xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 22ab3460017cfcfb6b50f05838ad142e08becce5)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528     bool targets_secure;
529 
530     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
531     assert(!secure || banked);
532 
533     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
534 
535     targets_secure = banked ? secure : exc_targets_secure(s, irq);
536 
537     trace_nvic_set_pending(irq, secure, targets_secure,
538                            derived, vec->enabled, vec->prio);
539 
540     if (derived) {
541         /* Derived exceptions are always synchronous. */
542         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
543 
544         if (irq == ARMV7M_EXCP_DEBUG &&
545             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
546             /* DebugMonitorFault, but its priority is lower than the
547              * preempted exception priority: just ignore it.
548              */
549             return;
550         }
551 
552         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
553             /* If this is a terminal exception (one which means we cannot
554              * take the original exception, like a failure to read its
555              * vector table entry), then we must take the derived exception.
556              * If the derived exception can't take priority over the
557              * original exception, then we go into Lockup.
558              *
559              * For QEMU, we rely on the fact that a derived exception is
560              * terminal if and only if it's reported to us as HardFault,
561              * which saves having to have an extra argument is_terminal
562              * that we'd only use in one place.
563              */
564             cpu_abort(&s->cpu->parent_obj,
565                       "Lockup: can't take terminal derived exception "
566                       "(original exception priority %d)\n",
567                       s->vectpending_prio);
568         }
569         /* We now continue with the same code as for a normal pending
570          * exception, which will cause us to pend the derived exception.
571          * We'll then take either the original or the derived exception
572          * based on which is higher priority by the usual mechanism
573          * for selecting the highest priority pending interrupt.
574          */
575     }
576 
577     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
578         /* If a synchronous exception is pending then it may be
579          * escalated to HardFault if:
580          *  * it is equal or lower priority to current execution
581          *  * it is disabled
582          * (ie we need to take it immediately but we can't do so).
583          * Asynchronous exceptions (and interrupts) simply remain pending.
584          *
585          * For QEMU, we don't have any imprecise (asynchronous) faults,
586          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
587          * synchronous.
588          * Debug exceptions are awkward because only Debug exceptions
589          * resulting from the BKPT instruction should be escalated,
590          * but we don't currently implement any Debug exceptions other
591          * than those that result from BKPT, so we treat all debug exceptions
592          * as needing escalation.
593          *
594          * This all means we can identify whether to escalate based only on
595          * the exception number and don't (yet) need the caller to explicitly
596          * tell us whether this exception is synchronous or not.
597          */
598         int running = nvic_exec_prio(s);
599         bool escalate = false;
600 
601         if (exc_group_prio(s, vec->prio, secure) >= running) {
602             trace_nvic_escalate_prio(irq, vec->prio, running);
603             escalate = true;
604         } else if (!vec->enabled) {
605             trace_nvic_escalate_disabled(irq);
606             escalate = true;
607         }
608 
609         if (escalate) {
610 
611             /* We need to escalate this exception to a synchronous HardFault.
612              * If BFHFNMINS is set then we escalate to the banked HF for
613              * the target security state of the original exception; otherwise
614              * we take a Secure HardFault.
615              */
616             irq = ARMV7M_EXCP_HARD;
617             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
618                 (targets_secure ||
619                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
620                 vec = &s->sec_vectors[irq];
621             } else {
622                 vec = &s->vectors[irq];
623             }
624             if (running <= vec->prio) {
625                 /* We want to escalate to HardFault but we can't take the
626                  * synchronous HardFault at this point either. This is a
627                  * Lockup condition due to a guest bug. We don't model
628                  * Lockup, so report via cpu_abort() instead.
629                  */
630                 cpu_abort(&s->cpu->parent_obj,
631                           "Lockup: can't escalate %d to HardFault "
632                           "(current priority %d)\n", irq, running);
633             }
634 
635             /* HF may be banked but there is only one shared HFSR */
636             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
637         }
638     }
639 
640     if (!vec->pending) {
641         vec->pending = 1;
642         nvic_irq_update(s);
643     }
644 }
645 
646 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
647 {
648     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
649 }
650 
651 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
652 {
653     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
654 }
655 
656 /* Make pending IRQ active.  */
657 void armv7m_nvic_acknowledge_irq(void *opaque)
658 {
659     NVICState *s = (NVICState *)opaque;
660     CPUARMState *env = &s->cpu->env;
661     const int pending = s->vectpending;
662     const int running = nvic_exec_prio(s);
663     VecInfo *vec;
664 
665     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
666 
667     if (s->vectpending_is_s_banked) {
668         vec = &s->sec_vectors[pending];
669     } else {
670         vec = &s->vectors[pending];
671     }
672 
673     assert(vec->enabled);
674     assert(vec->pending);
675 
676     assert(s->vectpending_prio < running);
677 
678     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
679 
680     vec->active = 1;
681     vec->pending = 0;
682 
683     write_v7m_exception(env, s->vectpending);
684 
685     nvic_irq_update(s);
686 }
687 
688 void armv7m_nvic_get_pending_irq_info(void *opaque,
689                                       int *pirq, bool *ptargets_secure)
690 {
691     NVICState *s = (NVICState *)opaque;
692     const int pending = s->vectpending;
693     bool targets_secure;
694 
695     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
696 
697     if (s->vectpending_is_s_banked) {
698         targets_secure = true;
699     } else {
700         targets_secure = !exc_is_banked(pending) &&
701             exc_targets_secure(s, pending);
702     }
703 
704     trace_nvic_get_pending_irq_info(pending, targets_secure);
705 
706     *ptargets_secure = targets_secure;
707     *pirq = pending;
708 }
709 
710 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
711 {
712     NVICState *s = (NVICState *)opaque;
713     VecInfo *vec;
714     int ret;
715 
716     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
717 
718     if (secure && exc_is_banked(irq)) {
719         vec = &s->sec_vectors[irq];
720     } else {
721         vec = &s->vectors[irq];
722     }
723 
724     trace_nvic_complete_irq(irq, secure);
725 
726     if (!vec->active) {
727         /* Tell the caller this was an illegal exception return */
728         return -1;
729     }
730 
731     ret = nvic_rettobase(s);
732 
733     vec->active = 0;
734     if (vec->level) {
735         /* Re-pend the exception if it's still held high; only
736          * happens for extenal IRQs
737          */
738         assert(irq >= NVIC_FIRST_IRQ);
739         vec->pending = 1;
740     }
741 
742     nvic_irq_update(s);
743 
744     return ret;
745 }
746 
747 /* callback when external interrupt line is changed */
748 static void set_irq_level(void *opaque, int n, int level)
749 {
750     NVICState *s = opaque;
751     VecInfo *vec;
752 
753     n += NVIC_FIRST_IRQ;
754 
755     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
756 
757     trace_nvic_set_irq_level(n, level);
758 
759     /* The pending status of an external interrupt is
760      * latched on rising edge and exception handler return.
761      *
762      * Pulsing the IRQ will always run the handler
763      * once, and the handler will re-run until the
764      * level is low when the handler completes.
765      */
766     vec = &s->vectors[n];
767     if (level != vec->level) {
768         vec->level = level;
769         if (level) {
770             armv7m_nvic_set_pending(s, n, false);
771         }
772     }
773 }
774 
775 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
776 {
777     ARMCPU *cpu = s->cpu;
778     uint32_t val;
779 
780     switch (offset) {
781     case 4: /* Interrupt Control Type.  */
782         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
783     case 0xc: /* CPPWR */
784         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
785             goto bad_offset;
786         }
787         /* We make the IMPDEF choice that nothing can ever go into a
788          * non-retentive power state, which allows us to RAZ/WI this.
789          */
790         return 0;
791     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
792     {
793         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
794         int i;
795 
796         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
797             goto bad_offset;
798         }
799         if (!attrs.secure) {
800             return 0;
801         }
802         val = 0;
803         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
804             if (s->itns[startvec + i]) {
805                 val |= (1 << i);
806             }
807         }
808         return val;
809     }
810     case 0xd00: /* CPUID Base.  */
811         return cpu->midr;
812     case 0xd04: /* Interrupt Control State (ICSR) */
813         /* VECTACTIVE */
814         val = cpu->env.v7m.exception;
815         /* VECTPENDING */
816         val |= (s->vectpending & 0xff) << 12;
817         /* ISRPENDING - set if any external IRQ is pending */
818         if (nvic_isrpending(s)) {
819             val |= (1 << 22);
820         }
821         /* RETTOBASE - set if only one handler is active */
822         if (nvic_rettobase(s)) {
823             val |= (1 << 11);
824         }
825         if (attrs.secure) {
826             /* PENDSTSET */
827             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
828                 val |= (1 << 26);
829             }
830             /* PENDSVSET */
831             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
832                 val |= (1 << 28);
833             }
834         } else {
835             /* PENDSTSET */
836             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
837                 val |= (1 << 26);
838             }
839             /* PENDSVSET */
840             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
841                 val |= (1 << 28);
842             }
843         }
844         /* NMIPENDSET */
845         if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
846             && s->vectors[ARMV7M_EXCP_NMI].pending) {
847             val |= (1 << 31);
848         }
849         /* ISRPREEMPT: RES0 when halting debug not implemented */
850         /* STTNS: RES0 for the Main Extension */
851         return val;
852     case 0xd08: /* Vector Table Offset.  */
853         return cpu->env.v7m.vecbase[attrs.secure];
854     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
855         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
856         if (attrs.secure) {
857             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
858             val |= cpu->env.v7m.aircr;
859         } else {
860             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
861                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
862                  * security isn't supported then BFHFNMINS is RAO (and
863                  * the bit in env.v7m.aircr is always set).
864                  */
865                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
866             }
867         }
868         return val;
869     case 0xd10: /* System Control.  */
870         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
871             goto bad_offset;
872         }
873         return cpu->env.v7m.scr[attrs.secure];
874     case 0xd14: /* Configuration Control.  */
875         /* The BFHFNMIGN bit is the only non-banked bit; we
876          * keep it in the non-secure copy of the register.
877          */
878         val = cpu->env.v7m.ccr[attrs.secure];
879         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
880         return val;
881     case 0xd24: /* System Handler Control and State (SHCSR) */
882         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
883             goto bad_offset;
884         }
885         val = 0;
886         if (attrs.secure) {
887             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
888                 val |= (1 << 0);
889             }
890             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
891                 val |= (1 << 2);
892             }
893             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
894                 val |= (1 << 3);
895             }
896             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
897                 val |= (1 << 7);
898             }
899             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
900                 val |= (1 << 10);
901             }
902             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
903                 val |= (1 << 11);
904             }
905             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
906                 val |= (1 << 12);
907             }
908             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
909                 val |= (1 << 13);
910             }
911             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
912                 val |= (1 << 15);
913             }
914             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
915                 val |= (1 << 16);
916             }
917             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
918                 val |= (1 << 18);
919             }
920             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
921                 val |= (1 << 21);
922             }
923             /* SecureFault is not banked but is always RAZ/WI to NS */
924             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
925                 val |= (1 << 4);
926             }
927             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
928                 val |= (1 << 19);
929             }
930             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
931                 val |= (1 << 20);
932             }
933         } else {
934             if (s->vectors[ARMV7M_EXCP_MEM].active) {
935                 val |= (1 << 0);
936             }
937             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
938                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
939                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
940                     val |= (1 << 2);
941                 }
942                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
943                     val |= (1 << 21);
944                 }
945             }
946             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
947                 val |= (1 << 3);
948             }
949             if (s->vectors[ARMV7M_EXCP_SVC].active) {
950                 val |= (1 << 7);
951             }
952             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
953                 val |= (1 << 10);
954             }
955             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
956                 val |= (1 << 11);
957             }
958             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
959                 val |= (1 << 12);
960             }
961             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
962                 val |= (1 << 13);
963             }
964             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
965                 val |= (1 << 15);
966             }
967             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
968                 val |= (1 << 16);
969             }
970             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
971                 val |= (1 << 18);
972             }
973         }
974         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
975             if (s->vectors[ARMV7M_EXCP_BUS].active) {
976                 val |= (1 << 1);
977             }
978             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
979                 val |= (1 << 14);
980             }
981             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
982                 val |= (1 << 17);
983             }
984             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
985                 s->vectors[ARMV7M_EXCP_NMI].active) {
986                 /* NMIACT is not present in v7M */
987                 val |= (1 << 5);
988             }
989         }
990 
991         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
992         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
993             val |= (1 << 8);
994         }
995         return val;
996     case 0xd2c: /* Hard Fault Status.  */
997         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
998             goto bad_offset;
999         }
1000         return cpu->env.v7m.hfsr;
1001     case 0xd30: /* Debug Fault Status.  */
1002         return cpu->env.v7m.dfsr;
1003     case 0xd34: /* MMFAR MemManage Fault Address */
1004         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1005             goto bad_offset;
1006         }
1007         return cpu->env.v7m.mmfar[attrs.secure];
1008     case 0xd38: /* Bus Fault Address.  */
1009         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1010             goto bad_offset;
1011         }
1012         return cpu->env.v7m.bfar;
1013     case 0xd3c: /* Aux Fault Status.  */
1014         /* TODO: Implement fault status registers.  */
1015         qemu_log_mask(LOG_UNIMP,
1016                       "Aux Fault status registers unimplemented\n");
1017         return 0;
1018     case 0xd40: /* PFR0.  */
1019         return cpu->id_pfr0;
1020     case 0xd44: /* PFR1.  */
1021         return cpu->id_pfr1;
1022     case 0xd48: /* DFR0.  */
1023         return cpu->id_dfr0;
1024     case 0xd4c: /* AFR0.  */
1025         return cpu->id_afr0;
1026     case 0xd50: /* MMFR0.  */
1027         return cpu->id_mmfr0;
1028     case 0xd54: /* MMFR1.  */
1029         return cpu->id_mmfr1;
1030     case 0xd58: /* MMFR2.  */
1031         return cpu->id_mmfr2;
1032     case 0xd5c: /* MMFR3.  */
1033         return cpu->id_mmfr3;
1034     case 0xd60: /* ISAR0.  */
1035         return cpu->id_isar0;
1036     case 0xd64: /* ISAR1.  */
1037         return cpu->id_isar1;
1038     case 0xd68: /* ISAR2.  */
1039         return cpu->id_isar2;
1040     case 0xd6c: /* ISAR3.  */
1041         return cpu->id_isar3;
1042     case 0xd70: /* ISAR4.  */
1043         return cpu->id_isar4;
1044     case 0xd74: /* ISAR5.  */
1045         return cpu->id_isar5;
1046     case 0xd78: /* CLIDR */
1047         return cpu->clidr;
1048     case 0xd7c: /* CTR */
1049         return cpu->ctr;
1050     case 0xd80: /* CSSIDR */
1051     {
1052         int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1053         return cpu->ccsidr[idx];
1054     }
1055     case 0xd84: /* CSSELR */
1056         return cpu->env.v7m.csselr[attrs.secure];
1057     /* TODO: Implement debug registers.  */
1058     case 0xd90: /* MPU_TYPE */
1059         /* Unified MPU; if the MPU is not present this value is zero */
1060         return cpu->pmsav7_dregion << 8;
1061         break;
1062     case 0xd94: /* MPU_CTRL */
1063         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1064     case 0xd98: /* MPU_RNR */
1065         return cpu->env.pmsav7.rnr[attrs.secure];
1066     case 0xd9c: /* MPU_RBAR */
1067     case 0xda4: /* MPU_RBAR_A1 */
1068     case 0xdac: /* MPU_RBAR_A2 */
1069     case 0xdb4: /* MPU_RBAR_A3 */
1070     {
1071         int region = cpu->env.pmsav7.rnr[attrs.secure];
1072 
1073         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1074             /* PMSAv8M handling of the aliases is different from v7M:
1075              * aliases A1, A2, A3 override the low two bits of the region
1076              * number in MPU_RNR, and there is no 'region' field in the
1077              * RBAR register.
1078              */
1079             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1080             if (aliasno) {
1081                 region = deposit32(region, 0, 2, aliasno);
1082             }
1083             if (region >= cpu->pmsav7_dregion) {
1084                 return 0;
1085             }
1086             return cpu->env.pmsav8.rbar[attrs.secure][region];
1087         }
1088 
1089         if (region >= cpu->pmsav7_dregion) {
1090             return 0;
1091         }
1092         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1093     }
1094     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1095     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1096     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1097     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1098     {
1099         int region = cpu->env.pmsav7.rnr[attrs.secure];
1100 
1101         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1102             /* PMSAv8M handling of the aliases is different from v7M:
1103              * aliases A1, A2, A3 override the low two bits of the region
1104              * number in MPU_RNR.
1105              */
1106             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1107             if (aliasno) {
1108                 region = deposit32(region, 0, 2, aliasno);
1109             }
1110             if (region >= cpu->pmsav7_dregion) {
1111                 return 0;
1112             }
1113             return cpu->env.pmsav8.rlar[attrs.secure][region];
1114         }
1115 
1116         if (region >= cpu->pmsav7_dregion) {
1117             return 0;
1118         }
1119         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1120             (cpu->env.pmsav7.drsr[region] & 0xffff);
1121     }
1122     case 0xdc0: /* MPU_MAIR0 */
1123         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1124             goto bad_offset;
1125         }
1126         return cpu->env.pmsav8.mair0[attrs.secure];
1127     case 0xdc4: /* MPU_MAIR1 */
1128         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1129             goto bad_offset;
1130         }
1131         return cpu->env.pmsav8.mair1[attrs.secure];
1132     case 0xdd0: /* SAU_CTRL */
1133         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1134             goto bad_offset;
1135         }
1136         if (!attrs.secure) {
1137             return 0;
1138         }
1139         return cpu->env.sau.ctrl;
1140     case 0xdd4: /* SAU_TYPE */
1141         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1142             goto bad_offset;
1143         }
1144         if (!attrs.secure) {
1145             return 0;
1146         }
1147         return cpu->sau_sregion;
1148     case 0xdd8: /* SAU_RNR */
1149         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1150             goto bad_offset;
1151         }
1152         if (!attrs.secure) {
1153             return 0;
1154         }
1155         return cpu->env.sau.rnr;
1156     case 0xddc: /* SAU_RBAR */
1157     {
1158         int region = cpu->env.sau.rnr;
1159 
1160         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1161             goto bad_offset;
1162         }
1163         if (!attrs.secure) {
1164             return 0;
1165         }
1166         if (region >= cpu->sau_sregion) {
1167             return 0;
1168         }
1169         return cpu->env.sau.rbar[region];
1170     }
1171     case 0xde0: /* SAU_RLAR */
1172     {
1173         int region = cpu->env.sau.rnr;
1174 
1175         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1176             goto bad_offset;
1177         }
1178         if (!attrs.secure) {
1179             return 0;
1180         }
1181         if (region >= cpu->sau_sregion) {
1182             return 0;
1183         }
1184         return cpu->env.sau.rlar[region];
1185     }
1186     case 0xde4: /* SFSR */
1187         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1188             goto bad_offset;
1189         }
1190         if (!attrs.secure) {
1191             return 0;
1192         }
1193         return cpu->env.v7m.sfsr;
1194     case 0xde8: /* SFAR */
1195         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1196             goto bad_offset;
1197         }
1198         if (!attrs.secure) {
1199             return 0;
1200         }
1201         return cpu->env.v7m.sfar;
1202     default:
1203     bad_offset:
1204         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1205         return 0;
1206     }
1207 }
1208 
1209 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1210                         MemTxAttrs attrs)
1211 {
1212     ARMCPU *cpu = s->cpu;
1213 
1214     switch (offset) {
1215     case 0xc: /* CPPWR */
1216         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1217             goto bad_offset;
1218         }
1219         /* Make the IMPDEF choice to RAZ/WI this. */
1220         break;
1221     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1222     {
1223         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1224         int i;
1225 
1226         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1227             goto bad_offset;
1228         }
1229         if (!attrs.secure) {
1230             break;
1231         }
1232         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1233             s->itns[startvec + i] = (value >> i) & 1;
1234         }
1235         nvic_irq_update(s);
1236         break;
1237     }
1238     case 0xd04: /* Interrupt Control State (ICSR) */
1239         if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1240             if (value & (1 << 31)) {
1241                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1242             } else if (value & (1 << 30) &&
1243                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1244                 /* PENDNMICLR didn't exist in v7M */
1245                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1246             }
1247         }
1248         if (value & (1 << 28)) {
1249             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1250         } else if (value & (1 << 27)) {
1251             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1252         }
1253         if (value & (1 << 26)) {
1254             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1255         } else if (value & (1 << 25)) {
1256             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1257         }
1258         break;
1259     case 0xd08: /* Vector Table Offset.  */
1260         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1261         break;
1262     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1263         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1264             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1265                 if (attrs.secure ||
1266                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1267                     qemu_irq_pulse(s->sysresetreq);
1268                 }
1269             }
1270             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1271                 qemu_log_mask(LOG_GUEST_ERROR,
1272                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1273                               "is UNPREDICTABLE\n");
1274             }
1275             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1276                 /* NB: this bit is RES0 in v8M */
1277                 qemu_log_mask(LOG_GUEST_ERROR,
1278                               "Setting VECTRESET when not in DEBUG mode "
1279                               "is UNPREDICTABLE\n");
1280             }
1281             s->prigroup[attrs.secure] = extract32(value,
1282                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1283                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1284             if (attrs.secure) {
1285                 /* These bits are only writable by secure */
1286                 cpu->env.v7m.aircr = value &
1287                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1288                      R_V7M_AIRCR_BFHFNMINS_MASK |
1289                      R_V7M_AIRCR_PRIS_MASK);
1290                 /* BFHFNMINS changes the priority of Secure HardFault, and
1291                  * allows a pending Non-secure HardFault to preempt (which
1292                  * we implement by marking it enabled).
1293                  */
1294                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1295                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1296                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1297                 } else {
1298                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1299                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1300                 }
1301             }
1302             nvic_irq_update(s);
1303         }
1304         break;
1305     case 0xd10: /* System Control.  */
1306         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1307             goto bad_offset;
1308         }
1309         /* We don't implement deep-sleep so these bits are RAZ/WI.
1310          * The other bits in the register are banked.
1311          * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1312          * is architecturally permitted.
1313          */
1314         value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1315         cpu->env.v7m.scr[attrs.secure] = value;
1316         break;
1317     case 0xd14: /* Configuration Control.  */
1318         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1319             goto bad_offset;
1320         }
1321 
1322         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1323         value &= (R_V7M_CCR_STKALIGN_MASK |
1324                   R_V7M_CCR_BFHFNMIGN_MASK |
1325                   R_V7M_CCR_DIV_0_TRP_MASK |
1326                   R_V7M_CCR_UNALIGN_TRP_MASK |
1327                   R_V7M_CCR_USERSETMPEND_MASK |
1328                   R_V7M_CCR_NONBASETHRDENA_MASK);
1329 
1330         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1331             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1332             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1333                 | R_V7M_CCR_STKALIGN_MASK;
1334         }
1335         if (attrs.secure) {
1336             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1337             cpu->env.v7m.ccr[M_REG_NS] =
1338                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1339                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1340             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1341         }
1342 
1343         cpu->env.v7m.ccr[attrs.secure] = value;
1344         break;
1345     case 0xd24: /* System Handler Control and State (SHCSR) */
1346         if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1347             goto bad_offset;
1348         }
1349         if (attrs.secure) {
1350             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1351             /* Secure HardFault active bit cannot be written */
1352             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1353             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1354             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1355                 (value & (1 << 10)) != 0;
1356             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1357                 (value & (1 << 11)) != 0;
1358             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1359                 (value & (1 << 12)) != 0;
1360             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1361             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1362             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1363             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1364             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1365                 (value & (1 << 18)) != 0;
1366             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1367             /* SecureFault not banked, but RAZ/WI to NS */
1368             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1369             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1370             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1371         } else {
1372             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1373             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1374                 /* HARDFAULTPENDED is not present in v7M */
1375                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1376             }
1377             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1378             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1379             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1380             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1381             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1382             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1383             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1384             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1385             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1386         }
1387         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1388             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1389             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1390             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1391         }
1392         /* NMIACT can only be written if the write is of a zero, with
1393          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1394          */
1395         if (!attrs.secure && cpu->env.v7m.secure &&
1396             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1397             (value & (1 << 5)) == 0) {
1398             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1399         }
1400         /* HARDFAULTACT can only be written if the write is of a zero
1401          * to the non-secure HardFault state by the CPU in secure state.
1402          * The only case where we can be targeting the non-secure HF state
1403          * when in secure state is if this is a write via the NS alias
1404          * and BFHFNMINS is 1.
1405          */
1406         if (!attrs.secure && cpu->env.v7m.secure &&
1407             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1408             (value & (1 << 2)) == 0) {
1409             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1410         }
1411 
1412         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1413         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1414         nvic_irq_update(s);
1415         break;
1416     case 0xd2c: /* Hard Fault Status.  */
1417         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1418             goto bad_offset;
1419         }
1420         cpu->env.v7m.hfsr &= ~value; /* W1C */
1421         break;
1422     case 0xd30: /* Debug Fault Status.  */
1423         cpu->env.v7m.dfsr &= ~value; /* W1C */
1424         break;
1425     case 0xd34: /* Mem Manage Address.  */
1426         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1427             goto bad_offset;
1428         }
1429         cpu->env.v7m.mmfar[attrs.secure] = value;
1430         return;
1431     case 0xd38: /* Bus Fault Address.  */
1432         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1433             goto bad_offset;
1434         }
1435         cpu->env.v7m.bfar = value;
1436         return;
1437     case 0xd3c: /* Aux Fault Status.  */
1438         qemu_log_mask(LOG_UNIMP,
1439                       "NVIC: Aux fault status registers unimplemented\n");
1440         break;
1441     case 0xd84: /* CSSELR */
1442         if (!arm_v7m_csselr_razwi(cpu)) {
1443             cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1444         }
1445         break;
1446     case 0xd90: /* MPU_TYPE */
1447         return; /* RO */
1448     case 0xd94: /* MPU_CTRL */
1449         if ((value &
1450              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1451             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1452             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1453                           "UNPREDICTABLE\n");
1454         }
1455         cpu->env.v7m.mpu_ctrl[attrs.secure]
1456             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1457                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1458                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1459         tlb_flush(CPU(cpu));
1460         break;
1461     case 0xd98: /* MPU_RNR */
1462         if (value >= cpu->pmsav7_dregion) {
1463             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1464                           PRIu32 "/%" PRIu32 "\n",
1465                           value, cpu->pmsav7_dregion);
1466         } else {
1467             cpu->env.pmsav7.rnr[attrs.secure] = value;
1468         }
1469         break;
1470     case 0xd9c: /* MPU_RBAR */
1471     case 0xda4: /* MPU_RBAR_A1 */
1472     case 0xdac: /* MPU_RBAR_A2 */
1473     case 0xdb4: /* MPU_RBAR_A3 */
1474     {
1475         int region;
1476 
1477         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1478             /* PMSAv8M handling of the aliases is different from v7M:
1479              * aliases A1, A2, A3 override the low two bits of the region
1480              * number in MPU_RNR, and there is no 'region' field in the
1481              * RBAR register.
1482              */
1483             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1484 
1485             region = cpu->env.pmsav7.rnr[attrs.secure];
1486             if (aliasno) {
1487                 region = deposit32(region, 0, 2, aliasno);
1488             }
1489             if (region >= cpu->pmsav7_dregion) {
1490                 return;
1491             }
1492             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1493             tlb_flush(CPU(cpu));
1494             return;
1495         }
1496 
1497         if (value & (1 << 4)) {
1498             /* VALID bit means use the region number specified in this
1499              * value and also update MPU_RNR.REGION with that value.
1500              */
1501             region = extract32(value, 0, 4);
1502             if (region >= cpu->pmsav7_dregion) {
1503                 qemu_log_mask(LOG_GUEST_ERROR,
1504                               "MPU region out of range %u/%" PRIu32 "\n",
1505                               region, cpu->pmsav7_dregion);
1506                 return;
1507             }
1508             cpu->env.pmsav7.rnr[attrs.secure] = region;
1509         } else {
1510             region = cpu->env.pmsav7.rnr[attrs.secure];
1511         }
1512 
1513         if (region >= cpu->pmsav7_dregion) {
1514             return;
1515         }
1516 
1517         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1518         tlb_flush(CPU(cpu));
1519         break;
1520     }
1521     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1522     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1523     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1524     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1525     {
1526         int region = cpu->env.pmsav7.rnr[attrs.secure];
1527 
1528         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1529             /* PMSAv8M handling of the aliases is different from v7M:
1530              * aliases A1, A2, A3 override the low two bits of the region
1531              * number in MPU_RNR.
1532              */
1533             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1534 
1535             region = cpu->env.pmsav7.rnr[attrs.secure];
1536             if (aliasno) {
1537                 region = deposit32(region, 0, 2, aliasno);
1538             }
1539             if (region >= cpu->pmsav7_dregion) {
1540                 return;
1541             }
1542             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1543             tlb_flush(CPU(cpu));
1544             return;
1545         }
1546 
1547         if (region >= cpu->pmsav7_dregion) {
1548             return;
1549         }
1550 
1551         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1552         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1553         tlb_flush(CPU(cpu));
1554         break;
1555     }
1556     case 0xdc0: /* MPU_MAIR0 */
1557         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1558             goto bad_offset;
1559         }
1560         if (cpu->pmsav7_dregion) {
1561             /* Register is RES0 if no MPU regions are implemented */
1562             cpu->env.pmsav8.mair0[attrs.secure] = value;
1563         }
1564         /* We don't need to do anything else because memory attributes
1565          * only affect cacheability, and we don't implement caching.
1566          */
1567         break;
1568     case 0xdc4: /* MPU_MAIR1 */
1569         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1570             goto bad_offset;
1571         }
1572         if (cpu->pmsav7_dregion) {
1573             /* Register is RES0 if no MPU regions are implemented */
1574             cpu->env.pmsav8.mair1[attrs.secure] = value;
1575         }
1576         /* We don't need to do anything else because memory attributes
1577          * only affect cacheability, and we don't implement caching.
1578          */
1579         break;
1580     case 0xdd0: /* SAU_CTRL */
1581         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1582             goto bad_offset;
1583         }
1584         if (!attrs.secure) {
1585             return;
1586         }
1587         cpu->env.sau.ctrl = value & 3;
1588         break;
1589     case 0xdd4: /* SAU_TYPE */
1590         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1591             goto bad_offset;
1592         }
1593         break;
1594     case 0xdd8: /* SAU_RNR */
1595         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1596             goto bad_offset;
1597         }
1598         if (!attrs.secure) {
1599             return;
1600         }
1601         if (value >= cpu->sau_sregion) {
1602             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1603                           PRIu32 "/%" PRIu32 "\n",
1604                           value, cpu->sau_sregion);
1605         } else {
1606             cpu->env.sau.rnr = value;
1607         }
1608         break;
1609     case 0xddc: /* SAU_RBAR */
1610     {
1611         int region = cpu->env.sau.rnr;
1612 
1613         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1614             goto bad_offset;
1615         }
1616         if (!attrs.secure) {
1617             return;
1618         }
1619         if (region >= cpu->sau_sregion) {
1620             return;
1621         }
1622         cpu->env.sau.rbar[region] = value & ~0x1f;
1623         tlb_flush(CPU(cpu));
1624         break;
1625     }
1626     case 0xde0: /* SAU_RLAR */
1627     {
1628         int region = cpu->env.sau.rnr;
1629 
1630         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1631             goto bad_offset;
1632         }
1633         if (!attrs.secure) {
1634             return;
1635         }
1636         if (region >= cpu->sau_sregion) {
1637             return;
1638         }
1639         cpu->env.sau.rlar[region] = value & ~0x1c;
1640         tlb_flush(CPU(cpu));
1641         break;
1642     }
1643     case 0xde4: /* SFSR */
1644         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1645             goto bad_offset;
1646         }
1647         if (!attrs.secure) {
1648             return;
1649         }
1650         cpu->env.v7m.sfsr &= ~value; /* W1C */
1651         break;
1652     case 0xde8: /* SFAR */
1653         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1654             goto bad_offset;
1655         }
1656         if (!attrs.secure) {
1657             return;
1658         }
1659         cpu->env.v7m.sfsr = value;
1660         break;
1661     case 0xf00: /* Software Triggered Interrupt Register */
1662     {
1663         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1664 
1665         if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1666             goto bad_offset;
1667         }
1668 
1669         if (excnum < s->num_irq) {
1670             armv7m_nvic_set_pending(s, excnum, false);
1671         }
1672         break;
1673     }
1674     case 0xf50: /* ICIALLU */
1675     case 0xf58: /* ICIMVAU */
1676     case 0xf5c: /* DCIMVAC */
1677     case 0xf60: /* DCISW */
1678     case 0xf64: /* DCCMVAU */
1679     case 0xf68: /* DCCMVAC */
1680     case 0xf6c: /* DCCSW */
1681     case 0xf70: /* DCCIMVAC */
1682     case 0xf74: /* DCCISW */
1683     case 0xf78: /* BPIALL */
1684         /* Cache and branch predictor maintenance: for QEMU these always NOP */
1685         break;
1686     default:
1687     bad_offset:
1688         qemu_log_mask(LOG_GUEST_ERROR,
1689                       "NVIC: Bad write offset 0x%x\n", offset);
1690     }
1691 }
1692 
1693 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1694 {
1695     /* Return true if unprivileged access to this register is permitted. */
1696     switch (offset) {
1697     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1698         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1699          * controls access even though the CPU is in Secure state (I_QDKX).
1700          */
1701         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1702     default:
1703         /* All other user accesses cause a BusFault unconditionally */
1704         return false;
1705     }
1706 }
1707 
1708 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1709 {
1710     /* Behaviour for the SHPR register field for this exception:
1711      * return M_REG_NS to use the nonsecure vector (including for
1712      * non-banked exceptions), M_REG_S for the secure version of
1713      * a banked exception, and -1 if this field should RAZ/WI.
1714      */
1715     switch (exc) {
1716     case ARMV7M_EXCP_MEM:
1717     case ARMV7M_EXCP_USAGE:
1718     case ARMV7M_EXCP_SVC:
1719     case ARMV7M_EXCP_PENDSV:
1720     case ARMV7M_EXCP_SYSTICK:
1721         /* Banked exceptions */
1722         return attrs.secure;
1723     case ARMV7M_EXCP_BUS:
1724         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1725         if (!attrs.secure &&
1726             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1727             return -1;
1728         }
1729         return M_REG_NS;
1730     case ARMV7M_EXCP_SECURE:
1731         /* Not banked, RAZ/WI from nonsecure */
1732         if (!attrs.secure) {
1733             return -1;
1734         }
1735         return M_REG_NS;
1736     case ARMV7M_EXCP_DEBUG:
1737         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1738         return M_REG_NS;
1739     case 8 ... 10:
1740     case 13:
1741         /* RES0 */
1742         return -1;
1743     default:
1744         /* Not reachable due to decode of SHPR register addresses */
1745         g_assert_not_reached();
1746     }
1747 }
1748 
1749 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1750                                     uint64_t *data, unsigned size,
1751                                     MemTxAttrs attrs)
1752 {
1753     NVICState *s = (NVICState *)opaque;
1754     uint32_t offset = addr;
1755     unsigned i, startvec, end;
1756     uint32_t val;
1757 
1758     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1759         /* Generate BusFault for unprivileged accesses */
1760         return MEMTX_ERROR;
1761     }
1762 
1763     switch (offset) {
1764     /* reads of set and clear both return the status */
1765     case 0x100 ... 0x13f: /* NVIC Set enable */
1766         offset += 0x80;
1767         /* fall through */
1768     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1769         val = 0;
1770         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
1771 
1772         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1773             if (s->vectors[startvec + i].enabled &&
1774                 (attrs.secure || s->itns[startvec + i])) {
1775                 val |= (1 << i);
1776             }
1777         }
1778         break;
1779     case 0x200 ... 0x23f: /* NVIC Set pend */
1780         offset += 0x80;
1781         /* fall through */
1782     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1783         val = 0;
1784         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1785         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1786             if (s->vectors[startvec + i].pending &&
1787                 (attrs.secure || s->itns[startvec + i])) {
1788                 val |= (1 << i);
1789             }
1790         }
1791         break;
1792     case 0x300 ... 0x33f: /* NVIC Active */
1793         val = 0;
1794         startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
1795 
1796         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1797             if (s->vectors[startvec + i].active &&
1798                 (attrs.secure || s->itns[startvec + i])) {
1799                 val |= (1 << i);
1800             }
1801         }
1802         break;
1803     case 0x400 ... 0x5ef: /* NVIC Priority */
1804         val = 0;
1805         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1806 
1807         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1808             if (attrs.secure || s->itns[startvec + i]) {
1809                 val |= s->vectors[startvec + i].prio << (8 * i);
1810             }
1811         }
1812         break;
1813     case 0xd18: /* System Handler Priority (SHPR1) */
1814         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1815             val = 0;
1816             break;
1817         }
1818         /* fall through */
1819     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1820         val = 0;
1821         for (i = 0; i < size; i++) {
1822             unsigned hdlidx = (offset - 0xd14) + i;
1823             int sbank = shpr_bank(s, hdlidx, attrs);
1824 
1825             if (sbank < 0) {
1826                 continue;
1827             }
1828             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1829         }
1830         break;
1831     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1832         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1833             val = 0;
1834             break;
1835         };
1836         /* The BFSR bits [15:8] are shared between security states
1837          * and we store them in the NS copy
1838          */
1839         val = s->cpu->env.v7m.cfsr[attrs.secure];
1840         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1841         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1842         break;
1843     case 0xfe0 ... 0xfff: /* ID.  */
1844         if (offset & 3) {
1845             val = 0;
1846         } else {
1847             val = nvic_id[(offset - 0xfe0) >> 2];
1848         }
1849         break;
1850     default:
1851         if (size == 4) {
1852             val = nvic_readl(s, offset, attrs);
1853         } else {
1854             qemu_log_mask(LOG_GUEST_ERROR,
1855                           "NVIC: Bad read of size %d at offset 0x%x\n",
1856                           size, offset);
1857             val = 0;
1858         }
1859     }
1860 
1861     trace_nvic_sysreg_read(addr, val, size);
1862     *data = val;
1863     return MEMTX_OK;
1864 }
1865 
1866 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1867                                      uint64_t value, unsigned size,
1868                                      MemTxAttrs attrs)
1869 {
1870     NVICState *s = (NVICState *)opaque;
1871     uint32_t offset = addr;
1872     unsigned i, startvec, end;
1873     unsigned setval = 0;
1874 
1875     trace_nvic_sysreg_write(addr, value, size);
1876 
1877     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1878         /* Generate BusFault for unprivileged accesses */
1879         return MEMTX_ERROR;
1880     }
1881 
1882     switch (offset) {
1883     case 0x100 ... 0x13f: /* NVIC Set enable */
1884         offset += 0x80;
1885         setval = 1;
1886         /* fall through */
1887     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1888         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1889 
1890         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1891             if (value & (1 << i) &&
1892                 (attrs.secure || s->itns[startvec + i])) {
1893                 s->vectors[startvec + i].enabled = setval;
1894             }
1895         }
1896         nvic_irq_update(s);
1897         return MEMTX_OK;
1898     case 0x200 ... 0x23f: /* NVIC Set pend */
1899         /* the special logic in armv7m_nvic_set_pending()
1900          * is not needed since IRQs are never escalated
1901          */
1902         offset += 0x80;
1903         setval = 1;
1904         /* fall through */
1905     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1906         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1907 
1908         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1909             if (value & (1 << i) &&
1910                 (attrs.secure || s->itns[startvec + i])) {
1911                 s->vectors[startvec + i].pending = setval;
1912             }
1913         }
1914         nvic_irq_update(s);
1915         return MEMTX_OK;
1916     case 0x300 ... 0x33f: /* NVIC Active */
1917         return MEMTX_OK; /* R/O */
1918     case 0x400 ... 0x5ef: /* NVIC Priority */
1919         startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1920 
1921         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1922             if (attrs.secure || s->itns[startvec + i]) {
1923                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1924             }
1925         }
1926         nvic_irq_update(s);
1927         return MEMTX_OK;
1928     case 0xd18: /* System Handler Priority (SHPR1) */
1929         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1930             return MEMTX_OK;
1931         }
1932         /* fall through */
1933     case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
1934         for (i = 0; i < size; i++) {
1935             unsigned hdlidx = (offset - 0xd14) + i;
1936             int newprio = extract32(value, i * 8, 8);
1937             int sbank = shpr_bank(s, hdlidx, attrs);
1938 
1939             if (sbank < 0) {
1940                 continue;
1941             }
1942             set_prio(s, hdlidx, sbank, newprio);
1943         }
1944         nvic_irq_update(s);
1945         return MEMTX_OK;
1946     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1947         if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1948             return MEMTX_OK;
1949         }
1950         /* All bits are W1C, so construct 32 bit value with 0s in
1951          * the parts not written by the access size
1952          */
1953         value <<= ((offset - 0xd28) * 8);
1954 
1955         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1956         if (attrs.secure) {
1957             /* The BFSR bits [15:8] are shared between security states
1958              * and we store them in the NS copy.
1959              */
1960             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1961         }
1962         return MEMTX_OK;
1963     }
1964     if (size == 4) {
1965         nvic_writel(s, offset, value, attrs);
1966         return MEMTX_OK;
1967     }
1968     qemu_log_mask(LOG_GUEST_ERROR,
1969                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1970     /* This is UNPREDICTABLE; treat as RAZ/WI */
1971     return MEMTX_OK;
1972 }
1973 
1974 static const MemoryRegionOps nvic_sysreg_ops = {
1975     .read_with_attrs = nvic_sysreg_read,
1976     .write_with_attrs = nvic_sysreg_write,
1977     .endianness = DEVICE_NATIVE_ENDIAN,
1978 };
1979 
1980 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1981                                         uint64_t value, unsigned size,
1982                                         MemTxAttrs attrs)
1983 {
1984     MemoryRegion *mr = opaque;
1985 
1986     if (attrs.secure) {
1987         /* S accesses to the alias act like NS accesses to the real region */
1988         attrs.secure = 0;
1989         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1990     } else {
1991         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1992         if (attrs.user) {
1993             return MEMTX_ERROR;
1994         }
1995         return MEMTX_OK;
1996     }
1997 }
1998 
1999 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
2000                                        uint64_t *data, unsigned size,
2001                                        MemTxAttrs attrs)
2002 {
2003     MemoryRegion *mr = opaque;
2004 
2005     if (attrs.secure) {
2006         /* S accesses to the alias act like NS accesses to the real region */
2007         attrs.secure = 0;
2008         return memory_region_dispatch_read(mr, addr, data, size, attrs);
2009     } else {
2010         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2011         if (attrs.user) {
2012             return MEMTX_ERROR;
2013         }
2014         *data = 0;
2015         return MEMTX_OK;
2016     }
2017 }
2018 
2019 static const MemoryRegionOps nvic_sysreg_ns_ops = {
2020     .read_with_attrs = nvic_sysreg_ns_read,
2021     .write_with_attrs = nvic_sysreg_ns_write,
2022     .endianness = DEVICE_NATIVE_ENDIAN,
2023 };
2024 
2025 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2026                                       uint64_t value, unsigned size,
2027                                       MemTxAttrs attrs)
2028 {
2029     NVICState *s = opaque;
2030     MemoryRegion *mr;
2031 
2032     /* Direct the access to the correct systick */
2033     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2034     return memory_region_dispatch_write(mr, addr, value, size, attrs);
2035 }
2036 
2037 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2038                                      uint64_t *data, unsigned size,
2039                                      MemTxAttrs attrs)
2040 {
2041     NVICState *s = opaque;
2042     MemoryRegion *mr;
2043 
2044     /* Direct the access to the correct systick */
2045     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2046     return memory_region_dispatch_read(mr, addr, data, size, attrs);
2047 }
2048 
2049 static const MemoryRegionOps nvic_systick_ops = {
2050     .read_with_attrs = nvic_systick_read,
2051     .write_with_attrs = nvic_systick_write,
2052     .endianness = DEVICE_NATIVE_ENDIAN,
2053 };
2054 
2055 static int nvic_post_load(void *opaque, int version_id)
2056 {
2057     NVICState *s = opaque;
2058     unsigned i;
2059     int resetprio;
2060 
2061     /* Check for out of range priority settings */
2062     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2063 
2064     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
2065         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2066         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2067         return 1;
2068     }
2069     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2070         if (s->vectors[i].prio & ~0xff) {
2071             return 1;
2072         }
2073     }
2074 
2075     nvic_recompute_state(s);
2076 
2077     return 0;
2078 }
2079 
2080 static const VMStateDescription vmstate_VecInfo = {
2081     .name = "armv7m_nvic_info",
2082     .version_id = 1,
2083     .minimum_version_id = 1,
2084     .fields = (VMStateField[]) {
2085         VMSTATE_INT16(prio, VecInfo),
2086         VMSTATE_UINT8(enabled, VecInfo),
2087         VMSTATE_UINT8(pending, VecInfo),
2088         VMSTATE_UINT8(active, VecInfo),
2089         VMSTATE_UINT8(level, VecInfo),
2090         VMSTATE_END_OF_LIST()
2091     }
2092 };
2093 
2094 static bool nvic_security_needed(void *opaque)
2095 {
2096     NVICState *s = opaque;
2097 
2098     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2099 }
2100 
2101 static int nvic_security_post_load(void *opaque, int version_id)
2102 {
2103     NVICState *s = opaque;
2104     int i;
2105 
2106     /* Check for out of range priority settings */
2107     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2108         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2109         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2110          * if the CPU state has been migrated yet; a mismatch won't
2111          * cause the emulation to blow up, though.
2112          */
2113         return 1;
2114     }
2115     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2116         if (s->sec_vectors[i].prio & ~0xff) {
2117             return 1;
2118         }
2119     }
2120     return 0;
2121 }
2122 
2123 static const VMStateDescription vmstate_nvic_security = {
2124     .name = "armv7m_nvic/m-security",
2125     .version_id = 1,
2126     .minimum_version_id = 1,
2127     .needed = nvic_security_needed,
2128     .post_load = &nvic_security_post_load,
2129     .fields = (VMStateField[]) {
2130         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2131                              vmstate_VecInfo, VecInfo),
2132         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2133         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2134         VMSTATE_END_OF_LIST()
2135     }
2136 };
2137 
2138 static const VMStateDescription vmstate_nvic = {
2139     .name = "armv7m_nvic",
2140     .version_id = 4,
2141     .minimum_version_id = 4,
2142     .post_load = &nvic_post_load,
2143     .fields = (VMStateField[]) {
2144         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2145                              vmstate_VecInfo, VecInfo),
2146         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2147         VMSTATE_END_OF_LIST()
2148     },
2149     .subsections = (const VMStateDescription*[]) {
2150         &vmstate_nvic_security,
2151         NULL
2152     }
2153 };
2154 
2155 static Property props_nvic[] = {
2156     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2157     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2158     DEFINE_PROP_END_OF_LIST()
2159 };
2160 
2161 static void armv7m_nvic_reset(DeviceState *dev)
2162 {
2163     int resetprio;
2164     NVICState *s = NVIC(dev);
2165 
2166     memset(s->vectors, 0, sizeof(s->vectors));
2167     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2168     s->prigroup[M_REG_NS] = 0;
2169     s->prigroup[M_REG_S] = 0;
2170 
2171     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2172     /* MEM, BUS, and USAGE are enabled through
2173      * the System Handler Control register
2174      */
2175     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2176     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2177     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2178     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2179 
2180     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2181     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2182     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2183     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2184 
2185     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2186         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2187         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2188         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2189         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2190 
2191         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2192         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2193         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2194         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2195     } else {
2196         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2197     }
2198 
2199     /* Strictly speaking the reset handler should be enabled.
2200      * However, we don't simulate soft resets through the NVIC,
2201      * and the reset vector should never be pended.
2202      * So we leave it disabled to catch logic errors.
2203      */
2204 
2205     s->exception_prio = NVIC_NOEXC_PRIO;
2206     s->vectpending = 0;
2207     s->vectpending_is_s_banked = false;
2208     s->vectpending_prio = NVIC_NOEXC_PRIO;
2209 
2210     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2211         memset(s->itns, 0, sizeof(s->itns));
2212     } else {
2213         /* This state is constant and not guest accessible in a non-security
2214          * NVIC; we set the bits to true to avoid having to do a feature
2215          * bit check in the NVIC enable/pend/etc register accessors.
2216          */
2217         int i;
2218 
2219         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2220             s->itns[i] = true;
2221         }
2222     }
2223 }
2224 
2225 static void nvic_systick_trigger(void *opaque, int n, int level)
2226 {
2227     NVICState *s = opaque;
2228 
2229     if (level) {
2230         /* SysTick just asked us to pend its exception.
2231          * (This is different from an external interrupt line's
2232          * behaviour.)
2233          * n == 0 : NonSecure systick
2234          * n == 1 : Secure systick
2235          */
2236         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2237     }
2238 }
2239 
2240 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2241 {
2242     NVICState *s = NVIC(dev);
2243     Error *err = NULL;
2244     int regionlen;
2245 
2246     s->cpu = ARM_CPU(qemu_get_cpu(0));
2247 
2248     if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2249         error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2250         return;
2251     }
2252 
2253     if (s->num_irq > NVIC_MAX_IRQ) {
2254         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2255         return;
2256     }
2257 
2258     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2259 
2260     /* include space for internal exception vectors */
2261     s->num_irq += NVIC_FIRST_IRQ;
2262 
2263     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2264                              "realized", &err);
2265     if (err != NULL) {
2266         error_propagate(errp, err);
2267         return;
2268     }
2269     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2270                        qdev_get_gpio_in_named(dev, "systick-trigger",
2271                                               M_REG_NS));
2272 
2273     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2274         /* We couldn't init the secure systick device in instance_init
2275          * as we didn't know then if the CPU had the security extensions;
2276          * so we have to do it here.
2277          */
2278         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2279                           TYPE_SYSTICK);
2280         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2281 
2282         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2283                                  "realized", &err);
2284         if (err != NULL) {
2285             error_propagate(errp, err);
2286             return;
2287         }
2288         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2289                            qdev_get_gpio_in_named(dev, "systick-trigger",
2290                                                   M_REG_S));
2291     }
2292 
2293     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2294      * and looks like this:
2295      *  0x004 - ICTR
2296      *  0x010 - 0xff - systick
2297      *  0x100..0x7ec - NVIC
2298      *  0x7f0..0xcff - Reserved
2299      *  0xd00..0xd3c - SCS registers
2300      *  0xd40..0xeff - Reserved or Not implemented
2301      *  0xf00 - STIR
2302      *
2303      * Some registers within this space are banked between security states.
2304      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2305      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2306      * to the main SCS range, and non-secure accesses (including when
2307      * the security extension is not implemented) are RAZ/WI.
2308      * Note that both the main SCS range and the alias range are defined
2309      * to be exempt from memory attribution (R_BLJT) and so the memory
2310      * transaction attribute always matches the current CPU security
2311      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2312      * wrappers we change attrs.secure to indicate the NS access; so
2313      * generally code determining which banked register to use should
2314      * use attrs.secure; code determining actual behaviour of the system
2315      * should use env->v7m.secure.
2316      */
2317     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2318     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2319     /* The system register region goes at the bottom of the priority
2320      * stack as it covers the whole page.
2321      */
2322     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2323                           "nvic_sysregs", 0x1000);
2324     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2325 
2326     memory_region_init_io(&s->systickmem, OBJECT(s),
2327                           &nvic_systick_ops, s,
2328                           "nvic_systick", 0xe0);
2329 
2330     memory_region_add_subregion_overlap(&s->container, 0x10,
2331                                         &s->systickmem, 1);
2332 
2333     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2334         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2335                               &nvic_sysreg_ns_ops, &s->sysregmem,
2336                               "nvic_sysregs_ns", 0x1000);
2337         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2338         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2339                               &nvic_sysreg_ns_ops, &s->systickmem,
2340                               "nvic_systick_ns", 0xe0);
2341         memory_region_add_subregion_overlap(&s->container, 0x20010,
2342                                             &s->systick_ns_mem, 1);
2343     }
2344 
2345     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2346 }
2347 
2348 static void armv7m_nvic_instance_init(Object *obj)
2349 {
2350     /* We have a different default value for the num-irq property
2351      * than our superclass. This function runs after qdev init
2352      * has set the defaults from the Property array and before
2353      * any user-specified property setting, so just modify the
2354      * value in the GICState struct.
2355      */
2356     DeviceState *dev = DEVICE(obj);
2357     NVICState *nvic = NVIC(obj);
2358     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2359 
2360     sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2361                           sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2362     /* We can't initialize the secure systick here, as we don't know
2363      * yet if we need it.
2364      */
2365 
2366     sysbus_init_irq(sbd, &nvic->excpout);
2367     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2368     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2369                             M_REG_NUM_BANKS);
2370 }
2371 
2372 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2373 {
2374     DeviceClass *dc = DEVICE_CLASS(klass);
2375 
2376     dc->vmsd  = &vmstate_nvic;
2377     dc->props = props_nvic;
2378     dc->reset = armv7m_nvic_reset;
2379     dc->realize = armv7m_nvic_realize;
2380 }
2381 
2382 static const TypeInfo armv7m_nvic_info = {
2383     .name          = TYPE_NVIC,
2384     .parent        = TYPE_SYS_BUS_DEVICE,
2385     .instance_init = armv7m_nvic_instance_init,
2386     .instance_size = sizeof(NVICState),
2387     .class_init    = armv7m_nvic_class_init,
2388     .class_size    = sizeof(SysBusDeviceClass),
2389 };
2390 
2391 static void armv7m_nvic_register_types(void)
2392 {
2393     type_register_static(&armv7m_nvic_info);
2394 }
2395 
2396 type_init(armv7m_nvic_register_types)
2397