1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 if (secure) { 424 assert(exc_is_banked(irq)); 425 s->sec_vectors[irq].prio = prio; 426 } else { 427 s->vectors[irq].prio = prio; 428 } 429 430 trace_nvic_set_prio(irq, secure, prio); 431 } 432 433 /* Return the current raw priority register value. 434 * secure indicates the bank to use for banked exceptions (we assert if 435 * we are passed secure=true for a non-banked exception). 436 */ 437 static int get_prio(NVICState *s, unsigned irq, bool secure) 438 { 439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 440 assert(irq < s->num_irq); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 return s->sec_vectors[irq].prio; 445 } else { 446 return s->vectors[irq].prio; 447 } 448 } 449 450 /* Recompute state and assert irq line accordingly. 451 * Must be called after changes to: 452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 453 * prigroup 454 */ 455 static void nvic_irq_update(NVICState *s) 456 { 457 int lvl; 458 int pend_prio; 459 460 nvic_recompute_state(s); 461 pend_prio = nvic_pending_prio(s); 462 463 /* Raise NVIC output if this IRQ would be taken, except that we 464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 466 * to those CPU registers don't cause us to recalculate the NVIC 467 * pending info. 468 */ 469 lvl = (pend_prio < s->exception_prio); 470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 471 qemu_set_irq(s->excpout, lvl); 472 } 473 474 /** 475 * armv7m_nvic_clear_pending: mark the specified exception as not pending 476 * @opaque: the NVIC 477 * @irq: the exception number to mark as not pending 478 * @secure: false for non-banked exceptions or for the nonsecure 479 * version of a banked exception, true for the secure version of a banked 480 * exception. 481 * 482 * Marks the specified exception as not pending. Note that we will assert() 483 * if @secure is true and @irq does not specify one of the fixed set 484 * of architecturally banked exceptions. 485 */ 486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 487 { 488 NVICState *s = (NVICState *)opaque; 489 VecInfo *vec; 490 491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 492 493 if (secure) { 494 assert(exc_is_banked(irq)); 495 vec = &s->sec_vectors[irq]; 496 } else { 497 vec = &s->vectors[irq]; 498 } 499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 500 if (vec->pending) { 501 vec->pending = 0; 502 nvic_irq_update(s); 503 } 504 } 505 506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 507 bool derived) 508 { 509 /* Pend an exception, including possibly escalating it to HardFault. 510 * 511 * This function handles both "normal" pending of interrupts and 512 * exceptions, and also derived exceptions (ones which occur as 513 * a result of trying to take some other exception). 514 * 515 * If derived == true, the caller guarantees that we are part way through 516 * trying to take an exception (but have not yet called 517 * armv7m_nvic_acknowledge_irq() to make it active), and so: 518 * - s->vectpending is the "original exception" we were trying to take 519 * - irq is the "derived exception" 520 * - nvic_exec_prio(s) gives the priority before exception entry 521 * Here we handle the prioritization logic which the pseudocode puts 522 * in the DerivedLateArrival() function. 523 */ 524 525 NVICState *s = (NVICState *)opaque; 526 bool banked = exc_is_banked(irq); 527 VecInfo *vec; 528 529 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 530 assert(!secure || banked); 531 532 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 533 534 trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio); 535 536 if (derived) { 537 /* Derived exceptions are always synchronous. */ 538 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 539 540 if (irq == ARMV7M_EXCP_DEBUG && 541 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 542 /* DebugMonitorFault, but its priority is lower than the 543 * preempted exception priority: just ignore it. 544 */ 545 return; 546 } 547 548 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 549 /* If this is a terminal exception (one which means we cannot 550 * take the original exception, like a failure to read its 551 * vector table entry), then we must take the derived exception. 552 * If the derived exception can't take priority over the 553 * original exception, then we go into Lockup. 554 * 555 * For QEMU, we rely on the fact that a derived exception is 556 * terminal if and only if it's reported to us as HardFault, 557 * which saves having to have an extra argument is_terminal 558 * that we'd only use in one place. 559 */ 560 cpu_abort(&s->cpu->parent_obj, 561 "Lockup: can't take terminal derived exception " 562 "(original exception priority %d)\n", 563 s->vectpending_prio); 564 } 565 /* We now continue with the same code as for a normal pending 566 * exception, which will cause us to pend the derived exception. 567 * We'll then take either the original or the derived exception 568 * based on which is higher priority by the usual mechanism 569 * for selecting the highest priority pending interrupt. 570 */ 571 } 572 573 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 574 /* If a synchronous exception is pending then it may be 575 * escalated to HardFault if: 576 * * it is equal or lower priority to current execution 577 * * it is disabled 578 * (ie we need to take it immediately but we can't do so). 579 * Asynchronous exceptions (and interrupts) simply remain pending. 580 * 581 * For QEMU, we don't have any imprecise (asynchronous) faults, 582 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 583 * synchronous. 584 * Debug exceptions are awkward because only Debug exceptions 585 * resulting from the BKPT instruction should be escalated, 586 * but we don't currently implement any Debug exceptions other 587 * than those that result from BKPT, so we treat all debug exceptions 588 * as needing escalation. 589 * 590 * This all means we can identify whether to escalate based only on 591 * the exception number and don't (yet) need the caller to explicitly 592 * tell us whether this exception is synchronous or not. 593 */ 594 int running = nvic_exec_prio(s); 595 bool escalate = false; 596 597 if (exc_group_prio(s, vec->prio, secure) >= running) { 598 trace_nvic_escalate_prio(irq, vec->prio, running); 599 escalate = true; 600 } else if (!vec->enabled) { 601 trace_nvic_escalate_disabled(irq); 602 escalate = true; 603 } 604 605 if (escalate) { 606 607 /* We need to escalate this exception to a synchronous HardFault. 608 * If BFHFNMINS is set then we escalate to the banked HF for 609 * the target security state of the original exception; otherwise 610 * we take a Secure HardFault. 611 */ 612 irq = ARMV7M_EXCP_HARD; 613 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 614 (secure || 615 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 616 vec = &s->sec_vectors[irq]; 617 } else { 618 vec = &s->vectors[irq]; 619 } 620 if (running <= vec->prio) { 621 /* We want to escalate to HardFault but we can't take the 622 * synchronous HardFault at this point either. This is a 623 * Lockup condition due to a guest bug. We don't model 624 * Lockup, so report via cpu_abort() instead. 625 */ 626 cpu_abort(&s->cpu->parent_obj, 627 "Lockup: can't escalate %d to HardFault " 628 "(current priority %d)\n", irq, running); 629 } 630 631 /* HF may be banked but there is only one shared HFSR */ 632 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 633 } 634 } 635 636 if (!vec->pending) { 637 vec->pending = 1; 638 nvic_irq_update(s); 639 } 640 } 641 642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 643 { 644 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 645 } 646 647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 648 { 649 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 650 } 651 652 /* Make pending IRQ active. */ 653 void armv7m_nvic_acknowledge_irq(void *opaque) 654 { 655 NVICState *s = (NVICState *)opaque; 656 CPUARMState *env = &s->cpu->env; 657 const int pending = s->vectpending; 658 const int running = nvic_exec_prio(s); 659 VecInfo *vec; 660 661 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 662 663 if (s->vectpending_is_s_banked) { 664 vec = &s->sec_vectors[pending]; 665 } else { 666 vec = &s->vectors[pending]; 667 } 668 669 assert(vec->enabled); 670 assert(vec->pending); 671 672 assert(s->vectpending_prio < running); 673 674 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 675 676 vec->active = 1; 677 vec->pending = 0; 678 679 write_v7m_exception(env, s->vectpending); 680 681 nvic_irq_update(s); 682 } 683 684 void armv7m_nvic_get_pending_irq_info(void *opaque, 685 int *pirq, bool *ptargets_secure) 686 { 687 NVICState *s = (NVICState *)opaque; 688 const int pending = s->vectpending; 689 bool targets_secure; 690 691 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 692 693 if (s->vectpending_is_s_banked) { 694 targets_secure = true; 695 } else { 696 targets_secure = !exc_is_banked(pending) && 697 exc_targets_secure(s, pending); 698 } 699 700 trace_nvic_get_pending_irq_info(pending, targets_secure); 701 702 *ptargets_secure = targets_secure; 703 *pirq = pending; 704 } 705 706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 707 { 708 NVICState *s = (NVICState *)opaque; 709 VecInfo *vec; 710 int ret; 711 712 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 713 714 if (secure && exc_is_banked(irq)) { 715 vec = &s->sec_vectors[irq]; 716 } else { 717 vec = &s->vectors[irq]; 718 } 719 720 trace_nvic_complete_irq(irq, secure); 721 722 if (!vec->active) { 723 /* Tell the caller this was an illegal exception return */ 724 return -1; 725 } 726 727 ret = nvic_rettobase(s); 728 729 vec->active = 0; 730 if (vec->level) { 731 /* Re-pend the exception if it's still held high; only 732 * happens for extenal IRQs 733 */ 734 assert(irq >= NVIC_FIRST_IRQ); 735 vec->pending = 1; 736 } 737 738 nvic_irq_update(s); 739 740 return ret; 741 } 742 743 /* callback when external interrupt line is changed */ 744 static void set_irq_level(void *opaque, int n, int level) 745 { 746 NVICState *s = opaque; 747 VecInfo *vec; 748 749 n += NVIC_FIRST_IRQ; 750 751 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 752 753 trace_nvic_set_irq_level(n, level); 754 755 /* The pending status of an external interrupt is 756 * latched on rising edge and exception handler return. 757 * 758 * Pulsing the IRQ will always run the handler 759 * once, and the handler will re-run until the 760 * level is low when the handler completes. 761 */ 762 vec = &s->vectors[n]; 763 if (level != vec->level) { 764 vec->level = level; 765 if (level) { 766 armv7m_nvic_set_pending(s, n, false); 767 } 768 } 769 } 770 771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 772 { 773 ARMCPU *cpu = s->cpu; 774 uint32_t val; 775 776 switch (offset) { 777 case 4: /* Interrupt Control Type. */ 778 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 779 case 0xc: /* CPPWR */ 780 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 781 goto bad_offset; 782 } 783 /* We make the IMPDEF choice that nothing can ever go into a 784 * non-retentive power state, which allows us to RAZ/WI this. 785 */ 786 return 0; 787 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 788 { 789 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 790 int i; 791 792 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 793 goto bad_offset; 794 } 795 if (!attrs.secure) { 796 return 0; 797 } 798 val = 0; 799 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 800 if (s->itns[startvec + i]) { 801 val |= (1 << i); 802 } 803 } 804 return val; 805 } 806 case 0xd00: /* CPUID Base. */ 807 return cpu->midr; 808 case 0xd04: /* Interrupt Control State (ICSR) */ 809 /* VECTACTIVE */ 810 val = cpu->env.v7m.exception; 811 /* VECTPENDING */ 812 val |= (s->vectpending & 0xff) << 12; 813 /* ISRPENDING - set if any external IRQ is pending */ 814 if (nvic_isrpending(s)) { 815 val |= (1 << 22); 816 } 817 /* RETTOBASE - set if only one handler is active */ 818 if (nvic_rettobase(s)) { 819 val |= (1 << 11); 820 } 821 if (attrs.secure) { 822 /* PENDSTSET */ 823 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 824 val |= (1 << 26); 825 } 826 /* PENDSVSET */ 827 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 828 val |= (1 << 28); 829 } 830 } else { 831 /* PENDSTSET */ 832 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 833 val |= (1 << 26); 834 } 835 /* PENDSVSET */ 836 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 837 val |= (1 << 28); 838 } 839 } 840 /* NMIPENDSET */ 841 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 842 && s->vectors[ARMV7M_EXCP_NMI].pending) { 843 val |= (1 << 31); 844 } 845 /* ISRPREEMPT: RES0 when halting debug not implemented */ 846 /* STTNS: RES0 for the Main Extension */ 847 return val; 848 case 0xd08: /* Vector Table Offset. */ 849 return cpu->env.v7m.vecbase[attrs.secure]; 850 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 851 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 852 if (attrs.secure) { 853 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 854 val |= cpu->env.v7m.aircr; 855 } else { 856 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 857 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 858 * security isn't supported then BFHFNMINS is RAO (and 859 * the bit in env.v7m.aircr is always set). 860 */ 861 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 862 } 863 } 864 return val; 865 case 0xd10: /* System Control. */ 866 /* TODO: Implement SLEEPONEXIT. */ 867 return 0; 868 case 0xd14: /* Configuration Control. */ 869 /* The BFHFNMIGN bit is the only non-banked bit; we 870 * keep it in the non-secure copy of the register. 871 */ 872 val = cpu->env.v7m.ccr[attrs.secure]; 873 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 874 return val; 875 case 0xd24: /* System Handler Control and State (SHCSR) */ 876 val = 0; 877 if (attrs.secure) { 878 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 879 val |= (1 << 0); 880 } 881 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 882 val |= (1 << 2); 883 } 884 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 885 val |= (1 << 3); 886 } 887 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 888 val |= (1 << 7); 889 } 890 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 891 val |= (1 << 10); 892 } 893 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 894 val |= (1 << 11); 895 } 896 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 897 val |= (1 << 12); 898 } 899 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 900 val |= (1 << 13); 901 } 902 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 903 val |= (1 << 15); 904 } 905 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 906 val |= (1 << 16); 907 } 908 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 909 val |= (1 << 18); 910 } 911 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 912 val |= (1 << 21); 913 } 914 /* SecureFault is not banked but is always RAZ/WI to NS */ 915 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 916 val |= (1 << 4); 917 } 918 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 919 val |= (1 << 19); 920 } 921 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 922 val |= (1 << 20); 923 } 924 } else { 925 if (s->vectors[ARMV7M_EXCP_MEM].active) { 926 val |= (1 << 0); 927 } 928 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 929 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 930 if (s->vectors[ARMV7M_EXCP_HARD].active) { 931 val |= (1 << 2); 932 } 933 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 934 val |= (1 << 21); 935 } 936 } 937 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 938 val |= (1 << 3); 939 } 940 if (s->vectors[ARMV7M_EXCP_SVC].active) { 941 val |= (1 << 7); 942 } 943 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 944 val |= (1 << 10); 945 } 946 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 947 val |= (1 << 11); 948 } 949 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 950 val |= (1 << 12); 951 } 952 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 953 val |= (1 << 13); 954 } 955 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 956 val |= (1 << 15); 957 } 958 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 959 val |= (1 << 16); 960 } 961 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 962 val |= (1 << 18); 963 } 964 } 965 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 966 if (s->vectors[ARMV7M_EXCP_BUS].active) { 967 val |= (1 << 1); 968 } 969 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 970 val |= (1 << 14); 971 } 972 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 973 val |= (1 << 17); 974 } 975 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 976 s->vectors[ARMV7M_EXCP_NMI].active) { 977 /* NMIACT is not present in v7M */ 978 val |= (1 << 5); 979 } 980 } 981 982 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 983 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 984 val |= (1 << 8); 985 } 986 return val; 987 case 0xd2c: /* Hard Fault Status. */ 988 return cpu->env.v7m.hfsr; 989 case 0xd30: /* Debug Fault Status. */ 990 return cpu->env.v7m.dfsr; 991 case 0xd34: /* MMFAR MemManage Fault Address */ 992 return cpu->env.v7m.mmfar[attrs.secure]; 993 case 0xd38: /* Bus Fault Address. */ 994 return cpu->env.v7m.bfar; 995 case 0xd3c: /* Aux Fault Status. */ 996 /* TODO: Implement fault status registers. */ 997 qemu_log_mask(LOG_UNIMP, 998 "Aux Fault status registers unimplemented\n"); 999 return 0; 1000 case 0xd40: /* PFR0. */ 1001 return cpu->id_pfr0; 1002 case 0xd44: /* PFR1. */ 1003 return cpu->id_pfr1; 1004 case 0xd48: /* DFR0. */ 1005 return cpu->id_dfr0; 1006 case 0xd4c: /* AFR0. */ 1007 return cpu->id_afr0; 1008 case 0xd50: /* MMFR0. */ 1009 return cpu->id_mmfr0; 1010 case 0xd54: /* MMFR1. */ 1011 return cpu->id_mmfr1; 1012 case 0xd58: /* MMFR2. */ 1013 return cpu->id_mmfr2; 1014 case 0xd5c: /* MMFR3. */ 1015 return cpu->id_mmfr3; 1016 case 0xd60: /* ISAR0. */ 1017 return cpu->id_isar0; 1018 case 0xd64: /* ISAR1. */ 1019 return cpu->id_isar1; 1020 case 0xd68: /* ISAR2. */ 1021 return cpu->id_isar2; 1022 case 0xd6c: /* ISAR3. */ 1023 return cpu->id_isar3; 1024 case 0xd70: /* ISAR4. */ 1025 return cpu->id_isar4; 1026 case 0xd74: /* ISAR5. */ 1027 return cpu->id_isar5; 1028 case 0xd78: /* CLIDR */ 1029 return cpu->clidr; 1030 case 0xd7c: /* CTR */ 1031 return cpu->ctr; 1032 case 0xd80: /* CSSIDR */ 1033 { 1034 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1035 return cpu->ccsidr[idx]; 1036 } 1037 case 0xd84: /* CSSELR */ 1038 return cpu->env.v7m.csselr[attrs.secure]; 1039 /* TODO: Implement debug registers. */ 1040 case 0xd90: /* MPU_TYPE */ 1041 /* Unified MPU; if the MPU is not present this value is zero */ 1042 return cpu->pmsav7_dregion << 8; 1043 break; 1044 case 0xd94: /* MPU_CTRL */ 1045 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1046 case 0xd98: /* MPU_RNR */ 1047 return cpu->env.pmsav7.rnr[attrs.secure]; 1048 case 0xd9c: /* MPU_RBAR */ 1049 case 0xda4: /* MPU_RBAR_A1 */ 1050 case 0xdac: /* MPU_RBAR_A2 */ 1051 case 0xdb4: /* MPU_RBAR_A3 */ 1052 { 1053 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1054 1055 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1056 /* PMSAv8M handling of the aliases is different from v7M: 1057 * aliases A1, A2, A3 override the low two bits of the region 1058 * number in MPU_RNR, and there is no 'region' field in the 1059 * RBAR register. 1060 */ 1061 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1062 if (aliasno) { 1063 region = deposit32(region, 0, 2, aliasno); 1064 } 1065 if (region >= cpu->pmsav7_dregion) { 1066 return 0; 1067 } 1068 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1069 } 1070 1071 if (region >= cpu->pmsav7_dregion) { 1072 return 0; 1073 } 1074 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1075 } 1076 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1077 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1078 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1079 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1080 { 1081 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1082 1083 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1084 /* PMSAv8M handling of the aliases is different from v7M: 1085 * aliases A1, A2, A3 override the low two bits of the region 1086 * number in MPU_RNR. 1087 */ 1088 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1089 if (aliasno) { 1090 region = deposit32(region, 0, 2, aliasno); 1091 } 1092 if (region >= cpu->pmsav7_dregion) { 1093 return 0; 1094 } 1095 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1096 } 1097 1098 if (region >= cpu->pmsav7_dregion) { 1099 return 0; 1100 } 1101 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1102 (cpu->env.pmsav7.drsr[region] & 0xffff); 1103 } 1104 case 0xdc0: /* MPU_MAIR0 */ 1105 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1106 goto bad_offset; 1107 } 1108 return cpu->env.pmsav8.mair0[attrs.secure]; 1109 case 0xdc4: /* MPU_MAIR1 */ 1110 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1111 goto bad_offset; 1112 } 1113 return cpu->env.pmsav8.mair1[attrs.secure]; 1114 case 0xdd0: /* SAU_CTRL */ 1115 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1116 goto bad_offset; 1117 } 1118 if (!attrs.secure) { 1119 return 0; 1120 } 1121 return cpu->env.sau.ctrl; 1122 case 0xdd4: /* SAU_TYPE */ 1123 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1124 goto bad_offset; 1125 } 1126 if (!attrs.secure) { 1127 return 0; 1128 } 1129 return cpu->sau_sregion; 1130 case 0xdd8: /* SAU_RNR */ 1131 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1132 goto bad_offset; 1133 } 1134 if (!attrs.secure) { 1135 return 0; 1136 } 1137 return cpu->env.sau.rnr; 1138 case 0xddc: /* SAU_RBAR */ 1139 { 1140 int region = cpu->env.sau.rnr; 1141 1142 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1143 goto bad_offset; 1144 } 1145 if (!attrs.secure) { 1146 return 0; 1147 } 1148 if (region >= cpu->sau_sregion) { 1149 return 0; 1150 } 1151 return cpu->env.sau.rbar[region]; 1152 } 1153 case 0xde0: /* SAU_RLAR */ 1154 { 1155 int region = cpu->env.sau.rnr; 1156 1157 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1158 goto bad_offset; 1159 } 1160 if (!attrs.secure) { 1161 return 0; 1162 } 1163 if (region >= cpu->sau_sregion) { 1164 return 0; 1165 } 1166 return cpu->env.sau.rlar[region]; 1167 } 1168 case 0xde4: /* SFSR */ 1169 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1170 goto bad_offset; 1171 } 1172 if (!attrs.secure) { 1173 return 0; 1174 } 1175 return cpu->env.v7m.sfsr; 1176 case 0xde8: /* SFAR */ 1177 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1178 goto bad_offset; 1179 } 1180 if (!attrs.secure) { 1181 return 0; 1182 } 1183 return cpu->env.v7m.sfar; 1184 default: 1185 bad_offset: 1186 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1187 return 0; 1188 } 1189 } 1190 1191 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1192 MemTxAttrs attrs) 1193 { 1194 ARMCPU *cpu = s->cpu; 1195 1196 switch (offset) { 1197 case 0xc: /* CPPWR */ 1198 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1199 goto bad_offset; 1200 } 1201 /* Make the IMPDEF choice to RAZ/WI this. */ 1202 break; 1203 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1204 { 1205 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1206 int i; 1207 1208 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1209 goto bad_offset; 1210 } 1211 if (!attrs.secure) { 1212 break; 1213 } 1214 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1215 s->itns[startvec + i] = (value >> i) & 1; 1216 } 1217 nvic_irq_update(s); 1218 break; 1219 } 1220 case 0xd04: /* Interrupt Control State (ICSR) */ 1221 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1222 if (value & (1 << 31)) { 1223 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1224 } else if (value & (1 << 30) && 1225 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1226 /* PENDNMICLR didn't exist in v7M */ 1227 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1228 } 1229 } 1230 if (value & (1 << 28)) { 1231 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1232 } else if (value & (1 << 27)) { 1233 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1234 } 1235 if (value & (1 << 26)) { 1236 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1237 } else if (value & (1 << 25)) { 1238 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1239 } 1240 break; 1241 case 0xd08: /* Vector Table Offset. */ 1242 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1243 break; 1244 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1245 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1246 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1247 if (attrs.secure || 1248 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1249 qemu_irq_pulse(s->sysresetreq); 1250 } 1251 } 1252 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1253 qemu_log_mask(LOG_GUEST_ERROR, 1254 "Setting VECTCLRACTIVE when not in DEBUG mode " 1255 "is UNPREDICTABLE\n"); 1256 } 1257 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1258 /* NB: this bit is RES0 in v8M */ 1259 qemu_log_mask(LOG_GUEST_ERROR, 1260 "Setting VECTRESET when not in DEBUG mode " 1261 "is UNPREDICTABLE\n"); 1262 } 1263 s->prigroup[attrs.secure] = extract32(value, 1264 R_V7M_AIRCR_PRIGROUP_SHIFT, 1265 R_V7M_AIRCR_PRIGROUP_LENGTH); 1266 if (attrs.secure) { 1267 /* These bits are only writable by secure */ 1268 cpu->env.v7m.aircr = value & 1269 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1270 R_V7M_AIRCR_BFHFNMINS_MASK | 1271 R_V7M_AIRCR_PRIS_MASK); 1272 /* BFHFNMINS changes the priority of Secure HardFault, and 1273 * allows a pending Non-secure HardFault to preempt (which 1274 * we implement by marking it enabled). 1275 */ 1276 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1277 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1278 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1279 } else { 1280 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1281 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1282 } 1283 } 1284 nvic_irq_update(s); 1285 } 1286 break; 1287 case 0xd10: /* System Control. */ 1288 /* TODO: Implement control registers. */ 1289 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 1290 break; 1291 case 0xd14: /* Configuration Control. */ 1292 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1293 value &= (R_V7M_CCR_STKALIGN_MASK | 1294 R_V7M_CCR_BFHFNMIGN_MASK | 1295 R_V7M_CCR_DIV_0_TRP_MASK | 1296 R_V7M_CCR_UNALIGN_TRP_MASK | 1297 R_V7M_CCR_USERSETMPEND_MASK | 1298 R_V7M_CCR_NONBASETHRDENA_MASK); 1299 1300 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1301 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1302 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1303 | R_V7M_CCR_STKALIGN_MASK; 1304 } 1305 if (attrs.secure) { 1306 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1307 cpu->env.v7m.ccr[M_REG_NS] = 1308 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1309 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1310 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1311 } 1312 1313 cpu->env.v7m.ccr[attrs.secure] = value; 1314 break; 1315 case 0xd24: /* System Handler Control and State (SHCSR) */ 1316 if (attrs.secure) { 1317 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1318 /* Secure HardFault active bit cannot be written */ 1319 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1320 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1321 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1322 (value & (1 << 10)) != 0; 1323 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1324 (value & (1 << 11)) != 0; 1325 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1326 (value & (1 << 12)) != 0; 1327 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1328 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1329 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1330 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1331 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1332 (value & (1 << 18)) != 0; 1333 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1334 /* SecureFault not banked, but RAZ/WI to NS */ 1335 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1336 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1337 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1338 } else { 1339 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1340 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1341 /* HARDFAULTPENDED is not present in v7M */ 1342 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1343 } 1344 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1345 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1346 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1347 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1348 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1349 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1350 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1351 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1352 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1353 } 1354 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1355 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1356 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1357 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1358 } 1359 /* NMIACT can only be written if the write is of a zero, with 1360 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1361 */ 1362 if (!attrs.secure && cpu->env.v7m.secure && 1363 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1364 (value & (1 << 5)) == 0) { 1365 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1366 } 1367 /* HARDFAULTACT can only be written if the write is of a zero 1368 * to the non-secure HardFault state by the CPU in secure state. 1369 * The only case where we can be targeting the non-secure HF state 1370 * when in secure state is if this is a write via the NS alias 1371 * and BFHFNMINS is 1. 1372 */ 1373 if (!attrs.secure && cpu->env.v7m.secure && 1374 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1375 (value & (1 << 2)) == 0) { 1376 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1377 } 1378 1379 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1380 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1381 nvic_irq_update(s); 1382 break; 1383 case 0xd2c: /* Hard Fault Status. */ 1384 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1385 break; 1386 case 0xd30: /* Debug Fault Status. */ 1387 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1388 break; 1389 case 0xd34: /* Mem Manage Address. */ 1390 cpu->env.v7m.mmfar[attrs.secure] = value; 1391 return; 1392 case 0xd38: /* Bus Fault Address. */ 1393 cpu->env.v7m.bfar = value; 1394 return; 1395 case 0xd3c: /* Aux Fault Status. */ 1396 qemu_log_mask(LOG_UNIMP, 1397 "NVIC: Aux fault status registers unimplemented\n"); 1398 break; 1399 case 0xd84: /* CSSELR */ 1400 if (!arm_v7m_csselr_razwi(cpu)) { 1401 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1402 } 1403 break; 1404 case 0xd90: /* MPU_TYPE */ 1405 return; /* RO */ 1406 case 0xd94: /* MPU_CTRL */ 1407 if ((value & 1408 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1409 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1410 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1411 "UNPREDICTABLE\n"); 1412 } 1413 cpu->env.v7m.mpu_ctrl[attrs.secure] 1414 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1415 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1416 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1417 tlb_flush(CPU(cpu)); 1418 break; 1419 case 0xd98: /* MPU_RNR */ 1420 if (value >= cpu->pmsav7_dregion) { 1421 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1422 PRIu32 "/%" PRIu32 "\n", 1423 value, cpu->pmsav7_dregion); 1424 } else { 1425 cpu->env.pmsav7.rnr[attrs.secure] = value; 1426 } 1427 break; 1428 case 0xd9c: /* MPU_RBAR */ 1429 case 0xda4: /* MPU_RBAR_A1 */ 1430 case 0xdac: /* MPU_RBAR_A2 */ 1431 case 0xdb4: /* MPU_RBAR_A3 */ 1432 { 1433 int region; 1434 1435 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1436 /* PMSAv8M handling of the aliases is different from v7M: 1437 * aliases A1, A2, A3 override the low two bits of the region 1438 * number in MPU_RNR, and there is no 'region' field in the 1439 * RBAR register. 1440 */ 1441 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1442 1443 region = cpu->env.pmsav7.rnr[attrs.secure]; 1444 if (aliasno) { 1445 region = deposit32(region, 0, 2, aliasno); 1446 } 1447 if (region >= cpu->pmsav7_dregion) { 1448 return; 1449 } 1450 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1451 tlb_flush(CPU(cpu)); 1452 return; 1453 } 1454 1455 if (value & (1 << 4)) { 1456 /* VALID bit means use the region number specified in this 1457 * value and also update MPU_RNR.REGION with that value. 1458 */ 1459 region = extract32(value, 0, 4); 1460 if (region >= cpu->pmsav7_dregion) { 1461 qemu_log_mask(LOG_GUEST_ERROR, 1462 "MPU region out of range %u/%" PRIu32 "\n", 1463 region, cpu->pmsav7_dregion); 1464 return; 1465 } 1466 cpu->env.pmsav7.rnr[attrs.secure] = region; 1467 } else { 1468 region = cpu->env.pmsav7.rnr[attrs.secure]; 1469 } 1470 1471 if (region >= cpu->pmsav7_dregion) { 1472 return; 1473 } 1474 1475 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1476 tlb_flush(CPU(cpu)); 1477 break; 1478 } 1479 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1480 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1481 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1482 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1483 { 1484 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1485 1486 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1487 /* PMSAv8M handling of the aliases is different from v7M: 1488 * aliases A1, A2, A3 override the low two bits of the region 1489 * number in MPU_RNR. 1490 */ 1491 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1492 1493 region = cpu->env.pmsav7.rnr[attrs.secure]; 1494 if (aliasno) { 1495 region = deposit32(region, 0, 2, aliasno); 1496 } 1497 if (region >= cpu->pmsav7_dregion) { 1498 return; 1499 } 1500 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1501 tlb_flush(CPU(cpu)); 1502 return; 1503 } 1504 1505 if (region >= cpu->pmsav7_dregion) { 1506 return; 1507 } 1508 1509 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1510 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1511 tlb_flush(CPU(cpu)); 1512 break; 1513 } 1514 case 0xdc0: /* MPU_MAIR0 */ 1515 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1516 goto bad_offset; 1517 } 1518 if (cpu->pmsav7_dregion) { 1519 /* Register is RES0 if no MPU regions are implemented */ 1520 cpu->env.pmsav8.mair0[attrs.secure] = value; 1521 } 1522 /* We don't need to do anything else because memory attributes 1523 * only affect cacheability, and we don't implement caching. 1524 */ 1525 break; 1526 case 0xdc4: /* MPU_MAIR1 */ 1527 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1528 goto bad_offset; 1529 } 1530 if (cpu->pmsav7_dregion) { 1531 /* Register is RES0 if no MPU regions are implemented */ 1532 cpu->env.pmsav8.mair1[attrs.secure] = value; 1533 } 1534 /* We don't need to do anything else because memory attributes 1535 * only affect cacheability, and we don't implement caching. 1536 */ 1537 break; 1538 case 0xdd0: /* SAU_CTRL */ 1539 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1540 goto bad_offset; 1541 } 1542 if (!attrs.secure) { 1543 return; 1544 } 1545 cpu->env.sau.ctrl = value & 3; 1546 break; 1547 case 0xdd4: /* SAU_TYPE */ 1548 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1549 goto bad_offset; 1550 } 1551 break; 1552 case 0xdd8: /* SAU_RNR */ 1553 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1554 goto bad_offset; 1555 } 1556 if (!attrs.secure) { 1557 return; 1558 } 1559 if (value >= cpu->sau_sregion) { 1560 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1561 PRIu32 "/%" PRIu32 "\n", 1562 value, cpu->sau_sregion); 1563 } else { 1564 cpu->env.sau.rnr = value; 1565 } 1566 break; 1567 case 0xddc: /* SAU_RBAR */ 1568 { 1569 int region = cpu->env.sau.rnr; 1570 1571 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1572 goto bad_offset; 1573 } 1574 if (!attrs.secure) { 1575 return; 1576 } 1577 if (region >= cpu->sau_sregion) { 1578 return; 1579 } 1580 cpu->env.sau.rbar[region] = value & ~0x1f; 1581 tlb_flush(CPU(cpu)); 1582 break; 1583 } 1584 case 0xde0: /* SAU_RLAR */ 1585 { 1586 int region = cpu->env.sau.rnr; 1587 1588 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1589 goto bad_offset; 1590 } 1591 if (!attrs.secure) { 1592 return; 1593 } 1594 if (region >= cpu->sau_sregion) { 1595 return; 1596 } 1597 cpu->env.sau.rlar[region] = value & ~0x1c; 1598 tlb_flush(CPU(cpu)); 1599 break; 1600 } 1601 case 0xde4: /* SFSR */ 1602 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1603 goto bad_offset; 1604 } 1605 if (!attrs.secure) { 1606 return; 1607 } 1608 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1609 break; 1610 case 0xde8: /* SFAR */ 1611 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1612 goto bad_offset; 1613 } 1614 if (!attrs.secure) { 1615 return; 1616 } 1617 cpu->env.v7m.sfsr = value; 1618 break; 1619 case 0xf00: /* Software Triggered Interrupt Register */ 1620 { 1621 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1622 if (excnum < s->num_irq) { 1623 armv7m_nvic_set_pending(s, excnum, false); 1624 } 1625 break; 1626 } 1627 case 0xf50: /* ICIALLU */ 1628 case 0xf58: /* ICIMVAU */ 1629 case 0xf5c: /* DCIMVAC */ 1630 case 0xf60: /* DCISW */ 1631 case 0xf64: /* DCCMVAU */ 1632 case 0xf68: /* DCCMVAC */ 1633 case 0xf6c: /* DCCSW */ 1634 case 0xf70: /* DCCIMVAC */ 1635 case 0xf74: /* DCCISW */ 1636 case 0xf78: /* BPIALL */ 1637 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 1638 break; 1639 default: 1640 bad_offset: 1641 qemu_log_mask(LOG_GUEST_ERROR, 1642 "NVIC: Bad write offset 0x%x\n", offset); 1643 } 1644 } 1645 1646 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1647 { 1648 /* Return true if unprivileged access to this register is permitted. */ 1649 switch (offset) { 1650 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1651 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1652 * controls access even though the CPU is in Secure state (I_QDKX). 1653 */ 1654 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1655 default: 1656 /* All other user accesses cause a BusFault unconditionally */ 1657 return false; 1658 } 1659 } 1660 1661 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1662 { 1663 /* Behaviour for the SHPR register field for this exception: 1664 * return M_REG_NS to use the nonsecure vector (including for 1665 * non-banked exceptions), M_REG_S for the secure version of 1666 * a banked exception, and -1 if this field should RAZ/WI. 1667 */ 1668 switch (exc) { 1669 case ARMV7M_EXCP_MEM: 1670 case ARMV7M_EXCP_USAGE: 1671 case ARMV7M_EXCP_SVC: 1672 case ARMV7M_EXCP_PENDSV: 1673 case ARMV7M_EXCP_SYSTICK: 1674 /* Banked exceptions */ 1675 return attrs.secure; 1676 case ARMV7M_EXCP_BUS: 1677 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1678 if (!attrs.secure && 1679 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1680 return -1; 1681 } 1682 return M_REG_NS; 1683 case ARMV7M_EXCP_SECURE: 1684 /* Not banked, RAZ/WI from nonsecure */ 1685 if (!attrs.secure) { 1686 return -1; 1687 } 1688 return M_REG_NS; 1689 case ARMV7M_EXCP_DEBUG: 1690 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1691 return M_REG_NS; 1692 case 8 ... 10: 1693 case 13: 1694 /* RES0 */ 1695 return -1; 1696 default: 1697 /* Not reachable due to decode of SHPR register addresses */ 1698 g_assert_not_reached(); 1699 } 1700 } 1701 1702 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1703 uint64_t *data, unsigned size, 1704 MemTxAttrs attrs) 1705 { 1706 NVICState *s = (NVICState *)opaque; 1707 uint32_t offset = addr; 1708 unsigned i, startvec, end; 1709 uint32_t val; 1710 1711 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1712 /* Generate BusFault for unprivileged accesses */ 1713 return MEMTX_ERROR; 1714 } 1715 1716 switch (offset) { 1717 /* reads of set and clear both return the status */ 1718 case 0x100 ... 0x13f: /* NVIC Set enable */ 1719 offset += 0x80; 1720 /* fall through */ 1721 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1722 val = 0; 1723 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 1724 1725 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1726 if (s->vectors[startvec + i].enabled && 1727 (attrs.secure || s->itns[startvec + i])) { 1728 val |= (1 << i); 1729 } 1730 } 1731 break; 1732 case 0x200 ... 0x23f: /* NVIC Set pend */ 1733 offset += 0x80; 1734 /* fall through */ 1735 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1736 val = 0; 1737 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 1738 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1739 if (s->vectors[startvec + i].pending && 1740 (attrs.secure || s->itns[startvec + i])) { 1741 val |= (1 << i); 1742 } 1743 } 1744 break; 1745 case 0x300 ... 0x33f: /* NVIC Active */ 1746 val = 0; 1747 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 1748 1749 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1750 if (s->vectors[startvec + i].active && 1751 (attrs.secure || s->itns[startvec + i])) { 1752 val |= (1 << i); 1753 } 1754 } 1755 break; 1756 case 0x400 ... 0x5ef: /* NVIC Priority */ 1757 val = 0; 1758 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1759 1760 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1761 if (attrs.secure || s->itns[startvec + i]) { 1762 val |= s->vectors[startvec + i].prio << (8 * i); 1763 } 1764 } 1765 break; 1766 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1767 val = 0; 1768 for (i = 0; i < size; i++) { 1769 unsigned hdlidx = (offset - 0xd14) + i; 1770 int sbank = shpr_bank(s, hdlidx, attrs); 1771 1772 if (sbank < 0) { 1773 continue; 1774 } 1775 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1776 } 1777 break; 1778 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1779 /* The BFSR bits [15:8] are shared between security states 1780 * and we store them in the NS copy 1781 */ 1782 val = s->cpu->env.v7m.cfsr[attrs.secure]; 1783 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 1784 val = extract32(val, (offset - 0xd28) * 8, size * 8); 1785 break; 1786 case 0xfe0 ... 0xfff: /* ID. */ 1787 if (offset & 3) { 1788 val = 0; 1789 } else { 1790 val = nvic_id[(offset - 0xfe0) >> 2]; 1791 } 1792 break; 1793 default: 1794 if (size == 4) { 1795 val = nvic_readl(s, offset, attrs); 1796 } else { 1797 qemu_log_mask(LOG_GUEST_ERROR, 1798 "NVIC: Bad read of size %d at offset 0x%x\n", 1799 size, offset); 1800 val = 0; 1801 } 1802 } 1803 1804 trace_nvic_sysreg_read(addr, val, size); 1805 *data = val; 1806 return MEMTX_OK; 1807 } 1808 1809 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1810 uint64_t value, unsigned size, 1811 MemTxAttrs attrs) 1812 { 1813 NVICState *s = (NVICState *)opaque; 1814 uint32_t offset = addr; 1815 unsigned i, startvec, end; 1816 unsigned setval = 0; 1817 1818 trace_nvic_sysreg_write(addr, value, size); 1819 1820 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1821 /* Generate BusFault for unprivileged accesses */ 1822 return MEMTX_ERROR; 1823 } 1824 1825 switch (offset) { 1826 case 0x100 ... 0x13f: /* NVIC Set enable */ 1827 offset += 0x80; 1828 setval = 1; 1829 /* fall through */ 1830 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1831 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1832 1833 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1834 if (value & (1 << i) && 1835 (attrs.secure || s->itns[startvec + i])) { 1836 s->vectors[startvec + i].enabled = setval; 1837 } 1838 } 1839 nvic_irq_update(s); 1840 return MEMTX_OK; 1841 case 0x200 ... 0x23f: /* NVIC Set pend */ 1842 /* the special logic in armv7m_nvic_set_pending() 1843 * is not needed since IRQs are never escalated 1844 */ 1845 offset += 0x80; 1846 setval = 1; 1847 /* fall through */ 1848 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1849 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1850 1851 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1852 if (value & (1 << i) && 1853 (attrs.secure || s->itns[startvec + i])) { 1854 s->vectors[startvec + i].pending = setval; 1855 } 1856 } 1857 nvic_irq_update(s); 1858 return MEMTX_OK; 1859 case 0x300 ... 0x33f: /* NVIC Active */ 1860 return MEMTX_OK; /* R/O */ 1861 case 0x400 ... 0x5ef: /* NVIC Priority */ 1862 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1863 1864 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1865 if (attrs.secure || s->itns[startvec + i]) { 1866 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1867 } 1868 } 1869 nvic_irq_update(s); 1870 return MEMTX_OK; 1871 case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ 1872 for (i = 0; i < size; i++) { 1873 unsigned hdlidx = (offset - 0xd14) + i; 1874 int newprio = extract32(value, i * 8, 8); 1875 int sbank = shpr_bank(s, hdlidx, attrs); 1876 1877 if (sbank < 0) { 1878 continue; 1879 } 1880 set_prio(s, hdlidx, sbank, newprio); 1881 } 1882 nvic_irq_update(s); 1883 return MEMTX_OK; 1884 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1885 /* All bits are W1C, so construct 32 bit value with 0s in 1886 * the parts not written by the access size 1887 */ 1888 value <<= ((offset - 0xd28) * 8); 1889 1890 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 1891 if (attrs.secure) { 1892 /* The BFSR bits [15:8] are shared between security states 1893 * and we store them in the NS copy. 1894 */ 1895 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1896 } 1897 return MEMTX_OK; 1898 } 1899 if (size == 4) { 1900 nvic_writel(s, offset, value, attrs); 1901 return MEMTX_OK; 1902 } 1903 qemu_log_mask(LOG_GUEST_ERROR, 1904 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1905 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1906 return MEMTX_OK; 1907 } 1908 1909 static const MemoryRegionOps nvic_sysreg_ops = { 1910 .read_with_attrs = nvic_sysreg_read, 1911 .write_with_attrs = nvic_sysreg_write, 1912 .endianness = DEVICE_NATIVE_ENDIAN, 1913 }; 1914 1915 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1916 uint64_t value, unsigned size, 1917 MemTxAttrs attrs) 1918 { 1919 MemoryRegion *mr = opaque; 1920 1921 if (attrs.secure) { 1922 /* S accesses to the alias act like NS accesses to the real region */ 1923 attrs.secure = 0; 1924 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1925 } else { 1926 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1927 if (attrs.user) { 1928 return MEMTX_ERROR; 1929 } 1930 return MEMTX_OK; 1931 } 1932 } 1933 1934 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 1935 uint64_t *data, unsigned size, 1936 MemTxAttrs attrs) 1937 { 1938 MemoryRegion *mr = opaque; 1939 1940 if (attrs.secure) { 1941 /* S accesses to the alias act like NS accesses to the real region */ 1942 attrs.secure = 0; 1943 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1944 } else { 1945 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1946 if (attrs.user) { 1947 return MEMTX_ERROR; 1948 } 1949 *data = 0; 1950 return MEMTX_OK; 1951 } 1952 } 1953 1954 static const MemoryRegionOps nvic_sysreg_ns_ops = { 1955 .read_with_attrs = nvic_sysreg_ns_read, 1956 .write_with_attrs = nvic_sysreg_ns_write, 1957 .endianness = DEVICE_NATIVE_ENDIAN, 1958 }; 1959 1960 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 1961 uint64_t value, unsigned size, 1962 MemTxAttrs attrs) 1963 { 1964 NVICState *s = opaque; 1965 MemoryRegion *mr; 1966 1967 /* Direct the access to the correct systick */ 1968 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1969 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1970 } 1971 1972 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 1973 uint64_t *data, unsigned size, 1974 MemTxAttrs attrs) 1975 { 1976 NVICState *s = opaque; 1977 MemoryRegion *mr; 1978 1979 /* Direct the access to the correct systick */ 1980 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 1981 return memory_region_dispatch_read(mr, addr, data, size, attrs); 1982 } 1983 1984 static const MemoryRegionOps nvic_systick_ops = { 1985 .read_with_attrs = nvic_systick_read, 1986 .write_with_attrs = nvic_systick_write, 1987 .endianness = DEVICE_NATIVE_ENDIAN, 1988 }; 1989 1990 static int nvic_post_load(void *opaque, int version_id) 1991 { 1992 NVICState *s = opaque; 1993 unsigned i; 1994 int resetprio; 1995 1996 /* Check for out of range priority settings */ 1997 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 1998 1999 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2000 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2001 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2002 return 1; 2003 } 2004 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2005 if (s->vectors[i].prio & ~0xff) { 2006 return 1; 2007 } 2008 } 2009 2010 nvic_recompute_state(s); 2011 2012 return 0; 2013 } 2014 2015 static const VMStateDescription vmstate_VecInfo = { 2016 .name = "armv7m_nvic_info", 2017 .version_id = 1, 2018 .minimum_version_id = 1, 2019 .fields = (VMStateField[]) { 2020 VMSTATE_INT16(prio, VecInfo), 2021 VMSTATE_UINT8(enabled, VecInfo), 2022 VMSTATE_UINT8(pending, VecInfo), 2023 VMSTATE_UINT8(active, VecInfo), 2024 VMSTATE_UINT8(level, VecInfo), 2025 VMSTATE_END_OF_LIST() 2026 } 2027 }; 2028 2029 static bool nvic_security_needed(void *opaque) 2030 { 2031 NVICState *s = opaque; 2032 2033 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2034 } 2035 2036 static int nvic_security_post_load(void *opaque, int version_id) 2037 { 2038 NVICState *s = opaque; 2039 int i; 2040 2041 /* Check for out of range priority settings */ 2042 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2043 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2044 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2045 * if the CPU state has been migrated yet; a mismatch won't 2046 * cause the emulation to blow up, though. 2047 */ 2048 return 1; 2049 } 2050 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2051 if (s->sec_vectors[i].prio & ~0xff) { 2052 return 1; 2053 } 2054 } 2055 return 0; 2056 } 2057 2058 static const VMStateDescription vmstate_nvic_security = { 2059 .name = "nvic/m-security", 2060 .version_id = 1, 2061 .minimum_version_id = 1, 2062 .needed = nvic_security_needed, 2063 .post_load = &nvic_security_post_load, 2064 .fields = (VMStateField[]) { 2065 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2066 vmstate_VecInfo, VecInfo), 2067 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2068 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2069 VMSTATE_END_OF_LIST() 2070 } 2071 }; 2072 2073 static const VMStateDescription vmstate_nvic = { 2074 .name = "armv7m_nvic", 2075 .version_id = 4, 2076 .minimum_version_id = 4, 2077 .post_load = &nvic_post_load, 2078 .fields = (VMStateField[]) { 2079 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2080 vmstate_VecInfo, VecInfo), 2081 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2082 VMSTATE_END_OF_LIST() 2083 }, 2084 .subsections = (const VMStateDescription*[]) { 2085 &vmstate_nvic_security, 2086 NULL 2087 } 2088 }; 2089 2090 static Property props_nvic[] = { 2091 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2092 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2093 DEFINE_PROP_END_OF_LIST() 2094 }; 2095 2096 static void armv7m_nvic_reset(DeviceState *dev) 2097 { 2098 int resetprio; 2099 NVICState *s = NVIC(dev); 2100 2101 memset(s->vectors, 0, sizeof(s->vectors)); 2102 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2103 s->prigroup[M_REG_NS] = 0; 2104 s->prigroup[M_REG_S] = 0; 2105 2106 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2107 /* MEM, BUS, and USAGE are enabled through 2108 * the System Handler Control register 2109 */ 2110 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2111 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 2112 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2113 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2114 2115 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2116 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2117 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2118 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2119 2120 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2121 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2122 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2123 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2124 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2125 2126 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2127 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2128 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2129 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2130 } else { 2131 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2132 } 2133 2134 /* Strictly speaking the reset handler should be enabled. 2135 * However, we don't simulate soft resets through the NVIC, 2136 * and the reset vector should never be pended. 2137 * So we leave it disabled to catch logic errors. 2138 */ 2139 2140 s->exception_prio = NVIC_NOEXC_PRIO; 2141 s->vectpending = 0; 2142 s->vectpending_is_s_banked = false; 2143 s->vectpending_prio = NVIC_NOEXC_PRIO; 2144 2145 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2146 memset(s->itns, 0, sizeof(s->itns)); 2147 } else { 2148 /* This state is constant and not guest accessible in a non-security 2149 * NVIC; we set the bits to true to avoid having to do a feature 2150 * bit check in the NVIC enable/pend/etc register accessors. 2151 */ 2152 int i; 2153 2154 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2155 s->itns[i] = true; 2156 } 2157 } 2158 } 2159 2160 static void nvic_systick_trigger(void *opaque, int n, int level) 2161 { 2162 NVICState *s = opaque; 2163 2164 if (level) { 2165 /* SysTick just asked us to pend its exception. 2166 * (This is different from an external interrupt line's 2167 * behaviour.) 2168 * n == 0 : NonSecure systick 2169 * n == 1 : Secure systick 2170 */ 2171 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2172 } 2173 } 2174 2175 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2176 { 2177 NVICState *s = NVIC(dev); 2178 Error *err = NULL; 2179 int regionlen; 2180 2181 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2182 assert(s->cpu); 2183 2184 if (s->num_irq > NVIC_MAX_IRQ) { 2185 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2186 return; 2187 } 2188 2189 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2190 2191 /* include space for internal exception vectors */ 2192 s->num_irq += NVIC_FIRST_IRQ; 2193 2194 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2195 "realized", &err); 2196 if (err != NULL) { 2197 error_propagate(errp, err); 2198 return; 2199 } 2200 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2201 qdev_get_gpio_in_named(dev, "systick-trigger", 2202 M_REG_NS)); 2203 2204 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2205 /* We couldn't init the secure systick device in instance_init 2206 * as we didn't know then if the CPU had the security extensions; 2207 * so we have to do it here. 2208 */ 2209 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), 2210 TYPE_SYSTICK); 2211 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); 2212 2213 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2214 "realized", &err); 2215 if (err != NULL) { 2216 error_propagate(errp, err); 2217 return; 2218 } 2219 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2220 qdev_get_gpio_in_named(dev, "systick-trigger", 2221 M_REG_S)); 2222 } 2223 2224 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2225 * and looks like this: 2226 * 0x004 - ICTR 2227 * 0x010 - 0xff - systick 2228 * 0x100..0x7ec - NVIC 2229 * 0x7f0..0xcff - Reserved 2230 * 0xd00..0xd3c - SCS registers 2231 * 0xd40..0xeff - Reserved or Not implemented 2232 * 0xf00 - STIR 2233 * 2234 * Some registers within this space are banked between security states. 2235 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2236 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2237 * to the main SCS range, and non-secure accesses (including when 2238 * the security extension is not implemented) are RAZ/WI. 2239 * Note that both the main SCS range and the alias range are defined 2240 * to be exempt from memory attribution (R_BLJT) and so the memory 2241 * transaction attribute always matches the current CPU security 2242 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2243 * wrappers we change attrs.secure to indicate the NS access; so 2244 * generally code determining which banked register to use should 2245 * use attrs.secure; code determining actual behaviour of the system 2246 * should use env->v7m.secure. 2247 */ 2248 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2249 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2250 /* The system register region goes at the bottom of the priority 2251 * stack as it covers the whole page. 2252 */ 2253 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2254 "nvic_sysregs", 0x1000); 2255 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2256 2257 memory_region_init_io(&s->systickmem, OBJECT(s), 2258 &nvic_systick_ops, s, 2259 "nvic_systick", 0xe0); 2260 2261 memory_region_add_subregion_overlap(&s->container, 0x10, 2262 &s->systickmem, 1); 2263 2264 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2265 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2266 &nvic_sysreg_ns_ops, &s->sysregmem, 2267 "nvic_sysregs_ns", 0x1000); 2268 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2269 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2270 &nvic_sysreg_ns_ops, &s->systickmem, 2271 "nvic_systick_ns", 0xe0); 2272 memory_region_add_subregion_overlap(&s->container, 0x20010, 2273 &s->systick_ns_mem, 1); 2274 } 2275 2276 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2277 } 2278 2279 static void armv7m_nvic_instance_init(Object *obj) 2280 { 2281 /* We have a different default value for the num-irq property 2282 * than our superclass. This function runs after qdev init 2283 * has set the defaults from the Property array and before 2284 * any user-specified property setting, so just modify the 2285 * value in the GICState struct. 2286 */ 2287 DeviceState *dev = DEVICE(obj); 2288 NVICState *nvic = NVIC(obj); 2289 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2290 2291 object_initialize(&nvic->systick[M_REG_NS], 2292 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2293 qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default()); 2294 /* We can't initialize the secure systick here, as we don't know 2295 * yet if we need it. 2296 */ 2297 2298 sysbus_init_irq(sbd, &nvic->excpout); 2299 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2300 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2301 M_REG_NUM_BANKS); 2302 } 2303 2304 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2305 { 2306 DeviceClass *dc = DEVICE_CLASS(klass); 2307 2308 dc->vmsd = &vmstate_nvic; 2309 dc->props = props_nvic; 2310 dc->reset = armv7m_nvic_reset; 2311 dc->realize = armv7m_nvic_realize; 2312 } 2313 2314 static const TypeInfo armv7m_nvic_info = { 2315 .name = TYPE_NVIC, 2316 .parent = TYPE_SYS_BUS_DEVICE, 2317 .instance_init = armv7m_nvic_instance_init, 2318 .instance_size = sizeof(NVICState), 2319 .class_init = armv7m_nvic_class_init, 2320 .class_size = sizeof(SysBusDeviceClass), 2321 }; 2322 2323 static void armv7m_nvic_register_types(void) 2324 { 2325 type_register_static(&armv7m_nvic_info); 2326 } 2327 2328 type_init(armv7m_nvic_register_types) 2329