1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "qemu/timer.h" 18 #include "hw/intc/armv7m_nvic.h" 19 #include "target/arm/cpu.h" 20 #include "exec/exec-all.h" 21 #include "qemu/log.h" 22 #include "qemu/module.h" 23 #include "trace.h" 24 25 /* IRQ number counting: 26 * 27 * the num-irq property counts the number of external IRQ lines 28 * 29 * NVICState::num_irq counts the total number of exceptions 30 * (external IRQs, the 15 internal exceptions including reset, 31 * and one for the unused exception number 0). 32 * 33 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 34 * 35 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 36 * 37 * Iterating through all exceptions should typically be done with 38 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 39 * 40 * The external qemu_irq lines are the NVIC's external IRQ lines, 41 * so line 0 is exception 16. 42 * 43 * In the terminology of the architecture manual, "interrupts" are 44 * a subcategory of exception referring to the external interrupts 45 * (which are exception numbers NVIC_FIRST_IRQ and upward). 46 * For historical reasons QEMU tends to use "interrupt" and 47 * "exception" more or less interchangeably. 48 */ 49 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 50 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 51 52 /* Effective running priority of the CPU when no exception is active 53 * (higher than the highest possible priority value) 54 */ 55 #define NVIC_NOEXC_PRIO 0x100 56 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 57 #define NVIC_NS_PRIO_LIMIT 0x80 58 59 static const uint8_t nvic_id[] = { 60 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 61 }; 62 63 static int nvic_pending_prio(NVICState *s) 64 { 65 /* return the group priority of the current pending interrupt, 66 * or NVIC_NOEXC_PRIO if no interrupt is pending 67 */ 68 return s->vectpending_prio; 69 } 70 71 /* Return the value of the ISCR RETTOBASE bit: 72 * 1 if there is exactly one active exception 73 * 0 if there is more than one active exception 74 * UNKNOWN if there are no active exceptions (we choose 1, 75 * which matches the choice Cortex-M3 is documented as making). 76 * 77 * NB: some versions of the documentation talk about this 78 * counting "active exceptions other than the one shown by IPSR"; 79 * this is only different in the obscure corner case where guest 80 * code has manually deactivated an exception and is about 81 * to fail an exception-return integrity check. The definition 82 * above is the one from the v8M ARM ARM and is also in line 83 * with the behaviour documented for the Cortex-M3. 84 */ 85 static bool nvic_rettobase(NVICState *s) 86 { 87 int irq, nhand = 0; 88 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 89 90 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 91 if (s->vectors[irq].active || 92 (check_sec && irq < NVIC_INTERNAL_VECTORS && 93 s->sec_vectors[irq].active)) { 94 nhand++; 95 if (nhand == 2) { 96 return 0; 97 } 98 } 99 } 100 101 return 1; 102 } 103 104 /* Return the value of the ISCR ISRPENDING bit: 105 * 1 if an external interrupt is pending 106 * 0 if no external interrupt is pending 107 */ 108 static bool nvic_isrpending(NVICState *s) 109 { 110 int irq; 111 112 /* We can shortcut if the highest priority pending interrupt 113 * happens to be external or if there is nothing pending. 114 */ 115 if (s->vectpending > NVIC_FIRST_IRQ) { 116 return true; 117 } 118 if (s->vectpending == 0) { 119 return false; 120 } 121 122 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 123 if (s->vectors[irq].pending) { 124 return true; 125 } 126 } 127 return false; 128 } 129 130 static bool exc_is_banked(int exc) 131 { 132 /* Return true if this is one of the limited set of exceptions which 133 * are banked (and thus have state in sec_vectors[]) 134 */ 135 return exc == ARMV7M_EXCP_HARD || 136 exc == ARMV7M_EXCP_MEM || 137 exc == ARMV7M_EXCP_USAGE || 138 exc == ARMV7M_EXCP_SVC || 139 exc == ARMV7M_EXCP_PENDSV || 140 exc == ARMV7M_EXCP_SYSTICK; 141 } 142 143 /* Return a mask word which clears the subpriority bits from 144 * a priority value for an M-profile exception, leaving only 145 * the group priority. 146 */ 147 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 148 { 149 return ~0U << (s->prigroup[secure] + 1); 150 } 151 152 static bool exc_targets_secure(NVICState *s, int exc) 153 { 154 /* Return true if this non-banked exception targets Secure state. */ 155 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 156 return false; 157 } 158 159 if (exc >= NVIC_FIRST_IRQ) { 160 return !s->itns[exc]; 161 } 162 163 /* Function shouldn't be called for banked exceptions. */ 164 assert(!exc_is_banked(exc)); 165 166 switch (exc) { 167 case ARMV7M_EXCP_NMI: 168 case ARMV7M_EXCP_BUS: 169 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 170 case ARMV7M_EXCP_SECURE: 171 return true; 172 case ARMV7M_EXCP_DEBUG: 173 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 174 return false; 175 default: 176 /* reset, and reserved (unused) low exception numbers. 177 * We'll get called by code that loops through all the exception 178 * numbers, but it doesn't matter what we return here as these 179 * non-existent exceptions will never be pended or active. 180 */ 181 return true; 182 } 183 } 184 185 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 186 { 187 /* Return the group priority for this exception, given its raw 188 * (group-and-subgroup) priority value and whether it is targeting 189 * secure state or not. 190 */ 191 if (rawprio < 0) { 192 return rawprio; 193 } 194 rawprio &= nvic_gprio_mask(s, targets_secure); 195 /* AIRCR.PRIS causes us to squash all NS priorities into the 196 * lower half of the total range 197 */ 198 if (!targets_secure && 199 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 200 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 201 } 202 return rawprio; 203 } 204 205 /* Recompute vectpending and exception_prio for a CPU which implements 206 * the Security extension 207 */ 208 static void nvic_recompute_state_secure(NVICState *s) 209 { 210 int i, bank; 211 int pend_prio = NVIC_NOEXC_PRIO; 212 int active_prio = NVIC_NOEXC_PRIO; 213 int pend_irq = 0; 214 bool pending_is_s_banked = false; 215 int pend_subprio = 0; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio, subprio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 245 if (vec->enabled && vec->pending && 246 ((prio < pend_prio) || 247 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 248 pend_prio = prio; 249 pend_subprio = subprio; 250 pend_irq = i; 251 pending_is_s_banked = (bank == M_REG_S); 252 } 253 if (vec->active && prio < active_prio) { 254 active_prio = prio; 255 } 256 } 257 } 258 259 s->vectpending_is_s_banked = pending_is_s_banked; 260 s->vectpending = pend_irq; 261 s->vectpending_prio = pend_prio; 262 s->exception_prio = active_prio; 263 264 trace_nvic_recompute_state_secure(s->vectpending, 265 s->vectpending_is_s_banked, 266 s->vectpending_prio, 267 s->exception_prio); 268 } 269 270 /* Recompute vectpending and exception_prio */ 271 static void nvic_recompute_state(NVICState *s) 272 { 273 int i; 274 int pend_prio = NVIC_NOEXC_PRIO; 275 int active_prio = NVIC_NOEXC_PRIO; 276 int pend_irq = 0; 277 278 /* In theory we could write one function that handled both 279 * the "security extension present" and "not present"; however 280 * the security related changes significantly complicate the 281 * recomputation just by themselves and mixing both cases together 282 * would be even worse, so we retain a separate non-secure-only 283 * version for CPUs which don't implement the security extension. 284 */ 285 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 286 nvic_recompute_state_secure(s); 287 return; 288 } 289 290 for (i = 1; i < s->num_irq; i++) { 291 VecInfo *vec = &s->vectors[i]; 292 293 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 294 pend_prio = vec->prio; 295 pend_irq = i; 296 } 297 if (vec->active && vec->prio < active_prio) { 298 active_prio = vec->prio; 299 } 300 } 301 302 if (active_prio > 0) { 303 active_prio &= nvic_gprio_mask(s, false); 304 } 305 306 if (pend_prio > 0) { 307 pend_prio &= nvic_gprio_mask(s, false); 308 } 309 310 s->vectpending = pend_irq; 311 s->vectpending_prio = pend_prio; 312 s->exception_prio = active_prio; 313 314 trace_nvic_recompute_state(s->vectpending, 315 s->vectpending_prio, 316 s->exception_prio); 317 } 318 319 /* Return the current execution priority of the CPU 320 * (equivalent to the pseudocode ExecutionPriority function). 321 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 322 */ 323 static inline int nvic_exec_prio(NVICState *s) 324 { 325 CPUARMState *env = &s->cpu->env; 326 int running = NVIC_NOEXC_PRIO; 327 328 if (env->v7m.basepri[M_REG_NS] > 0) { 329 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 330 } 331 332 if (env->v7m.basepri[M_REG_S] > 0) { 333 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 334 if (running > basepri) { 335 running = basepri; 336 } 337 } 338 339 if (env->v7m.primask[M_REG_NS]) { 340 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 341 if (running > NVIC_NS_PRIO_LIMIT) { 342 running = NVIC_NS_PRIO_LIMIT; 343 } 344 } else { 345 running = 0; 346 } 347 } 348 349 if (env->v7m.primask[M_REG_S]) { 350 running = 0; 351 } 352 353 if (env->v7m.faultmask[M_REG_NS]) { 354 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 355 running = -1; 356 } else { 357 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 358 if (running > NVIC_NS_PRIO_LIMIT) { 359 running = NVIC_NS_PRIO_LIMIT; 360 } 361 } else { 362 running = 0; 363 } 364 } 365 } 366 367 if (env->v7m.faultmask[M_REG_S]) { 368 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 369 } 370 371 /* consider priority of active handler */ 372 return MIN(running, s->exception_prio); 373 } 374 375 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 376 { 377 /* Return true if the requested execution priority is negative 378 * for the specified security state, ie that security state 379 * has an active NMI or HardFault or has set its FAULTMASK. 380 * Note that this is not the same as whether the execution 381 * priority is actually negative (for instance AIRCR.PRIS may 382 * mean we don't allow FAULTMASK_NS to actually make the execution 383 * priority negative). Compare pseudocode IsReqExcPriNeg(). 384 */ 385 NVICState *s = opaque; 386 387 if (s->cpu->env.v7m.faultmask[secure]) { 388 return true; 389 } 390 391 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 392 s->vectors[ARMV7M_EXCP_HARD].active) { 393 return true; 394 } 395 396 if (s->vectors[ARMV7M_EXCP_NMI].active && 397 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 398 return true; 399 } 400 401 return false; 402 } 403 404 bool armv7m_nvic_can_take_pending_exception(void *opaque) 405 { 406 NVICState *s = opaque; 407 408 return nvic_exec_prio(s) > nvic_pending_prio(s); 409 } 410 411 int armv7m_nvic_raw_execution_priority(void *opaque) 412 { 413 NVICState *s = opaque; 414 415 return s->exception_prio; 416 } 417 418 /* caller must call nvic_irq_update() after this. 419 * secure indicates the bank to use for banked exceptions (we assert if 420 * we are passed secure=true for a non-banked exception). 421 */ 422 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 423 { 424 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 425 assert(irq < s->num_irq); 426 427 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 428 429 if (secure) { 430 assert(exc_is_banked(irq)); 431 s->sec_vectors[irq].prio = prio; 432 } else { 433 s->vectors[irq].prio = prio; 434 } 435 436 trace_nvic_set_prio(irq, secure, prio); 437 } 438 439 /* Return the current raw priority register value. 440 * secure indicates the bank to use for banked exceptions (we assert if 441 * we are passed secure=true for a non-banked exception). 442 */ 443 static int get_prio(NVICState *s, unsigned irq, bool secure) 444 { 445 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 446 assert(irq < s->num_irq); 447 448 if (secure) { 449 assert(exc_is_banked(irq)); 450 return s->sec_vectors[irq].prio; 451 } else { 452 return s->vectors[irq].prio; 453 } 454 } 455 456 /* Recompute state and assert irq line accordingly. 457 * Must be called after changes to: 458 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 459 * prigroup 460 */ 461 static void nvic_irq_update(NVICState *s) 462 { 463 int lvl; 464 int pend_prio; 465 466 nvic_recompute_state(s); 467 pend_prio = nvic_pending_prio(s); 468 469 /* Raise NVIC output if this IRQ would be taken, except that we 470 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 471 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 472 * to those CPU registers don't cause us to recalculate the NVIC 473 * pending info. 474 */ 475 lvl = (pend_prio < s->exception_prio); 476 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 477 qemu_set_irq(s->excpout, lvl); 478 } 479 480 /** 481 * armv7m_nvic_clear_pending: mark the specified exception as not pending 482 * @opaque: the NVIC 483 * @irq: the exception number to mark as not pending 484 * @secure: false for non-banked exceptions or for the nonsecure 485 * version of a banked exception, true for the secure version of a banked 486 * exception. 487 * 488 * Marks the specified exception as not pending. Note that we will assert() 489 * if @secure is true and @irq does not specify one of the fixed set 490 * of architecturally banked exceptions. 491 */ 492 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 493 { 494 NVICState *s = (NVICState *)opaque; 495 VecInfo *vec; 496 497 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 498 499 if (secure) { 500 assert(exc_is_banked(irq)); 501 vec = &s->sec_vectors[irq]; 502 } else { 503 vec = &s->vectors[irq]; 504 } 505 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 506 if (vec->pending) { 507 vec->pending = 0; 508 nvic_irq_update(s); 509 } 510 } 511 512 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 513 bool derived) 514 { 515 /* Pend an exception, including possibly escalating it to HardFault. 516 * 517 * This function handles both "normal" pending of interrupts and 518 * exceptions, and also derived exceptions (ones which occur as 519 * a result of trying to take some other exception). 520 * 521 * If derived == true, the caller guarantees that we are part way through 522 * trying to take an exception (but have not yet called 523 * armv7m_nvic_acknowledge_irq() to make it active), and so: 524 * - s->vectpending is the "original exception" we were trying to take 525 * - irq is the "derived exception" 526 * - nvic_exec_prio(s) gives the priority before exception entry 527 * Here we handle the prioritization logic which the pseudocode puts 528 * in the DerivedLateArrival() function. 529 */ 530 531 NVICState *s = (NVICState *)opaque; 532 bool banked = exc_is_banked(irq); 533 VecInfo *vec; 534 bool targets_secure; 535 536 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 537 assert(!secure || banked); 538 539 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 540 541 targets_secure = banked ? secure : exc_targets_secure(s, irq); 542 543 trace_nvic_set_pending(irq, secure, targets_secure, 544 derived, vec->enabled, vec->prio); 545 546 if (derived) { 547 /* Derived exceptions are always synchronous. */ 548 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 549 550 if (irq == ARMV7M_EXCP_DEBUG && 551 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 552 /* DebugMonitorFault, but its priority is lower than the 553 * preempted exception priority: just ignore it. 554 */ 555 return; 556 } 557 558 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 559 /* If this is a terminal exception (one which means we cannot 560 * take the original exception, like a failure to read its 561 * vector table entry), then we must take the derived exception. 562 * If the derived exception can't take priority over the 563 * original exception, then we go into Lockup. 564 * 565 * For QEMU, we rely on the fact that a derived exception is 566 * terminal if and only if it's reported to us as HardFault, 567 * which saves having to have an extra argument is_terminal 568 * that we'd only use in one place. 569 */ 570 cpu_abort(&s->cpu->parent_obj, 571 "Lockup: can't take terminal derived exception " 572 "(original exception priority %d)\n", 573 s->vectpending_prio); 574 } 575 /* We now continue with the same code as for a normal pending 576 * exception, which will cause us to pend the derived exception. 577 * We'll then take either the original or the derived exception 578 * based on which is higher priority by the usual mechanism 579 * for selecting the highest priority pending interrupt. 580 */ 581 } 582 583 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 584 /* If a synchronous exception is pending then it may be 585 * escalated to HardFault if: 586 * * it is equal or lower priority to current execution 587 * * it is disabled 588 * (ie we need to take it immediately but we can't do so). 589 * Asynchronous exceptions (and interrupts) simply remain pending. 590 * 591 * For QEMU, we don't have any imprecise (asynchronous) faults, 592 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 593 * synchronous. 594 * Debug exceptions are awkward because only Debug exceptions 595 * resulting from the BKPT instruction should be escalated, 596 * but we don't currently implement any Debug exceptions other 597 * than those that result from BKPT, so we treat all debug exceptions 598 * as needing escalation. 599 * 600 * This all means we can identify whether to escalate based only on 601 * the exception number and don't (yet) need the caller to explicitly 602 * tell us whether this exception is synchronous or not. 603 */ 604 int running = nvic_exec_prio(s); 605 bool escalate = false; 606 607 if (exc_group_prio(s, vec->prio, secure) >= running) { 608 trace_nvic_escalate_prio(irq, vec->prio, running); 609 escalate = true; 610 } else if (!vec->enabled) { 611 trace_nvic_escalate_disabled(irq); 612 escalate = true; 613 } 614 615 if (escalate) { 616 617 /* We need to escalate this exception to a synchronous HardFault. 618 * If BFHFNMINS is set then we escalate to the banked HF for 619 * the target security state of the original exception; otherwise 620 * we take a Secure HardFault. 621 */ 622 irq = ARMV7M_EXCP_HARD; 623 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 624 (targets_secure || 625 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 626 vec = &s->sec_vectors[irq]; 627 } else { 628 vec = &s->vectors[irq]; 629 } 630 if (running <= vec->prio) { 631 /* We want to escalate to HardFault but we can't take the 632 * synchronous HardFault at this point either. This is a 633 * Lockup condition due to a guest bug. We don't model 634 * Lockup, so report via cpu_abort() instead. 635 */ 636 cpu_abort(&s->cpu->parent_obj, 637 "Lockup: can't escalate %d to HardFault " 638 "(current priority %d)\n", irq, running); 639 } 640 641 /* HF may be banked but there is only one shared HFSR */ 642 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 643 } 644 } 645 646 if (!vec->pending) { 647 vec->pending = 1; 648 nvic_irq_update(s); 649 } 650 } 651 652 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 653 { 654 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 655 } 656 657 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 658 { 659 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 660 } 661 662 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 663 { 664 /* 665 * Pend an exception during lazy FP stacking. This differs 666 * from the usual exception pending because the logic for 667 * whether we should escalate depends on the saved context 668 * in the FPCCR register, not on the current state of the CPU/NVIC. 669 */ 670 NVICState *s = (NVICState *)opaque; 671 bool banked = exc_is_banked(irq); 672 VecInfo *vec; 673 bool targets_secure; 674 bool escalate = false; 675 /* 676 * We will only look at bits in fpccr if this is a banked exception 677 * (in which case 'secure' tells us whether it is the S or NS version). 678 * All the bits for the non-banked exceptions are in fpccr_s. 679 */ 680 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 681 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 682 683 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 684 assert(!secure || banked); 685 686 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 687 688 targets_secure = banked ? secure : exc_targets_secure(s, irq); 689 690 switch (irq) { 691 case ARMV7M_EXCP_DEBUG: 692 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 693 /* Ignore DebugMonitor exception */ 694 return; 695 } 696 break; 697 case ARMV7M_EXCP_MEM: 698 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 699 break; 700 case ARMV7M_EXCP_USAGE: 701 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 702 break; 703 case ARMV7M_EXCP_BUS: 704 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 705 break; 706 case ARMV7M_EXCP_SECURE: 707 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 708 break; 709 default: 710 g_assert_not_reached(); 711 } 712 713 if (escalate) { 714 /* 715 * Escalate to HardFault: faults that initially targeted Secure 716 * continue to do so, even if HF normally targets NonSecure. 717 */ 718 irq = ARMV7M_EXCP_HARD; 719 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 720 (targets_secure || 721 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 722 vec = &s->sec_vectors[irq]; 723 } else { 724 vec = &s->vectors[irq]; 725 } 726 } 727 728 if (!vec->enabled || 729 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 730 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 731 /* 732 * We want to escalate to HardFault but the context the 733 * FP state belongs to prevents the exception pre-empting. 734 */ 735 cpu_abort(&s->cpu->parent_obj, 736 "Lockup: can't escalate to HardFault during " 737 "lazy FP register stacking\n"); 738 } 739 } 740 741 if (escalate) { 742 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 743 } 744 if (!vec->pending) { 745 vec->pending = 1; 746 /* 747 * We do not call nvic_irq_update(), because we know our caller 748 * is going to handle causing us to take the exception by 749 * raising EXCP_LAZYFP, so raising the IRQ line would be 750 * pointless extra work. We just need to recompute the 751 * priorities so that armv7m_nvic_can_take_pending_exception() 752 * returns the right answer. 753 */ 754 nvic_recompute_state(s); 755 } 756 } 757 758 /* Make pending IRQ active. */ 759 void armv7m_nvic_acknowledge_irq(void *opaque) 760 { 761 NVICState *s = (NVICState *)opaque; 762 CPUARMState *env = &s->cpu->env; 763 const int pending = s->vectpending; 764 const int running = nvic_exec_prio(s); 765 VecInfo *vec; 766 767 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 768 769 if (s->vectpending_is_s_banked) { 770 vec = &s->sec_vectors[pending]; 771 } else { 772 vec = &s->vectors[pending]; 773 } 774 775 assert(vec->enabled); 776 assert(vec->pending); 777 778 assert(s->vectpending_prio < running); 779 780 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 781 782 vec->active = 1; 783 vec->pending = 0; 784 785 write_v7m_exception(env, s->vectpending); 786 787 nvic_irq_update(s); 788 } 789 790 void armv7m_nvic_get_pending_irq_info(void *opaque, 791 int *pirq, bool *ptargets_secure) 792 { 793 NVICState *s = (NVICState *)opaque; 794 const int pending = s->vectpending; 795 bool targets_secure; 796 797 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 798 799 if (s->vectpending_is_s_banked) { 800 targets_secure = true; 801 } else { 802 targets_secure = !exc_is_banked(pending) && 803 exc_targets_secure(s, pending); 804 } 805 806 trace_nvic_get_pending_irq_info(pending, targets_secure); 807 808 *ptargets_secure = targets_secure; 809 *pirq = pending; 810 } 811 812 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 813 { 814 NVICState *s = (NVICState *)opaque; 815 VecInfo *vec; 816 int ret; 817 818 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 819 820 if (secure && exc_is_banked(irq)) { 821 vec = &s->sec_vectors[irq]; 822 } else { 823 vec = &s->vectors[irq]; 824 } 825 826 trace_nvic_complete_irq(irq, secure); 827 828 if (!vec->active) { 829 /* Tell the caller this was an illegal exception return */ 830 return -1; 831 } 832 833 ret = nvic_rettobase(s); 834 835 vec->active = 0; 836 if (vec->level) { 837 /* Re-pend the exception if it's still held high; only 838 * happens for extenal IRQs 839 */ 840 assert(irq >= NVIC_FIRST_IRQ); 841 vec->pending = 1; 842 } 843 844 nvic_irq_update(s); 845 846 return ret; 847 } 848 849 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 850 { 851 /* 852 * Return whether an exception is "ready", i.e. it is enabled and is 853 * configured at a priority which would allow it to interrupt the 854 * current execution priority. 855 * 856 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 857 * for non-banked exceptions secure is always false; for banked exceptions 858 * it indicates which of the exceptions is required. 859 */ 860 NVICState *s = (NVICState *)opaque; 861 bool banked = exc_is_banked(irq); 862 VecInfo *vec; 863 int running = nvic_exec_prio(s); 864 865 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 866 assert(!secure || banked); 867 868 /* 869 * HardFault is an odd special case: we always check against -1, 870 * even if we're secure and HardFault has priority -3; we never 871 * need to check for enabled state. 872 */ 873 if (irq == ARMV7M_EXCP_HARD) { 874 return running > -1; 875 } 876 877 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 878 879 return vec->enabled && 880 exc_group_prio(s, vec->prio, secure) < running; 881 } 882 883 /* callback when external interrupt line is changed */ 884 static void set_irq_level(void *opaque, int n, int level) 885 { 886 NVICState *s = opaque; 887 VecInfo *vec; 888 889 n += NVIC_FIRST_IRQ; 890 891 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 892 893 trace_nvic_set_irq_level(n, level); 894 895 /* The pending status of an external interrupt is 896 * latched on rising edge and exception handler return. 897 * 898 * Pulsing the IRQ will always run the handler 899 * once, and the handler will re-run until the 900 * level is low when the handler completes. 901 */ 902 vec = &s->vectors[n]; 903 if (level != vec->level) { 904 vec->level = level; 905 if (level) { 906 armv7m_nvic_set_pending(s, n, false); 907 } 908 } 909 } 910 911 /* callback when external NMI line is changed */ 912 static void nvic_nmi_trigger(void *opaque, int n, int level) 913 { 914 NVICState *s = opaque; 915 916 trace_nvic_set_nmi_level(level); 917 918 /* 919 * The architecture doesn't specify whether NMI should share 920 * the normal-interrupt behaviour of being resampled on 921 * exception handler return. We choose not to, so just 922 * set NMI pending here and don't track the current level. 923 */ 924 if (level) { 925 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 926 } 927 } 928 929 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 930 { 931 ARMCPU *cpu = s->cpu; 932 uint32_t val; 933 934 switch (offset) { 935 case 4: /* Interrupt Control Type. */ 936 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 937 goto bad_offset; 938 } 939 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 940 case 0xc: /* CPPWR */ 941 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 942 goto bad_offset; 943 } 944 /* We make the IMPDEF choice that nothing can ever go into a 945 * non-retentive power state, which allows us to RAZ/WI this. 946 */ 947 return 0; 948 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 949 { 950 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 951 int i; 952 953 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 954 goto bad_offset; 955 } 956 if (!attrs.secure) { 957 return 0; 958 } 959 val = 0; 960 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 961 if (s->itns[startvec + i]) { 962 val |= (1 << i); 963 } 964 } 965 return val; 966 } 967 case 0xd00: /* CPUID Base. */ 968 return cpu->midr; 969 case 0xd04: /* Interrupt Control State (ICSR) */ 970 /* VECTACTIVE */ 971 val = cpu->env.v7m.exception; 972 /* VECTPENDING */ 973 val |= (s->vectpending & 0xff) << 12; 974 /* ISRPENDING - set if any external IRQ is pending */ 975 if (nvic_isrpending(s)) { 976 val |= (1 << 22); 977 } 978 /* RETTOBASE - set if only one handler is active */ 979 if (nvic_rettobase(s)) { 980 val |= (1 << 11); 981 } 982 if (attrs.secure) { 983 /* PENDSTSET */ 984 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 985 val |= (1 << 26); 986 } 987 /* PENDSVSET */ 988 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 989 val |= (1 << 28); 990 } 991 } else { 992 /* PENDSTSET */ 993 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 994 val |= (1 << 26); 995 } 996 /* PENDSVSET */ 997 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 998 val |= (1 << 28); 999 } 1000 } 1001 /* NMIPENDSET */ 1002 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1003 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1004 val |= (1 << 31); 1005 } 1006 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1007 /* STTNS: RES0 for the Main Extension */ 1008 return val; 1009 case 0xd08: /* Vector Table Offset. */ 1010 return cpu->env.v7m.vecbase[attrs.secure]; 1011 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1012 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1013 if (attrs.secure) { 1014 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1015 val |= cpu->env.v7m.aircr; 1016 } else { 1017 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1018 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1019 * security isn't supported then BFHFNMINS is RAO (and 1020 * the bit in env.v7m.aircr is always set). 1021 */ 1022 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1023 } 1024 } 1025 return val; 1026 case 0xd10: /* System Control. */ 1027 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1028 goto bad_offset; 1029 } 1030 return cpu->env.v7m.scr[attrs.secure]; 1031 case 0xd14: /* Configuration Control. */ 1032 /* The BFHFNMIGN bit is the only non-banked bit; we 1033 * keep it in the non-secure copy of the register. 1034 */ 1035 val = cpu->env.v7m.ccr[attrs.secure]; 1036 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1037 return val; 1038 case 0xd24: /* System Handler Control and State (SHCSR) */ 1039 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1040 goto bad_offset; 1041 } 1042 val = 0; 1043 if (attrs.secure) { 1044 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1045 val |= (1 << 0); 1046 } 1047 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1048 val |= (1 << 2); 1049 } 1050 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1051 val |= (1 << 3); 1052 } 1053 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1054 val |= (1 << 7); 1055 } 1056 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1057 val |= (1 << 10); 1058 } 1059 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1060 val |= (1 << 11); 1061 } 1062 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1063 val |= (1 << 12); 1064 } 1065 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1066 val |= (1 << 13); 1067 } 1068 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1069 val |= (1 << 15); 1070 } 1071 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1072 val |= (1 << 16); 1073 } 1074 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1075 val |= (1 << 18); 1076 } 1077 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1078 val |= (1 << 21); 1079 } 1080 /* SecureFault is not banked but is always RAZ/WI to NS */ 1081 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1082 val |= (1 << 4); 1083 } 1084 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1085 val |= (1 << 19); 1086 } 1087 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1088 val |= (1 << 20); 1089 } 1090 } else { 1091 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1092 val |= (1 << 0); 1093 } 1094 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1095 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1096 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1097 val |= (1 << 2); 1098 } 1099 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1100 val |= (1 << 21); 1101 } 1102 } 1103 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1104 val |= (1 << 3); 1105 } 1106 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1107 val |= (1 << 7); 1108 } 1109 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1110 val |= (1 << 10); 1111 } 1112 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1113 val |= (1 << 11); 1114 } 1115 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1116 val |= (1 << 12); 1117 } 1118 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1119 val |= (1 << 13); 1120 } 1121 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1122 val |= (1 << 15); 1123 } 1124 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1125 val |= (1 << 16); 1126 } 1127 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1128 val |= (1 << 18); 1129 } 1130 } 1131 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1132 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1133 val |= (1 << 1); 1134 } 1135 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1136 val |= (1 << 14); 1137 } 1138 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1139 val |= (1 << 17); 1140 } 1141 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1142 s->vectors[ARMV7M_EXCP_NMI].active) { 1143 /* NMIACT is not present in v7M */ 1144 val |= (1 << 5); 1145 } 1146 } 1147 1148 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1149 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1150 val |= (1 << 8); 1151 } 1152 return val; 1153 case 0xd2c: /* Hard Fault Status. */ 1154 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1155 goto bad_offset; 1156 } 1157 return cpu->env.v7m.hfsr; 1158 case 0xd30: /* Debug Fault Status. */ 1159 return cpu->env.v7m.dfsr; 1160 case 0xd34: /* MMFAR MemManage Fault Address */ 1161 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1162 goto bad_offset; 1163 } 1164 return cpu->env.v7m.mmfar[attrs.secure]; 1165 case 0xd38: /* Bus Fault Address. */ 1166 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1167 goto bad_offset; 1168 } 1169 if (!attrs.secure && 1170 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1171 return 0; 1172 } 1173 return cpu->env.v7m.bfar; 1174 case 0xd3c: /* Aux Fault Status. */ 1175 /* TODO: Implement fault status registers. */ 1176 qemu_log_mask(LOG_UNIMP, 1177 "Aux Fault status registers unimplemented\n"); 1178 return 0; 1179 case 0xd40: /* PFR0. */ 1180 return cpu->id_pfr0; 1181 case 0xd44: /* PFR1. */ 1182 return cpu->id_pfr1; 1183 case 0xd48: /* DFR0. */ 1184 return cpu->id_dfr0; 1185 case 0xd4c: /* AFR0. */ 1186 return cpu->id_afr0; 1187 case 0xd50: /* MMFR0. */ 1188 return cpu->id_mmfr0; 1189 case 0xd54: /* MMFR1. */ 1190 return cpu->id_mmfr1; 1191 case 0xd58: /* MMFR2. */ 1192 return cpu->id_mmfr2; 1193 case 0xd5c: /* MMFR3. */ 1194 return cpu->id_mmfr3; 1195 case 0xd60: /* ISAR0. */ 1196 return cpu->isar.id_isar0; 1197 case 0xd64: /* ISAR1. */ 1198 return cpu->isar.id_isar1; 1199 case 0xd68: /* ISAR2. */ 1200 return cpu->isar.id_isar2; 1201 case 0xd6c: /* ISAR3. */ 1202 return cpu->isar.id_isar3; 1203 case 0xd70: /* ISAR4. */ 1204 return cpu->isar.id_isar4; 1205 case 0xd74: /* ISAR5. */ 1206 return cpu->isar.id_isar5; 1207 case 0xd78: /* CLIDR */ 1208 return cpu->clidr; 1209 case 0xd7c: /* CTR */ 1210 return cpu->ctr; 1211 case 0xd80: /* CSSIDR */ 1212 { 1213 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1214 return cpu->ccsidr[idx]; 1215 } 1216 case 0xd84: /* CSSELR */ 1217 return cpu->env.v7m.csselr[attrs.secure]; 1218 case 0xd88: /* CPACR */ 1219 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1220 return 0; 1221 } 1222 return cpu->env.v7m.cpacr[attrs.secure]; 1223 case 0xd8c: /* NSACR */ 1224 if (!attrs.secure || !arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1225 return 0; 1226 } 1227 return cpu->env.v7m.nsacr; 1228 /* TODO: Implement debug registers. */ 1229 case 0xd90: /* MPU_TYPE */ 1230 /* Unified MPU; if the MPU is not present this value is zero */ 1231 return cpu->pmsav7_dregion << 8; 1232 break; 1233 case 0xd94: /* MPU_CTRL */ 1234 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1235 case 0xd98: /* MPU_RNR */ 1236 return cpu->env.pmsav7.rnr[attrs.secure]; 1237 case 0xd9c: /* MPU_RBAR */ 1238 case 0xda4: /* MPU_RBAR_A1 */ 1239 case 0xdac: /* MPU_RBAR_A2 */ 1240 case 0xdb4: /* MPU_RBAR_A3 */ 1241 { 1242 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1243 1244 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1245 /* PMSAv8M handling of the aliases is different from v7M: 1246 * aliases A1, A2, A3 override the low two bits of the region 1247 * number in MPU_RNR, and there is no 'region' field in the 1248 * RBAR register. 1249 */ 1250 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1251 if (aliasno) { 1252 region = deposit32(region, 0, 2, aliasno); 1253 } 1254 if (region >= cpu->pmsav7_dregion) { 1255 return 0; 1256 } 1257 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1258 } 1259 1260 if (region >= cpu->pmsav7_dregion) { 1261 return 0; 1262 } 1263 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1264 } 1265 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1266 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1267 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1268 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1269 { 1270 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1271 1272 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1273 /* PMSAv8M handling of the aliases is different from v7M: 1274 * aliases A1, A2, A3 override the low two bits of the region 1275 * number in MPU_RNR. 1276 */ 1277 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1278 if (aliasno) { 1279 region = deposit32(region, 0, 2, aliasno); 1280 } 1281 if (region >= cpu->pmsav7_dregion) { 1282 return 0; 1283 } 1284 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1285 } 1286 1287 if (region >= cpu->pmsav7_dregion) { 1288 return 0; 1289 } 1290 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1291 (cpu->env.pmsav7.drsr[region] & 0xffff); 1292 } 1293 case 0xdc0: /* MPU_MAIR0 */ 1294 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1295 goto bad_offset; 1296 } 1297 return cpu->env.pmsav8.mair0[attrs.secure]; 1298 case 0xdc4: /* MPU_MAIR1 */ 1299 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1300 goto bad_offset; 1301 } 1302 return cpu->env.pmsav8.mair1[attrs.secure]; 1303 case 0xdd0: /* SAU_CTRL */ 1304 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1305 goto bad_offset; 1306 } 1307 if (!attrs.secure) { 1308 return 0; 1309 } 1310 return cpu->env.sau.ctrl; 1311 case 0xdd4: /* SAU_TYPE */ 1312 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1313 goto bad_offset; 1314 } 1315 if (!attrs.secure) { 1316 return 0; 1317 } 1318 return cpu->sau_sregion; 1319 case 0xdd8: /* SAU_RNR */ 1320 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1321 goto bad_offset; 1322 } 1323 if (!attrs.secure) { 1324 return 0; 1325 } 1326 return cpu->env.sau.rnr; 1327 case 0xddc: /* SAU_RBAR */ 1328 { 1329 int region = cpu->env.sau.rnr; 1330 1331 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1332 goto bad_offset; 1333 } 1334 if (!attrs.secure) { 1335 return 0; 1336 } 1337 if (region >= cpu->sau_sregion) { 1338 return 0; 1339 } 1340 return cpu->env.sau.rbar[region]; 1341 } 1342 case 0xde0: /* SAU_RLAR */ 1343 { 1344 int region = cpu->env.sau.rnr; 1345 1346 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1347 goto bad_offset; 1348 } 1349 if (!attrs.secure) { 1350 return 0; 1351 } 1352 if (region >= cpu->sau_sregion) { 1353 return 0; 1354 } 1355 return cpu->env.sau.rlar[region]; 1356 } 1357 case 0xde4: /* SFSR */ 1358 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1359 goto bad_offset; 1360 } 1361 if (!attrs.secure) { 1362 return 0; 1363 } 1364 return cpu->env.v7m.sfsr; 1365 case 0xde8: /* SFAR */ 1366 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1367 goto bad_offset; 1368 } 1369 if (!attrs.secure) { 1370 return 0; 1371 } 1372 return cpu->env.v7m.sfar; 1373 case 0xf34: /* FPCCR */ 1374 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1375 return 0; 1376 } 1377 if (attrs.secure) { 1378 return cpu->env.v7m.fpccr[M_REG_S]; 1379 } else { 1380 /* 1381 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1382 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1383 * other non-banked bits RAZ. 1384 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1385 */ 1386 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1387 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1388 R_V7M_FPCCR_CLRONRET_MASK | 1389 R_V7M_FPCCR_MONRDY_MASK; 1390 1391 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1392 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1393 } 1394 1395 value &= mask; 1396 1397 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1398 return value; 1399 } 1400 case 0xf38: /* FPCAR */ 1401 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1402 return 0; 1403 } 1404 return cpu->env.v7m.fpcar[attrs.secure]; 1405 case 0xf3c: /* FPDSCR */ 1406 if (!arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1407 return 0; 1408 } 1409 return cpu->env.v7m.fpdscr[attrs.secure]; 1410 case 0xf40: /* MVFR0 */ 1411 return cpu->isar.mvfr0; 1412 case 0xf44: /* MVFR1 */ 1413 return cpu->isar.mvfr1; 1414 case 0xf48: /* MVFR2 */ 1415 return cpu->isar.mvfr2; 1416 default: 1417 bad_offset: 1418 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1419 return 0; 1420 } 1421 } 1422 1423 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1424 MemTxAttrs attrs) 1425 { 1426 ARMCPU *cpu = s->cpu; 1427 1428 switch (offset) { 1429 case 0xc: /* CPPWR */ 1430 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1431 goto bad_offset; 1432 } 1433 /* Make the IMPDEF choice to RAZ/WI this. */ 1434 break; 1435 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1436 { 1437 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1438 int i; 1439 1440 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1441 goto bad_offset; 1442 } 1443 if (!attrs.secure) { 1444 break; 1445 } 1446 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1447 s->itns[startvec + i] = (value >> i) & 1; 1448 } 1449 nvic_irq_update(s); 1450 break; 1451 } 1452 case 0xd04: /* Interrupt Control State (ICSR) */ 1453 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1454 if (value & (1 << 31)) { 1455 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1456 } else if (value & (1 << 30) && 1457 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1458 /* PENDNMICLR didn't exist in v7M */ 1459 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1460 } 1461 } 1462 if (value & (1 << 28)) { 1463 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1464 } else if (value & (1 << 27)) { 1465 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1466 } 1467 if (value & (1 << 26)) { 1468 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1469 } else if (value & (1 << 25)) { 1470 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1471 } 1472 break; 1473 case 0xd08: /* Vector Table Offset. */ 1474 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1475 break; 1476 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1477 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1478 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1479 if (attrs.secure || 1480 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1481 qemu_irq_pulse(s->sysresetreq); 1482 } 1483 } 1484 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1485 qemu_log_mask(LOG_GUEST_ERROR, 1486 "Setting VECTCLRACTIVE when not in DEBUG mode " 1487 "is UNPREDICTABLE\n"); 1488 } 1489 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1490 /* NB: this bit is RES0 in v8M */ 1491 qemu_log_mask(LOG_GUEST_ERROR, 1492 "Setting VECTRESET when not in DEBUG mode " 1493 "is UNPREDICTABLE\n"); 1494 } 1495 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1496 s->prigroup[attrs.secure] = 1497 extract32(value, 1498 R_V7M_AIRCR_PRIGROUP_SHIFT, 1499 R_V7M_AIRCR_PRIGROUP_LENGTH); 1500 } 1501 if (attrs.secure) { 1502 /* These bits are only writable by secure */ 1503 cpu->env.v7m.aircr = value & 1504 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1505 R_V7M_AIRCR_BFHFNMINS_MASK | 1506 R_V7M_AIRCR_PRIS_MASK); 1507 /* BFHFNMINS changes the priority of Secure HardFault, and 1508 * allows a pending Non-secure HardFault to preempt (which 1509 * we implement by marking it enabled). 1510 */ 1511 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1512 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1513 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1514 } else { 1515 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1516 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1517 } 1518 } 1519 nvic_irq_update(s); 1520 } 1521 break; 1522 case 0xd10: /* System Control. */ 1523 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1524 goto bad_offset; 1525 } 1526 /* We don't implement deep-sleep so these bits are RAZ/WI. 1527 * The other bits in the register are banked. 1528 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1529 * is architecturally permitted. 1530 */ 1531 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1532 cpu->env.v7m.scr[attrs.secure] = value; 1533 break; 1534 case 0xd14: /* Configuration Control. */ 1535 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1536 goto bad_offset; 1537 } 1538 1539 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1540 value &= (R_V7M_CCR_STKALIGN_MASK | 1541 R_V7M_CCR_BFHFNMIGN_MASK | 1542 R_V7M_CCR_DIV_0_TRP_MASK | 1543 R_V7M_CCR_UNALIGN_TRP_MASK | 1544 R_V7M_CCR_USERSETMPEND_MASK | 1545 R_V7M_CCR_NONBASETHRDENA_MASK); 1546 1547 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1548 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1549 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1550 | R_V7M_CCR_STKALIGN_MASK; 1551 } 1552 if (attrs.secure) { 1553 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1554 cpu->env.v7m.ccr[M_REG_NS] = 1555 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1556 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1557 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1558 } 1559 1560 cpu->env.v7m.ccr[attrs.secure] = value; 1561 break; 1562 case 0xd24: /* System Handler Control and State (SHCSR) */ 1563 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1564 goto bad_offset; 1565 } 1566 if (attrs.secure) { 1567 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1568 /* Secure HardFault active bit cannot be written */ 1569 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1570 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1571 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1572 (value & (1 << 10)) != 0; 1573 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1574 (value & (1 << 11)) != 0; 1575 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1576 (value & (1 << 12)) != 0; 1577 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1578 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1579 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1580 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1581 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1582 (value & (1 << 18)) != 0; 1583 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1584 /* SecureFault not banked, but RAZ/WI to NS */ 1585 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1586 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1587 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1588 } else { 1589 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1590 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1591 /* HARDFAULTPENDED is not present in v7M */ 1592 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1593 } 1594 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1595 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1596 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1597 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1598 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1599 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1600 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1601 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1602 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1603 } 1604 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1605 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1606 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1607 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1608 } 1609 /* NMIACT can only be written if the write is of a zero, with 1610 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1611 */ 1612 if (!attrs.secure && cpu->env.v7m.secure && 1613 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1614 (value & (1 << 5)) == 0) { 1615 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1616 } 1617 /* HARDFAULTACT can only be written if the write is of a zero 1618 * to the non-secure HardFault state by the CPU in secure state. 1619 * The only case where we can be targeting the non-secure HF state 1620 * when in secure state is if this is a write via the NS alias 1621 * and BFHFNMINS is 1. 1622 */ 1623 if (!attrs.secure && cpu->env.v7m.secure && 1624 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1625 (value & (1 << 2)) == 0) { 1626 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1627 } 1628 1629 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1630 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1631 nvic_irq_update(s); 1632 break; 1633 case 0xd2c: /* Hard Fault Status. */ 1634 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1635 goto bad_offset; 1636 } 1637 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1638 break; 1639 case 0xd30: /* Debug Fault Status. */ 1640 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1641 break; 1642 case 0xd34: /* Mem Manage Address. */ 1643 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1644 goto bad_offset; 1645 } 1646 cpu->env.v7m.mmfar[attrs.secure] = value; 1647 return; 1648 case 0xd38: /* Bus Fault Address. */ 1649 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1650 goto bad_offset; 1651 } 1652 if (!attrs.secure && 1653 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1654 return; 1655 } 1656 cpu->env.v7m.bfar = value; 1657 return; 1658 case 0xd3c: /* Aux Fault Status. */ 1659 qemu_log_mask(LOG_UNIMP, 1660 "NVIC: Aux fault status registers unimplemented\n"); 1661 break; 1662 case 0xd84: /* CSSELR */ 1663 if (!arm_v7m_csselr_razwi(cpu)) { 1664 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1665 } 1666 break; 1667 case 0xd88: /* CPACR */ 1668 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1669 /* We implement only the Floating Point extension's CP10/CP11 */ 1670 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1671 } 1672 break; 1673 case 0xd8c: /* NSACR */ 1674 if (attrs.secure && arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1675 /* We implement only the Floating Point extension's CP10/CP11 */ 1676 cpu->env.v7m.nsacr = value & (3 << 10); 1677 } 1678 break; 1679 case 0xd90: /* MPU_TYPE */ 1680 return; /* RO */ 1681 case 0xd94: /* MPU_CTRL */ 1682 if ((value & 1683 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1684 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1685 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1686 "UNPREDICTABLE\n"); 1687 } 1688 cpu->env.v7m.mpu_ctrl[attrs.secure] 1689 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1690 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1691 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1692 tlb_flush(CPU(cpu)); 1693 break; 1694 case 0xd98: /* MPU_RNR */ 1695 if (value >= cpu->pmsav7_dregion) { 1696 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1697 PRIu32 "/%" PRIu32 "\n", 1698 value, cpu->pmsav7_dregion); 1699 } else { 1700 cpu->env.pmsav7.rnr[attrs.secure] = value; 1701 } 1702 break; 1703 case 0xd9c: /* MPU_RBAR */ 1704 case 0xda4: /* MPU_RBAR_A1 */ 1705 case 0xdac: /* MPU_RBAR_A2 */ 1706 case 0xdb4: /* MPU_RBAR_A3 */ 1707 { 1708 int region; 1709 1710 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1711 /* PMSAv8M handling of the aliases is different from v7M: 1712 * aliases A1, A2, A3 override the low two bits of the region 1713 * number in MPU_RNR, and there is no 'region' field in the 1714 * RBAR register. 1715 */ 1716 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1717 1718 region = cpu->env.pmsav7.rnr[attrs.secure]; 1719 if (aliasno) { 1720 region = deposit32(region, 0, 2, aliasno); 1721 } 1722 if (region >= cpu->pmsav7_dregion) { 1723 return; 1724 } 1725 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1726 tlb_flush(CPU(cpu)); 1727 return; 1728 } 1729 1730 if (value & (1 << 4)) { 1731 /* VALID bit means use the region number specified in this 1732 * value and also update MPU_RNR.REGION with that value. 1733 */ 1734 region = extract32(value, 0, 4); 1735 if (region >= cpu->pmsav7_dregion) { 1736 qemu_log_mask(LOG_GUEST_ERROR, 1737 "MPU region out of range %u/%" PRIu32 "\n", 1738 region, cpu->pmsav7_dregion); 1739 return; 1740 } 1741 cpu->env.pmsav7.rnr[attrs.secure] = region; 1742 } else { 1743 region = cpu->env.pmsav7.rnr[attrs.secure]; 1744 } 1745 1746 if (region >= cpu->pmsav7_dregion) { 1747 return; 1748 } 1749 1750 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1751 tlb_flush(CPU(cpu)); 1752 break; 1753 } 1754 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1755 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1756 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1757 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1758 { 1759 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1760 1761 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1762 /* PMSAv8M handling of the aliases is different from v7M: 1763 * aliases A1, A2, A3 override the low two bits of the region 1764 * number in MPU_RNR. 1765 */ 1766 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1767 1768 region = cpu->env.pmsav7.rnr[attrs.secure]; 1769 if (aliasno) { 1770 region = deposit32(region, 0, 2, aliasno); 1771 } 1772 if (region >= cpu->pmsav7_dregion) { 1773 return; 1774 } 1775 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1776 tlb_flush(CPU(cpu)); 1777 return; 1778 } 1779 1780 if (region >= cpu->pmsav7_dregion) { 1781 return; 1782 } 1783 1784 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1785 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1786 tlb_flush(CPU(cpu)); 1787 break; 1788 } 1789 case 0xdc0: /* MPU_MAIR0 */ 1790 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1791 goto bad_offset; 1792 } 1793 if (cpu->pmsav7_dregion) { 1794 /* Register is RES0 if no MPU regions are implemented */ 1795 cpu->env.pmsav8.mair0[attrs.secure] = value; 1796 } 1797 /* We don't need to do anything else because memory attributes 1798 * only affect cacheability, and we don't implement caching. 1799 */ 1800 break; 1801 case 0xdc4: /* MPU_MAIR1 */ 1802 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1803 goto bad_offset; 1804 } 1805 if (cpu->pmsav7_dregion) { 1806 /* Register is RES0 if no MPU regions are implemented */ 1807 cpu->env.pmsav8.mair1[attrs.secure] = value; 1808 } 1809 /* We don't need to do anything else because memory attributes 1810 * only affect cacheability, and we don't implement caching. 1811 */ 1812 break; 1813 case 0xdd0: /* SAU_CTRL */ 1814 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1815 goto bad_offset; 1816 } 1817 if (!attrs.secure) { 1818 return; 1819 } 1820 cpu->env.sau.ctrl = value & 3; 1821 break; 1822 case 0xdd4: /* SAU_TYPE */ 1823 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1824 goto bad_offset; 1825 } 1826 break; 1827 case 0xdd8: /* SAU_RNR */ 1828 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1829 goto bad_offset; 1830 } 1831 if (!attrs.secure) { 1832 return; 1833 } 1834 if (value >= cpu->sau_sregion) { 1835 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1836 PRIu32 "/%" PRIu32 "\n", 1837 value, cpu->sau_sregion); 1838 } else { 1839 cpu->env.sau.rnr = value; 1840 } 1841 break; 1842 case 0xddc: /* SAU_RBAR */ 1843 { 1844 int region = cpu->env.sau.rnr; 1845 1846 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1847 goto bad_offset; 1848 } 1849 if (!attrs.secure) { 1850 return; 1851 } 1852 if (region >= cpu->sau_sregion) { 1853 return; 1854 } 1855 cpu->env.sau.rbar[region] = value & ~0x1f; 1856 tlb_flush(CPU(cpu)); 1857 break; 1858 } 1859 case 0xde0: /* SAU_RLAR */ 1860 { 1861 int region = cpu->env.sau.rnr; 1862 1863 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1864 goto bad_offset; 1865 } 1866 if (!attrs.secure) { 1867 return; 1868 } 1869 if (region >= cpu->sau_sregion) { 1870 return; 1871 } 1872 cpu->env.sau.rlar[region] = value & ~0x1c; 1873 tlb_flush(CPU(cpu)); 1874 break; 1875 } 1876 case 0xde4: /* SFSR */ 1877 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1878 goto bad_offset; 1879 } 1880 if (!attrs.secure) { 1881 return; 1882 } 1883 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1884 break; 1885 case 0xde8: /* SFAR */ 1886 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1887 goto bad_offset; 1888 } 1889 if (!attrs.secure) { 1890 return; 1891 } 1892 cpu->env.v7m.sfsr = value; 1893 break; 1894 case 0xf00: /* Software Triggered Interrupt Register */ 1895 { 1896 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1897 1898 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1899 goto bad_offset; 1900 } 1901 1902 if (excnum < s->num_irq) { 1903 armv7m_nvic_set_pending(s, excnum, false); 1904 } 1905 break; 1906 } 1907 case 0xf34: /* FPCCR */ 1908 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1909 /* Not all bits here are banked. */ 1910 uint32_t fpccr_s; 1911 1912 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1913 /* Don't allow setting of bits not present in v7M */ 1914 value &= (R_V7M_FPCCR_LSPACT_MASK | 1915 R_V7M_FPCCR_USER_MASK | 1916 R_V7M_FPCCR_THREAD_MASK | 1917 R_V7M_FPCCR_HFRDY_MASK | 1918 R_V7M_FPCCR_MMRDY_MASK | 1919 R_V7M_FPCCR_BFRDY_MASK | 1920 R_V7M_FPCCR_MONRDY_MASK | 1921 R_V7M_FPCCR_LSPEN_MASK | 1922 R_V7M_FPCCR_ASPEN_MASK); 1923 } 1924 value &= ~R_V7M_FPCCR_RES0_MASK; 1925 1926 if (!attrs.secure) { 1927 /* Some non-banked bits are configurably writable by NS */ 1928 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 1929 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 1930 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 1931 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 1932 } 1933 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 1934 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 1935 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 1936 } 1937 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1938 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 1939 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 1940 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 1941 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 1942 } 1943 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 1944 { 1945 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 1946 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 1947 } 1948 1949 /* 1950 * All other non-banked bits are RAZ/WI from NS; write 1951 * just the banked bits to fpccr[M_REG_NS]. 1952 */ 1953 value &= R_V7M_FPCCR_BANKED_MASK; 1954 cpu->env.v7m.fpccr[M_REG_NS] = value; 1955 } else { 1956 fpccr_s = value; 1957 } 1958 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 1959 } 1960 break; 1961 case 0xf38: /* FPCAR */ 1962 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1963 value &= ~7; 1964 cpu->env.v7m.fpcar[attrs.secure] = value; 1965 } 1966 break; 1967 case 0xf3c: /* FPDSCR */ 1968 if (arm_feature(&cpu->env, ARM_FEATURE_VFP)) { 1969 value &= 0x07c00000; 1970 cpu->env.v7m.fpdscr[attrs.secure] = value; 1971 } 1972 break; 1973 case 0xf50: /* ICIALLU */ 1974 case 0xf58: /* ICIMVAU */ 1975 case 0xf5c: /* DCIMVAC */ 1976 case 0xf60: /* DCISW */ 1977 case 0xf64: /* DCCMVAU */ 1978 case 0xf68: /* DCCMVAC */ 1979 case 0xf6c: /* DCCSW */ 1980 case 0xf70: /* DCCIMVAC */ 1981 case 0xf74: /* DCCISW */ 1982 case 0xf78: /* BPIALL */ 1983 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 1984 break; 1985 default: 1986 bad_offset: 1987 qemu_log_mask(LOG_GUEST_ERROR, 1988 "NVIC: Bad write offset 0x%x\n", offset); 1989 } 1990 } 1991 1992 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1993 { 1994 /* Return true if unprivileged access to this register is permitted. */ 1995 switch (offset) { 1996 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1997 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1998 * controls access even though the CPU is in Secure state (I_QDKX). 1999 */ 2000 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2001 default: 2002 /* All other user accesses cause a BusFault unconditionally */ 2003 return false; 2004 } 2005 } 2006 2007 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2008 { 2009 /* Behaviour for the SHPR register field for this exception: 2010 * return M_REG_NS to use the nonsecure vector (including for 2011 * non-banked exceptions), M_REG_S for the secure version of 2012 * a banked exception, and -1 if this field should RAZ/WI. 2013 */ 2014 switch (exc) { 2015 case ARMV7M_EXCP_MEM: 2016 case ARMV7M_EXCP_USAGE: 2017 case ARMV7M_EXCP_SVC: 2018 case ARMV7M_EXCP_PENDSV: 2019 case ARMV7M_EXCP_SYSTICK: 2020 /* Banked exceptions */ 2021 return attrs.secure; 2022 case ARMV7M_EXCP_BUS: 2023 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2024 if (!attrs.secure && 2025 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2026 return -1; 2027 } 2028 return M_REG_NS; 2029 case ARMV7M_EXCP_SECURE: 2030 /* Not banked, RAZ/WI from nonsecure */ 2031 if (!attrs.secure) { 2032 return -1; 2033 } 2034 return M_REG_NS; 2035 case ARMV7M_EXCP_DEBUG: 2036 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2037 return M_REG_NS; 2038 case 8 ... 10: 2039 case 13: 2040 /* RES0 */ 2041 return -1; 2042 default: 2043 /* Not reachable due to decode of SHPR register addresses */ 2044 g_assert_not_reached(); 2045 } 2046 } 2047 2048 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2049 uint64_t *data, unsigned size, 2050 MemTxAttrs attrs) 2051 { 2052 NVICState *s = (NVICState *)opaque; 2053 uint32_t offset = addr; 2054 unsigned i, startvec, end; 2055 uint32_t val; 2056 2057 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2058 /* Generate BusFault for unprivileged accesses */ 2059 return MEMTX_ERROR; 2060 } 2061 2062 switch (offset) { 2063 /* reads of set and clear both return the status */ 2064 case 0x100 ... 0x13f: /* NVIC Set enable */ 2065 offset += 0x80; 2066 /* fall through */ 2067 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2068 val = 0; 2069 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2070 2071 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2072 if (s->vectors[startvec + i].enabled && 2073 (attrs.secure || s->itns[startvec + i])) { 2074 val |= (1 << i); 2075 } 2076 } 2077 break; 2078 case 0x200 ... 0x23f: /* NVIC Set pend */ 2079 offset += 0x80; 2080 /* fall through */ 2081 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2082 val = 0; 2083 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2084 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2085 if (s->vectors[startvec + i].pending && 2086 (attrs.secure || s->itns[startvec + i])) { 2087 val |= (1 << i); 2088 } 2089 } 2090 break; 2091 case 0x300 ... 0x33f: /* NVIC Active */ 2092 val = 0; 2093 2094 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2095 break; 2096 } 2097 2098 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2099 2100 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2101 if (s->vectors[startvec + i].active && 2102 (attrs.secure || s->itns[startvec + i])) { 2103 val |= (1 << i); 2104 } 2105 } 2106 break; 2107 case 0x400 ... 0x5ef: /* NVIC Priority */ 2108 val = 0; 2109 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2110 2111 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2112 if (attrs.secure || s->itns[startvec + i]) { 2113 val |= s->vectors[startvec + i].prio << (8 * i); 2114 } 2115 } 2116 break; 2117 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2118 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2119 val = 0; 2120 break; 2121 } 2122 /* fall through */ 2123 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2124 val = 0; 2125 for (i = 0; i < size; i++) { 2126 unsigned hdlidx = (offset - 0xd14) + i; 2127 int sbank = shpr_bank(s, hdlidx, attrs); 2128 2129 if (sbank < 0) { 2130 continue; 2131 } 2132 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2133 } 2134 break; 2135 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2136 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2137 val = 0; 2138 break; 2139 }; 2140 /* 2141 * The BFSR bits [15:8] are shared between security states 2142 * and we store them in the NS copy. They are RAZ/WI for 2143 * NS code if AIRCR.BFHFNMINS is 0. 2144 */ 2145 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2146 if (!attrs.secure && 2147 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2148 val &= ~R_V7M_CFSR_BFSR_MASK; 2149 } else { 2150 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2151 } 2152 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2153 break; 2154 case 0xfe0 ... 0xfff: /* ID. */ 2155 if (offset & 3) { 2156 val = 0; 2157 } else { 2158 val = nvic_id[(offset - 0xfe0) >> 2]; 2159 } 2160 break; 2161 default: 2162 if (size == 4) { 2163 val = nvic_readl(s, offset, attrs); 2164 } else { 2165 qemu_log_mask(LOG_GUEST_ERROR, 2166 "NVIC: Bad read of size %d at offset 0x%x\n", 2167 size, offset); 2168 val = 0; 2169 } 2170 } 2171 2172 trace_nvic_sysreg_read(addr, val, size); 2173 *data = val; 2174 return MEMTX_OK; 2175 } 2176 2177 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2178 uint64_t value, unsigned size, 2179 MemTxAttrs attrs) 2180 { 2181 NVICState *s = (NVICState *)opaque; 2182 uint32_t offset = addr; 2183 unsigned i, startvec, end; 2184 unsigned setval = 0; 2185 2186 trace_nvic_sysreg_write(addr, value, size); 2187 2188 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2189 /* Generate BusFault for unprivileged accesses */ 2190 return MEMTX_ERROR; 2191 } 2192 2193 switch (offset) { 2194 case 0x100 ... 0x13f: /* NVIC Set enable */ 2195 offset += 0x80; 2196 setval = 1; 2197 /* fall through */ 2198 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2199 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2200 2201 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2202 if (value & (1 << i) && 2203 (attrs.secure || s->itns[startvec + i])) { 2204 s->vectors[startvec + i].enabled = setval; 2205 } 2206 } 2207 nvic_irq_update(s); 2208 return MEMTX_OK; 2209 case 0x200 ... 0x23f: /* NVIC Set pend */ 2210 /* the special logic in armv7m_nvic_set_pending() 2211 * is not needed since IRQs are never escalated 2212 */ 2213 offset += 0x80; 2214 setval = 1; 2215 /* fall through */ 2216 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2217 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2218 2219 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2220 if (value & (1 << i) && 2221 (attrs.secure || s->itns[startvec + i])) { 2222 s->vectors[startvec + i].pending = setval; 2223 } 2224 } 2225 nvic_irq_update(s); 2226 return MEMTX_OK; 2227 case 0x300 ... 0x33f: /* NVIC Active */ 2228 return MEMTX_OK; /* R/O */ 2229 case 0x400 ... 0x5ef: /* NVIC Priority */ 2230 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2231 2232 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2233 if (attrs.secure || s->itns[startvec + i]) { 2234 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2235 } 2236 } 2237 nvic_irq_update(s); 2238 return MEMTX_OK; 2239 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2240 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2241 return MEMTX_OK; 2242 } 2243 /* fall through */ 2244 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2245 for (i = 0; i < size; i++) { 2246 unsigned hdlidx = (offset - 0xd14) + i; 2247 int newprio = extract32(value, i * 8, 8); 2248 int sbank = shpr_bank(s, hdlidx, attrs); 2249 2250 if (sbank < 0) { 2251 continue; 2252 } 2253 set_prio(s, hdlidx, sbank, newprio); 2254 } 2255 nvic_irq_update(s); 2256 return MEMTX_OK; 2257 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2258 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2259 return MEMTX_OK; 2260 } 2261 /* All bits are W1C, so construct 32 bit value with 0s in 2262 * the parts not written by the access size 2263 */ 2264 value <<= ((offset - 0xd28) * 8); 2265 2266 if (!attrs.secure && 2267 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2268 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2269 value &= ~R_V7M_CFSR_BFSR_MASK; 2270 } 2271 2272 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2273 if (attrs.secure) { 2274 /* The BFSR bits [15:8] are shared between security states 2275 * and we store them in the NS copy. 2276 */ 2277 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2278 } 2279 return MEMTX_OK; 2280 } 2281 if (size == 4) { 2282 nvic_writel(s, offset, value, attrs); 2283 return MEMTX_OK; 2284 } 2285 qemu_log_mask(LOG_GUEST_ERROR, 2286 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2287 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2288 return MEMTX_OK; 2289 } 2290 2291 static const MemoryRegionOps nvic_sysreg_ops = { 2292 .read_with_attrs = nvic_sysreg_read, 2293 .write_with_attrs = nvic_sysreg_write, 2294 .endianness = DEVICE_NATIVE_ENDIAN, 2295 }; 2296 2297 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2298 uint64_t value, unsigned size, 2299 MemTxAttrs attrs) 2300 { 2301 MemoryRegion *mr = opaque; 2302 2303 if (attrs.secure) { 2304 /* S accesses to the alias act like NS accesses to the real region */ 2305 attrs.secure = 0; 2306 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2307 } else { 2308 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2309 if (attrs.user) { 2310 return MEMTX_ERROR; 2311 } 2312 return MEMTX_OK; 2313 } 2314 } 2315 2316 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2317 uint64_t *data, unsigned size, 2318 MemTxAttrs attrs) 2319 { 2320 MemoryRegion *mr = opaque; 2321 2322 if (attrs.secure) { 2323 /* S accesses to the alias act like NS accesses to the real region */ 2324 attrs.secure = 0; 2325 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2326 } else { 2327 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2328 if (attrs.user) { 2329 return MEMTX_ERROR; 2330 } 2331 *data = 0; 2332 return MEMTX_OK; 2333 } 2334 } 2335 2336 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2337 .read_with_attrs = nvic_sysreg_ns_read, 2338 .write_with_attrs = nvic_sysreg_ns_write, 2339 .endianness = DEVICE_NATIVE_ENDIAN, 2340 }; 2341 2342 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2343 uint64_t value, unsigned size, 2344 MemTxAttrs attrs) 2345 { 2346 NVICState *s = opaque; 2347 MemoryRegion *mr; 2348 2349 /* Direct the access to the correct systick */ 2350 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2351 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2352 } 2353 2354 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2355 uint64_t *data, unsigned size, 2356 MemTxAttrs attrs) 2357 { 2358 NVICState *s = opaque; 2359 MemoryRegion *mr; 2360 2361 /* Direct the access to the correct systick */ 2362 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2363 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2364 } 2365 2366 static const MemoryRegionOps nvic_systick_ops = { 2367 .read_with_attrs = nvic_systick_read, 2368 .write_with_attrs = nvic_systick_write, 2369 .endianness = DEVICE_NATIVE_ENDIAN, 2370 }; 2371 2372 static int nvic_post_load(void *opaque, int version_id) 2373 { 2374 NVICState *s = opaque; 2375 unsigned i; 2376 int resetprio; 2377 2378 /* Check for out of range priority settings */ 2379 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2380 2381 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2382 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2383 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2384 return 1; 2385 } 2386 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2387 if (s->vectors[i].prio & ~0xff) { 2388 return 1; 2389 } 2390 } 2391 2392 nvic_recompute_state(s); 2393 2394 return 0; 2395 } 2396 2397 static const VMStateDescription vmstate_VecInfo = { 2398 .name = "armv7m_nvic_info", 2399 .version_id = 1, 2400 .minimum_version_id = 1, 2401 .fields = (VMStateField[]) { 2402 VMSTATE_INT16(prio, VecInfo), 2403 VMSTATE_UINT8(enabled, VecInfo), 2404 VMSTATE_UINT8(pending, VecInfo), 2405 VMSTATE_UINT8(active, VecInfo), 2406 VMSTATE_UINT8(level, VecInfo), 2407 VMSTATE_END_OF_LIST() 2408 } 2409 }; 2410 2411 static bool nvic_security_needed(void *opaque) 2412 { 2413 NVICState *s = opaque; 2414 2415 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2416 } 2417 2418 static int nvic_security_post_load(void *opaque, int version_id) 2419 { 2420 NVICState *s = opaque; 2421 int i; 2422 2423 /* Check for out of range priority settings */ 2424 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2425 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2426 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2427 * if the CPU state has been migrated yet; a mismatch won't 2428 * cause the emulation to blow up, though. 2429 */ 2430 return 1; 2431 } 2432 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2433 if (s->sec_vectors[i].prio & ~0xff) { 2434 return 1; 2435 } 2436 } 2437 return 0; 2438 } 2439 2440 static const VMStateDescription vmstate_nvic_security = { 2441 .name = "armv7m_nvic/m-security", 2442 .version_id = 1, 2443 .minimum_version_id = 1, 2444 .needed = nvic_security_needed, 2445 .post_load = &nvic_security_post_load, 2446 .fields = (VMStateField[]) { 2447 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2448 vmstate_VecInfo, VecInfo), 2449 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2450 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2451 VMSTATE_END_OF_LIST() 2452 } 2453 }; 2454 2455 static const VMStateDescription vmstate_nvic = { 2456 .name = "armv7m_nvic", 2457 .version_id = 4, 2458 .minimum_version_id = 4, 2459 .post_load = &nvic_post_load, 2460 .fields = (VMStateField[]) { 2461 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2462 vmstate_VecInfo, VecInfo), 2463 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2464 VMSTATE_END_OF_LIST() 2465 }, 2466 .subsections = (const VMStateDescription*[]) { 2467 &vmstate_nvic_security, 2468 NULL 2469 } 2470 }; 2471 2472 static Property props_nvic[] = { 2473 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2474 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2475 DEFINE_PROP_END_OF_LIST() 2476 }; 2477 2478 static void armv7m_nvic_reset(DeviceState *dev) 2479 { 2480 int resetprio; 2481 NVICState *s = NVIC(dev); 2482 2483 memset(s->vectors, 0, sizeof(s->vectors)); 2484 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2485 s->prigroup[M_REG_NS] = 0; 2486 s->prigroup[M_REG_S] = 0; 2487 2488 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2489 /* MEM, BUS, and USAGE are enabled through 2490 * the System Handler Control register 2491 */ 2492 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2493 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2494 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2495 2496 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2497 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2498 2499 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2500 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2501 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2502 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2503 2504 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2505 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2506 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2507 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2508 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2509 2510 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2511 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2512 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2513 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2514 } else { 2515 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2516 } 2517 2518 /* Strictly speaking the reset handler should be enabled. 2519 * However, we don't simulate soft resets through the NVIC, 2520 * and the reset vector should never be pended. 2521 * So we leave it disabled to catch logic errors. 2522 */ 2523 2524 s->exception_prio = NVIC_NOEXC_PRIO; 2525 s->vectpending = 0; 2526 s->vectpending_is_s_banked = false; 2527 s->vectpending_prio = NVIC_NOEXC_PRIO; 2528 2529 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2530 memset(s->itns, 0, sizeof(s->itns)); 2531 } else { 2532 /* This state is constant and not guest accessible in a non-security 2533 * NVIC; we set the bits to true to avoid having to do a feature 2534 * bit check in the NVIC enable/pend/etc register accessors. 2535 */ 2536 int i; 2537 2538 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2539 s->itns[i] = true; 2540 } 2541 } 2542 } 2543 2544 static void nvic_systick_trigger(void *opaque, int n, int level) 2545 { 2546 NVICState *s = opaque; 2547 2548 if (level) { 2549 /* SysTick just asked us to pend its exception. 2550 * (This is different from an external interrupt line's 2551 * behaviour.) 2552 * n == 0 : NonSecure systick 2553 * n == 1 : Secure systick 2554 */ 2555 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2556 } 2557 } 2558 2559 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2560 { 2561 NVICState *s = NVIC(dev); 2562 Error *err = NULL; 2563 int regionlen; 2564 2565 /* The armv7m container object will have set our CPU pointer */ 2566 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2567 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2568 return; 2569 } 2570 2571 if (s->num_irq > NVIC_MAX_IRQ) { 2572 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2573 return; 2574 } 2575 2576 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2577 2578 /* include space for internal exception vectors */ 2579 s->num_irq += NVIC_FIRST_IRQ; 2580 2581 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2582 2583 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2584 "realized", &err); 2585 if (err != NULL) { 2586 error_propagate(errp, err); 2587 return; 2588 } 2589 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2590 qdev_get_gpio_in_named(dev, "systick-trigger", 2591 M_REG_NS)); 2592 2593 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2594 /* We couldn't init the secure systick device in instance_init 2595 * as we didn't know then if the CPU had the security extensions; 2596 * so we have to do it here. 2597 */ 2598 sysbus_init_child_obj(OBJECT(dev), "systick-reg-s", 2599 &s->systick[M_REG_S], 2600 sizeof(s->systick[M_REG_S]), TYPE_SYSTICK); 2601 2602 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2603 "realized", &err); 2604 if (err != NULL) { 2605 error_propagate(errp, err); 2606 return; 2607 } 2608 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2609 qdev_get_gpio_in_named(dev, "systick-trigger", 2610 M_REG_S)); 2611 } 2612 2613 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2614 * and looks like this: 2615 * 0x004 - ICTR 2616 * 0x010 - 0xff - systick 2617 * 0x100..0x7ec - NVIC 2618 * 0x7f0..0xcff - Reserved 2619 * 0xd00..0xd3c - SCS registers 2620 * 0xd40..0xeff - Reserved or Not implemented 2621 * 0xf00 - STIR 2622 * 2623 * Some registers within this space are banked between security states. 2624 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2625 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2626 * to the main SCS range, and non-secure accesses (including when 2627 * the security extension is not implemented) are RAZ/WI. 2628 * Note that both the main SCS range and the alias range are defined 2629 * to be exempt from memory attribution (R_BLJT) and so the memory 2630 * transaction attribute always matches the current CPU security 2631 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2632 * wrappers we change attrs.secure to indicate the NS access; so 2633 * generally code determining which banked register to use should 2634 * use attrs.secure; code determining actual behaviour of the system 2635 * should use env->v7m.secure. 2636 */ 2637 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2638 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2639 /* The system register region goes at the bottom of the priority 2640 * stack as it covers the whole page. 2641 */ 2642 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2643 "nvic_sysregs", 0x1000); 2644 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2645 2646 memory_region_init_io(&s->systickmem, OBJECT(s), 2647 &nvic_systick_ops, s, 2648 "nvic_systick", 0xe0); 2649 2650 memory_region_add_subregion_overlap(&s->container, 0x10, 2651 &s->systickmem, 1); 2652 2653 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2654 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2655 &nvic_sysreg_ns_ops, &s->sysregmem, 2656 "nvic_sysregs_ns", 0x1000); 2657 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2658 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2659 &nvic_sysreg_ns_ops, &s->systickmem, 2660 "nvic_systick_ns", 0xe0); 2661 memory_region_add_subregion_overlap(&s->container, 0x20010, 2662 &s->systick_ns_mem, 1); 2663 } 2664 2665 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2666 } 2667 2668 static void armv7m_nvic_instance_init(Object *obj) 2669 { 2670 /* We have a different default value for the num-irq property 2671 * than our superclass. This function runs after qdev init 2672 * has set the defaults from the Property array and before 2673 * any user-specified property setting, so just modify the 2674 * value in the GICState struct. 2675 */ 2676 DeviceState *dev = DEVICE(obj); 2677 NVICState *nvic = NVIC(obj); 2678 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2679 2680 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2681 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2682 /* We can't initialize the secure systick here, as we don't know 2683 * yet if we need it. 2684 */ 2685 2686 sysbus_init_irq(sbd, &nvic->excpout); 2687 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2688 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2689 M_REG_NUM_BANKS); 2690 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2691 } 2692 2693 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2694 { 2695 DeviceClass *dc = DEVICE_CLASS(klass); 2696 2697 dc->vmsd = &vmstate_nvic; 2698 dc->props = props_nvic; 2699 dc->reset = armv7m_nvic_reset; 2700 dc->realize = armv7m_nvic_realize; 2701 } 2702 2703 static const TypeInfo armv7m_nvic_info = { 2704 .name = TYPE_NVIC, 2705 .parent = TYPE_SYS_BUS_DEVICE, 2706 .instance_init = armv7m_nvic_instance_init, 2707 .instance_size = sizeof(NVICState), 2708 .class_init = armv7m_nvic_class_init, 2709 .class_size = sizeof(SysBusDeviceClass), 2710 }; 2711 2712 static void armv7m_nvic_register_types(void) 2713 { 2714 type_register_static(&armv7m_nvic_info); 2715 } 2716 2717 type_init(armv7m_nvic_register_types) 2718