1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "cpu.h" 16 #include "hw/sysbus.h" 17 #include "migration/vmstate.h" 18 #include "qemu/timer.h" 19 #include "hw/intc/armv7m_nvic.h" 20 #include "hw/irq.h" 21 #include "hw/qdev-properties.h" 22 #include "sysemu/runstate.h" 23 #include "target/arm/cpu.h" 24 #include "exec/exec-all.h" 25 #include "exec/memop.h" 26 #include "qemu/log.h" 27 #include "qemu/module.h" 28 #include "trace.h" 29 30 /* IRQ number counting: 31 * 32 * the num-irq property counts the number of external IRQ lines 33 * 34 * NVICState::num_irq counts the total number of exceptions 35 * (external IRQs, the 15 internal exceptions including reset, 36 * and one for the unused exception number 0). 37 * 38 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 39 * 40 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 41 * 42 * Iterating through all exceptions should typically be done with 43 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 44 * 45 * The external qemu_irq lines are the NVIC's external IRQ lines, 46 * so line 0 is exception 16. 47 * 48 * In the terminology of the architecture manual, "interrupts" are 49 * a subcategory of exception referring to the external interrupts 50 * (which are exception numbers NVIC_FIRST_IRQ and upward). 51 * For historical reasons QEMU tends to use "interrupt" and 52 * "exception" more or less interchangeably. 53 */ 54 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 55 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 56 57 /* Effective running priority of the CPU when no exception is active 58 * (higher than the highest possible priority value) 59 */ 60 #define NVIC_NOEXC_PRIO 0x100 61 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 62 #define NVIC_NS_PRIO_LIMIT 0x80 63 64 static const uint8_t nvic_id[] = { 65 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 66 }; 67 68 static void signal_sysresetreq(NVICState *s) 69 { 70 if (qemu_irq_is_connected(s->sysresetreq)) { 71 qemu_irq_pulse(s->sysresetreq); 72 } else { 73 /* 74 * Default behaviour if the SoC doesn't need to wire up 75 * SYSRESETREQ (eg to a system reset controller of some kind): 76 * perform a system reset via the usual QEMU API. 77 */ 78 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); 79 } 80 } 81 82 static int nvic_pending_prio(NVICState *s) 83 { 84 /* return the group priority of the current pending interrupt, 85 * or NVIC_NOEXC_PRIO if no interrupt is pending 86 */ 87 return s->vectpending_prio; 88 } 89 90 /* Return the value of the ISCR RETTOBASE bit: 91 * 1 if there is exactly one active exception 92 * 0 if there is more than one active exception 93 * UNKNOWN if there are no active exceptions (we choose 1, 94 * which matches the choice Cortex-M3 is documented as making). 95 * 96 * NB: some versions of the documentation talk about this 97 * counting "active exceptions other than the one shown by IPSR"; 98 * this is only different in the obscure corner case where guest 99 * code has manually deactivated an exception and is about 100 * to fail an exception-return integrity check. The definition 101 * above is the one from the v8M ARM ARM and is also in line 102 * with the behaviour documented for the Cortex-M3. 103 */ 104 static bool nvic_rettobase(NVICState *s) 105 { 106 int irq, nhand = 0; 107 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 108 109 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 110 if (s->vectors[irq].active || 111 (check_sec && irq < NVIC_INTERNAL_VECTORS && 112 s->sec_vectors[irq].active)) { 113 nhand++; 114 if (nhand == 2) { 115 return 0; 116 } 117 } 118 } 119 120 return 1; 121 } 122 123 /* Return the value of the ISCR ISRPENDING bit: 124 * 1 if an external interrupt is pending 125 * 0 if no external interrupt is pending 126 */ 127 static bool nvic_isrpending(NVICState *s) 128 { 129 int irq; 130 131 /* We can shortcut if the highest priority pending interrupt 132 * happens to be external or if there is nothing pending. 133 */ 134 if (s->vectpending > NVIC_FIRST_IRQ) { 135 return true; 136 } 137 if (s->vectpending == 0) { 138 return false; 139 } 140 141 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 142 if (s->vectors[irq].pending) { 143 return true; 144 } 145 } 146 return false; 147 } 148 149 static bool exc_is_banked(int exc) 150 { 151 /* Return true if this is one of the limited set of exceptions which 152 * are banked (and thus have state in sec_vectors[]) 153 */ 154 return exc == ARMV7M_EXCP_HARD || 155 exc == ARMV7M_EXCP_MEM || 156 exc == ARMV7M_EXCP_USAGE || 157 exc == ARMV7M_EXCP_SVC || 158 exc == ARMV7M_EXCP_PENDSV || 159 exc == ARMV7M_EXCP_SYSTICK; 160 } 161 162 /* Return a mask word which clears the subpriority bits from 163 * a priority value for an M-profile exception, leaving only 164 * the group priority. 165 */ 166 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 167 { 168 return ~0U << (s->prigroup[secure] + 1); 169 } 170 171 static bool exc_targets_secure(NVICState *s, int exc) 172 { 173 /* Return true if this non-banked exception targets Secure state. */ 174 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 175 return false; 176 } 177 178 if (exc >= NVIC_FIRST_IRQ) { 179 return !s->itns[exc]; 180 } 181 182 /* Function shouldn't be called for banked exceptions. */ 183 assert(!exc_is_banked(exc)); 184 185 switch (exc) { 186 case ARMV7M_EXCP_NMI: 187 case ARMV7M_EXCP_BUS: 188 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 189 case ARMV7M_EXCP_SECURE: 190 return true; 191 case ARMV7M_EXCP_DEBUG: 192 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 193 return false; 194 default: 195 /* reset, and reserved (unused) low exception numbers. 196 * We'll get called by code that loops through all the exception 197 * numbers, but it doesn't matter what we return here as these 198 * non-existent exceptions will never be pended or active. 199 */ 200 return true; 201 } 202 } 203 204 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 205 { 206 /* Return the group priority for this exception, given its raw 207 * (group-and-subgroup) priority value and whether it is targeting 208 * secure state or not. 209 */ 210 if (rawprio < 0) { 211 return rawprio; 212 } 213 rawprio &= nvic_gprio_mask(s, targets_secure); 214 /* AIRCR.PRIS causes us to squash all NS priorities into the 215 * lower half of the total range 216 */ 217 if (!targets_secure && 218 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 219 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 220 } 221 return rawprio; 222 } 223 224 /* Recompute vectpending and exception_prio for a CPU which implements 225 * the Security extension 226 */ 227 static void nvic_recompute_state_secure(NVICState *s) 228 { 229 int i, bank; 230 int pend_prio = NVIC_NOEXC_PRIO; 231 int active_prio = NVIC_NOEXC_PRIO; 232 int pend_irq = 0; 233 bool pending_is_s_banked = false; 234 int pend_subprio = 0; 235 236 /* R_CQRV: precedence is by: 237 * - lowest group priority; if both the same then 238 * - lowest subpriority; if both the same then 239 * - lowest exception number; if both the same (ie banked) then 240 * - secure exception takes precedence 241 * Compare pseudocode RawExecutionPriority. 242 * Annoyingly, now we have two prigroup values (for S and NS) 243 * we can't do the loop comparison on raw priority values. 244 */ 245 for (i = 1; i < s->num_irq; i++) { 246 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 247 VecInfo *vec; 248 int prio, subprio; 249 bool targets_secure; 250 251 if (bank == M_REG_S) { 252 if (!exc_is_banked(i)) { 253 continue; 254 } 255 vec = &s->sec_vectors[i]; 256 targets_secure = true; 257 } else { 258 vec = &s->vectors[i]; 259 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 260 } 261 262 prio = exc_group_prio(s, vec->prio, targets_secure); 263 subprio = vec->prio & ~nvic_gprio_mask(s, targets_secure); 264 if (vec->enabled && vec->pending && 265 ((prio < pend_prio) || 266 (prio == pend_prio && prio >= 0 && subprio < pend_subprio))) { 267 pend_prio = prio; 268 pend_subprio = subprio; 269 pend_irq = i; 270 pending_is_s_banked = (bank == M_REG_S); 271 } 272 if (vec->active && prio < active_prio) { 273 active_prio = prio; 274 } 275 } 276 } 277 278 s->vectpending_is_s_banked = pending_is_s_banked; 279 s->vectpending = pend_irq; 280 s->vectpending_prio = pend_prio; 281 s->exception_prio = active_prio; 282 283 trace_nvic_recompute_state_secure(s->vectpending, 284 s->vectpending_is_s_banked, 285 s->vectpending_prio, 286 s->exception_prio); 287 } 288 289 /* Recompute vectpending and exception_prio */ 290 static void nvic_recompute_state(NVICState *s) 291 { 292 int i; 293 int pend_prio = NVIC_NOEXC_PRIO; 294 int active_prio = NVIC_NOEXC_PRIO; 295 int pend_irq = 0; 296 297 /* In theory we could write one function that handled both 298 * the "security extension present" and "not present"; however 299 * the security related changes significantly complicate the 300 * recomputation just by themselves and mixing both cases together 301 * would be even worse, so we retain a separate non-secure-only 302 * version for CPUs which don't implement the security extension. 303 */ 304 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 305 nvic_recompute_state_secure(s); 306 return; 307 } 308 309 for (i = 1; i < s->num_irq; i++) { 310 VecInfo *vec = &s->vectors[i]; 311 312 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 313 pend_prio = vec->prio; 314 pend_irq = i; 315 } 316 if (vec->active && vec->prio < active_prio) { 317 active_prio = vec->prio; 318 } 319 } 320 321 if (active_prio > 0) { 322 active_prio &= nvic_gprio_mask(s, false); 323 } 324 325 if (pend_prio > 0) { 326 pend_prio &= nvic_gprio_mask(s, false); 327 } 328 329 s->vectpending = pend_irq; 330 s->vectpending_prio = pend_prio; 331 s->exception_prio = active_prio; 332 333 trace_nvic_recompute_state(s->vectpending, 334 s->vectpending_prio, 335 s->exception_prio); 336 } 337 338 /* Return the current execution priority of the CPU 339 * (equivalent to the pseudocode ExecutionPriority function). 340 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 341 */ 342 static inline int nvic_exec_prio(NVICState *s) 343 { 344 CPUARMState *env = &s->cpu->env; 345 int running = NVIC_NOEXC_PRIO; 346 347 if (env->v7m.basepri[M_REG_NS] > 0) { 348 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 349 } 350 351 if (env->v7m.basepri[M_REG_S] > 0) { 352 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 353 if (running > basepri) { 354 running = basepri; 355 } 356 } 357 358 if (env->v7m.primask[M_REG_NS]) { 359 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 360 if (running > NVIC_NS_PRIO_LIMIT) { 361 running = NVIC_NS_PRIO_LIMIT; 362 } 363 } else { 364 running = 0; 365 } 366 } 367 368 if (env->v7m.primask[M_REG_S]) { 369 running = 0; 370 } 371 372 if (env->v7m.faultmask[M_REG_NS]) { 373 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 374 running = -1; 375 } else { 376 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 377 if (running > NVIC_NS_PRIO_LIMIT) { 378 running = NVIC_NS_PRIO_LIMIT; 379 } 380 } else { 381 running = 0; 382 } 383 } 384 } 385 386 if (env->v7m.faultmask[M_REG_S]) { 387 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 388 } 389 390 /* consider priority of active handler */ 391 return MIN(running, s->exception_prio); 392 } 393 394 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 395 { 396 /* Return true if the requested execution priority is negative 397 * for the specified security state, ie that security state 398 * has an active NMI or HardFault or has set its FAULTMASK. 399 * Note that this is not the same as whether the execution 400 * priority is actually negative (for instance AIRCR.PRIS may 401 * mean we don't allow FAULTMASK_NS to actually make the execution 402 * priority negative). Compare pseudocode IsReqExcPriNeg(). 403 */ 404 NVICState *s = opaque; 405 406 if (s->cpu->env.v7m.faultmask[secure]) { 407 return true; 408 } 409 410 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 411 s->vectors[ARMV7M_EXCP_HARD].active) { 412 return true; 413 } 414 415 if (s->vectors[ARMV7M_EXCP_NMI].active && 416 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 417 return true; 418 } 419 420 return false; 421 } 422 423 bool armv7m_nvic_can_take_pending_exception(void *opaque) 424 { 425 NVICState *s = opaque; 426 427 return nvic_exec_prio(s) > nvic_pending_prio(s); 428 } 429 430 int armv7m_nvic_raw_execution_priority(void *opaque) 431 { 432 NVICState *s = opaque; 433 434 return s->exception_prio; 435 } 436 437 /* caller must call nvic_irq_update() after this. 438 * secure indicates the bank to use for banked exceptions (we assert if 439 * we are passed secure=true for a non-banked exception). 440 */ 441 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 442 { 443 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 444 assert(irq < s->num_irq); 445 446 prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits); 447 448 if (secure) { 449 assert(exc_is_banked(irq)); 450 s->sec_vectors[irq].prio = prio; 451 } else { 452 s->vectors[irq].prio = prio; 453 } 454 455 trace_nvic_set_prio(irq, secure, prio); 456 } 457 458 /* Return the current raw priority register value. 459 * secure indicates the bank to use for banked exceptions (we assert if 460 * we are passed secure=true for a non-banked exception). 461 */ 462 static int get_prio(NVICState *s, unsigned irq, bool secure) 463 { 464 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 465 assert(irq < s->num_irq); 466 467 if (secure) { 468 assert(exc_is_banked(irq)); 469 return s->sec_vectors[irq].prio; 470 } else { 471 return s->vectors[irq].prio; 472 } 473 } 474 475 /* Recompute state and assert irq line accordingly. 476 * Must be called after changes to: 477 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 478 * prigroup 479 */ 480 static void nvic_irq_update(NVICState *s) 481 { 482 int lvl; 483 int pend_prio; 484 485 nvic_recompute_state(s); 486 pend_prio = nvic_pending_prio(s); 487 488 /* Raise NVIC output if this IRQ would be taken, except that we 489 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 490 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 491 * to those CPU registers don't cause us to recalculate the NVIC 492 * pending info. 493 */ 494 lvl = (pend_prio < s->exception_prio); 495 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 496 qemu_set_irq(s->excpout, lvl); 497 } 498 499 /** 500 * armv7m_nvic_clear_pending: mark the specified exception as not pending 501 * @opaque: the NVIC 502 * @irq: the exception number to mark as not pending 503 * @secure: false for non-banked exceptions or for the nonsecure 504 * version of a banked exception, true for the secure version of a banked 505 * exception. 506 * 507 * Marks the specified exception as not pending. Note that we will assert() 508 * if @secure is true and @irq does not specify one of the fixed set 509 * of architecturally banked exceptions. 510 */ 511 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 512 { 513 NVICState *s = (NVICState *)opaque; 514 VecInfo *vec; 515 516 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 517 518 if (secure) { 519 assert(exc_is_banked(irq)); 520 vec = &s->sec_vectors[irq]; 521 } else { 522 vec = &s->vectors[irq]; 523 } 524 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 525 if (vec->pending) { 526 vec->pending = 0; 527 nvic_irq_update(s); 528 } 529 } 530 531 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 532 bool derived) 533 { 534 /* Pend an exception, including possibly escalating it to HardFault. 535 * 536 * This function handles both "normal" pending of interrupts and 537 * exceptions, and also derived exceptions (ones which occur as 538 * a result of trying to take some other exception). 539 * 540 * If derived == true, the caller guarantees that we are part way through 541 * trying to take an exception (but have not yet called 542 * armv7m_nvic_acknowledge_irq() to make it active), and so: 543 * - s->vectpending is the "original exception" we were trying to take 544 * - irq is the "derived exception" 545 * - nvic_exec_prio(s) gives the priority before exception entry 546 * Here we handle the prioritization logic which the pseudocode puts 547 * in the DerivedLateArrival() function. 548 */ 549 550 NVICState *s = (NVICState *)opaque; 551 bool banked = exc_is_banked(irq); 552 VecInfo *vec; 553 bool targets_secure; 554 555 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 556 assert(!secure || banked); 557 558 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 559 560 targets_secure = banked ? secure : exc_targets_secure(s, irq); 561 562 trace_nvic_set_pending(irq, secure, targets_secure, 563 derived, vec->enabled, vec->prio); 564 565 if (derived) { 566 /* Derived exceptions are always synchronous. */ 567 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 568 569 if (irq == ARMV7M_EXCP_DEBUG && 570 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 571 /* DebugMonitorFault, but its priority is lower than the 572 * preempted exception priority: just ignore it. 573 */ 574 return; 575 } 576 577 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 578 /* If this is a terminal exception (one which means we cannot 579 * take the original exception, like a failure to read its 580 * vector table entry), then we must take the derived exception. 581 * If the derived exception can't take priority over the 582 * original exception, then we go into Lockup. 583 * 584 * For QEMU, we rely on the fact that a derived exception is 585 * terminal if and only if it's reported to us as HardFault, 586 * which saves having to have an extra argument is_terminal 587 * that we'd only use in one place. 588 */ 589 cpu_abort(&s->cpu->parent_obj, 590 "Lockup: can't take terminal derived exception " 591 "(original exception priority %d)\n", 592 s->vectpending_prio); 593 } 594 /* We now continue with the same code as for a normal pending 595 * exception, which will cause us to pend the derived exception. 596 * We'll then take either the original or the derived exception 597 * based on which is higher priority by the usual mechanism 598 * for selecting the highest priority pending interrupt. 599 */ 600 } 601 602 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 603 /* If a synchronous exception is pending then it may be 604 * escalated to HardFault if: 605 * * it is equal or lower priority to current execution 606 * * it is disabled 607 * (ie we need to take it immediately but we can't do so). 608 * Asynchronous exceptions (and interrupts) simply remain pending. 609 * 610 * For QEMU, we don't have any imprecise (asynchronous) faults, 611 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 612 * synchronous. 613 * Debug exceptions are awkward because only Debug exceptions 614 * resulting from the BKPT instruction should be escalated, 615 * but we don't currently implement any Debug exceptions other 616 * than those that result from BKPT, so we treat all debug exceptions 617 * as needing escalation. 618 * 619 * This all means we can identify whether to escalate based only on 620 * the exception number and don't (yet) need the caller to explicitly 621 * tell us whether this exception is synchronous or not. 622 */ 623 int running = nvic_exec_prio(s); 624 bool escalate = false; 625 626 if (exc_group_prio(s, vec->prio, secure) >= running) { 627 trace_nvic_escalate_prio(irq, vec->prio, running); 628 escalate = true; 629 } else if (!vec->enabled) { 630 trace_nvic_escalate_disabled(irq); 631 escalate = true; 632 } 633 634 if (escalate) { 635 636 /* We need to escalate this exception to a synchronous HardFault. 637 * If BFHFNMINS is set then we escalate to the banked HF for 638 * the target security state of the original exception; otherwise 639 * we take a Secure HardFault. 640 */ 641 irq = ARMV7M_EXCP_HARD; 642 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 643 (targets_secure || 644 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 645 vec = &s->sec_vectors[irq]; 646 } else { 647 vec = &s->vectors[irq]; 648 } 649 if (running <= vec->prio) { 650 /* We want to escalate to HardFault but we can't take the 651 * synchronous HardFault at this point either. This is a 652 * Lockup condition due to a guest bug. We don't model 653 * Lockup, so report via cpu_abort() instead. 654 */ 655 cpu_abort(&s->cpu->parent_obj, 656 "Lockup: can't escalate %d to HardFault " 657 "(current priority %d)\n", irq, running); 658 } 659 660 /* HF may be banked but there is only one shared HFSR */ 661 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 662 } 663 } 664 665 if (!vec->pending) { 666 vec->pending = 1; 667 nvic_irq_update(s); 668 } 669 } 670 671 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 672 { 673 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 674 } 675 676 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 677 { 678 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 679 } 680 681 void armv7m_nvic_set_pending_lazyfp(void *opaque, int irq, bool secure) 682 { 683 /* 684 * Pend an exception during lazy FP stacking. This differs 685 * from the usual exception pending because the logic for 686 * whether we should escalate depends on the saved context 687 * in the FPCCR register, not on the current state of the CPU/NVIC. 688 */ 689 NVICState *s = (NVICState *)opaque; 690 bool banked = exc_is_banked(irq); 691 VecInfo *vec; 692 bool targets_secure; 693 bool escalate = false; 694 /* 695 * We will only look at bits in fpccr if this is a banked exception 696 * (in which case 'secure' tells us whether it is the S or NS version). 697 * All the bits for the non-banked exceptions are in fpccr_s. 698 */ 699 uint32_t fpccr_s = s->cpu->env.v7m.fpccr[M_REG_S]; 700 uint32_t fpccr = s->cpu->env.v7m.fpccr[secure]; 701 702 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 703 assert(!secure || banked); 704 705 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 706 707 targets_secure = banked ? secure : exc_targets_secure(s, irq); 708 709 switch (irq) { 710 case ARMV7M_EXCP_DEBUG: 711 if (!(fpccr_s & R_V7M_FPCCR_MONRDY_MASK)) { 712 /* Ignore DebugMonitor exception */ 713 return; 714 } 715 break; 716 case ARMV7M_EXCP_MEM: 717 escalate = !(fpccr & R_V7M_FPCCR_MMRDY_MASK); 718 break; 719 case ARMV7M_EXCP_USAGE: 720 escalate = !(fpccr & R_V7M_FPCCR_UFRDY_MASK); 721 break; 722 case ARMV7M_EXCP_BUS: 723 escalate = !(fpccr_s & R_V7M_FPCCR_BFRDY_MASK); 724 break; 725 case ARMV7M_EXCP_SECURE: 726 escalate = !(fpccr_s & R_V7M_FPCCR_SFRDY_MASK); 727 break; 728 default: 729 g_assert_not_reached(); 730 } 731 732 if (escalate) { 733 /* 734 * Escalate to HardFault: faults that initially targeted Secure 735 * continue to do so, even if HF normally targets NonSecure. 736 */ 737 irq = ARMV7M_EXCP_HARD; 738 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 739 (targets_secure || 740 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 741 vec = &s->sec_vectors[irq]; 742 } else { 743 vec = &s->vectors[irq]; 744 } 745 } 746 747 if (!vec->enabled || 748 nvic_exec_prio(s) <= exc_group_prio(s, vec->prio, secure)) { 749 if (!(fpccr_s & R_V7M_FPCCR_HFRDY_MASK)) { 750 /* 751 * We want to escalate to HardFault but the context the 752 * FP state belongs to prevents the exception pre-empting. 753 */ 754 cpu_abort(&s->cpu->parent_obj, 755 "Lockup: can't escalate to HardFault during " 756 "lazy FP register stacking\n"); 757 } 758 } 759 760 if (escalate) { 761 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 762 } 763 if (!vec->pending) { 764 vec->pending = 1; 765 /* 766 * We do not call nvic_irq_update(), because we know our caller 767 * is going to handle causing us to take the exception by 768 * raising EXCP_LAZYFP, so raising the IRQ line would be 769 * pointless extra work. We just need to recompute the 770 * priorities so that armv7m_nvic_can_take_pending_exception() 771 * returns the right answer. 772 */ 773 nvic_recompute_state(s); 774 } 775 } 776 777 /* Make pending IRQ active. */ 778 void armv7m_nvic_acknowledge_irq(void *opaque) 779 { 780 NVICState *s = (NVICState *)opaque; 781 CPUARMState *env = &s->cpu->env; 782 const int pending = s->vectpending; 783 const int running = nvic_exec_prio(s); 784 VecInfo *vec; 785 786 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 787 788 if (s->vectpending_is_s_banked) { 789 vec = &s->sec_vectors[pending]; 790 } else { 791 vec = &s->vectors[pending]; 792 } 793 794 assert(vec->enabled); 795 assert(vec->pending); 796 797 assert(s->vectpending_prio < running); 798 799 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 800 801 vec->active = 1; 802 vec->pending = 0; 803 804 write_v7m_exception(env, s->vectpending); 805 806 nvic_irq_update(s); 807 } 808 809 void armv7m_nvic_get_pending_irq_info(void *opaque, 810 int *pirq, bool *ptargets_secure) 811 { 812 NVICState *s = (NVICState *)opaque; 813 const int pending = s->vectpending; 814 bool targets_secure; 815 816 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 817 818 if (s->vectpending_is_s_banked) { 819 targets_secure = true; 820 } else { 821 targets_secure = !exc_is_banked(pending) && 822 exc_targets_secure(s, pending); 823 } 824 825 trace_nvic_get_pending_irq_info(pending, targets_secure); 826 827 *ptargets_secure = targets_secure; 828 *pirq = pending; 829 } 830 831 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 832 { 833 NVICState *s = (NVICState *)opaque; 834 VecInfo *vec = NULL; 835 int ret; 836 837 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 838 839 /* 840 * For negative priorities, v8M will forcibly deactivate the appropriate 841 * NMI or HardFault regardless of what interrupt we're being asked to 842 * deactivate (compare the DeActivate() pseudocode). This is a guard 843 * against software returning from NMI or HardFault with a corrupted 844 * IPSR and leaving the CPU in a negative-priority state. 845 * v7M does not do this, but simply deactivates the requested interrupt. 846 */ 847 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 848 switch (armv7m_nvic_raw_execution_priority(s)) { 849 case -1: 850 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 851 vec = &s->vectors[ARMV7M_EXCP_HARD]; 852 } else { 853 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 854 } 855 break; 856 case -2: 857 vec = &s->vectors[ARMV7M_EXCP_NMI]; 858 break; 859 case -3: 860 vec = &s->sec_vectors[ARMV7M_EXCP_HARD]; 861 break; 862 default: 863 break; 864 } 865 } 866 867 if (!vec) { 868 if (secure && exc_is_banked(irq)) { 869 vec = &s->sec_vectors[irq]; 870 } else { 871 vec = &s->vectors[irq]; 872 } 873 } 874 875 trace_nvic_complete_irq(irq, secure); 876 877 if (!vec->active) { 878 /* Tell the caller this was an illegal exception return */ 879 return -1; 880 } 881 882 /* 883 * If this is a configurable exception and it is currently 884 * targeting the opposite security state from the one we're trying 885 * to complete it for, this counts as an illegal exception return. 886 * We still need to deactivate whatever vector the logic above has 887 * selected, though, as it might not be the same as the one for the 888 * requested exception number. 889 */ 890 if (!exc_is_banked(irq) && exc_targets_secure(s, irq) != secure) { 891 ret = -1; 892 } else { 893 ret = nvic_rettobase(s); 894 } 895 896 vec->active = 0; 897 if (vec->level) { 898 /* Re-pend the exception if it's still held high; only 899 * happens for extenal IRQs 900 */ 901 assert(irq >= NVIC_FIRST_IRQ); 902 vec->pending = 1; 903 } 904 905 nvic_irq_update(s); 906 907 return ret; 908 } 909 910 bool armv7m_nvic_get_ready_status(void *opaque, int irq, bool secure) 911 { 912 /* 913 * Return whether an exception is "ready", i.e. it is enabled and is 914 * configured at a priority which would allow it to interrupt the 915 * current execution priority. 916 * 917 * irq and secure have the same semantics as for armv7m_nvic_set_pending(): 918 * for non-banked exceptions secure is always false; for banked exceptions 919 * it indicates which of the exceptions is required. 920 */ 921 NVICState *s = (NVICState *)opaque; 922 bool banked = exc_is_banked(irq); 923 VecInfo *vec; 924 int running = nvic_exec_prio(s); 925 926 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 927 assert(!secure || banked); 928 929 /* 930 * HardFault is an odd special case: we always check against -1, 931 * even if we're secure and HardFault has priority -3; we never 932 * need to check for enabled state. 933 */ 934 if (irq == ARMV7M_EXCP_HARD) { 935 return running > -1; 936 } 937 938 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 939 940 return vec->enabled && 941 exc_group_prio(s, vec->prio, secure) < running; 942 } 943 944 /* callback when external interrupt line is changed */ 945 static void set_irq_level(void *opaque, int n, int level) 946 { 947 NVICState *s = opaque; 948 VecInfo *vec; 949 950 n += NVIC_FIRST_IRQ; 951 952 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 953 954 trace_nvic_set_irq_level(n, level); 955 956 /* The pending status of an external interrupt is 957 * latched on rising edge and exception handler return. 958 * 959 * Pulsing the IRQ will always run the handler 960 * once, and the handler will re-run until the 961 * level is low when the handler completes. 962 */ 963 vec = &s->vectors[n]; 964 if (level != vec->level) { 965 vec->level = level; 966 if (level) { 967 armv7m_nvic_set_pending(s, n, false); 968 } 969 } 970 } 971 972 /* callback when external NMI line is changed */ 973 static void nvic_nmi_trigger(void *opaque, int n, int level) 974 { 975 NVICState *s = opaque; 976 977 trace_nvic_set_nmi_level(level); 978 979 /* 980 * The architecture doesn't specify whether NMI should share 981 * the normal-interrupt behaviour of being resampled on 982 * exception handler return. We choose not to, so just 983 * set NMI pending here and don't track the current level. 984 */ 985 if (level) { 986 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 987 } 988 } 989 990 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 991 { 992 ARMCPU *cpu = s->cpu; 993 uint32_t val; 994 995 switch (offset) { 996 case 4: /* Interrupt Control Type. */ 997 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 998 goto bad_offset; 999 } 1000 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 1001 case 0xc: /* CPPWR */ 1002 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1003 goto bad_offset; 1004 } 1005 /* We make the IMPDEF choice that nothing can ever go into a 1006 * non-retentive power state, which allows us to RAZ/WI this. 1007 */ 1008 return 0; 1009 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1010 { 1011 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1012 int i; 1013 1014 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1015 goto bad_offset; 1016 } 1017 if (!attrs.secure) { 1018 return 0; 1019 } 1020 val = 0; 1021 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1022 if (s->itns[startvec + i]) { 1023 val |= (1 << i); 1024 } 1025 } 1026 return val; 1027 } 1028 case 0xd00: /* CPUID Base. */ 1029 return cpu->midr; 1030 case 0xd04: /* Interrupt Control State (ICSR) */ 1031 /* VECTACTIVE */ 1032 val = cpu->env.v7m.exception; 1033 /* VECTPENDING */ 1034 val |= (s->vectpending & 0xff) << 12; 1035 /* ISRPENDING - set if any external IRQ is pending */ 1036 if (nvic_isrpending(s)) { 1037 val |= (1 << 22); 1038 } 1039 /* RETTOBASE - set if only one handler is active */ 1040 if (nvic_rettobase(s)) { 1041 val |= (1 << 11); 1042 } 1043 if (attrs.secure) { 1044 /* PENDSTSET */ 1045 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 1046 val |= (1 << 26); 1047 } 1048 /* PENDSVSET */ 1049 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 1050 val |= (1 << 28); 1051 } 1052 } else { 1053 /* PENDSTSET */ 1054 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 1055 val |= (1 << 26); 1056 } 1057 /* PENDSVSET */ 1058 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 1059 val |= (1 << 28); 1060 } 1061 } 1062 /* NMIPENDSET */ 1063 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 1064 && s->vectors[ARMV7M_EXCP_NMI].pending) { 1065 val |= (1 << 31); 1066 } 1067 /* ISRPREEMPT: RES0 when halting debug not implemented */ 1068 /* STTNS: RES0 for the Main Extension */ 1069 return val; 1070 case 0xd08: /* Vector Table Offset. */ 1071 return cpu->env.v7m.vecbase[attrs.secure]; 1072 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1073 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 1074 if (attrs.secure) { 1075 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 1076 val |= cpu->env.v7m.aircr; 1077 } else { 1078 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1079 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 1080 * security isn't supported then BFHFNMINS is RAO (and 1081 * the bit in env.v7m.aircr is always set). 1082 */ 1083 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 1084 } 1085 } 1086 return val; 1087 case 0xd10: /* System Control. */ 1088 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1089 goto bad_offset; 1090 } 1091 return cpu->env.v7m.scr[attrs.secure]; 1092 case 0xd14: /* Configuration Control. */ 1093 /* The BFHFNMIGN bit is the only non-banked bit; we 1094 * keep it in the non-secure copy of the register. 1095 */ 1096 val = cpu->env.v7m.ccr[attrs.secure]; 1097 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 1098 return val; 1099 case 0xd24: /* System Handler Control and State (SHCSR) */ 1100 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1101 goto bad_offset; 1102 } 1103 val = 0; 1104 if (attrs.secure) { 1105 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 1106 val |= (1 << 0); 1107 } 1108 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 1109 val |= (1 << 2); 1110 } 1111 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 1112 val |= (1 << 3); 1113 } 1114 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 1115 val |= (1 << 7); 1116 } 1117 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 1118 val |= (1 << 10); 1119 } 1120 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 1121 val |= (1 << 11); 1122 } 1123 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 1124 val |= (1 << 12); 1125 } 1126 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 1127 val |= (1 << 13); 1128 } 1129 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 1130 val |= (1 << 15); 1131 } 1132 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 1133 val |= (1 << 16); 1134 } 1135 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 1136 val |= (1 << 18); 1137 } 1138 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 1139 val |= (1 << 21); 1140 } 1141 /* SecureFault is not banked but is always RAZ/WI to NS */ 1142 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 1143 val |= (1 << 4); 1144 } 1145 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 1146 val |= (1 << 19); 1147 } 1148 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 1149 val |= (1 << 20); 1150 } 1151 } else { 1152 if (s->vectors[ARMV7M_EXCP_MEM].active) { 1153 val |= (1 << 0); 1154 } 1155 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1156 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 1157 if (s->vectors[ARMV7M_EXCP_HARD].active) { 1158 val |= (1 << 2); 1159 } 1160 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 1161 val |= (1 << 21); 1162 } 1163 } 1164 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 1165 val |= (1 << 3); 1166 } 1167 if (s->vectors[ARMV7M_EXCP_SVC].active) { 1168 val |= (1 << 7); 1169 } 1170 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 1171 val |= (1 << 10); 1172 } 1173 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 1174 val |= (1 << 11); 1175 } 1176 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 1177 val |= (1 << 12); 1178 } 1179 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 1180 val |= (1 << 13); 1181 } 1182 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 1183 val |= (1 << 15); 1184 } 1185 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 1186 val |= (1 << 16); 1187 } 1188 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 1189 val |= (1 << 18); 1190 } 1191 } 1192 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1193 if (s->vectors[ARMV7M_EXCP_BUS].active) { 1194 val |= (1 << 1); 1195 } 1196 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 1197 val |= (1 << 14); 1198 } 1199 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 1200 val |= (1 << 17); 1201 } 1202 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 1203 s->vectors[ARMV7M_EXCP_NMI].active) { 1204 /* NMIACT is not present in v7M */ 1205 val |= (1 << 5); 1206 } 1207 } 1208 1209 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1210 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 1211 val |= (1 << 8); 1212 } 1213 return val; 1214 case 0xd2c: /* Hard Fault Status. */ 1215 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1216 goto bad_offset; 1217 } 1218 return cpu->env.v7m.hfsr; 1219 case 0xd30: /* Debug Fault Status. */ 1220 return cpu->env.v7m.dfsr; 1221 case 0xd34: /* MMFAR MemManage Fault Address */ 1222 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1223 goto bad_offset; 1224 } 1225 return cpu->env.v7m.mmfar[attrs.secure]; 1226 case 0xd38: /* Bus Fault Address. */ 1227 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1228 goto bad_offset; 1229 } 1230 if (!attrs.secure && 1231 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1232 return 0; 1233 } 1234 return cpu->env.v7m.bfar; 1235 case 0xd3c: /* Aux Fault Status. */ 1236 /* TODO: Implement fault status registers. */ 1237 qemu_log_mask(LOG_UNIMP, 1238 "Aux Fault status registers unimplemented\n"); 1239 return 0; 1240 case 0xd40: /* PFR0. */ 1241 return cpu->id_pfr0; 1242 case 0xd44: /* PFR1. */ 1243 return cpu->id_pfr1; 1244 case 0xd48: /* DFR0. */ 1245 return cpu->isar.id_dfr0; 1246 case 0xd4c: /* AFR0. */ 1247 return cpu->id_afr0; 1248 case 0xd50: /* MMFR0. */ 1249 return cpu->isar.id_mmfr0; 1250 case 0xd54: /* MMFR1. */ 1251 return cpu->isar.id_mmfr1; 1252 case 0xd58: /* MMFR2. */ 1253 return cpu->isar.id_mmfr2; 1254 case 0xd5c: /* MMFR3. */ 1255 return cpu->isar.id_mmfr3; 1256 case 0xd60: /* ISAR0. */ 1257 return cpu->isar.id_isar0; 1258 case 0xd64: /* ISAR1. */ 1259 return cpu->isar.id_isar1; 1260 case 0xd68: /* ISAR2. */ 1261 return cpu->isar.id_isar2; 1262 case 0xd6c: /* ISAR3. */ 1263 return cpu->isar.id_isar3; 1264 case 0xd70: /* ISAR4. */ 1265 return cpu->isar.id_isar4; 1266 case 0xd74: /* ISAR5. */ 1267 return cpu->isar.id_isar5; 1268 case 0xd78: /* CLIDR */ 1269 return cpu->clidr; 1270 case 0xd7c: /* CTR */ 1271 return cpu->ctr; 1272 case 0xd80: /* CSSIDR */ 1273 { 1274 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1275 return cpu->ccsidr[idx]; 1276 } 1277 case 0xd84: /* CSSELR */ 1278 return cpu->env.v7m.csselr[attrs.secure]; 1279 case 0xd88: /* CPACR */ 1280 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1281 return 0; 1282 } 1283 return cpu->env.v7m.cpacr[attrs.secure]; 1284 case 0xd8c: /* NSACR */ 1285 if (!attrs.secure || !cpu_isar_feature(aa32_vfp_simd, cpu)) { 1286 return 0; 1287 } 1288 return cpu->env.v7m.nsacr; 1289 /* TODO: Implement debug registers. */ 1290 case 0xd90: /* MPU_TYPE */ 1291 /* Unified MPU; if the MPU is not present this value is zero */ 1292 return cpu->pmsav7_dregion << 8; 1293 break; 1294 case 0xd94: /* MPU_CTRL */ 1295 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1296 case 0xd98: /* MPU_RNR */ 1297 return cpu->env.pmsav7.rnr[attrs.secure]; 1298 case 0xd9c: /* MPU_RBAR */ 1299 case 0xda4: /* MPU_RBAR_A1 */ 1300 case 0xdac: /* MPU_RBAR_A2 */ 1301 case 0xdb4: /* MPU_RBAR_A3 */ 1302 { 1303 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1304 1305 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1306 /* PMSAv8M handling of the aliases is different from v7M: 1307 * aliases A1, A2, A3 override the low two bits of the region 1308 * number in MPU_RNR, and there is no 'region' field in the 1309 * RBAR register. 1310 */ 1311 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1312 if (aliasno) { 1313 region = deposit32(region, 0, 2, aliasno); 1314 } 1315 if (region >= cpu->pmsav7_dregion) { 1316 return 0; 1317 } 1318 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1319 } 1320 1321 if (region >= cpu->pmsav7_dregion) { 1322 return 0; 1323 } 1324 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1325 } 1326 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1327 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1328 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1329 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1330 { 1331 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1332 1333 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1334 /* PMSAv8M handling of the aliases is different from v7M: 1335 * aliases A1, A2, A3 override the low two bits of the region 1336 * number in MPU_RNR. 1337 */ 1338 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1339 if (aliasno) { 1340 region = deposit32(region, 0, 2, aliasno); 1341 } 1342 if (region >= cpu->pmsav7_dregion) { 1343 return 0; 1344 } 1345 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1346 } 1347 1348 if (region >= cpu->pmsav7_dregion) { 1349 return 0; 1350 } 1351 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1352 (cpu->env.pmsav7.drsr[region] & 0xffff); 1353 } 1354 case 0xdc0: /* MPU_MAIR0 */ 1355 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1356 goto bad_offset; 1357 } 1358 return cpu->env.pmsav8.mair0[attrs.secure]; 1359 case 0xdc4: /* MPU_MAIR1 */ 1360 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1361 goto bad_offset; 1362 } 1363 return cpu->env.pmsav8.mair1[attrs.secure]; 1364 case 0xdd0: /* SAU_CTRL */ 1365 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1366 goto bad_offset; 1367 } 1368 if (!attrs.secure) { 1369 return 0; 1370 } 1371 return cpu->env.sau.ctrl; 1372 case 0xdd4: /* SAU_TYPE */ 1373 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1374 goto bad_offset; 1375 } 1376 if (!attrs.secure) { 1377 return 0; 1378 } 1379 return cpu->sau_sregion; 1380 case 0xdd8: /* SAU_RNR */ 1381 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1382 goto bad_offset; 1383 } 1384 if (!attrs.secure) { 1385 return 0; 1386 } 1387 return cpu->env.sau.rnr; 1388 case 0xddc: /* SAU_RBAR */ 1389 { 1390 int region = cpu->env.sau.rnr; 1391 1392 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1393 goto bad_offset; 1394 } 1395 if (!attrs.secure) { 1396 return 0; 1397 } 1398 if (region >= cpu->sau_sregion) { 1399 return 0; 1400 } 1401 return cpu->env.sau.rbar[region]; 1402 } 1403 case 0xde0: /* SAU_RLAR */ 1404 { 1405 int region = cpu->env.sau.rnr; 1406 1407 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1408 goto bad_offset; 1409 } 1410 if (!attrs.secure) { 1411 return 0; 1412 } 1413 if (region >= cpu->sau_sregion) { 1414 return 0; 1415 } 1416 return cpu->env.sau.rlar[region]; 1417 } 1418 case 0xde4: /* SFSR */ 1419 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1420 goto bad_offset; 1421 } 1422 if (!attrs.secure) { 1423 return 0; 1424 } 1425 return cpu->env.v7m.sfsr; 1426 case 0xde8: /* SFAR */ 1427 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1428 goto bad_offset; 1429 } 1430 if (!attrs.secure) { 1431 return 0; 1432 } 1433 return cpu->env.v7m.sfar; 1434 case 0xf34: /* FPCCR */ 1435 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1436 return 0; 1437 } 1438 if (attrs.secure) { 1439 return cpu->env.v7m.fpccr[M_REG_S]; 1440 } else { 1441 /* 1442 * NS can read LSPEN, CLRONRET and MONRDY. It can read 1443 * BFRDY and HFRDY if AIRCR.BFHFNMINS != 0; 1444 * other non-banked bits RAZ. 1445 * TODO: MONRDY should RAZ/WI if DEMCR.SDME is set. 1446 */ 1447 uint32_t value = cpu->env.v7m.fpccr[M_REG_S]; 1448 uint32_t mask = R_V7M_FPCCR_LSPEN_MASK | 1449 R_V7M_FPCCR_CLRONRET_MASK | 1450 R_V7M_FPCCR_MONRDY_MASK; 1451 1452 if (s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1453 mask |= R_V7M_FPCCR_BFRDY_MASK | R_V7M_FPCCR_HFRDY_MASK; 1454 } 1455 1456 value &= mask; 1457 1458 value |= cpu->env.v7m.fpccr[M_REG_NS]; 1459 return value; 1460 } 1461 case 0xf38: /* FPCAR */ 1462 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1463 return 0; 1464 } 1465 return cpu->env.v7m.fpcar[attrs.secure]; 1466 case 0xf3c: /* FPDSCR */ 1467 if (!cpu_isar_feature(aa32_vfp_simd, cpu)) { 1468 return 0; 1469 } 1470 return cpu->env.v7m.fpdscr[attrs.secure]; 1471 case 0xf40: /* MVFR0 */ 1472 return cpu->isar.mvfr0; 1473 case 0xf44: /* MVFR1 */ 1474 return cpu->isar.mvfr1; 1475 case 0xf48: /* MVFR2 */ 1476 return cpu->isar.mvfr2; 1477 default: 1478 bad_offset: 1479 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1480 return 0; 1481 } 1482 } 1483 1484 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1485 MemTxAttrs attrs) 1486 { 1487 ARMCPU *cpu = s->cpu; 1488 1489 switch (offset) { 1490 case 0xc: /* CPPWR */ 1491 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1492 goto bad_offset; 1493 } 1494 /* Make the IMPDEF choice to RAZ/WI this. */ 1495 break; 1496 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1497 { 1498 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1499 int i; 1500 1501 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1502 goto bad_offset; 1503 } 1504 if (!attrs.secure) { 1505 break; 1506 } 1507 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1508 s->itns[startvec + i] = (value >> i) & 1; 1509 } 1510 nvic_irq_update(s); 1511 break; 1512 } 1513 case 0xd04: /* Interrupt Control State (ICSR) */ 1514 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1515 if (value & (1 << 31)) { 1516 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1517 } else if (value & (1 << 30) && 1518 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1519 /* PENDNMICLR didn't exist in v7M */ 1520 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1521 } 1522 } 1523 if (value & (1 << 28)) { 1524 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1525 } else if (value & (1 << 27)) { 1526 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1527 } 1528 if (value & (1 << 26)) { 1529 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1530 } else if (value & (1 << 25)) { 1531 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1532 } 1533 break; 1534 case 0xd08: /* Vector Table Offset. */ 1535 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1536 break; 1537 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1538 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1539 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1540 if (attrs.secure || 1541 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1542 signal_sysresetreq(s); 1543 } 1544 } 1545 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1546 qemu_log_mask(LOG_GUEST_ERROR, 1547 "Setting VECTCLRACTIVE when not in DEBUG mode " 1548 "is UNPREDICTABLE\n"); 1549 } 1550 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1551 /* NB: this bit is RES0 in v8M */ 1552 qemu_log_mask(LOG_GUEST_ERROR, 1553 "Setting VECTRESET when not in DEBUG mode " 1554 "is UNPREDICTABLE\n"); 1555 } 1556 if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1557 s->prigroup[attrs.secure] = 1558 extract32(value, 1559 R_V7M_AIRCR_PRIGROUP_SHIFT, 1560 R_V7M_AIRCR_PRIGROUP_LENGTH); 1561 } 1562 if (attrs.secure) { 1563 /* These bits are only writable by secure */ 1564 cpu->env.v7m.aircr = value & 1565 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1566 R_V7M_AIRCR_BFHFNMINS_MASK | 1567 R_V7M_AIRCR_PRIS_MASK); 1568 /* BFHFNMINS changes the priority of Secure HardFault, and 1569 * allows a pending Non-secure HardFault to preempt (which 1570 * we implement by marking it enabled). 1571 */ 1572 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1573 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1574 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1575 } else { 1576 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1577 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1578 } 1579 } 1580 nvic_irq_update(s); 1581 } 1582 break; 1583 case 0xd10: /* System Control. */ 1584 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1585 goto bad_offset; 1586 } 1587 /* We don't implement deep-sleep so these bits are RAZ/WI. 1588 * The other bits in the register are banked. 1589 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1590 * is architecturally permitted. 1591 */ 1592 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1593 cpu->env.v7m.scr[attrs.secure] = value; 1594 break; 1595 case 0xd14: /* Configuration Control. */ 1596 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1597 goto bad_offset; 1598 } 1599 1600 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1601 value &= (R_V7M_CCR_STKALIGN_MASK | 1602 R_V7M_CCR_BFHFNMIGN_MASK | 1603 R_V7M_CCR_DIV_0_TRP_MASK | 1604 R_V7M_CCR_UNALIGN_TRP_MASK | 1605 R_V7M_CCR_USERSETMPEND_MASK | 1606 R_V7M_CCR_NONBASETHRDENA_MASK); 1607 1608 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1609 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1610 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1611 | R_V7M_CCR_STKALIGN_MASK; 1612 } 1613 if (attrs.secure) { 1614 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1615 cpu->env.v7m.ccr[M_REG_NS] = 1616 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1617 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1618 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1619 } 1620 1621 cpu->env.v7m.ccr[attrs.secure] = value; 1622 break; 1623 case 0xd24: /* System Handler Control and State (SHCSR) */ 1624 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1625 goto bad_offset; 1626 } 1627 if (attrs.secure) { 1628 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1629 /* Secure HardFault active bit cannot be written */ 1630 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1631 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1632 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1633 (value & (1 << 10)) != 0; 1634 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1635 (value & (1 << 11)) != 0; 1636 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1637 (value & (1 << 12)) != 0; 1638 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1639 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1640 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1641 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1642 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1643 (value & (1 << 18)) != 0; 1644 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1645 /* SecureFault not banked, but RAZ/WI to NS */ 1646 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1647 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1648 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1649 } else { 1650 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1651 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1652 /* HARDFAULTPENDED is not present in v7M */ 1653 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1654 } 1655 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1656 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1657 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1658 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1659 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1660 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1661 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1662 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1663 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1664 } 1665 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1666 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1667 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1668 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1669 } 1670 /* NMIACT can only be written if the write is of a zero, with 1671 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1672 */ 1673 if (!attrs.secure && cpu->env.v7m.secure && 1674 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1675 (value & (1 << 5)) == 0) { 1676 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1677 } 1678 /* HARDFAULTACT can only be written if the write is of a zero 1679 * to the non-secure HardFault state by the CPU in secure state. 1680 * The only case where we can be targeting the non-secure HF state 1681 * when in secure state is if this is a write via the NS alias 1682 * and BFHFNMINS is 1. 1683 */ 1684 if (!attrs.secure && cpu->env.v7m.secure && 1685 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1686 (value & (1 << 2)) == 0) { 1687 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1688 } 1689 1690 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1691 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1692 nvic_irq_update(s); 1693 break; 1694 case 0xd2c: /* Hard Fault Status. */ 1695 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1696 goto bad_offset; 1697 } 1698 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1699 break; 1700 case 0xd30: /* Debug Fault Status. */ 1701 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1702 break; 1703 case 0xd34: /* Mem Manage Address. */ 1704 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1705 goto bad_offset; 1706 } 1707 cpu->env.v7m.mmfar[attrs.secure] = value; 1708 return; 1709 case 0xd38: /* Bus Fault Address. */ 1710 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1711 goto bad_offset; 1712 } 1713 if (!attrs.secure && 1714 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1715 return; 1716 } 1717 cpu->env.v7m.bfar = value; 1718 return; 1719 case 0xd3c: /* Aux Fault Status. */ 1720 qemu_log_mask(LOG_UNIMP, 1721 "NVIC: Aux fault status registers unimplemented\n"); 1722 break; 1723 case 0xd84: /* CSSELR */ 1724 if (!arm_v7m_csselr_razwi(cpu)) { 1725 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1726 } 1727 break; 1728 case 0xd88: /* CPACR */ 1729 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1730 /* We implement only the Floating Point extension's CP10/CP11 */ 1731 cpu->env.v7m.cpacr[attrs.secure] = value & (0xf << 20); 1732 } 1733 break; 1734 case 0xd8c: /* NSACR */ 1735 if (attrs.secure && cpu_isar_feature(aa32_vfp_simd, cpu)) { 1736 /* We implement only the Floating Point extension's CP10/CP11 */ 1737 cpu->env.v7m.nsacr = value & (3 << 10); 1738 } 1739 break; 1740 case 0xd90: /* MPU_TYPE */ 1741 return; /* RO */ 1742 case 0xd94: /* MPU_CTRL */ 1743 if ((value & 1744 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1745 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1746 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1747 "UNPREDICTABLE\n"); 1748 } 1749 cpu->env.v7m.mpu_ctrl[attrs.secure] 1750 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1751 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1752 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1753 tlb_flush(CPU(cpu)); 1754 break; 1755 case 0xd98: /* MPU_RNR */ 1756 if (value >= cpu->pmsav7_dregion) { 1757 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1758 PRIu32 "/%" PRIu32 "\n", 1759 value, cpu->pmsav7_dregion); 1760 } else { 1761 cpu->env.pmsav7.rnr[attrs.secure] = value; 1762 } 1763 break; 1764 case 0xd9c: /* MPU_RBAR */ 1765 case 0xda4: /* MPU_RBAR_A1 */ 1766 case 0xdac: /* MPU_RBAR_A2 */ 1767 case 0xdb4: /* MPU_RBAR_A3 */ 1768 { 1769 int region; 1770 1771 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1772 /* PMSAv8M handling of the aliases is different from v7M: 1773 * aliases A1, A2, A3 override the low two bits of the region 1774 * number in MPU_RNR, and there is no 'region' field in the 1775 * RBAR register. 1776 */ 1777 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1778 1779 region = cpu->env.pmsav7.rnr[attrs.secure]; 1780 if (aliasno) { 1781 region = deposit32(region, 0, 2, aliasno); 1782 } 1783 if (region >= cpu->pmsav7_dregion) { 1784 return; 1785 } 1786 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1787 tlb_flush(CPU(cpu)); 1788 return; 1789 } 1790 1791 if (value & (1 << 4)) { 1792 /* VALID bit means use the region number specified in this 1793 * value and also update MPU_RNR.REGION with that value. 1794 */ 1795 region = extract32(value, 0, 4); 1796 if (region >= cpu->pmsav7_dregion) { 1797 qemu_log_mask(LOG_GUEST_ERROR, 1798 "MPU region out of range %u/%" PRIu32 "\n", 1799 region, cpu->pmsav7_dregion); 1800 return; 1801 } 1802 cpu->env.pmsav7.rnr[attrs.secure] = region; 1803 } else { 1804 region = cpu->env.pmsav7.rnr[attrs.secure]; 1805 } 1806 1807 if (region >= cpu->pmsav7_dregion) { 1808 return; 1809 } 1810 1811 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1812 tlb_flush(CPU(cpu)); 1813 break; 1814 } 1815 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1816 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1817 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1818 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1819 { 1820 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1821 1822 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1823 /* PMSAv8M handling of the aliases is different from v7M: 1824 * aliases A1, A2, A3 override the low two bits of the region 1825 * number in MPU_RNR. 1826 */ 1827 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1828 1829 region = cpu->env.pmsav7.rnr[attrs.secure]; 1830 if (aliasno) { 1831 region = deposit32(region, 0, 2, aliasno); 1832 } 1833 if (region >= cpu->pmsav7_dregion) { 1834 return; 1835 } 1836 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1837 tlb_flush(CPU(cpu)); 1838 return; 1839 } 1840 1841 if (region >= cpu->pmsav7_dregion) { 1842 return; 1843 } 1844 1845 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1846 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1847 tlb_flush(CPU(cpu)); 1848 break; 1849 } 1850 case 0xdc0: /* MPU_MAIR0 */ 1851 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1852 goto bad_offset; 1853 } 1854 if (cpu->pmsav7_dregion) { 1855 /* Register is RES0 if no MPU regions are implemented */ 1856 cpu->env.pmsav8.mair0[attrs.secure] = value; 1857 } 1858 /* We don't need to do anything else because memory attributes 1859 * only affect cacheability, and we don't implement caching. 1860 */ 1861 break; 1862 case 0xdc4: /* MPU_MAIR1 */ 1863 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1864 goto bad_offset; 1865 } 1866 if (cpu->pmsav7_dregion) { 1867 /* Register is RES0 if no MPU regions are implemented */ 1868 cpu->env.pmsav8.mair1[attrs.secure] = value; 1869 } 1870 /* We don't need to do anything else because memory attributes 1871 * only affect cacheability, and we don't implement caching. 1872 */ 1873 break; 1874 case 0xdd0: /* SAU_CTRL */ 1875 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1876 goto bad_offset; 1877 } 1878 if (!attrs.secure) { 1879 return; 1880 } 1881 cpu->env.sau.ctrl = value & 3; 1882 break; 1883 case 0xdd4: /* SAU_TYPE */ 1884 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1885 goto bad_offset; 1886 } 1887 break; 1888 case 0xdd8: /* SAU_RNR */ 1889 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1890 goto bad_offset; 1891 } 1892 if (!attrs.secure) { 1893 return; 1894 } 1895 if (value >= cpu->sau_sregion) { 1896 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1897 PRIu32 "/%" PRIu32 "\n", 1898 value, cpu->sau_sregion); 1899 } else { 1900 cpu->env.sau.rnr = value; 1901 } 1902 break; 1903 case 0xddc: /* SAU_RBAR */ 1904 { 1905 int region = cpu->env.sau.rnr; 1906 1907 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1908 goto bad_offset; 1909 } 1910 if (!attrs.secure) { 1911 return; 1912 } 1913 if (region >= cpu->sau_sregion) { 1914 return; 1915 } 1916 cpu->env.sau.rbar[region] = value & ~0x1f; 1917 tlb_flush(CPU(cpu)); 1918 break; 1919 } 1920 case 0xde0: /* SAU_RLAR */ 1921 { 1922 int region = cpu->env.sau.rnr; 1923 1924 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1925 goto bad_offset; 1926 } 1927 if (!attrs.secure) { 1928 return; 1929 } 1930 if (region >= cpu->sau_sregion) { 1931 return; 1932 } 1933 cpu->env.sau.rlar[region] = value & ~0x1c; 1934 tlb_flush(CPU(cpu)); 1935 break; 1936 } 1937 case 0xde4: /* SFSR */ 1938 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1939 goto bad_offset; 1940 } 1941 if (!attrs.secure) { 1942 return; 1943 } 1944 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1945 break; 1946 case 0xde8: /* SFAR */ 1947 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1948 goto bad_offset; 1949 } 1950 if (!attrs.secure) { 1951 return; 1952 } 1953 cpu->env.v7m.sfsr = value; 1954 break; 1955 case 0xf00: /* Software Triggered Interrupt Register */ 1956 { 1957 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1958 1959 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1960 goto bad_offset; 1961 } 1962 1963 if (excnum < s->num_irq) { 1964 armv7m_nvic_set_pending(s, excnum, false); 1965 } 1966 break; 1967 } 1968 case 0xf34: /* FPCCR */ 1969 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 1970 /* Not all bits here are banked. */ 1971 uint32_t fpccr_s; 1972 1973 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1974 /* Don't allow setting of bits not present in v7M */ 1975 value &= (R_V7M_FPCCR_LSPACT_MASK | 1976 R_V7M_FPCCR_USER_MASK | 1977 R_V7M_FPCCR_THREAD_MASK | 1978 R_V7M_FPCCR_HFRDY_MASK | 1979 R_V7M_FPCCR_MMRDY_MASK | 1980 R_V7M_FPCCR_BFRDY_MASK | 1981 R_V7M_FPCCR_MONRDY_MASK | 1982 R_V7M_FPCCR_LSPEN_MASK | 1983 R_V7M_FPCCR_ASPEN_MASK); 1984 } 1985 value &= ~R_V7M_FPCCR_RES0_MASK; 1986 1987 if (!attrs.secure) { 1988 /* Some non-banked bits are configurably writable by NS */ 1989 fpccr_s = cpu->env.v7m.fpccr[M_REG_S]; 1990 if (!(fpccr_s & R_V7M_FPCCR_LSPENS_MASK)) { 1991 uint32_t lspen = FIELD_EX32(value, V7M_FPCCR, LSPEN); 1992 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, LSPEN, lspen); 1993 } 1994 if (!(fpccr_s & R_V7M_FPCCR_CLRONRETS_MASK)) { 1995 uint32_t cor = FIELD_EX32(value, V7M_FPCCR, CLRONRET); 1996 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, CLRONRET, cor); 1997 } 1998 if ((s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1999 uint32_t hfrdy = FIELD_EX32(value, V7M_FPCCR, HFRDY); 2000 uint32_t bfrdy = FIELD_EX32(value, V7M_FPCCR, BFRDY); 2001 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, HFRDY, hfrdy); 2002 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, BFRDY, bfrdy); 2003 } 2004 /* TODO MONRDY should RAZ/WI if DEMCR.SDME is set */ 2005 { 2006 uint32_t monrdy = FIELD_EX32(value, V7M_FPCCR, MONRDY); 2007 fpccr_s = FIELD_DP32(fpccr_s, V7M_FPCCR, MONRDY, monrdy); 2008 } 2009 2010 /* 2011 * All other non-banked bits are RAZ/WI from NS; write 2012 * just the banked bits to fpccr[M_REG_NS]. 2013 */ 2014 value &= R_V7M_FPCCR_BANKED_MASK; 2015 cpu->env.v7m.fpccr[M_REG_NS] = value; 2016 } else { 2017 fpccr_s = value; 2018 } 2019 cpu->env.v7m.fpccr[M_REG_S] = fpccr_s; 2020 } 2021 break; 2022 case 0xf38: /* FPCAR */ 2023 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2024 value &= ~7; 2025 cpu->env.v7m.fpcar[attrs.secure] = value; 2026 } 2027 break; 2028 case 0xf3c: /* FPDSCR */ 2029 if (cpu_isar_feature(aa32_vfp_simd, cpu)) { 2030 value &= 0x07c00000; 2031 cpu->env.v7m.fpdscr[attrs.secure] = value; 2032 } 2033 break; 2034 case 0xf50: /* ICIALLU */ 2035 case 0xf58: /* ICIMVAU */ 2036 case 0xf5c: /* DCIMVAC */ 2037 case 0xf60: /* DCISW */ 2038 case 0xf64: /* DCCMVAU */ 2039 case 0xf68: /* DCCMVAC */ 2040 case 0xf6c: /* DCCSW */ 2041 case 0xf70: /* DCCIMVAC */ 2042 case 0xf74: /* DCCISW */ 2043 case 0xf78: /* BPIALL */ 2044 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 2045 break; 2046 default: 2047 bad_offset: 2048 qemu_log_mask(LOG_GUEST_ERROR, 2049 "NVIC: Bad write offset 0x%x\n", offset); 2050 } 2051 } 2052 2053 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 2054 { 2055 /* Return true if unprivileged access to this register is permitted. */ 2056 switch (offset) { 2057 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 2058 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 2059 * controls access even though the CPU is in Secure state (I_QDKX). 2060 */ 2061 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 2062 default: 2063 /* All other user accesses cause a BusFault unconditionally */ 2064 return false; 2065 } 2066 } 2067 2068 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 2069 { 2070 /* Behaviour for the SHPR register field for this exception: 2071 * return M_REG_NS to use the nonsecure vector (including for 2072 * non-banked exceptions), M_REG_S for the secure version of 2073 * a banked exception, and -1 if this field should RAZ/WI. 2074 */ 2075 switch (exc) { 2076 case ARMV7M_EXCP_MEM: 2077 case ARMV7M_EXCP_USAGE: 2078 case ARMV7M_EXCP_SVC: 2079 case ARMV7M_EXCP_PENDSV: 2080 case ARMV7M_EXCP_SYSTICK: 2081 /* Banked exceptions */ 2082 return attrs.secure; 2083 case ARMV7M_EXCP_BUS: 2084 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 2085 if (!attrs.secure && 2086 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2087 return -1; 2088 } 2089 return M_REG_NS; 2090 case ARMV7M_EXCP_SECURE: 2091 /* Not banked, RAZ/WI from nonsecure */ 2092 if (!attrs.secure) { 2093 return -1; 2094 } 2095 return M_REG_NS; 2096 case ARMV7M_EXCP_DEBUG: 2097 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 2098 return M_REG_NS; 2099 case 8 ... 10: 2100 case 13: 2101 /* RES0 */ 2102 return -1; 2103 default: 2104 /* Not reachable due to decode of SHPR register addresses */ 2105 g_assert_not_reached(); 2106 } 2107 } 2108 2109 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 2110 uint64_t *data, unsigned size, 2111 MemTxAttrs attrs) 2112 { 2113 NVICState *s = (NVICState *)opaque; 2114 uint32_t offset = addr; 2115 unsigned i, startvec, end; 2116 uint32_t val; 2117 2118 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2119 /* Generate BusFault for unprivileged accesses */ 2120 return MEMTX_ERROR; 2121 } 2122 2123 switch (offset) { 2124 /* reads of set and clear both return the status */ 2125 case 0x100 ... 0x13f: /* NVIC Set enable */ 2126 offset += 0x80; 2127 /* fall through */ 2128 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2129 val = 0; 2130 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 2131 2132 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2133 if (s->vectors[startvec + i].enabled && 2134 (attrs.secure || s->itns[startvec + i])) { 2135 val |= (1 << i); 2136 } 2137 } 2138 break; 2139 case 0x200 ... 0x23f: /* NVIC Set pend */ 2140 offset += 0x80; 2141 /* fall through */ 2142 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2143 val = 0; 2144 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2145 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2146 if (s->vectors[startvec + i].pending && 2147 (attrs.secure || s->itns[startvec + i])) { 2148 val |= (1 << i); 2149 } 2150 } 2151 break; 2152 case 0x300 ... 0x33f: /* NVIC Active */ 2153 val = 0; 2154 2155 if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) { 2156 break; 2157 } 2158 2159 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 2160 2161 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2162 if (s->vectors[startvec + i].active && 2163 (attrs.secure || s->itns[startvec + i])) { 2164 val |= (1 << i); 2165 } 2166 } 2167 break; 2168 case 0x400 ... 0x5ef: /* NVIC Priority */ 2169 val = 0; 2170 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 2171 2172 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2173 if (attrs.secure || s->itns[startvec + i]) { 2174 val |= s->vectors[startvec + i].prio << (8 * i); 2175 } 2176 } 2177 break; 2178 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2179 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2180 val = 0; 2181 break; 2182 } 2183 /* fall through */ 2184 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2185 val = 0; 2186 for (i = 0; i < size; i++) { 2187 unsigned hdlidx = (offset - 0xd14) + i; 2188 int sbank = shpr_bank(s, hdlidx, attrs); 2189 2190 if (sbank < 0) { 2191 continue; 2192 } 2193 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 2194 } 2195 break; 2196 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2197 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2198 val = 0; 2199 break; 2200 }; 2201 /* 2202 * The BFSR bits [15:8] are shared between security states 2203 * and we store them in the NS copy. They are RAZ/WI for 2204 * NS code if AIRCR.BFHFNMINS is 0. 2205 */ 2206 val = s->cpu->env.v7m.cfsr[attrs.secure]; 2207 if (!attrs.secure && 2208 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2209 val &= ~R_V7M_CFSR_BFSR_MASK; 2210 } else { 2211 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 2212 } 2213 val = extract32(val, (offset - 0xd28) * 8, size * 8); 2214 break; 2215 case 0xfe0 ... 0xfff: /* ID. */ 2216 if (offset & 3) { 2217 val = 0; 2218 } else { 2219 val = nvic_id[(offset - 0xfe0) >> 2]; 2220 } 2221 break; 2222 default: 2223 if (size == 4) { 2224 val = nvic_readl(s, offset, attrs); 2225 } else { 2226 qemu_log_mask(LOG_GUEST_ERROR, 2227 "NVIC: Bad read of size %d at offset 0x%x\n", 2228 size, offset); 2229 val = 0; 2230 } 2231 } 2232 2233 trace_nvic_sysreg_read(addr, val, size); 2234 *data = val; 2235 return MEMTX_OK; 2236 } 2237 2238 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 2239 uint64_t value, unsigned size, 2240 MemTxAttrs attrs) 2241 { 2242 NVICState *s = (NVICState *)opaque; 2243 uint32_t offset = addr; 2244 unsigned i, startvec, end; 2245 unsigned setval = 0; 2246 2247 trace_nvic_sysreg_write(addr, value, size); 2248 2249 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 2250 /* Generate BusFault for unprivileged accesses */ 2251 return MEMTX_ERROR; 2252 } 2253 2254 switch (offset) { 2255 case 0x100 ... 0x13f: /* NVIC Set enable */ 2256 offset += 0x80; 2257 setval = 1; 2258 /* fall through */ 2259 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 2260 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 2261 2262 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2263 if (value & (1 << i) && 2264 (attrs.secure || s->itns[startvec + i])) { 2265 s->vectors[startvec + i].enabled = setval; 2266 } 2267 } 2268 nvic_irq_update(s); 2269 goto exit_ok; 2270 case 0x200 ... 0x23f: /* NVIC Set pend */ 2271 /* the special logic in armv7m_nvic_set_pending() 2272 * is not needed since IRQs are never escalated 2273 */ 2274 offset += 0x80; 2275 setval = 1; 2276 /* fall through */ 2277 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 2278 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 2279 2280 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 2281 if (value & (1 << i) && 2282 (attrs.secure || s->itns[startvec + i])) { 2283 s->vectors[startvec + i].pending = setval; 2284 } 2285 } 2286 nvic_irq_update(s); 2287 goto exit_ok; 2288 case 0x300 ... 0x33f: /* NVIC Active */ 2289 goto exit_ok; /* R/O */ 2290 case 0x400 ... 0x5ef: /* NVIC Priority */ 2291 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 2292 2293 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 2294 if (attrs.secure || s->itns[startvec + i]) { 2295 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 2296 } 2297 } 2298 nvic_irq_update(s); 2299 goto exit_ok; 2300 case 0xd18 ... 0xd1b: /* System Handler Priority (SHPR1) */ 2301 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2302 goto exit_ok; 2303 } 2304 /* fall through */ 2305 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 2306 for (i = 0; i < size; i++) { 2307 unsigned hdlidx = (offset - 0xd14) + i; 2308 int newprio = extract32(value, i * 8, 8); 2309 int sbank = shpr_bank(s, hdlidx, attrs); 2310 2311 if (sbank < 0) { 2312 continue; 2313 } 2314 set_prio(s, hdlidx, sbank, newprio); 2315 } 2316 nvic_irq_update(s); 2317 goto exit_ok; 2318 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 2319 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 2320 goto exit_ok; 2321 } 2322 /* All bits are W1C, so construct 32 bit value with 0s in 2323 * the parts not written by the access size 2324 */ 2325 value <<= ((offset - 0xd28) * 8); 2326 2327 if (!attrs.secure && 2328 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 2329 /* BFSR bits are RAZ/WI for NS if BFHFNMINS is set */ 2330 value &= ~R_V7M_CFSR_BFSR_MASK; 2331 } 2332 2333 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 2334 if (attrs.secure) { 2335 /* The BFSR bits [15:8] are shared between security states 2336 * and we store them in the NS copy. 2337 */ 2338 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 2339 } 2340 goto exit_ok; 2341 } 2342 if (size == 4) { 2343 nvic_writel(s, offset, value, attrs); 2344 goto exit_ok; 2345 } 2346 qemu_log_mask(LOG_GUEST_ERROR, 2347 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 2348 /* This is UNPREDICTABLE; treat as RAZ/WI */ 2349 2350 exit_ok: 2351 /* Ensure any changes made are reflected in the cached hflags. */ 2352 arm_rebuild_hflags(&s->cpu->env); 2353 return MEMTX_OK; 2354 } 2355 2356 static const MemoryRegionOps nvic_sysreg_ops = { 2357 .read_with_attrs = nvic_sysreg_read, 2358 .write_with_attrs = nvic_sysreg_write, 2359 .endianness = DEVICE_NATIVE_ENDIAN, 2360 }; 2361 2362 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 2363 uint64_t value, unsigned size, 2364 MemTxAttrs attrs) 2365 { 2366 MemoryRegion *mr = opaque; 2367 2368 if (attrs.secure) { 2369 /* S accesses to the alias act like NS accesses to the real region */ 2370 attrs.secure = 0; 2371 return memory_region_dispatch_write(mr, addr, value, 2372 size_memop(size) | MO_TE, attrs); 2373 } else { 2374 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2375 if (attrs.user) { 2376 return MEMTX_ERROR; 2377 } 2378 return MEMTX_OK; 2379 } 2380 } 2381 2382 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2383 uint64_t *data, unsigned size, 2384 MemTxAttrs attrs) 2385 { 2386 MemoryRegion *mr = opaque; 2387 2388 if (attrs.secure) { 2389 /* S accesses to the alias act like NS accesses to the real region */ 2390 attrs.secure = 0; 2391 return memory_region_dispatch_read(mr, addr, data, 2392 size_memop(size) | MO_TE, attrs); 2393 } else { 2394 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2395 if (attrs.user) { 2396 return MEMTX_ERROR; 2397 } 2398 *data = 0; 2399 return MEMTX_OK; 2400 } 2401 } 2402 2403 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2404 .read_with_attrs = nvic_sysreg_ns_read, 2405 .write_with_attrs = nvic_sysreg_ns_write, 2406 .endianness = DEVICE_NATIVE_ENDIAN, 2407 }; 2408 2409 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2410 uint64_t value, unsigned size, 2411 MemTxAttrs attrs) 2412 { 2413 NVICState *s = opaque; 2414 MemoryRegion *mr; 2415 2416 /* Direct the access to the correct systick */ 2417 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2418 return memory_region_dispatch_write(mr, addr, value, 2419 size_memop(size) | MO_TE, attrs); 2420 } 2421 2422 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2423 uint64_t *data, unsigned size, 2424 MemTxAttrs attrs) 2425 { 2426 NVICState *s = opaque; 2427 MemoryRegion *mr; 2428 2429 /* Direct the access to the correct systick */ 2430 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2431 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE, 2432 attrs); 2433 } 2434 2435 static const MemoryRegionOps nvic_systick_ops = { 2436 .read_with_attrs = nvic_systick_read, 2437 .write_with_attrs = nvic_systick_write, 2438 .endianness = DEVICE_NATIVE_ENDIAN, 2439 }; 2440 2441 static int nvic_post_load(void *opaque, int version_id) 2442 { 2443 NVICState *s = opaque; 2444 unsigned i; 2445 int resetprio; 2446 2447 /* Check for out of range priority settings */ 2448 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2449 2450 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2451 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2452 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2453 return 1; 2454 } 2455 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2456 if (s->vectors[i].prio & ~0xff) { 2457 return 1; 2458 } 2459 } 2460 2461 nvic_recompute_state(s); 2462 2463 return 0; 2464 } 2465 2466 static const VMStateDescription vmstate_VecInfo = { 2467 .name = "armv7m_nvic_info", 2468 .version_id = 1, 2469 .minimum_version_id = 1, 2470 .fields = (VMStateField[]) { 2471 VMSTATE_INT16(prio, VecInfo), 2472 VMSTATE_UINT8(enabled, VecInfo), 2473 VMSTATE_UINT8(pending, VecInfo), 2474 VMSTATE_UINT8(active, VecInfo), 2475 VMSTATE_UINT8(level, VecInfo), 2476 VMSTATE_END_OF_LIST() 2477 } 2478 }; 2479 2480 static bool nvic_security_needed(void *opaque) 2481 { 2482 NVICState *s = opaque; 2483 2484 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2485 } 2486 2487 static int nvic_security_post_load(void *opaque, int version_id) 2488 { 2489 NVICState *s = opaque; 2490 int i; 2491 2492 /* Check for out of range priority settings */ 2493 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2494 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2495 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2496 * if the CPU state has been migrated yet; a mismatch won't 2497 * cause the emulation to blow up, though. 2498 */ 2499 return 1; 2500 } 2501 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2502 if (s->sec_vectors[i].prio & ~0xff) { 2503 return 1; 2504 } 2505 } 2506 return 0; 2507 } 2508 2509 static const VMStateDescription vmstate_nvic_security = { 2510 .name = "armv7m_nvic/m-security", 2511 .version_id = 1, 2512 .minimum_version_id = 1, 2513 .needed = nvic_security_needed, 2514 .post_load = &nvic_security_post_load, 2515 .fields = (VMStateField[]) { 2516 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2517 vmstate_VecInfo, VecInfo), 2518 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2519 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2520 VMSTATE_END_OF_LIST() 2521 } 2522 }; 2523 2524 static const VMStateDescription vmstate_nvic = { 2525 .name = "armv7m_nvic", 2526 .version_id = 4, 2527 .minimum_version_id = 4, 2528 .post_load = &nvic_post_load, 2529 .fields = (VMStateField[]) { 2530 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2531 vmstate_VecInfo, VecInfo), 2532 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2533 VMSTATE_END_OF_LIST() 2534 }, 2535 .subsections = (const VMStateDescription*[]) { 2536 &vmstate_nvic_security, 2537 NULL 2538 } 2539 }; 2540 2541 static Property props_nvic[] = { 2542 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2543 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2544 DEFINE_PROP_END_OF_LIST() 2545 }; 2546 2547 static void armv7m_nvic_reset(DeviceState *dev) 2548 { 2549 int resetprio; 2550 NVICState *s = NVIC(dev); 2551 2552 memset(s->vectors, 0, sizeof(s->vectors)); 2553 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2554 s->prigroup[M_REG_NS] = 0; 2555 s->prigroup[M_REG_S] = 0; 2556 2557 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2558 /* MEM, BUS, and USAGE are enabled through 2559 * the System Handler Control register 2560 */ 2561 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2562 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2563 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2564 2565 /* DebugMonitor is enabled via DEMCR.MON_EN */ 2566 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 0; 2567 2568 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2569 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2570 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2571 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2572 2573 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2574 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2575 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2576 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2577 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2578 2579 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2580 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2581 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2582 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2583 } else { 2584 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2585 } 2586 2587 /* Strictly speaking the reset handler should be enabled. 2588 * However, we don't simulate soft resets through the NVIC, 2589 * and the reset vector should never be pended. 2590 * So we leave it disabled to catch logic errors. 2591 */ 2592 2593 s->exception_prio = NVIC_NOEXC_PRIO; 2594 s->vectpending = 0; 2595 s->vectpending_is_s_banked = false; 2596 s->vectpending_prio = NVIC_NOEXC_PRIO; 2597 2598 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2599 memset(s->itns, 0, sizeof(s->itns)); 2600 } else { 2601 /* This state is constant and not guest accessible in a non-security 2602 * NVIC; we set the bits to true to avoid having to do a feature 2603 * bit check in the NVIC enable/pend/etc register accessors. 2604 */ 2605 int i; 2606 2607 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2608 s->itns[i] = true; 2609 } 2610 } 2611 2612 /* 2613 * We updated state that affects the CPU's MMUidx and thus its hflags; 2614 * and we can't guarantee that we run before the CPU reset function. 2615 */ 2616 arm_rebuild_hflags(&s->cpu->env); 2617 } 2618 2619 static void nvic_systick_trigger(void *opaque, int n, int level) 2620 { 2621 NVICState *s = opaque; 2622 2623 if (level) { 2624 /* SysTick just asked us to pend its exception. 2625 * (This is different from an external interrupt line's 2626 * behaviour.) 2627 * n == 0 : NonSecure systick 2628 * n == 1 : Secure systick 2629 */ 2630 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2631 } 2632 } 2633 2634 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2635 { 2636 NVICState *s = NVIC(dev); 2637 int regionlen; 2638 2639 /* The armv7m container object will have set our CPU pointer */ 2640 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2641 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2642 return; 2643 } 2644 2645 if (s->num_irq > NVIC_MAX_IRQ) { 2646 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2647 return; 2648 } 2649 2650 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2651 2652 /* include space for internal exception vectors */ 2653 s->num_irq += NVIC_FIRST_IRQ; 2654 2655 s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2; 2656 2657 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) { 2658 return; 2659 } 2660 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2661 qdev_get_gpio_in_named(dev, "systick-trigger", 2662 M_REG_NS)); 2663 2664 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2665 /* We couldn't init the secure systick device in instance_init 2666 * as we didn't know then if the CPU had the security extensions; 2667 * so we have to do it here. 2668 */ 2669 object_initialize_child(OBJECT(dev), "systick-reg-s", 2670 &s->systick[M_REG_S], TYPE_SYSTICK); 2671 2672 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) { 2673 return; 2674 } 2675 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2676 qdev_get_gpio_in_named(dev, "systick-trigger", 2677 M_REG_S)); 2678 } 2679 2680 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2681 * and looks like this: 2682 * 0x004 - ICTR 2683 * 0x010 - 0xff - systick 2684 * 0x100..0x7ec - NVIC 2685 * 0x7f0..0xcff - Reserved 2686 * 0xd00..0xd3c - SCS registers 2687 * 0xd40..0xeff - Reserved or Not implemented 2688 * 0xf00 - STIR 2689 * 2690 * Some registers within this space are banked between security states. 2691 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2692 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2693 * to the main SCS range, and non-secure accesses (including when 2694 * the security extension is not implemented) are RAZ/WI. 2695 * Note that both the main SCS range and the alias range are defined 2696 * to be exempt from memory attribution (R_BLJT) and so the memory 2697 * transaction attribute always matches the current CPU security 2698 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2699 * wrappers we change attrs.secure to indicate the NS access; so 2700 * generally code determining which banked register to use should 2701 * use attrs.secure; code determining actual behaviour of the system 2702 * should use env->v7m.secure. 2703 */ 2704 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2705 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2706 /* The system register region goes at the bottom of the priority 2707 * stack as it covers the whole page. 2708 */ 2709 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2710 "nvic_sysregs", 0x1000); 2711 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2712 2713 memory_region_init_io(&s->systickmem, OBJECT(s), 2714 &nvic_systick_ops, s, 2715 "nvic_systick", 0xe0); 2716 2717 memory_region_add_subregion_overlap(&s->container, 0x10, 2718 &s->systickmem, 1); 2719 2720 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2721 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2722 &nvic_sysreg_ns_ops, &s->sysregmem, 2723 "nvic_sysregs_ns", 0x1000); 2724 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2725 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2726 &nvic_sysreg_ns_ops, &s->systickmem, 2727 "nvic_systick_ns", 0xe0); 2728 memory_region_add_subregion_overlap(&s->container, 0x20010, 2729 &s->systick_ns_mem, 1); 2730 } 2731 2732 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2733 } 2734 2735 static void armv7m_nvic_instance_init(Object *obj) 2736 { 2737 /* We have a different default value for the num-irq property 2738 * than our superclass. This function runs after qdev init 2739 * has set the defaults from the Property array and before 2740 * any user-specified property setting, so just modify the 2741 * value in the GICState struct. 2742 */ 2743 DeviceState *dev = DEVICE(obj); 2744 NVICState *nvic = NVIC(obj); 2745 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2746 2747 object_initialize_child(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2748 TYPE_SYSTICK); 2749 /* We can't initialize the secure systick here, as we don't know 2750 * yet if we need it. 2751 */ 2752 2753 sysbus_init_irq(sbd, &nvic->excpout); 2754 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2755 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2756 M_REG_NUM_BANKS); 2757 qdev_init_gpio_in_named(dev, nvic_nmi_trigger, "NMI", 1); 2758 } 2759 2760 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2761 { 2762 DeviceClass *dc = DEVICE_CLASS(klass); 2763 2764 dc->vmsd = &vmstate_nvic; 2765 device_class_set_props(dc, props_nvic); 2766 dc->reset = armv7m_nvic_reset; 2767 dc->realize = armv7m_nvic_realize; 2768 } 2769 2770 static const TypeInfo armv7m_nvic_info = { 2771 .name = TYPE_NVIC, 2772 .parent = TYPE_SYS_BUS_DEVICE, 2773 .instance_init = armv7m_nvic_instance_init, 2774 .instance_size = sizeof(NVICState), 2775 .class_init = armv7m_nvic_class_init, 2776 .class_size = sizeof(SysBusDeviceClass), 2777 }; 2778 2779 static void armv7m_nvic_register_types(void) 2780 { 2781 type_register_static(&armv7m_nvic_info); 2782 } 2783 2784 type_init(armv7m_nvic_register_types) 2785