1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/arm/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "qemu/log.h" 23 #include "trace.h" 24 25 /* IRQ number counting: 26 * 27 * the num-irq property counts the number of external IRQ lines 28 * 29 * NVICState::num_irq counts the total number of exceptions 30 * (external IRQs, the 15 internal exceptions including reset, 31 * and one for the unused exception number 0). 32 * 33 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 34 * 35 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 36 * 37 * Iterating through all exceptions should typically be done with 38 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 39 * 40 * The external qemu_irq lines are the NVIC's external IRQ lines, 41 * so line 0 is exception 16. 42 * 43 * In the terminology of the architecture manual, "interrupts" are 44 * a subcategory of exception referring to the external interrupts 45 * (which are exception numbers NVIC_FIRST_IRQ and upward). 46 * For historical reasons QEMU tends to use "interrupt" and 47 * "exception" more or less interchangeably. 48 */ 49 #define NVIC_FIRST_IRQ 16 50 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 51 52 /* Effective running priority of the CPU when no exception is active 53 * (higher than the highest possible priority value) 54 */ 55 #define NVIC_NOEXC_PRIO 0x100 56 57 static const uint8_t nvic_id[] = { 58 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 59 }; 60 61 static int nvic_pending_prio(NVICState *s) 62 { 63 /* return the priority of the current pending interrupt, 64 * or NVIC_NOEXC_PRIO if no interrupt is pending 65 */ 66 return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO; 67 } 68 69 /* Return the value of the ISCR RETTOBASE bit: 70 * 1 if there is exactly one active exception 71 * 0 if there is more than one active exception 72 * UNKNOWN if there are no active exceptions (we choose 1, 73 * which matches the choice Cortex-M3 is documented as making). 74 * 75 * NB: some versions of the documentation talk about this 76 * counting "active exceptions other than the one shown by IPSR"; 77 * this is only different in the obscure corner case where guest 78 * code has manually deactivated an exception and is about 79 * to fail an exception-return integrity check. The definition 80 * above is the one from the v8M ARM ARM and is also in line 81 * with the behaviour documented for the Cortex-M3. 82 */ 83 static bool nvic_rettobase(NVICState *s) 84 { 85 int irq, nhand = 0; 86 87 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 88 if (s->vectors[irq].active) { 89 nhand++; 90 if (nhand == 2) { 91 return 0; 92 } 93 } 94 } 95 96 return 1; 97 } 98 99 /* Return the value of the ISCR ISRPENDING bit: 100 * 1 if an external interrupt is pending 101 * 0 if no external interrupt is pending 102 */ 103 static bool nvic_isrpending(NVICState *s) 104 { 105 int irq; 106 107 /* We can shortcut if the highest priority pending interrupt 108 * happens to be external or if there is nothing pending. 109 */ 110 if (s->vectpending > NVIC_FIRST_IRQ) { 111 return true; 112 } 113 if (s->vectpending == 0) { 114 return false; 115 } 116 117 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 118 if (s->vectors[irq].pending) { 119 return true; 120 } 121 } 122 return false; 123 } 124 125 /* Return a mask word which clears the subpriority bits from 126 * a priority value for an M-profile exception, leaving only 127 * the group priority. 128 */ 129 static inline uint32_t nvic_gprio_mask(NVICState *s) 130 { 131 return ~0U << (s->prigroup + 1); 132 } 133 134 /* Recompute vectpending and exception_prio */ 135 static void nvic_recompute_state(NVICState *s) 136 { 137 int i; 138 int pend_prio = NVIC_NOEXC_PRIO; 139 int active_prio = NVIC_NOEXC_PRIO; 140 int pend_irq = 0; 141 142 for (i = 1; i < s->num_irq; i++) { 143 VecInfo *vec = &s->vectors[i]; 144 145 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 146 pend_prio = vec->prio; 147 pend_irq = i; 148 } 149 if (vec->active && vec->prio < active_prio) { 150 active_prio = vec->prio; 151 } 152 } 153 154 s->vectpending = pend_irq; 155 s->exception_prio = active_prio & nvic_gprio_mask(s); 156 157 trace_nvic_recompute_state(s->vectpending, s->exception_prio); 158 } 159 160 /* Return the current execution priority of the CPU 161 * (equivalent to the pseudocode ExecutionPriority function). 162 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 163 */ 164 static inline int nvic_exec_prio(NVICState *s) 165 { 166 CPUARMState *env = &s->cpu->env; 167 int running; 168 169 if (env->daif & PSTATE_F) { /* FAULTMASK */ 170 running = -1; 171 } else if (env->daif & PSTATE_I) { /* PRIMASK */ 172 running = 0; 173 } else if (env->v7m.basepri > 0) { 174 running = env->v7m.basepri & nvic_gprio_mask(s); 175 } else { 176 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ 177 } 178 /* consider priority of active handler */ 179 return MIN(running, s->exception_prio); 180 } 181 182 bool armv7m_nvic_can_take_pending_exception(void *opaque) 183 { 184 NVICState *s = opaque; 185 186 return nvic_exec_prio(s) > nvic_pending_prio(s); 187 } 188 189 /* caller must call nvic_irq_update() after this */ 190 static void set_prio(NVICState *s, unsigned irq, uint8_t prio) 191 { 192 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 193 assert(irq < s->num_irq); 194 195 s->vectors[irq].prio = prio; 196 197 trace_nvic_set_prio(irq, prio); 198 } 199 200 /* Recompute state and assert irq line accordingly. 201 * Must be called after changes to: 202 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 203 * prigroup 204 */ 205 static void nvic_irq_update(NVICState *s) 206 { 207 int lvl; 208 int pend_prio; 209 210 nvic_recompute_state(s); 211 pend_prio = nvic_pending_prio(s); 212 213 /* Raise NVIC output if this IRQ would be taken, except that we 214 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 215 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 216 * to those CPU registers don't cause us to recalculate the NVIC 217 * pending info. 218 */ 219 lvl = (pend_prio < s->exception_prio); 220 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 221 qemu_set_irq(s->excpout, lvl); 222 } 223 224 static void armv7m_nvic_clear_pending(void *opaque, int irq) 225 { 226 NVICState *s = (NVICState *)opaque; 227 VecInfo *vec; 228 229 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 230 231 vec = &s->vectors[irq]; 232 trace_nvic_clear_pending(irq, vec->enabled, vec->prio); 233 if (vec->pending) { 234 vec->pending = 0; 235 nvic_irq_update(s); 236 } 237 } 238 239 void armv7m_nvic_set_pending(void *opaque, int irq) 240 { 241 NVICState *s = (NVICState *)opaque; 242 VecInfo *vec; 243 244 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 245 246 vec = &s->vectors[irq]; 247 trace_nvic_set_pending(irq, vec->enabled, vec->prio); 248 249 250 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 251 /* If a synchronous exception is pending then it may be 252 * escalated to HardFault if: 253 * * it is equal or lower priority to current execution 254 * * it is disabled 255 * (ie we need to take it immediately but we can't do so). 256 * Asynchronous exceptions (and interrupts) simply remain pending. 257 * 258 * For QEMU, we don't have any imprecise (asynchronous) faults, 259 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 260 * synchronous. 261 * Debug exceptions are awkward because only Debug exceptions 262 * resulting from the BKPT instruction should be escalated, 263 * but we don't currently implement any Debug exceptions other 264 * than those that result from BKPT, so we treat all debug exceptions 265 * as needing escalation. 266 * 267 * This all means we can identify whether to escalate based only on 268 * the exception number and don't (yet) need the caller to explicitly 269 * tell us whether this exception is synchronous or not. 270 */ 271 int running = nvic_exec_prio(s); 272 bool escalate = false; 273 274 if (vec->prio >= running) { 275 trace_nvic_escalate_prio(irq, vec->prio, running); 276 escalate = true; 277 } else if (!vec->enabled) { 278 trace_nvic_escalate_disabled(irq); 279 escalate = true; 280 } 281 282 if (escalate) { 283 if (running < 0) { 284 /* We want to escalate to HardFault but we can't take a 285 * synchronous HardFault at this point either. This is a 286 * Lockup condition due to a guest bug. We don't model 287 * Lockup, so report via cpu_abort() instead. 288 */ 289 cpu_abort(&s->cpu->parent_obj, 290 "Lockup: can't escalate %d to HardFault " 291 "(current priority %d)\n", irq, running); 292 } 293 294 /* We can do the escalation, so we take HardFault instead */ 295 irq = ARMV7M_EXCP_HARD; 296 vec = &s->vectors[irq]; 297 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 298 } 299 } 300 301 if (!vec->pending) { 302 vec->pending = 1; 303 nvic_irq_update(s); 304 } 305 } 306 307 /* Make pending IRQ active. */ 308 void armv7m_nvic_acknowledge_irq(void *opaque) 309 { 310 NVICState *s = (NVICState *)opaque; 311 CPUARMState *env = &s->cpu->env; 312 const int pending = s->vectpending; 313 const int running = nvic_exec_prio(s); 314 int pendgroupprio; 315 VecInfo *vec; 316 317 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 318 319 vec = &s->vectors[pending]; 320 321 assert(vec->enabled); 322 assert(vec->pending); 323 324 pendgroupprio = vec->prio & nvic_gprio_mask(s); 325 assert(pendgroupprio < running); 326 327 trace_nvic_acknowledge_irq(pending, vec->prio); 328 329 vec->active = 1; 330 vec->pending = 0; 331 332 env->v7m.exception = s->vectpending; 333 334 nvic_irq_update(s); 335 } 336 337 int armv7m_nvic_complete_irq(void *opaque, int irq) 338 { 339 NVICState *s = (NVICState *)opaque; 340 VecInfo *vec; 341 int ret; 342 343 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 344 345 vec = &s->vectors[irq]; 346 347 trace_nvic_complete_irq(irq); 348 349 if (!vec->active) { 350 /* Tell the caller this was an illegal exception return */ 351 return -1; 352 } 353 354 ret = nvic_rettobase(s); 355 356 vec->active = 0; 357 if (vec->level) { 358 /* Re-pend the exception if it's still held high; only 359 * happens for extenal IRQs 360 */ 361 assert(irq >= NVIC_FIRST_IRQ); 362 vec->pending = 1; 363 } 364 365 nvic_irq_update(s); 366 367 return ret; 368 } 369 370 /* callback when external interrupt line is changed */ 371 static void set_irq_level(void *opaque, int n, int level) 372 { 373 NVICState *s = opaque; 374 VecInfo *vec; 375 376 n += NVIC_FIRST_IRQ; 377 378 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 379 380 trace_nvic_set_irq_level(n, level); 381 382 /* The pending status of an external interrupt is 383 * latched on rising edge and exception handler return. 384 * 385 * Pulsing the IRQ will always run the handler 386 * once, and the handler will re-run until the 387 * level is low when the handler completes. 388 */ 389 vec = &s->vectors[n]; 390 if (level != vec->level) { 391 vec->level = level; 392 if (level) { 393 armv7m_nvic_set_pending(s, n); 394 } 395 } 396 } 397 398 static uint32_t nvic_readl(NVICState *s, uint32_t offset) 399 { 400 ARMCPU *cpu = s->cpu; 401 uint32_t val; 402 403 switch (offset) { 404 case 4: /* Interrupt Control Type. */ 405 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 406 case 0xd00: /* CPUID Base. */ 407 return cpu->midr; 408 case 0xd04: /* Interrupt Control State. */ 409 /* VECTACTIVE */ 410 val = cpu->env.v7m.exception; 411 /* VECTPENDING */ 412 val |= (s->vectpending & 0xff) << 12; 413 /* ISRPENDING - set if any external IRQ is pending */ 414 if (nvic_isrpending(s)) { 415 val |= (1 << 22); 416 } 417 /* RETTOBASE - set if only one handler is active */ 418 if (nvic_rettobase(s)) { 419 val |= (1 << 11); 420 } 421 /* PENDSTSET */ 422 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 423 val |= (1 << 26); 424 } 425 /* PENDSVSET */ 426 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 427 val |= (1 << 28); 428 } 429 /* NMIPENDSET */ 430 if (s->vectors[ARMV7M_EXCP_NMI].pending) { 431 val |= (1 << 31); 432 } 433 /* ISRPREEMPT not implemented */ 434 return val; 435 case 0xd08: /* Vector Table Offset. */ 436 return cpu->env.v7m.vecbase; 437 case 0xd0c: /* Application Interrupt/Reset Control. */ 438 return 0xfa050000 | (s->prigroup << 8); 439 case 0xd10: /* System Control. */ 440 /* TODO: Implement SLEEPONEXIT. */ 441 return 0; 442 case 0xd14: /* Configuration Control. */ 443 return cpu->env.v7m.ccr; 444 case 0xd24: /* System Handler Status. */ 445 val = 0; 446 if (s->vectors[ARMV7M_EXCP_MEM].active) { 447 val |= (1 << 0); 448 } 449 if (s->vectors[ARMV7M_EXCP_BUS].active) { 450 val |= (1 << 1); 451 } 452 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 453 val |= (1 << 3); 454 } 455 if (s->vectors[ARMV7M_EXCP_SVC].active) { 456 val |= (1 << 7); 457 } 458 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 459 val |= (1 << 8); 460 } 461 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 462 val |= (1 << 10); 463 } 464 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 465 val |= (1 << 11); 466 } 467 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 468 val |= (1 << 12); 469 } 470 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 471 val |= (1 << 13); 472 } 473 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 474 val |= (1 << 14); 475 } 476 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 477 val |= (1 << 15); 478 } 479 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 480 val |= (1 << 16); 481 } 482 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 483 val |= (1 << 17); 484 } 485 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 486 val |= (1 << 18); 487 } 488 return val; 489 case 0xd28: /* Configurable Fault Status. */ 490 return cpu->env.v7m.cfsr; 491 case 0xd2c: /* Hard Fault Status. */ 492 return cpu->env.v7m.hfsr; 493 case 0xd30: /* Debug Fault Status. */ 494 return cpu->env.v7m.dfsr; 495 case 0xd34: /* MMFAR MemManage Fault Address */ 496 return cpu->env.v7m.mmfar; 497 case 0xd38: /* Bus Fault Address. */ 498 return cpu->env.v7m.bfar; 499 case 0xd3c: /* Aux Fault Status. */ 500 /* TODO: Implement fault status registers. */ 501 qemu_log_mask(LOG_UNIMP, 502 "Aux Fault status registers unimplemented\n"); 503 return 0; 504 case 0xd40: /* PFR0. */ 505 return 0x00000030; 506 case 0xd44: /* PRF1. */ 507 return 0x00000200; 508 case 0xd48: /* DFR0. */ 509 return 0x00100000; 510 case 0xd4c: /* AFR0. */ 511 return 0x00000000; 512 case 0xd50: /* MMFR0. */ 513 return 0x00000030; 514 case 0xd54: /* MMFR1. */ 515 return 0x00000000; 516 case 0xd58: /* MMFR2. */ 517 return 0x00000000; 518 case 0xd5c: /* MMFR3. */ 519 return 0x00000000; 520 case 0xd60: /* ISAR0. */ 521 return 0x01141110; 522 case 0xd64: /* ISAR1. */ 523 return 0x02111000; 524 case 0xd68: /* ISAR2. */ 525 return 0x21112231; 526 case 0xd6c: /* ISAR3. */ 527 return 0x01111110; 528 case 0xd70: /* ISAR4. */ 529 return 0x01310102; 530 /* TODO: Implement debug registers. */ 531 default: 532 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 533 return 0; 534 } 535 } 536 537 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value) 538 { 539 ARMCPU *cpu = s->cpu; 540 541 switch (offset) { 542 case 0xd04: /* Interrupt Control State. */ 543 if (value & (1 << 31)) { 544 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); 545 } 546 if (value & (1 << 28)) { 547 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); 548 } else if (value & (1 << 27)) { 549 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); 550 } 551 if (value & (1 << 26)) { 552 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 553 } else if (value & (1 << 25)) { 554 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); 555 } 556 break; 557 case 0xd08: /* Vector Table Offset. */ 558 cpu->env.v7m.vecbase = value & 0xffffff80; 559 break; 560 case 0xd0c: /* Application Interrupt/Reset Control. */ 561 if ((value >> 16) == 0x05fa) { 562 if (value & 4) { 563 qemu_irq_pulse(s->sysresetreq); 564 } 565 if (value & 2) { 566 qemu_log_mask(LOG_GUEST_ERROR, 567 "Setting VECTCLRACTIVE when not in DEBUG mode " 568 "is UNPREDICTABLE\n"); 569 } 570 if (value & 1) { 571 qemu_log_mask(LOG_GUEST_ERROR, 572 "Setting VECTRESET when not in DEBUG mode " 573 "is UNPREDICTABLE\n"); 574 } 575 s->prigroup = extract32(value, 8, 3); 576 nvic_irq_update(s); 577 } 578 break; 579 case 0xd10: /* System Control. */ 580 /* TODO: Implement control registers. */ 581 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 582 break; 583 case 0xd14: /* Configuration Control. */ 584 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 585 value &= (R_V7M_CCR_STKALIGN_MASK | 586 R_V7M_CCR_BFHFNMIGN_MASK | 587 R_V7M_CCR_DIV_0_TRP_MASK | 588 R_V7M_CCR_UNALIGN_TRP_MASK | 589 R_V7M_CCR_USERSETMPEND_MASK | 590 R_V7M_CCR_NONBASETHRDENA_MASK); 591 592 cpu->env.v7m.ccr = value; 593 break; 594 case 0xd24: /* System Handler Control. */ 595 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 596 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 597 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 598 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 599 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 600 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 601 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 602 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 603 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 604 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 605 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 606 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 607 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 608 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 609 nvic_irq_update(s); 610 break; 611 case 0xd28: /* Configurable Fault Status. */ 612 cpu->env.v7m.cfsr &= ~value; /* W1C */ 613 break; 614 case 0xd2c: /* Hard Fault Status. */ 615 cpu->env.v7m.hfsr &= ~value; /* W1C */ 616 break; 617 case 0xd30: /* Debug Fault Status. */ 618 cpu->env.v7m.dfsr &= ~value; /* W1C */ 619 break; 620 case 0xd34: /* Mem Manage Address. */ 621 cpu->env.v7m.mmfar = value; 622 return; 623 case 0xd38: /* Bus Fault Address. */ 624 cpu->env.v7m.bfar = value; 625 return; 626 case 0xd3c: /* Aux Fault Status. */ 627 qemu_log_mask(LOG_UNIMP, 628 "NVIC: Aux fault status registers unimplemented\n"); 629 break; 630 case 0xf00: /* Software Triggered Interrupt Register */ 631 { 632 /* user mode can only write to STIR if CCR.USERSETMPEND permits it */ 633 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 634 if (excnum < s->num_irq && 635 (arm_current_el(&cpu->env) || 636 (cpu->env.v7m.ccr & R_V7M_CCR_USERSETMPEND_MASK))) { 637 armv7m_nvic_set_pending(s, excnum); 638 } 639 break; 640 } 641 default: 642 qemu_log_mask(LOG_GUEST_ERROR, 643 "NVIC: Bad write offset 0x%x\n", offset); 644 } 645 } 646 647 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr, 648 unsigned size) 649 { 650 NVICState *s = (NVICState *)opaque; 651 uint32_t offset = addr; 652 unsigned i, startvec, end; 653 uint32_t val; 654 655 switch (offset) { 656 /* reads of set and clear both return the status */ 657 case 0x100 ... 0x13f: /* NVIC Set enable */ 658 offset += 0x80; 659 /* fall through */ 660 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 661 val = 0; 662 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 663 664 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 665 if (s->vectors[startvec + i].enabled) { 666 val |= (1 << i); 667 } 668 } 669 break; 670 case 0x200 ... 0x23f: /* NVIC Set pend */ 671 offset += 0x80; 672 /* fall through */ 673 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 674 val = 0; 675 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 676 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 677 if (s->vectors[startvec + i].pending) { 678 val |= (1 << i); 679 } 680 } 681 break; 682 case 0x300 ... 0x33f: /* NVIC Active */ 683 val = 0; 684 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 685 686 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 687 if (s->vectors[startvec + i].active) { 688 val |= (1 << i); 689 } 690 } 691 break; 692 case 0x400 ... 0x5ef: /* NVIC Priority */ 693 val = 0; 694 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 695 696 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 697 val |= s->vectors[startvec + i].prio << (8 * i); 698 } 699 break; 700 case 0xd18 ... 0xd23: /* System Handler Priority. */ 701 val = 0; 702 for (i = 0; i < size; i++) { 703 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); 704 } 705 break; 706 case 0xfe0 ... 0xfff: /* ID. */ 707 if (offset & 3) { 708 val = 0; 709 } else { 710 val = nvic_id[(offset - 0xfe0) >> 2]; 711 } 712 break; 713 default: 714 if (size == 4) { 715 val = nvic_readl(s, offset); 716 } else { 717 qemu_log_mask(LOG_GUEST_ERROR, 718 "NVIC: Bad read of size %d at offset 0x%x\n", 719 size, offset); 720 val = 0; 721 } 722 } 723 724 trace_nvic_sysreg_read(addr, val, size); 725 return val; 726 } 727 728 static void nvic_sysreg_write(void *opaque, hwaddr addr, 729 uint64_t value, unsigned size) 730 { 731 NVICState *s = (NVICState *)opaque; 732 uint32_t offset = addr; 733 unsigned i, startvec, end; 734 unsigned setval = 0; 735 736 trace_nvic_sysreg_write(addr, value, size); 737 738 switch (offset) { 739 case 0x100 ... 0x13f: /* NVIC Set enable */ 740 offset += 0x80; 741 setval = 1; 742 /* fall through */ 743 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 744 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 745 746 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 747 if (value & (1 << i)) { 748 s->vectors[startvec + i].enabled = setval; 749 } 750 } 751 nvic_irq_update(s); 752 return; 753 case 0x200 ... 0x23f: /* NVIC Set pend */ 754 /* the special logic in armv7m_nvic_set_pending() 755 * is not needed since IRQs are never escalated 756 */ 757 offset += 0x80; 758 setval = 1; 759 /* fall through */ 760 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 761 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 762 763 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 764 if (value & (1 << i)) { 765 s->vectors[startvec + i].pending = setval; 766 } 767 } 768 nvic_irq_update(s); 769 return; 770 case 0x300 ... 0x33f: /* NVIC Active */ 771 return; /* R/O */ 772 case 0x400 ... 0x5ef: /* NVIC Priority */ 773 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 774 775 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 776 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); 777 } 778 nvic_irq_update(s); 779 return; 780 case 0xd18 ... 0xd23: /* System Handler Priority. */ 781 for (i = 0; i < size; i++) { 782 unsigned hdlidx = (offset - 0xd14) + i; 783 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); 784 } 785 nvic_irq_update(s); 786 return; 787 } 788 if (size == 4) { 789 nvic_writel(s, offset, value); 790 return; 791 } 792 qemu_log_mask(LOG_GUEST_ERROR, 793 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 794 } 795 796 static const MemoryRegionOps nvic_sysreg_ops = { 797 .read = nvic_sysreg_read, 798 .write = nvic_sysreg_write, 799 .endianness = DEVICE_NATIVE_ENDIAN, 800 }; 801 802 static int nvic_post_load(void *opaque, int version_id) 803 { 804 NVICState *s = opaque; 805 unsigned i; 806 807 /* Check for out of range priority settings */ 808 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || 809 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 810 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 811 return 1; 812 } 813 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 814 if (s->vectors[i].prio & ~0xff) { 815 return 1; 816 } 817 } 818 819 nvic_recompute_state(s); 820 821 return 0; 822 } 823 824 static const VMStateDescription vmstate_VecInfo = { 825 .name = "armv7m_nvic_info", 826 .version_id = 1, 827 .minimum_version_id = 1, 828 .fields = (VMStateField[]) { 829 VMSTATE_INT16(prio, VecInfo), 830 VMSTATE_UINT8(enabled, VecInfo), 831 VMSTATE_UINT8(pending, VecInfo), 832 VMSTATE_UINT8(active, VecInfo), 833 VMSTATE_UINT8(level, VecInfo), 834 VMSTATE_END_OF_LIST() 835 } 836 }; 837 838 static const VMStateDescription vmstate_nvic = { 839 .name = "armv7m_nvic", 840 .version_id = 4, 841 .minimum_version_id = 4, 842 .post_load = &nvic_post_load, 843 .fields = (VMStateField[]) { 844 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 845 vmstate_VecInfo, VecInfo), 846 VMSTATE_UINT32(prigroup, NVICState), 847 VMSTATE_END_OF_LIST() 848 } 849 }; 850 851 static Property props_nvic[] = { 852 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 853 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 854 DEFINE_PROP_END_OF_LIST() 855 }; 856 857 static void armv7m_nvic_reset(DeviceState *dev) 858 { 859 NVICState *s = NVIC(dev); 860 861 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 862 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 863 /* MEM, BUS, and USAGE are enabled through 864 * the System Handler Control register 865 */ 866 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 867 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 868 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 869 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 870 871 s->vectors[ARMV7M_EXCP_RESET].prio = -3; 872 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 873 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 874 875 /* Strictly speaking the reset handler should be enabled. 876 * However, we don't simulate soft resets through the NVIC, 877 * and the reset vector should never be pended. 878 * So we leave it disabled to catch logic errors. 879 */ 880 881 s->exception_prio = NVIC_NOEXC_PRIO; 882 s->vectpending = 0; 883 } 884 885 static void nvic_systick_trigger(void *opaque, int n, int level) 886 { 887 NVICState *s = opaque; 888 889 if (level) { 890 /* SysTick just asked us to pend its exception. 891 * (This is different from an external interrupt line's 892 * behaviour.) 893 */ 894 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 895 } 896 } 897 898 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 899 { 900 NVICState *s = NVIC(dev); 901 SysBusDevice *systick_sbd; 902 Error *err = NULL; 903 904 s->cpu = ARM_CPU(qemu_get_cpu(0)); 905 assert(s->cpu); 906 907 if (s->num_irq > NVIC_MAX_IRQ) { 908 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 909 return; 910 } 911 912 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 913 914 /* include space for internal exception vectors */ 915 s->num_irq += NVIC_FIRST_IRQ; 916 917 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 918 if (err != NULL) { 919 error_propagate(errp, err); 920 return; 921 } 922 systick_sbd = SYS_BUS_DEVICE(&s->systick); 923 sysbus_connect_irq(systick_sbd, 0, 924 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 925 926 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 927 * and looks like this: 928 * 0x004 - ICTR 929 * 0x010 - 0xff - systick 930 * 0x100..0x7ec - NVIC 931 * 0x7f0..0xcff - Reserved 932 * 0xd00..0xd3c - SCS registers 933 * 0xd40..0xeff - Reserved or Not implemented 934 * 0xf00 - STIR 935 * 936 * At the moment there is only one thing in the container region, 937 * but we leave it in place to allow us to pull systick out into 938 * its own device object later. 939 */ 940 memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000); 941 /* The system register region goes at the bottom of the priority 942 * stack as it covers the whole page. 943 */ 944 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 945 "nvic_sysregs", 0x1000); 946 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 947 memory_region_add_subregion_overlap(&s->container, 0x10, 948 sysbus_mmio_get_region(systick_sbd, 0), 949 1); 950 951 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 952 } 953 954 static void armv7m_nvic_instance_init(Object *obj) 955 { 956 /* We have a different default value for the num-irq property 957 * than our superclass. This function runs after qdev init 958 * has set the defaults from the Property array and before 959 * any user-specified property setting, so just modify the 960 * value in the GICState struct. 961 */ 962 DeviceState *dev = DEVICE(obj); 963 NVICState *nvic = NVIC(obj); 964 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 965 966 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 967 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 968 969 sysbus_init_irq(sbd, &nvic->excpout); 970 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 971 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 972 } 973 974 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 975 { 976 DeviceClass *dc = DEVICE_CLASS(klass); 977 978 dc->vmsd = &vmstate_nvic; 979 dc->props = props_nvic; 980 dc->reset = armv7m_nvic_reset; 981 dc->realize = armv7m_nvic_realize; 982 } 983 984 static const TypeInfo armv7m_nvic_info = { 985 .name = TYPE_NVIC, 986 .parent = TYPE_SYS_BUS_DEVICE, 987 .instance_init = armv7m_nvic_instance_init, 988 .instance_size = sizeof(NVICState), 989 .class_init = armv7m_nvic_class_init, 990 .class_size = sizeof(SysBusDeviceClass), 991 }; 992 993 static void armv7m_nvic_register_types(void) 994 { 995 type_register_static(&armv7m_nvic_info); 996 } 997 998 type_init(armv7m_nvic_register_types) 999