) &&
1225                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1226                 /* PENDNMICLR didn't exist in v7M */
1227                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1228             }
1229         }
1230         if (value & (1 << 28)) {
1231             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1232         } else if (value & (1 << 27)) {
1233             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1234         }
1235         if (value & (1 << 26)) {
1236             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1237         } else if (value & (1 << 25)) {
1238             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1239         }
1240         break;
1241     case 0xd08: /* Vector Table Offset.  */
1242         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1243         break;
1244     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1245         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1246             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1247                 if (attrs.secure ||
1248                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1249                     qemu_irq_pulse(s->sysresetreq);
1250                 }
1251             }
1252             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1253                 qemu_log_mask(LOG_GUEST_ERROR,
1254                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1255                               "is UNPREDICTABLE\n");
1256             }
1257             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1258                 /* NB: this bit is RES0 in v8M */
1259                 qemu_log_mask(LOG_GUEST_ERROR,
1260                               "Setting VECTRESET when not in DEBUG mode "
1261                               "is UNPREDICTABLE\n");
1262             }
1263             s->prigroup[attrs.secure] = extract32(value,
1264                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1265                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1266             if (attrs.secure) {
1267                 /* These bits are only writable by secure */
1268                 cpu->env.v7m.aircr = value &
1269                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1270                      R_V7M_AIRCR_BFHFNMINS_MASK |
1271                      R_V7M_AIRCR_PRIS_MASK);
1272                 /* BFHFNMINS changes the priority of Secure HardFault, and
1273                  * allows a pending Non-secure HardFault to preempt (which
1274                  * we implement by marking it enabled).
1275                  */
1276                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1277                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1278                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1279                 } else {
1280                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1281                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1282                 }
1283             }
1284             nvic_irq_update(s);
1285         }
1286         break;
1287     case 0xd10: /* System Control.  */
1288         /* TODO: Implement control registers.  */
1289         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1290         break;
1291     case 0xd14: /* Configuration Control.  */
1292         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1293         value &= (R_V7M_CCR_STKALIGN_MASK |
1294                   R_V7M_CCR_BFHFNMIGN_MASK |
1295                   R_V7M_CCR_DIV_0_TRP_MASK |
1296                   R_V7M_CCR_UNALIGN_TRP_MASK |
1297                   R_V7M_CCR_USERSETMPEND_MASK |
1298                   R_V7M_CCR_NONBASETHRDENA_MASK);
1299 
1300         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1301             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1302             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1303                 | R_V7M_CCR_STKALIGN_MASK;
1304         }
1305         if (attrs.secure) {
1306             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1307             cpu->env.v7m.ccr[M_REG_NS] =
1308                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1309                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1310             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1311         }
1312 
1313         cpu->env.v7m.ccr[attrs.secure] = value;
1314         break;
1315     case 0xd24: /* System Handler Control and State (SHCSR) */
1316         if (attrs.secure) {
1317             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1318             /* Secure HardFault active bit cannot be written */
1319             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1320             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1321             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1322                 (value & (1 << 10)) != 0;
1323             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1324                 (value & (1 << 11)) != 0;
1325             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1326                 (value & (1 << 12)) != 0;
1327             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1328             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1329             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1330             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1331             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1332                 (value & (1 << 18)) != 0;
1333             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1334             /* SecureFault not banked, but RAZ/WI to NS */
1335             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1336             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1337             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1338         } else {
1339             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1340             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1341                 /* HARDFAULTPENDED is not present in v7M */
1342                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1343             }
1344             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1345             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1346             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1347             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1348             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1349             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1350             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1351             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1352             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1353         }
1354         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1355             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1356             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1357             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1358         }
1359         /* NMIACT can only be written if the write is of a zero, with
1360          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1361          */
1362         if (!attrs.secure && cpu->env.v7m.secure &&
1363             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1364             (value & (1 << 5)) == 0) {
1365             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1366         }
1367         /* HARDFAULTACT can only be written if the write is of a zero
1368          * to the non-secure HardFault state by the CPU in secure state.
1369          * The only case where we can be targeting the non-secure HF state
1370          * when in secure state is if this is a write via the NS alias
1371          * and BFHFNMINS is 1.
1372          */
1373         if (!attrs.secure && cpu->env.v7m.secure &&
1374             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1375             (value & (1 << 2)) == 0) {
1376             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1377         }
1378 
1379         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1380         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1381         nvic_irq_update(s);
1382         break;
1383     case 0xd2c: /* Hard Fault Status.  */
1384         cpu->env.v7m.hfsr &= ~value; /* W1C */
1385         break;
1386     case 0xd30: /* Debug Fault Status.  */
1387         cpu->env.v7m.dfsr &= ~value; /* W1C */
1388         break;
1389     case 0xd34: /* Mem Manage Address.  */
1390         cpu->env.v7m.mmfar[attrs.secure] = value;
1391         return;
1392     case 0xd38: /* Bus Fault Address.  */
1393         cpu->env.v7m.bfar = value;
1394         return;
1395     case 0xd3c: /* Aux Fault Status.  */
1396         qemu_log_mask(LOG_UNIMP,
1397                       "NVIC: Aux fault status registers unimplemented\n");
1398         break;
1399     case 0xd84: /* CSSELR */
1400         if (!arm_v7m_csselr_razwi(cpu)) {
1401             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1402         }
1403         break;
1404     case 0xd90: /* MPU_TYPE */
1405         return; /* RO */
1406     case 0xd94: /* MPU_CTRL */
1407         if ((value &
1408              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1409             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1410             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1411                           "UNPREDICTABLE\n");
1412         }
1413         cpu->env.v7m.mpu_ctrl[attrs.secure]
1414             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1415                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1416                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1417         tlb_flush(CPU(cpu));
1418         break;
1419     case 0xd98: /* MPU_RNR */
1420         if (value >= cpu->pmsav7_dregion) {
1421             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1422                           PRIu32 "/%" PRIu32 "\n",
1423                           value, cpu->pmsav7_dregion);
1424         } else {
1425             cpu->env.pmsav7.rnr[attrs.secure] = value;
1426         }
1427         break;
1428     case 0xd9c: /* MPU_RBAR */
1429     case 0xda4: /* MPU_RBAR_A1 */
1430     case 0xdac: /* MPU_RBAR_A2 */
1431     case 0xdb4: /* MPU_RBAR_A3 */
1432     {
1433         int region;
1434 
1435         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1436             /* PMSAv8M handling of the aliases is different from v7M:
1437              * aliases A1, A2, A3 override the low two bits of the region
1438              * number in MPU_RNR, and there is no 'region' field in the
1439              * RBAR register.
1440              */
1441             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1442 
1443             region = cpu->env.pmsav7.rnr[attrs.secure];
1444             if (aliasno) {
1445                 region = deposit32(region, 0, 2, aliasno);
1446             }
1447             if (region >= cpu->pmsav7_dregion) {
1448                 return;
1449             }
1450             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1451             tlb_flush(CPU(cpu));
1452             return;
1453         }
1454 
1455         if (value & (1 << 4)) {
1456             /* VALID bit means use the region number specified in this
1457              * value and also update MPU_RNR.REGION with that value.
1458              */
1459             region = extract32(value, 0, 4);
1460             if (region >= cpu->pmsav7_dregion) {
1461                 qemu_log_mask(LOG_GUEST_ERROR,
1462                               "MPU region out of range %u/%" PRIu32 "\n",
1463                               region, cpu->pmsav7_dregion);
1464                 return;
1465             }
1466             cpu->env.pmsav7.rnr[attrs.secure] = region;
1467         } else {
1468             region = cpu->env.pmsav7.rnr[attrs.secure];
1469         }
1470 
1471         if (region >= cpu->pmsav7_dregion) {
1472             return;
1473         }
1474 
1475         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1476         tlb_flush(CPU(cpu));
1477         break;
1478     }
1479     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1480     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1481     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1482     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1483     {
1484         int region = cpu->env.pmsav7.rnr[attrs.secure];
1485 
1486         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1487             /* PMSAv8M handling of the aliases is different from v7M:
1488              * aliases A1, A2, A3 override the low two bits of the region
1489              * number in MPU_RNR.
1490              */
1491             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1492 
1493             region = cpu->env.pmsav7.rnr[attrs.secure];
1494             if (aliasno) {
1495                 region = deposit32(region, 0, 2, aliasno);
1496             }
1497             if (region >= cpu->pmsav7_dregion) {
1498                 return;
1499             }
1500             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1501             tlb_flush(CPU(cpu));
1502             return;
1503         }
1504 
1505         if (region >= cpu->pmsav7_dregion) {
1506             return;
1507         }
1508 
1509         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1510         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1511         tlb_flush(CPU(cpu));
1512         break;
1513     }
1514     case 0xdc0: /* MPU_MAIR0 */
1515         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1516             goto bad_offset;
1517         }
1518         if (cpu->pmsav7_dregion) {
1519             /* Register is RES0 if no MPU regions are implemented */
1520             cpu->env.pmsav8.mair0[attrs.secure] = value;
1521         }
1522         /* We don't need to do anything else because memory attributes
1523          * only affect cacheability, and we don't implement caching.
1524          */
1525         break;
1526     case 0xdc4: /* MPU_MAIR1 */
1527         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1528             goto bad_offset;
1529         }
1530         if (cpu->pmsav7_dregion) {
1531             /* Register is RES0 if no MPU regions are implemented */
1532             cpu->env.pmsav8.mair1[attrs.secure] = value;
1533         }
1534         /* We don't need to do anything else because memory attributes
1535          * only affect cacheability, and we don't implement caching.
1536          */
1537         break;
1538     case 0xdd0: /* SAU_CTRL */
1539         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1540             goto bad_offset;
1541         }
1542         if (!attrs.secure) {
1543             return;
1544         }
1545         cpu->env.sau.ctrl = value & 3;
1546         break;
1547     case 0xdd4: /* SAU_TYPE */
1548         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1549             goto bad_offset;
1550         }
1551         break;
1552     case 0xdd8: /* SAU_RNR */
1553         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1554             goto bad_offset;
1555         }
1556         if (!attrs.secure) {
1557             return;
1558         }
1559         if (value >= cpu->sau_sregion) {
1560             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1561                           PRIu32 "/%" PRIu32 "\n",
1562                           value, cpu->sau_sregion);
1563         } else {
1564             cpu->env.sau.rnr = value;
1565         }
1566         break;
1567     case 0xddc: /* SAU_RBAR */
1568     {
1569         int region = cpu->env.sau.rnr;
1570 
1571         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1572             goto bad_offset;
1573         }
1574         if (!attrs.secure) {
1575             return;
1576         }
1577         if (region >= cpu->sau_sregion) {
1578             return;
1579         }
1580         cpu->env.sau.rbar[region] = value & ~0x1f;
1581         tlb_flush(CPU(cpu));
1582         break;
1583     }
1584     case 0xde0: /* SAU_RLAR */
1585     {
1586         int region = cpu->env.sau.rnr;
1587 
1588         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1589             goto bad_offset;
1590         }
1591         if (!attrs.secure) {
1592             return;
1593         }
1594         if (region >= cpu->sau_sregion) {
1595             return;
1596         }
1597         cpu->env.sau.rlar[region] = value & ~0x1c;
1598         tlb_flush(CPU(cpu));
1599         break;
1600     }
1601     case 0xde4: /* SFSR */
1602         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1603             goto bad_offset;
1604         }
1605         if (!attrs.secure) {
1606             return;
1607         }
1608         cpu->env.v7m.sfsr &= ~value; /* W1C */
1609         break;
1610     case 0xde8: /* SFAR */
1611         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1612             goto bad_offset;
1613         }
1614         if (!attrs.secure) {
1615             return;
1616         }
1617         cpu->env.v7m.sfsr = value;
1618         break;
1619     case 0xf00: /* Software Triggered Interrupt Register */
1620     {
1621         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1622         if (excnum < s->num_irq) {
1623             armv7m_nvic_set_pending(s, excnum, false);
1624         }
1625         break;
1626     }
1627     case 0xf50: /* ICIALLU */
1628     case 0xf58: /* ICIMVAU */
1629     case 0xf5c: /* DCIMVAC */
1630     case 0xf60: /* DCISW */
1631     case 0xf64: /* DCCMVAU */
1632     case 0xf68: /* DCCMVAC */
1633     case 0xf6c: /* DCCSW */
1634     case 0xf70: /* DCCIMVAC */
1635     case 0xf74: /* DCCISW */
1636     case 0xf78: /* BPIALL */
1637         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1638         break;
1639     default:
1640     bad_offset:
1641         qemu_log_mask(LOG_GUEST_ERROR,
1642                       "NVIC: Bad write offset 0x%x\n", offset);
1643     }
1644 }
1645 
1646 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1647 {
1648     /* Return true if unprivileged access to this register is permitted. */
1649     switch (offset) {
1650     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1651         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1652          * controls access even though the CPU is in Secure state (I_QDKX).
1653          */
1654         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1655     default:
1656         /* All other user accesses cause a BusFault unconditionally */
1657         return false;
1658     }
1659 }
1660 
1661 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1662 {
1663     /* Behaviour for the SHPR register field for this exception:
1664      * return M_REG_NS to use the nonsecure vector (including for
1665      * non-banked exceptions), M_REG_S for the secure version of
1666      * a banked exception, and -1 if this field should RAZ/WI.
1667      */
1668     switch (exc) {
1669     case ARMV7M_EXCP_MEM:
1670     case ARMV7M_EXCP_USAGE:
1671     case ARMV7M_EXCP_SVC:
1672     case ARMV7M_EXCP_PENDSV:
1673     case ARMV7M_EXCP_SYSTICK:
1674         /* Banked exceptions */
1675         return attrs.secure;
1676     case ARMV7M_EXCP_BUS:
1677         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1678         if (!attrs.secure &&
1679             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1680             return -1;
1681         }
1682         return M_REG_NS;
1683     case ARMV7M_EXCP_SECURE:
1684         /* Not banked, RAZ/WI from nonsecure */
1685         if (!attrs.secure) {
1686             return -1;
1687         }
1688         return M_REG_NS;
1689     case ARMV7M_EXCP_DEBUG:
1690         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1691         return M_REG_NS;
1692     case 8 ... 10:
1693     case 13:
1694         /* RES0 */
1695         return -1;
1696     default:
1697         /* Not reachable due to decode of SHPR register addresses */
1698         g_assert_not_reached();
1699     }
1700 }
1701 
1702 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1703                                     uint64_t *data, unsigned size,
1704                                     MemTxAttrs attrs)
1705 {
1706     NVICState *s = (NVICState *)opaque;
1707     uint32_t offset = addr;
1708     unsigned i, startvec, end;
1709     uint32_t val;
1710 
1711     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1712         /* Generate BusFault for unprivileged accesses */
1713         return MEMTX_ERROR;
1714     }
1715 
1716     switch (offset) {
1717     /* reads of set and clear both return the status */
1718     case 0x100 ... 0x13f: /* NVIC Set enable */
1719         offset += 0x80;
1720         /* fall through */
1721     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1722         val = 0;
1723         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1724 
1725         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1726             if (s->vectors[startvec + i].enabled &&
1727                 (attrs.secure || s->itns[startvec + i])) {
1728                 val |= (1 << i);
1729             }
1730         }
1731         break;
1732     case 0x200 ... 0x23f: /* NVIC Set pend */
1733         offset += 0x80;
1734         /* fall through */
1735     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1736         val = 0;
1737         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1738         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1739             if (s->vectors[startvec + i].pending &&
1740                 (attrs.secure || s->itns[startvec + i])) {
1741                 val |= (1 << i);
1742             }
1743         }
1744         break;
1745     case 0x300 ... 0x33f: /* NVIC Active */
1746         val = 0;
1747         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1748 
1749         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1750             if (s->vectors[startvec + i].active &&
1751                 (attrs.secure || s->itns[startvec + i])) {
1752                 val |= (1 << i);
1753             }
1754         }
1755         break;
1756     case 0x400 ... 0x5ef: /* NVIC Priority */
1757         val = 0;
1758         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1759 
1760         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1761             if (attrs.secure || s->itns[startvec + i]) {
1762                 val |= s->vectors[startvec + i].prio << (8 * i);
1763             }
1764         }
1765         break;
1766     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1767         val = 0;
1768         for (i = 0; i < size; i++) {
1769             unsigned hdlidx = (offset - 0xd14) + i;
1770             int sbank = shpr_bank(s, hdlidx, attrs);
1771 
1772             if (sbank < 0) {
1773                 continue;
1774             }
1775             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1776         }
1777         break;
1778     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1779         /* The BFSR bits [15:8] are shared between security states
1780          * and we store them in the NS copy
1781          */
1782         val = s->cpu->env.v7m.cfsr[attrs.secure];
1783         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1784         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1785         break;
1786     case 0xfe0 ... 0xfff: /* ID.  */
1787         if (offset & 3) {
1788             val = 0;
1789         } else {
1790             val = nvic_id[(offset - 0xfe0) >> 2];
1791         }
1792         break;
1793     default:
1794         if (size == 4) {
1795             val = nvic_readl(s, offset, attrs);
1796         } else {
1797             qemu_log_mask(LOG_GUEST_ERROR,
1798                           "NVIC: Bad read of size %d at offset 0x%x\n",
1799                           size, offset);
1800             val = 0;
1801         }
1802     }
1803 
1804     trace_nvic_sysreg_read(addr, val, size);
1805     *data = val;
1806     return MEMTX_OK;
1807 }
1808 
1809 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1810                                      uint64_t value, unsigned size,
1811                                      MemTxAttrs attrs)
1812 {
1813     NVICState *s = (NVICState *)opaque;
1814     uint32_t offset = addr;
1815     unsigned i, startvec, end;
1816     unsigned setval = 0;
1817 
1818     trace_nvic_sysreg_write(addr, value, size);
1819 
1820     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1821         /* Generate BusFault for unprivileged accesses */
1822         return MEMTX_ERROR;
1823     }
1824 
1825     switch (offset) {
1826     case 0x100 ... 0x13f: /* NVIC Set enable */
1827         offset += 0x80;
1828         setval = 1;
1829         /* fall through */
1830     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1831         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1832 
1833         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1834             if (value & (1 << i) &&
1835                 (attrs.secure || s->itns[startvec + i])) {
1836                 s->vectors[startvec + i].enabled = setval;
1837             }
1838         }
1839         nvic_irq_update(s);
1840         return MEMTX_OK;
1841     case 0x200 ... 0x23f: /* NVIC Set pend */
1842         /* the special logic in armv7m_nvic_set_pending()
1843          * is not needed since IRQs are never escalated
1844          */
1845         offset += 0x80;
1846         setval = 1;
1847         /* fall through */
1848     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1849         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1850 
1851         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1852             if (value & (1 << i) &&
1853                 (attrs.secure || s->itns[startvec + i])) {
1854                 s->vectors[startvec + i].pending = setval;
1855             }
1856         }
1857         nvic_irq_update(s);
1858         return MEMTX_OK;
1859     case 0x300 ... 0x33f: /* NVIC Active */
1860         return MEMTX_OK; /* R/O */
1861     case 0x400 ... 0x5ef: /* NVIC Priority */
1862         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1863 
1864         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1865             if (attrs.secure || s->itns[startvec + i]) {
1866                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1867             }
1868         }
1869         nvic_irq_update(s);
1870         return MEMTX_OK;
1871     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1872         for (i = 0; i < size; i++) {
1873             unsigned hdlidx = (offset - 0xd14) + i;
1874             int newprio = extract32(value, i * 8, 8);
1875             int sbank = shpr_bank(s, hdlidx, attrs);
1876 
1877             if (sbank < 0) {
1878                 continue;
1879             }
1880             set_prio(s, hdlidx, sbank, newprio);
1881         }
1882         nvic_irq_update(s);
1883         return MEMTX_OK;
1884     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1885         /* All bits are W1C, so construct 32 bit value with 0s in
1886          * the parts not written by the access size
1887          */
1888         value <<= ((offset - 0xd28) * 8);
1889 
1890         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1891         if (attrs.secure) {
1892             /* The BFSR bits [15:8] are shared between security states
1893              * and we store them in the NS copy.
1894              */
1895             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1896         }
1897         return MEMTX_OK;
1898     }
1899     if (size == 4) {
1900         nvic_writel(s, offset, value, attrs);
1901         return MEMTX_OK;
1902     }
1903     qemu_log_mask(LOG_GUEST_ERROR,
1904                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1905     /* This is UNPREDICTABLE; treat as RAZ/WI */
1906     return MEMTX_OK;
1907 }
1908 
1909 static const MemoryRegionOps nvic_sysreg_ops = {
1910     .read_with_attrs = nvic_sysreg_read,
1911     .write_with_attrs = nvic_sysreg_write,
1912     .endianness = DEVICE_NATIVE_ENDIAN,
1913 };
1914 
1915 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1916                                         uint64_t value, unsigned size,
1917                                         MemTxAttrs attrs)
1918 {
1919     MemoryRegion *mr = opaque;
1920 
1921     if (attrs.secure) {
1922         /* S accesses to the alias act like NS accesses to the real region */
1923         attrs.secure = 0;
1924         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1925     } else {
1926         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1927         if (attrs.user) {
1928             return MEMTX_ERROR;
1929         }
1930         return MEMTX_OK;
1931     }
1932 }
1933 
1934 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1935                                        uint64_t *data, unsigned size,
1936                                        MemTxAttrs attrs)
1937 {
1938     MemoryRegion *mr = opaque;
1939 
1940     if (attrs.secure) {
1941         /* S accesses to the alias act like NS accesses to the real region */
1942         attrs.secure = 0;
1943         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1944     } else {
1945         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1946         if (attrs.user) {
1947             return MEMTX_ERROR;
1948         }
1949         *data = 0;
1950         return MEMTX_OK;
1951     }
1952 }
1953 
1954 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1955     .read_with_attrs = nvic_sysreg_ns_read,
1956     .write_with_attrs = nvic_sysreg_ns_write,
1957     .endianness = DEVICE_NATIVE_ENDIAN,
1958 };
1959 
1960 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1961                                       uint64_t value, unsigned size,
1962                                       MemTxAttrs attrs)
1963 {
1964     NVICState *s = opaque;
1965     MemoryRegion *mr;
1966 
1967     /* Direct the access to the correct systick */
1968     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1969     return memory_region_dispatch_write(mr, addr, value, size, attrs);
1970 }
1971 
1972 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1973                                      uint64_t *data, unsigned size,
1974                                      MemTxAttrs attrs)
1975 {
1976     NVICState *s = opaque;
1977     MemoryRegion *mr;
1978 
1979     /* Direct the access to the correct systick */
1980     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1981     return memory_region_dispatch_read(mr, addr, data, size, attrs);
1982 }
1983 
1984 static const MemoryRegionOps nvic_systick_ops = {
1985     .read_with_attrs = nvic_systick_read,
1986     .write_with_attrs = nvic_systick_write,
1987     .endianness = DEVICE_NATIVE_ENDIAN,
1988 };
1989 
1990 static int nvic_post_load(void *opaque, int version_id)
1991 {
1992     NVICState *s = opaque;
1993     unsigned i;
1994     int resetprio;
1995 
1996     /* Check for out of range priority settings */
1997     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1998 
1999     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2000         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2001         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2002         return 1;
2003     }
2004     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2005         if (s->vectors[i].prio & ~0xff) {
2006             return 1;
2007         }
2008     }
2009 
2010     nvic_recompute_state(s);
2011 
2012     return 0;
2013 }
2014 
2015 static const VMStateDescription vmstate_VecInfo = {
2016     .name = "armv7m_nvic_info",
2017     .version_id = 1,
2018     .minimum_version_id = 1,
2019     .fields = (VMStateField[]) {
2020         VMSTATE_INT16(prio, VecInfo),
2021         VMSTATE_UINT8(enabled, VecInfo),
2022         VMSTATE_UINT8(pending, VecInfo),
2023         VMSTATE_UINT8(active, VecInfo),
2024         VMSTATE_UINT8(level, VecInfo),
2025         VMSTATE_END_OF_LIST()
2026     }
2027 };
2028 
2029 static bool nvic_security_needed(void *opaque)
2030 {
2031     NVICState *s = opaque;
2032 
2033     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2034 }
2035 
2036 static int nvic_security_post_load(void *opaque, int version_id)
2037 {
2038     NVICState *s = opaque;
2039     int i;
2040 
2041     /* Check for out of range priority settings */
2042     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2043         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2044         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2045          * if the CPU state has been migrated yet; a mismatch won't
2046          * cause the emulation to blow up, though.
2047          */
2048         return 1;
2049     }
2050     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2051         if (s->sec_vectors[i].prio & ~0xff) {
2052             return 1;
2053         }
2054     }
2055     return 0;
2056 }
2057 
2058 static const VMStateDescription vmstate_nvic_security = {
2059     .name = "nvic/m-security",
2060     .version_id = 1,
2061     .minimum_version_id = 1,
2062     .needed = nvic_security_needed,
2063     .post_load = &nvic_security_post_load,
2064     .fields = (VMStateField[]) {
2065         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2066                              vmstate_VecInfo, VecInfo),
2067         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2068         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2069         VMSTATE_END_OF_LIST()
2070     }
2071 };
2072 
2073 static const VMStateDescription vmstate_nvic = {
2074     .name = "armv7m_nvic",
2075     .version_id = 4,
2076     .minimum_version_id = 4,
2077     .post_load = &nvic_post_load,
2078     .fields = (VMStateField[]) {
2079         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2080                              vmstate_VecInfo, VecInfo),
2081         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2082         VMSTATE_END_OF_LIST()
2083     },
2084     .subsections = (const VMStateDescription*[]) {
2085         &vmstate_nvic_security,
2086         NULL
2087     }
2088 };
2089 
2090 static Property props_nvic[] = {
2091     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2092     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2093     DEFINE_PROP_END_OF_LIST()
2094 };
2095 
2096 static void armv7m_nvic_reset(DeviceState *dev)
2097 {
2098     int resetprio;
2099     NVICState *s = NVIC(dev);
2100 
2101     memset(s->vectors, 0, sizeof(s->vectors));
2102     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2103     s->prigroup[M_REG_NS] = 0;
2104     s->prigroup[M_REG_S] = 0;
2105 
2106     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2107     /* MEM, BUS, and USAGE are enabled through
2108      * the System Handler Control register
2109      */
2110     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2111     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2112     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2113     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2114 
2115     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2116     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2117     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2118     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2119 
2120     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2121         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2122         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2123         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2124         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2125 
2126         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2127         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2128         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2129         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2130     } else {
2131         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2132     }
2133 
2134     /* Strictly speaking the reset handler should be enabled.
2135      * However, we don't simulate soft resets through the NVIC,
2136      * and the reset vector should never be pended.
2137      * So we leave it disabled to catch logic errors.
2138      */
2139 
2140     s->exception_prio = NVIC_NOEXC_PRIO;
2141     s->vectpending = 0;
2142     s->vectpending_is_s_banked = false;
2143     s->vectpending_prio = NVIC_NOEXC_PRIO;
2144 
2145     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2146         memset(s->itns, 0, sizeof(s->itns));
2147     } else {
2148         /* This state is constant and not guest accessible in a non-security
2149          * NVIC; we set the bits to true to avoid having to do a feature
2150          * bit check in the NVIC enable/pend/etc register accessors.
2151          */
2152         int i;
2153 
2154         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2155             s->itns[i] = true;
2156         }
2157     }
2158 }
2159 
2160 static void nvic_systick_trigger(void *opaque, int n, int level)
2161 {
2162     NVICState *s = opaque;
2163 
2164     if (level) {
2165         /* SysTick just asked us to pend its exception.
2166          * (This is different from an external interrupt line's
2167          * behaviour.)
2168          * n == 0 : NonSecure systick
2169          * n == 1 : Secure systick
2170          */
2171         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2172     }
2173 }
2174 
2175 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2176 {
2177     NVICState *s = NVIC(dev);
2178     Error *err = NULL;
2179     int regionlen;
2180 
2181     s->cpu = ARM_CPU(qemu_get_cpu(0));
2182     assert(s->cpu);
2183 
2184     if (s->num_irq > NVIC_MAX_IRQ) {
2185         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2186         return;
2187     }
2188 
2189     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2190 
2191     /* include space for internal exception vectors */
2192     s->num_irq += NVIC_FIRST_IRQ;
2193 
2194     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2195                              "realized", &err);
2196     if (err != NULL) {
2197         error_propagate(errp, err);
2198         return;
2199     }
2200     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2201                        qdev_get_gpio_in_named(dev, "systick-trigger",
2202                                               M_REG_NS));
2203 
2204     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2205         /* We couldn't init the secure systick device in instance_init
2206          * as we didn't know then if the CPU had the security extensions;
2207          * so we have to do it here.
2208          */
2209         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2210                           TYPE_SYSTICK);
2211         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2212 
2213         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2214                                  "realized", &err);
2215         if (err != NULL) {
2216             error_propagate(errp, err);
2217             return;
2218         }
2219         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2220                            qdev_get_gpio_in_named(dev, "systick-trigger",
2221                                                   M_REG_S));
2222     }
2223 
2224     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2225      * and looks like this:
2226      *  0x004 - ICTR
2227      *  0x010 - 0xff - systick
2228      *  0x100..0x7ec - NVIC
2229      *  0x7f0..0xcff - Reserved
2230      *  0xd00..0xd3c - SCS registers
2231      *  0xd40..0xeff - Reserved or Not implemented
2232      *  0xf00 - STIR
2233      *
2234      * Some registers within this space are banked between security states.
2235      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2236      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2237      * to the main SCS range, and non-secure accesses (including when
2238      * the security extension is not implemented) are RAZ/WI.
2239      * Note that both the main SCS range and the alias range are defined
2240      * to be exempt from memory attribution (R_BLJT) and so the memory
2241      * transaction attribute always matches the current CPU security
2242      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2243      * wrappers we change attrs.secure to indicate the NS access; so
2244      * generally code determining which banked register to use should
2245      * use attrs.secure; code determining actual behaviour of the system
2246      * should use env->v7m.secure.
2247      */
2248     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2249     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2250     /* The system register region goes at the bottom of the priority
2251      * stack as it covers the whole page.
2252      */
2253     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2254                           "nvic_sysregs", 0x1000);
2255     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2256 
2257     memory_region_init_io(&s->systickmem, OBJECT(s),
2258                           &nvic_systick_ops, s,
2259                           "nvic_systick", 0xe0);
2260 
2261     memory_region_add_subregion_overlap(&s->container, 0x10,
2262                                         &s->systickmem, 1);
2263 
2264     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2265         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2266                               &nvic_sysreg_ns_ops, &s->sysregmem,
2267                               "nvic_sysregs_ns", 0x1000);
2268         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2269         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2270                               &nvic_sysreg_ns_ops, &s->systickmem,
2271                               "nvic_systick_ns", 0xe0);
2272         memory_region_add_subregion_overlap(&s->container, 0x20010,
2273                                             &s->systick_ns_mem, 1);
2274     }
2275 
2276     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2277 }
2278 
2279 static void armv7m_nvic_instance_init(Object *obj)
2280 {
2281     /* We have a different default value for the num-irq property
2282      * than our superclass. This function runs after qdev init
2283      * has set the defaults from the Property array and before
2284      * any user-specified property setting, so just modify the
2285      * value in the GICState struct.
2286      */
2287     DeviceState *dev = DEVICE(obj);
2288     NVICState *nvic = NVIC(obj);
2289     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2290 
2291     object_initialize(&nvic->systick[M_REG_NS],
2292                       sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2293     qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2294     /* We can't initialize the secure systick here, as we don't know
2295      * yet if we need it.
2296      */
2297 
2298     sysbus_init_irq(sbd, &nvic->excpout);
2299     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2300     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2301                             M_REG_NUM_BANKS);
2302 }
2303 
2304 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2305 {
2306     DeviceClass *dc = DEVICE_CLASS(klass);
2307 
2308     dc->vmsd  = &vmstate_nvic;
2309     dc->props = props_nvic;
2310     dc->reset = armv7m_nvic_reset;
2311     dc->realize = armv7m_nvic_realize;
2312 }
2313 
2314 static const TypeInfo armv7m_nvic_info = {
2315     .name          = TYPE_NVIC,
2316     .parent        = TYPE_SYS_BUS_DEVICE,
2317     .instance_init = armv7m_nvic_instance_init,
2318     .instance_size = sizeof(NVICState),
2319     .class_init    = armv7m_nvic_class_init,
2320     .class_size    = sizeof(SysBusDeviceClass),
2321 };
2322 
2323 static void armv7m_nvic_register_types(void)
2324 {
2325     type_register_static(&armv7m_nvic_info);
2326 }
2327 
2328 type_init(armv7m_nvic_register_types)
2329