1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */ 58 #define NVIC_NS_PRIO_LIMIT 0x80 59 60 static const uint8_t nvic_id[] = { 61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 62 }; 63 64 static int nvic_pending_prio(NVICState *s) 65 { 66 /* return the group priority of the current pending interrupt, 67 * or NVIC_NOEXC_PRIO if no interrupt is pending 68 */ 69 return s->vectpending_prio; 70 } 71 72 /* Return the value of the ISCR RETTOBASE bit: 73 * 1 if there is exactly one active exception 74 * 0 if there is more than one active exception 75 * UNKNOWN if there are no active exceptions (we choose 1, 76 * which matches the choice Cortex-M3 is documented as making). 77 * 78 * NB: some versions of the documentation talk about this 79 * counting "active exceptions other than the one shown by IPSR"; 80 * this is only different in the obscure corner case where guest 81 * code has manually deactivated an exception and is about 82 * to fail an exception-return integrity check. The definition 83 * above is the one from the v8M ARM ARM and is also in line 84 * with the behaviour documented for the Cortex-M3. 85 */ 86 static bool nvic_rettobase(NVICState *s) 87 { 88 int irq, nhand = 0; 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 90 91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 92 if (s->vectors[irq].active || 93 (check_sec && irq < NVIC_INTERNAL_VECTORS && 94 s->sec_vectors[irq].active)) { 95 nhand++; 96 if (nhand == 2) { 97 return 0; 98 } 99 } 100 } 101 102 return 1; 103 } 104 105 /* Return the value of the ISCR ISRPENDING bit: 106 * 1 if an external interrupt is pending 107 * 0 if no external interrupt is pending 108 */ 109 static bool nvic_isrpending(NVICState *s) 110 { 111 int irq; 112 113 /* We can shortcut if the highest priority pending interrupt 114 * happens to be external or if there is nothing pending. 115 */ 116 if (s->vectpending > NVIC_FIRST_IRQ) { 117 return true; 118 } 119 if (s->vectpending == 0) { 120 return false; 121 } 122 123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 124 if (s->vectors[irq].pending) { 125 return true; 126 } 127 } 128 return false; 129 } 130 131 static bool exc_is_banked(int exc) 132 { 133 /* Return true if this is one of the limited set of exceptions which 134 * are banked (and thus have state in sec_vectors[]) 135 */ 136 return exc == ARMV7M_EXCP_HARD || 137 exc == ARMV7M_EXCP_MEM || 138 exc == ARMV7M_EXCP_USAGE || 139 exc == ARMV7M_EXCP_SVC || 140 exc == ARMV7M_EXCP_PENDSV || 141 exc == ARMV7M_EXCP_SYSTICK; 142 } 143 144 /* Return a mask word which clears the subpriority bits from 145 * a priority value for an M-profile exception, leaving only 146 * the group priority. 147 */ 148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure) 149 { 150 return ~0U << (s->prigroup[secure] + 1); 151 } 152 153 static bool exc_targets_secure(NVICState *s, int exc) 154 { 155 /* Return true if this non-banked exception targets Secure state. */ 156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 157 return false; 158 } 159 160 if (exc >= NVIC_FIRST_IRQ) { 161 return !s->itns[exc]; 162 } 163 164 /* Function shouldn't be called for banked exceptions. */ 165 assert(!exc_is_banked(exc)); 166 167 switch (exc) { 168 case ARMV7M_EXCP_NMI: 169 case ARMV7M_EXCP_BUS: 170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK); 171 case ARMV7M_EXCP_SECURE: 172 return true; 173 case ARMV7M_EXCP_DEBUG: 174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */ 175 return false; 176 default: 177 /* reset, and reserved (unused) low exception numbers. 178 * We'll get called by code that loops through all the exception 179 * numbers, but it doesn't matter what we return here as these 180 * non-existent exceptions will never be pended or active. 181 */ 182 return true; 183 } 184 } 185 186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure) 187 { 188 /* Return the group priority for this exception, given its raw 189 * (group-and-subgroup) priority value and whether it is targeting 190 * secure state or not. 191 */ 192 if (rawprio < 0) { 193 return rawprio; 194 } 195 rawprio &= nvic_gprio_mask(s, targets_secure); 196 /* AIRCR.PRIS causes us to squash all NS priorities into the 197 * lower half of the total range 198 */ 199 if (!targets_secure && 200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) { 201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT; 202 } 203 return rawprio; 204 } 205 206 /* Recompute vectpending and exception_prio for a CPU which implements 207 * the Security extension 208 */ 209 static void nvic_recompute_state_secure(NVICState *s) 210 { 211 int i, bank; 212 int pend_prio = NVIC_NOEXC_PRIO; 213 int active_prio = NVIC_NOEXC_PRIO; 214 int pend_irq = 0; 215 bool pending_is_s_banked = false; 216 217 /* R_CQRV: precedence is by: 218 * - lowest group priority; if both the same then 219 * - lowest subpriority; if both the same then 220 * - lowest exception number; if both the same (ie banked) then 221 * - secure exception takes precedence 222 * Compare pseudocode RawExecutionPriority. 223 * Annoyingly, now we have two prigroup values (for S and NS) 224 * we can't do the loop comparison on raw priority values. 225 */ 226 for (i = 1; i < s->num_irq; i++) { 227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) { 228 VecInfo *vec; 229 int prio; 230 bool targets_secure; 231 232 if (bank == M_REG_S) { 233 if (!exc_is_banked(i)) { 234 continue; 235 } 236 vec = &s->sec_vectors[i]; 237 targets_secure = true; 238 } else { 239 vec = &s->vectors[i]; 240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i); 241 } 242 243 prio = exc_group_prio(s, vec->prio, targets_secure); 244 if (vec->enabled && vec->pending && prio < pend_prio) { 245 pend_prio = prio; 246 pend_irq = i; 247 pending_is_s_banked = (bank == M_REG_S); 248 } 249 if (vec->active && prio < active_prio) { 250 active_prio = prio; 251 } 252 } 253 } 254 255 s->vectpending_is_s_banked = pending_is_s_banked; 256 s->vectpending = pend_irq; 257 s->vectpending_prio = pend_prio; 258 s->exception_prio = active_prio; 259 260 trace_nvic_recompute_state_secure(s->vectpending, 261 s->vectpending_is_s_banked, 262 s->vectpending_prio, 263 s->exception_prio); 264 } 265 266 /* Recompute vectpending and exception_prio */ 267 static void nvic_recompute_state(NVICState *s) 268 { 269 int i; 270 int pend_prio = NVIC_NOEXC_PRIO; 271 int active_prio = NVIC_NOEXC_PRIO; 272 int pend_irq = 0; 273 274 /* In theory we could write one function that handled both 275 * the "security extension present" and "not present"; however 276 * the security related changes significantly complicate the 277 * recomputation just by themselves and mixing both cases together 278 * would be even worse, so we retain a separate non-secure-only 279 * version for CPUs which don't implement the security extension. 280 */ 281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 282 nvic_recompute_state_secure(s); 283 return; 284 } 285 286 for (i = 1; i < s->num_irq; i++) { 287 VecInfo *vec = &s->vectors[i]; 288 289 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 290 pend_prio = vec->prio; 291 pend_irq = i; 292 } 293 if (vec->active && vec->prio < active_prio) { 294 active_prio = vec->prio; 295 } 296 } 297 298 if (active_prio > 0) { 299 active_prio &= nvic_gprio_mask(s, false); 300 } 301 302 if (pend_prio > 0) { 303 pend_prio &= nvic_gprio_mask(s, false); 304 } 305 306 s->vectpending = pend_irq; 307 s->vectpending_prio = pend_prio; 308 s->exception_prio = active_prio; 309 310 trace_nvic_recompute_state(s->vectpending, 311 s->vectpending_prio, 312 s->exception_prio); 313 } 314 315 /* Return the current execution priority of the CPU 316 * (equivalent to the pseudocode ExecutionPriority function). 317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 318 */ 319 static inline int nvic_exec_prio(NVICState *s) 320 { 321 CPUARMState *env = &s->cpu->env; 322 int running = NVIC_NOEXC_PRIO; 323 324 if (env->v7m.basepri[M_REG_NS] > 0) { 325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS); 326 } 327 328 if (env->v7m.basepri[M_REG_S] > 0) { 329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S); 330 if (running > basepri) { 331 running = basepri; 332 } 333 } 334 335 if (env->v7m.primask[M_REG_NS]) { 336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 337 if (running > NVIC_NS_PRIO_LIMIT) { 338 running = NVIC_NS_PRIO_LIMIT; 339 } 340 } else { 341 running = 0; 342 } 343 } 344 345 if (env->v7m.primask[M_REG_S]) { 346 running = 0; 347 } 348 349 if (env->v7m.faultmask[M_REG_NS]) { 350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 351 running = -1; 352 } else { 353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) { 354 if (running > NVIC_NS_PRIO_LIMIT) { 355 running = NVIC_NS_PRIO_LIMIT; 356 } 357 } else { 358 running = 0; 359 } 360 } 361 } 362 363 if (env->v7m.faultmask[M_REG_S]) { 364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1; 365 } 366 367 /* consider priority of active handler */ 368 return MIN(running, s->exception_prio); 369 } 370 371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure) 372 { 373 /* Return true if the requested execution priority is negative 374 * for the specified security state, ie that security state 375 * has an active NMI or HardFault or has set its FAULTMASK. 376 * Note that this is not the same as whether the execution 377 * priority is actually negative (for instance AIRCR.PRIS may 378 * mean we don't allow FAULTMASK_NS to actually make the execution 379 * priority negative). Compare pseudocode IsReqExcPriNeg(). 380 */ 381 NVICState *s = opaque; 382 383 if (s->cpu->env.v7m.faultmask[secure]) { 384 return true; 385 } 386 387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active : 388 s->vectors[ARMV7M_EXCP_HARD].active) { 389 return true; 390 } 391 392 if (s->vectors[ARMV7M_EXCP_NMI].active && 393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) { 394 return true; 395 } 396 397 return false; 398 } 399 400 bool armv7m_nvic_can_take_pending_exception(void *opaque) 401 { 402 NVICState *s = opaque; 403 404 return nvic_exec_prio(s) > nvic_pending_prio(s); 405 } 406 407 int armv7m_nvic_raw_execution_priority(void *opaque) 408 { 409 NVICState *s = opaque; 410 411 return s->exception_prio; 412 } 413 414 /* caller must call nvic_irq_update() after this. 415 * secure indicates the bank to use for banked exceptions (we assert if 416 * we are passed secure=true for a non-banked exception). 417 */ 418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio) 419 { 420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 421 assert(irq < s->num_irq); 422 423 if (secure) { 424 assert(exc_is_banked(irq)); 425 s->sec_vectors[irq].prio = prio; 426 } else { 427 s->vectors[irq].prio = prio; 428 } 429 430 trace_nvic_set_prio(irq, secure, prio); 431 } 432 433 /* Return the current raw priority register value. 434 * secure indicates the bank to use for banked exceptions (we assert if 435 * we are passed secure=true for a non-banked exception). 436 */ 437 static int get_prio(NVICState *s, unsigned irq, bool secure) 438 { 439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 440 assert(irq < s->num_irq); 441 442 if (secure) { 443 assert(exc_is_banked(irq)); 444 return s->sec_vectors[irq].prio; 445 } else { 446 return s->vectors[irq].prio; 447 } 448 } 449 450 /* Recompute state and assert irq line accordingly. 451 * Must be called after changes to: 452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 453 * prigroup 454 */ 455 static void nvic_irq_update(NVICState *s) 456 { 457 int lvl; 458 int pend_prio; 459 460 nvic_recompute_state(s); 461 pend_prio = nvic_pending_prio(s); 462 463 /* Raise NVIC output if this IRQ would be taken, except that we 464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 466 * to those CPU registers don't cause us to recalculate the NVIC 467 * pending info. 468 */ 469 lvl = (pend_prio < s->exception_prio); 470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 471 qemu_set_irq(s->excpout, lvl); 472 } 473 474 /** 475 * armv7m_nvic_clear_pending: mark the specified exception as not pending 476 * @opaque: the NVIC 477 * @irq: the exception number to mark as not pending 478 * @secure: false for non-banked exceptions or for the nonsecure 479 * version of a banked exception, true for the secure version of a banked 480 * exception. 481 * 482 * Marks the specified exception as not pending. Note that we will assert() 483 * if @secure is true and @irq does not specify one of the fixed set 484 * of architecturally banked exceptions. 485 */ 486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure) 487 { 488 NVICState *s = (NVICState *)opaque; 489 VecInfo *vec; 490 491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 492 493 if (secure) { 494 assert(exc_is_banked(irq)); 495 vec = &s->sec_vectors[irq]; 496 } else { 497 vec = &s->vectors[irq]; 498 } 499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio); 500 if (vec->pending) { 501 vec->pending = 0; 502 nvic_irq_update(s); 503 } 504 } 505 506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure, 507 bool derived) 508 { 509 /* Pend an exception, including possibly escalating it to HardFault. 510 * 511 * This function handles both "normal" pending of interrupts and 512 * exceptions, and also derived exceptions (ones which occur as 513 * a result of trying to take some other exception). 514 * 515 * If derived == true, the caller guarantees that we are part way through 516 * trying to take an exception (but have not yet called 517 * armv7m_nvic_acknowledge_irq() to make it active), and so: 518 * - s->vectpending is the "original exception" we were trying to take 519 * - irq is the "derived exception" 520 * - nvic_exec_prio(s) gives the priority before exception entry 521 * Here we handle the prioritization logic which the pseudocode puts 522 * in the DerivedLateArrival() function. 523 */ 524 525 NVICState *s = (NVICState *)opaque; 526 bool banked = exc_is_banked(irq); 527 VecInfo *vec; 528 bool targets_secure; 529 530 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 531 assert(!secure || banked); 532 533 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq]; 534 535 targets_secure = banked ? secure : exc_targets_secure(s, irq); 536 537 trace_nvic_set_pending(irq, secure, targets_secure, 538 derived, vec->enabled, vec->prio); 539 540 if (derived) { 541 /* Derived exceptions are always synchronous. */ 542 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV); 543 544 if (irq == ARMV7M_EXCP_DEBUG && 545 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) { 546 /* DebugMonitorFault, but its priority is lower than the 547 * preempted exception priority: just ignore it. 548 */ 549 return; 550 } 551 552 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) { 553 /* If this is a terminal exception (one which means we cannot 554 * take the original exception, like a failure to read its 555 * vector table entry), then we must take the derived exception. 556 * If the derived exception can't take priority over the 557 * original exception, then we go into Lockup. 558 * 559 * For QEMU, we rely on the fact that a derived exception is 560 * terminal if and only if it's reported to us as HardFault, 561 * which saves having to have an extra argument is_terminal 562 * that we'd only use in one place. 563 */ 564 cpu_abort(&s->cpu->parent_obj, 565 "Lockup: can't take terminal derived exception " 566 "(original exception priority %d)\n", 567 s->vectpending_prio); 568 } 569 /* We now continue with the same code as for a normal pending 570 * exception, which will cause us to pend the derived exception. 571 * We'll then take either the original or the derived exception 572 * based on which is higher priority by the usual mechanism 573 * for selecting the highest priority pending interrupt. 574 */ 575 } 576 577 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 578 /* If a synchronous exception is pending then it may be 579 * escalated to HardFault if: 580 * * it is equal or lower priority to current execution 581 * * it is disabled 582 * (ie we need to take it immediately but we can't do so). 583 * Asynchronous exceptions (and interrupts) simply remain pending. 584 * 585 * For QEMU, we don't have any imprecise (asynchronous) faults, 586 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 587 * synchronous. 588 * Debug exceptions are awkward because only Debug exceptions 589 * resulting from the BKPT instruction should be escalated, 590 * but we don't currently implement any Debug exceptions other 591 * than those that result from BKPT, so we treat all debug exceptions 592 * as needing escalation. 593 * 594 * This all means we can identify whether to escalate based only on 595 * the exception number and don't (yet) need the caller to explicitly 596 * tell us whether this exception is synchronous or not. 597 */ 598 int running = nvic_exec_prio(s); 599 bool escalate = false; 600 601 if (exc_group_prio(s, vec->prio, secure) >= running) { 602 trace_nvic_escalate_prio(irq, vec->prio, running); 603 escalate = true; 604 } else if (!vec->enabled) { 605 trace_nvic_escalate_disabled(irq); 606 escalate = true; 607 } 608 609 if (escalate) { 610 611 /* We need to escalate this exception to a synchronous HardFault. 612 * If BFHFNMINS is set then we escalate to the banked HF for 613 * the target security state of the original exception; otherwise 614 * we take a Secure HardFault. 615 */ 616 irq = ARMV7M_EXCP_HARD; 617 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) && 618 (targets_secure || 619 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) { 620 vec = &s->sec_vectors[irq]; 621 } else { 622 vec = &s->vectors[irq]; 623 } 624 if (running <= vec->prio) { 625 /* We want to escalate to HardFault but we can't take the 626 * synchronous HardFault at this point either. This is a 627 * Lockup condition due to a guest bug. We don't model 628 * Lockup, so report via cpu_abort() instead. 629 */ 630 cpu_abort(&s->cpu->parent_obj, 631 "Lockup: can't escalate %d to HardFault " 632 "(current priority %d)\n", irq, running); 633 } 634 635 /* HF may be banked but there is only one shared HFSR */ 636 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 637 } 638 } 639 640 if (!vec->pending) { 641 vec->pending = 1; 642 nvic_irq_update(s); 643 } 644 } 645 646 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure) 647 { 648 do_armv7m_nvic_set_pending(opaque, irq, secure, false); 649 } 650 651 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure) 652 { 653 do_armv7m_nvic_set_pending(opaque, irq, secure, true); 654 } 655 656 /* Make pending IRQ active. */ 657 void armv7m_nvic_acknowledge_irq(void *opaque) 658 { 659 NVICState *s = (NVICState *)opaque; 660 CPUARMState *env = &s->cpu->env; 661 const int pending = s->vectpending; 662 const int running = nvic_exec_prio(s); 663 VecInfo *vec; 664 665 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 666 667 if (s->vectpending_is_s_banked) { 668 vec = &s->sec_vectors[pending]; 669 } else { 670 vec = &s->vectors[pending]; 671 } 672 673 assert(vec->enabled); 674 assert(vec->pending); 675 676 assert(s->vectpending_prio < running); 677 678 trace_nvic_acknowledge_irq(pending, s->vectpending_prio); 679 680 vec->active = 1; 681 vec->pending = 0; 682 683 write_v7m_exception(env, s->vectpending); 684 685 nvic_irq_update(s); 686 } 687 688 void armv7m_nvic_get_pending_irq_info(void *opaque, 689 int *pirq, bool *ptargets_secure) 690 { 691 NVICState *s = (NVICState *)opaque; 692 const int pending = s->vectpending; 693 bool targets_secure; 694 695 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 696 697 if (s->vectpending_is_s_banked) { 698 targets_secure = true; 699 } else { 700 targets_secure = !exc_is_banked(pending) && 701 exc_targets_secure(s, pending); 702 } 703 704 trace_nvic_get_pending_irq_info(pending, targets_secure); 705 706 *ptargets_secure = targets_secure; 707 *pirq = pending; 708 } 709 710 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure) 711 { 712 NVICState *s = (NVICState *)opaque; 713 VecInfo *vec; 714 int ret; 715 716 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 717 718 if (secure && exc_is_banked(irq)) { 719 vec = &s->sec_vectors[irq]; 720 } else { 721 vec = &s->vectors[irq]; 722 } 723 724 trace_nvic_complete_irq(irq, secure); 725 726 if (!vec->active) { 727 /* Tell the caller this was an illegal exception return */ 728 return -1; 729 } 730 731 ret = nvic_rettobase(s); 732 733 vec->active = 0; 734 if (vec->level) { 735 /* Re-pend the exception if it's still held high; only 736 * happens for extenal IRQs 737 */ 738 assert(irq >= NVIC_FIRST_IRQ); 739 vec->pending = 1; 740 } 741 742 nvic_irq_update(s); 743 744 return ret; 745 } 746 747 /* callback when external interrupt line is changed */ 748 static void set_irq_level(void *opaque, int n, int level) 749 { 750 NVICState *s = opaque; 751 VecInfo *vec; 752 753 n += NVIC_FIRST_IRQ; 754 755 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 756 757 trace_nvic_set_irq_level(n, level); 758 759 /* The pending status of an external interrupt is 760 * latched on rising edge and exception handler return. 761 * 762 * Pulsing the IRQ will always run the handler 763 * once, and the handler will re-run until the 764 * level is low when the handler completes. 765 */ 766 vec = &s->vectors[n]; 767 if (level != vec->level) { 768 vec->level = level; 769 if (level) { 770 armv7m_nvic_set_pending(s, n, false); 771 } 772 } 773 } 774 775 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs) 776 { 777 ARMCPU *cpu = s->cpu; 778 uint32_t val; 779 780 switch (offset) { 781 case 4: /* Interrupt Control Type. */ 782 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 783 case 0xc: /* CPPWR */ 784 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 785 goto bad_offset; 786 } 787 /* We make the IMPDEF choice that nothing can ever go into a 788 * non-retentive power state, which allows us to RAZ/WI this. 789 */ 790 return 0; 791 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 792 { 793 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 794 int i; 795 796 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 797 goto bad_offset; 798 } 799 if (!attrs.secure) { 800 return 0; 801 } 802 val = 0; 803 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 804 if (s->itns[startvec + i]) { 805 val |= (1 << i); 806 } 807 } 808 return val; 809 } 810 case 0xd00: /* CPUID Base. */ 811 return cpu->midr; 812 case 0xd04: /* Interrupt Control State (ICSR) */ 813 /* VECTACTIVE */ 814 val = cpu->env.v7m.exception; 815 /* VECTPENDING */ 816 val |= (s->vectpending & 0xff) << 12; 817 /* ISRPENDING - set if any external IRQ is pending */ 818 if (nvic_isrpending(s)) { 819 val |= (1 << 22); 820 } 821 /* RETTOBASE - set if only one handler is active */ 822 if (nvic_rettobase(s)) { 823 val |= (1 << 11); 824 } 825 if (attrs.secure) { 826 /* PENDSTSET */ 827 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) { 828 val |= (1 << 26); 829 } 830 /* PENDSVSET */ 831 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) { 832 val |= (1 << 28); 833 } 834 } else { 835 /* PENDSTSET */ 836 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 837 val |= (1 << 26); 838 } 839 /* PENDSVSET */ 840 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 841 val |= (1 << 28); 842 } 843 } 844 /* NMIPENDSET */ 845 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) 846 && s->vectors[ARMV7M_EXCP_NMI].pending) { 847 val |= (1 << 31); 848 } 849 /* ISRPREEMPT: RES0 when halting debug not implemented */ 850 /* STTNS: RES0 for the Main Extension */ 851 return val; 852 case 0xd08: /* Vector Table Offset. */ 853 return cpu->env.v7m.vecbase[attrs.secure]; 854 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 855 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8); 856 if (attrs.secure) { 857 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */ 858 val |= cpu->env.v7m.aircr; 859 } else { 860 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 861 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If 862 * security isn't supported then BFHFNMINS is RAO (and 863 * the bit in env.v7m.aircr is always set). 864 */ 865 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK; 866 } 867 } 868 return val; 869 case 0xd10: /* System Control. */ 870 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 871 goto bad_offset; 872 } 873 return cpu->env.v7m.scr[attrs.secure]; 874 case 0xd14: /* Configuration Control. */ 875 /* The BFHFNMIGN bit is the only non-banked bit; we 876 * keep it in the non-secure copy of the register. 877 */ 878 val = cpu->env.v7m.ccr[attrs.secure]; 879 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; 880 return val; 881 case 0xd24: /* System Handler Control and State (SHCSR) */ 882 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 883 goto bad_offset; 884 } 885 val = 0; 886 if (attrs.secure) { 887 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { 888 val |= (1 << 0); 889 } 890 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) { 891 val |= (1 << 2); 892 } 893 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) { 894 val |= (1 << 3); 895 } 896 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) { 897 val |= (1 << 7); 898 } 899 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) { 900 val |= (1 << 10); 901 } 902 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) { 903 val |= (1 << 11); 904 } 905 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) { 906 val |= (1 << 12); 907 } 908 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) { 909 val |= (1 << 13); 910 } 911 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) { 912 val |= (1 << 15); 913 } 914 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) { 915 val |= (1 << 16); 916 } 917 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) { 918 val |= (1 << 18); 919 } 920 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) { 921 val |= (1 << 21); 922 } 923 /* SecureFault is not banked but is always RAZ/WI to NS */ 924 if (s->vectors[ARMV7M_EXCP_SECURE].active) { 925 val |= (1 << 4); 926 } 927 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) { 928 val |= (1 << 19); 929 } 930 if (s->vectors[ARMV7M_EXCP_SECURE].pending) { 931 val |= (1 << 20); 932 } 933 } else { 934 if (s->vectors[ARMV7M_EXCP_MEM].active) { 935 val |= (1 << 0); 936 } 937 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 938 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */ 939 if (s->vectors[ARMV7M_EXCP_HARD].active) { 940 val |= (1 << 2); 941 } 942 if (s->vectors[ARMV7M_EXCP_HARD].pending) { 943 val |= (1 << 21); 944 } 945 } 946 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 947 val |= (1 << 3); 948 } 949 if (s->vectors[ARMV7M_EXCP_SVC].active) { 950 val |= (1 << 7); 951 } 952 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 953 val |= (1 << 10); 954 } 955 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 956 val |= (1 << 11); 957 } 958 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 959 val |= (1 << 12); 960 } 961 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 962 val |= (1 << 13); 963 } 964 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 965 val |= (1 << 15); 966 } 967 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 968 val |= (1 << 16); 969 } 970 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 971 val |= (1 << 18); 972 } 973 } 974 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 975 if (s->vectors[ARMV7M_EXCP_BUS].active) { 976 val |= (1 << 1); 977 } 978 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 979 val |= (1 << 14); 980 } 981 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 982 val |= (1 << 17); 983 } 984 if (arm_feature(&cpu->env, ARM_FEATURE_V8) && 985 s->vectors[ARMV7M_EXCP_NMI].active) { 986 /* NMIACT is not present in v7M */ 987 val |= (1 << 5); 988 } 989 } 990 991 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 992 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 993 val |= (1 << 8); 994 } 995 return val; 996 case 0xd2c: /* Hard Fault Status. */ 997 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 998 goto bad_offset; 999 } 1000 return cpu->env.v7m.hfsr; 1001 case 0xd30: /* Debug Fault Status. */ 1002 return cpu->env.v7m.dfsr; 1003 case 0xd34: /* MMFAR MemManage Fault Address */ 1004 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1005 goto bad_offset; 1006 } 1007 return cpu->env.v7m.mmfar[attrs.secure]; 1008 case 0xd38: /* Bus Fault Address. */ 1009 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1010 goto bad_offset; 1011 } 1012 return cpu->env.v7m.bfar; 1013 case 0xd3c: /* Aux Fault Status. */ 1014 /* TODO: Implement fault status registers. */ 1015 qemu_log_mask(LOG_UNIMP, 1016 "Aux Fault status registers unimplemented\n"); 1017 return 0; 1018 case 0xd40: /* PFR0. */ 1019 return cpu->id_pfr0; 1020 case 0xd44: /* PFR1. */ 1021 return cpu->id_pfr1; 1022 case 0xd48: /* DFR0. */ 1023 return cpu->id_dfr0; 1024 case 0xd4c: /* AFR0. */ 1025 return cpu->id_afr0; 1026 case 0xd50: /* MMFR0. */ 1027 return cpu->id_mmfr0; 1028 case 0xd54: /* MMFR1. */ 1029 return cpu->id_mmfr1; 1030 case 0xd58: /* MMFR2. */ 1031 return cpu->id_mmfr2; 1032 case 0xd5c: /* MMFR3. */ 1033 return cpu->id_mmfr3; 1034 case 0xd60: /* ISAR0. */ 1035 return cpu->id_isar0; 1036 case 0xd64: /* ISAR1. */ 1037 return cpu->id_isar1; 1038 case 0xd68: /* ISAR2. */ 1039 return cpu->id_isar2; 1040 case 0xd6c: /* ISAR3. */ 1041 return cpu->id_isar3; 1042 case 0xd70: /* ISAR4. */ 1043 return cpu->id_isar4; 1044 case 0xd74: /* ISAR5. */ 1045 return cpu->id_isar5; 1046 case 0xd78: /* CLIDR */ 1047 return cpu->clidr; 1048 case 0xd7c: /* CTR */ 1049 return cpu->ctr; 1050 case 0xd80: /* CSSIDR */ 1051 { 1052 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK; 1053 return cpu->ccsidr[idx]; 1054 } 1055 case 0xd84: /* CSSELR */ 1056 return cpu->env.v7m.csselr[attrs.secure]; 1057 /* TODO: Implement debug registers. */ 1058 case 0xd90: /* MPU_TYPE */ 1059 /* Unified MPU; if the MPU is not present this value is zero */ 1060 return cpu->pmsav7_dregion << 8; 1061 break; 1062 case 0xd94: /* MPU_CTRL */ 1063 return cpu->env.v7m.mpu_ctrl[attrs.secure]; 1064 case 0xd98: /* MPU_RNR */ 1065 return cpu->env.pmsav7.rnr[attrs.secure]; 1066 case 0xd9c: /* MPU_RBAR */ 1067 case 0xda4: /* MPU_RBAR_A1 */ 1068 case 0xdac: /* MPU_RBAR_A2 */ 1069 case 0xdb4: /* MPU_RBAR_A3 */ 1070 { 1071 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1072 1073 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1074 /* PMSAv8M handling of the aliases is different from v7M: 1075 * aliases A1, A2, A3 override the low two bits of the region 1076 * number in MPU_RNR, and there is no 'region' field in the 1077 * RBAR register. 1078 */ 1079 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1080 if (aliasno) { 1081 region = deposit32(region, 0, 2, aliasno); 1082 } 1083 if (region >= cpu->pmsav7_dregion) { 1084 return 0; 1085 } 1086 return cpu->env.pmsav8.rbar[attrs.secure][region]; 1087 } 1088 1089 if (region >= cpu->pmsav7_dregion) { 1090 return 0; 1091 } 1092 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf); 1093 } 1094 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1095 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1096 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1097 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1098 { 1099 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1100 1101 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1102 /* PMSAv8M handling of the aliases is different from v7M: 1103 * aliases A1, A2, A3 override the low two bits of the region 1104 * number in MPU_RNR. 1105 */ 1106 int aliasno = (offset - 0xda0) / 8; /* 0..3 */ 1107 if (aliasno) { 1108 region = deposit32(region, 0, 2, aliasno); 1109 } 1110 if (region >= cpu->pmsav7_dregion) { 1111 return 0; 1112 } 1113 return cpu->env.pmsav8.rlar[attrs.secure][region]; 1114 } 1115 1116 if (region >= cpu->pmsav7_dregion) { 1117 return 0; 1118 } 1119 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 1120 (cpu->env.pmsav7.drsr[region] & 0xffff); 1121 } 1122 case 0xdc0: /* MPU_MAIR0 */ 1123 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1124 goto bad_offset; 1125 } 1126 return cpu->env.pmsav8.mair0[attrs.secure]; 1127 case 0xdc4: /* MPU_MAIR1 */ 1128 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1129 goto bad_offset; 1130 } 1131 return cpu->env.pmsav8.mair1[attrs.secure]; 1132 case 0xdd0: /* SAU_CTRL */ 1133 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1134 goto bad_offset; 1135 } 1136 if (!attrs.secure) { 1137 return 0; 1138 } 1139 return cpu->env.sau.ctrl; 1140 case 0xdd4: /* SAU_TYPE */ 1141 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1142 goto bad_offset; 1143 } 1144 if (!attrs.secure) { 1145 return 0; 1146 } 1147 return cpu->sau_sregion; 1148 case 0xdd8: /* SAU_RNR */ 1149 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1150 goto bad_offset; 1151 } 1152 if (!attrs.secure) { 1153 return 0; 1154 } 1155 return cpu->env.sau.rnr; 1156 case 0xddc: /* SAU_RBAR */ 1157 { 1158 int region = cpu->env.sau.rnr; 1159 1160 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1161 goto bad_offset; 1162 } 1163 if (!attrs.secure) { 1164 return 0; 1165 } 1166 if (region >= cpu->sau_sregion) { 1167 return 0; 1168 } 1169 return cpu->env.sau.rbar[region]; 1170 } 1171 case 0xde0: /* SAU_RLAR */ 1172 { 1173 int region = cpu->env.sau.rnr; 1174 1175 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1176 goto bad_offset; 1177 } 1178 if (!attrs.secure) { 1179 return 0; 1180 } 1181 if (region >= cpu->sau_sregion) { 1182 return 0; 1183 } 1184 return cpu->env.sau.rlar[region]; 1185 } 1186 case 0xde4: /* SFSR */ 1187 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1188 goto bad_offset; 1189 } 1190 if (!attrs.secure) { 1191 return 0; 1192 } 1193 return cpu->env.v7m.sfsr; 1194 case 0xde8: /* SFAR */ 1195 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1196 goto bad_offset; 1197 } 1198 if (!attrs.secure) { 1199 return 0; 1200 } 1201 return cpu->env.v7m.sfar; 1202 default: 1203 bad_offset: 1204 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 1205 return 0; 1206 } 1207 } 1208 1209 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value, 1210 MemTxAttrs attrs) 1211 { 1212 ARMCPU *cpu = s->cpu; 1213 1214 switch (offset) { 1215 case 0xc: /* CPPWR */ 1216 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1217 goto bad_offset; 1218 } 1219 /* Make the IMPDEF choice to RAZ/WI this. */ 1220 break; 1221 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */ 1222 { 1223 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ; 1224 int i; 1225 1226 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1227 goto bad_offset; 1228 } 1229 if (!attrs.secure) { 1230 break; 1231 } 1232 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) { 1233 s->itns[startvec + i] = (value >> i) & 1; 1234 } 1235 nvic_irq_update(s); 1236 break; 1237 } 1238 case 0xd04: /* Interrupt Control State (ICSR) */ 1239 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1240 if (value & (1 << 31)) { 1241 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false); 1242 } else if (value & (1 << 30) && 1243 arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1244 /* PENDNMICLR didn't exist in v7M */ 1245 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false); 1246 } 1247 } 1248 if (value & (1 << 28)) { 1249 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1250 } else if (value & (1 << 27)) { 1251 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure); 1252 } 1253 if (value & (1 << 26)) { 1254 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1255 } else if (value & (1 << 25)) { 1256 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure); 1257 } 1258 break; 1259 case 0xd08: /* Vector Table Offset. */ 1260 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80; 1261 break; 1262 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */ 1263 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) { 1264 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) { 1265 if (attrs.secure || 1266 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) { 1267 qemu_irq_pulse(s->sysresetreq); 1268 } 1269 } 1270 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) { 1271 qemu_log_mask(LOG_GUEST_ERROR, 1272 "Setting VECTCLRACTIVE when not in DEBUG mode " 1273 "is UNPREDICTABLE\n"); 1274 } 1275 if (value & R_V7M_AIRCR_VECTRESET_MASK) { 1276 /* NB: this bit is RES0 in v8M */ 1277 qemu_log_mask(LOG_GUEST_ERROR, 1278 "Setting VECTRESET when not in DEBUG mode " 1279 "is UNPREDICTABLE\n"); 1280 } 1281 s->prigroup[attrs.secure] = extract32(value, 1282 R_V7M_AIRCR_PRIGROUP_SHIFT, 1283 R_V7M_AIRCR_PRIGROUP_LENGTH); 1284 if (attrs.secure) { 1285 /* These bits are only writable by secure */ 1286 cpu->env.v7m.aircr = value & 1287 (R_V7M_AIRCR_SYSRESETREQS_MASK | 1288 R_V7M_AIRCR_BFHFNMINS_MASK | 1289 R_V7M_AIRCR_PRIS_MASK); 1290 /* BFHFNMINS changes the priority of Secure HardFault, and 1291 * allows a pending Non-secure HardFault to preempt (which 1292 * we implement by marking it enabled). 1293 */ 1294 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) { 1295 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3; 1296 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 1297 } else { 1298 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 1299 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 1300 } 1301 } 1302 nvic_irq_update(s); 1303 } 1304 break; 1305 case 0xd10: /* System Control. */ 1306 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1307 goto bad_offset; 1308 } 1309 /* We don't implement deep-sleep so these bits are RAZ/WI. 1310 * The other bits in the register are banked. 1311 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which 1312 * is architecturally permitted. 1313 */ 1314 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK); 1315 cpu->env.v7m.scr[attrs.secure] = value; 1316 break; 1317 case 0xd14: /* Configuration Control. */ 1318 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1319 goto bad_offset; 1320 } 1321 1322 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 1323 value &= (R_V7M_CCR_STKALIGN_MASK | 1324 R_V7M_CCR_BFHFNMIGN_MASK | 1325 R_V7M_CCR_DIV_0_TRP_MASK | 1326 R_V7M_CCR_UNALIGN_TRP_MASK | 1327 R_V7M_CCR_USERSETMPEND_MASK | 1328 R_V7M_CCR_NONBASETHRDENA_MASK); 1329 1330 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1331 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */ 1332 value |= R_V7M_CCR_NONBASETHRDENA_MASK 1333 | R_V7M_CCR_STKALIGN_MASK; 1334 } 1335 if (attrs.secure) { 1336 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */ 1337 cpu->env.v7m.ccr[M_REG_NS] = 1338 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK) 1339 | (value & R_V7M_CCR_BFHFNMIGN_MASK); 1340 value &= ~R_V7M_CCR_BFHFNMIGN_MASK; 1341 } 1342 1343 cpu->env.v7m.ccr[attrs.secure] = value; 1344 break; 1345 case 0xd24: /* System Handler Control and State (SHCSR) */ 1346 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) { 1347 goto bad_offset; 1348 } 1349 if (attrs.secure) { 1350 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1351 /* Secure HardFault active bit cannot be written */ 1352 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1353 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1354 s->sec_vectors[ARMV7M_EXCP_PENDSV].active = 1355 (value & (1 << 10)) != 0; 1356 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active = 1357 (value & (1 << 11)) != 0; 1358 s->sec_vectors[ARMV7M_EXCP_USAGE].pending = 1359 (value & (1 << 12)) != 0; 1360 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1361 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1362 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1363 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1364 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled = 1365 (value & (1 << 18)) != 0; 1366 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1367 /* SecureFault not banked, but RAZ/WI to NS */ 1368 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0; 1369 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0; 1370 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0; 1371 } else { 1372 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 1373 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1374 /* HARDFAULTPENDED is not present in v7M */ 1375 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0; 1376 } 1377 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 1378 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 1379 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 1380 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 1381 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 1382 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 1383 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 1384 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 1385 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 1386 } 1387 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1388 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 1389 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 1390 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 1391 } 1392 /* NMIACT can only be written if the write is of a zero, with 1393 * BFHFNMINS 1, and by the CPU in secure state via the NS alias. 1394 */ 1395 if (!attrs.secure && cpu->env.v7m.secure && 1396 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1397 (value & (1 << 5)) == 0) { 1398 s->vectors[ARMV7M_EXCP_NMI].active = 0; 1399 } 1400 /* HARDFAULTACT can only be written if the write is of a zero 1401 * to the non-secure HardFault state by the CPU in secure state. 1402 * The only case where we can be targeting the non-secure HF state 1403 * when in secure state is if this is a write via the NS alias 1404 * and BFHFNMINS is 1. 1405 */ 1406 if (!attrs.secure && cpu->env.v7m.secure && 1407 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) && 1408 (value & (1 << 2)) == 0) { 1409 s->vectors[ARMV7M_EXCP_HARD].active = 0; 1410 } 1411 1412 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */ 1413 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 1414 nvic_irq_update(s); 1415 break; 1416 case 0xd2c: /* Hard Fault Status. */ 1417 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1418 goto bad_offset; 1419 } 1420 cpu->env.v7m.hfsr &= ~value; /* W1C */ 1421 break; 1422 case 0xd30: /* Debug Fault Status. */ 1423 cpu->env.v7m.dfsr &= ~value; /* W1C */ 1424 break; 1425 case 0xd34: /* Mem Manage Address. */ 1426 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1427 goto bad_offset; 1428 } 1429 cpu->env.v7m.mmfar[attrs.secure] = value; 1430 return; 1431 case 0xd38: /* Bus Fault Address. */ 1432 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1433 goto bad_offset; 1434 } 1435 cpu->env.v7m.bfar = value; 1436 return; 1437 case 0xd3c: /* Aux Fault Status. */ 1438 qemu_log_mask(LOG_UNIMP, 1439 "NVIC: Aux fault status registers unimplemented\n"); 1440 break; 1441 case 0xd84: /* CSSELR */ 1442 if (!arm_v7m_csselr_razwi(cpu)) { 1443 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK; 1444 } 1445 break; 1446 case 0xd90: /* MPU_TYPE */ 1447 return; /* RO */ 1448 case 0xd94: /* MPU_CTRL */ 1449 if ((value & 1450 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 1451 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 1452 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 1453 "UNPREDICTABLE\n"); 1454 } 1455 cpu->env.v7m.mpu_ctrl[attrs.secure] 1456 = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 1457 R_V7M_MPU_CTRL_HFNMIENA_MASK | 1458 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 1459 tlb_flush(CPU(cpu)); 1460 break; 1461 case 0xd98: /* MPU_RNR */ 1462 if (value >= cpu->pmsav7_dregion) { 1463 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 1464 PRIu32 "/%" PRIu32 "\n", 1465 value, cpu->pmsav7_dregion); 1466 } else { 1467 cpu->env.pmsav7.rnr[attrs.secure] = value; 1468 } 1469 break; 1470 case 0xd9c: /* MPU_RBAR */ 1471 case 0xda4: /* MPU_RBAR_A1 */ 1472 case 0xdac: /* MPU_RBAR_A2 */ 1473 case 0xdb4: /* MPU_RBAR_A3 */ 1474 { 1475 int region; 1476 1477 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1478 /* PMSAv8M handling of the aliases is different from v7M: 1479 * aliases A1, A2, A3 override the low two bits of the region 1480 * number in MPU_RNR, and there is no 'region' field in the 1481 * RBAR register. 1482 */ 1483 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1484 1485 region = cpu->env.pmsav7.rnr[attrs.secure]; 1486 if (aliasno) { 1487 region = deposit32(region, 0, 2, aliasno); 1488 } 1489 if (region >= cpu->pmsav7_dregion) { 1490 return; 1491 } 1492 cpu->env.pmsav8.rbar[attrs.secure][region] = value; 1493 tlb_flush(CPU(cpu)); 1494 return; 1495 } 1496 1497 if (value & (1 << 4)) { 1498 /* VALID bit means use the region number specified in this 1499 * value and also update MPU_RNR.REGION with that value. 1500 */ 1501 region = extract32(value, 0, 4); 1502 if (region >= cpu->pmsav7_dregion) { 1503 qemu_log_mask(LOG_GUEST_ERROR, 1504 "MPU region out of range %u/%" PRIu32 "\n", 1505 region, cpu->pmsav7_dregion); 1506 return; 1507 } 1508 cpu->env.pmsav7.rnr[attrs.secure] = region; 1509 } else { 1510 region = cpu->env.pmsav7.rnr[attrs.secure]; 1511 } 1512 1513 if (region >= cpu->pmsav7_dregion) { 1514 return; 1515 } 1516 1517 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 1518 tlb_flush(CPU(cpu)); 1519 break; 1520 } 1521 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */ 1522 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */ 1523 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */ 1524 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */ 1525 { 1526 int region = cpu->env.pmsav7.rnr[attrs.secure]; 1527 1528 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1529 /* PMSAv8M handling of the aliases is different from v7M: 1530 * aliases A1, A2, A3 override the low two bits of the region 1531 * number in MPU_RNR. 1532 */ 1533 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */ 1534 1535 region = cpu->env.pmsav7.rnr[attrs.secure]; 1536 if (aliasno) { 1537 region = deposit32(region, 0, 2, aliasno); 1538 } 1539 if (region >= cpu->pmsav7_dregion) { 1540 return; 1541 } 1542 cpu->env.pmsav8.rlar[attrs.secure][region] = value; 1543 tlb_flush(CPU(cpu)); 1544 return; 1545 } 1546 1547 if (region >= cpu->pmsav7_dregion) { 1548 return; 1549 } 1550 1551 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 1552 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 1553 tlb_flush(CPU(cpu)); 1554 break; 1555 } 1556 case 0xdc0: /* MPU_MAIR0 */ 1557 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1558 goto bad_offset; 1559 } 1560 if (cpu->pmsav7_dregion) { 1561 /* Register is RES0 if no MPU regions are implemented */ 1562 cpu->env.pmsav8.mair0[attrs.secure] = value; 1563 } 1564 /* We don't need to do anything else because memory attributes 1565 * only affect cacheability, and we don't implement caching. 1566 */ 1567 break; 1568 case 0xdc4: /* MPU_MAIR1 */ 1569 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1570 goto bad_offset; 1571 } 1572 if (cpu->pmsav7_dregion) { 1573 /* Register is RES0 if no MPU regions are implemented */ 1574 cpu->env.pmsav8.mair1[attrs.secure] = value; 1575 } 1576 /* We don't need to do anything else because memory attributes 1577 * only affect cacheability, and we don't implement caching. 1578 */ 1579 break; 1580 case 0xdd0: /* SAU_CTRL */ 1581 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1582 goto bad_offset; 1583 } 1584 if (!attrs.secure) { 1585 return; 1586 } 1587 cpu->env.sau.ctrl = value & 3; 1588 break; 1589 case 0xdd4: /* SAU_TYPE */ 1590 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1591 goto bad_offset; 1592 } 1593 break; 1594 case 0xdd8: /* SAU_RNR */ 1595 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1596 goto bad_offset; 1597 } 1598 if (!attrs.secure) { 1599 return; 1600 } 1601 if (value >= cpu->sau_sregion) { 1602 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %" 1603 PRIu32 "/%" PRIu32 "\n", 1604 value, cpu->sau_sregion); 1605 } else { 1606 cpu->env.sau.rnr = value; 1607 } 1608 break; 1609 case 0xddc: /* SAU_RBAR */ 1610 { 1611 int region = cpu->env.sau.rnr; 1612 1613 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1614 goto bad_offset; 1615 } 1616 if (!attrs.secure) { 1617 return; 1618 } 1619 if (region >= cpu->sau_sregion) { 1620 return; 1621 } 1622 cpu->env.sau.rbar[region] = value & ~0x1f; 1623 tlb_flush(CPU(cpu)); 1624 break; 1625 } 1626 case 0xde0: /* SAU_RLAR */ 1627 { 1628 int region = cpu->env.sau.rnr; 1629 1630 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1631 goto bad_offset; 1632 } 1633 if (!attrs.secure) { 1634 return; 1635 } 1636 if (region >= cpu->sau_sregion) { 1637 return; 1638 } 1639 cpu->env.sau.rlar[region] = value & ~0x1c; 1640 tlb_flush(CPU(cpu)); 1641 break; 1642 } 1643 case 0xde4: /* SFSR */ 1644 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1645 goto bad_offset; 1646 } 1647 if (!attrs.secure) { 1648 return; 1649 } 1650 cpu->env.v7m.sfsr &= ~value; /* W1C */ 1651 break; 1652 case 0xde8: /* SFAR */ 1653 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { 1654 goto bad_offset; 1655 } 1656 if (!attrs.secure) { 1657 return; 1658 } 1659 cpu->env.v7m.sfsr = value; 1660 break; 1661 case 0xf00: /* Software Triggered Interrupt Register */ 1662 { 1663 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 1664 1665 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) { 1666 goto bad_offset; 1667 } 1668 1669 if (excnum < s->num_irq) { 1670 armv7m_nvic_set_pending(s, excnum, false); 1671 } 1672 break; 1673 } 1674 case 0xf50: /* ICIALLU */ 1675 case 0xf58: /* ICIMVAU */ 1676 case 0xf5c: /* DCIMVAC */ 1677 case 0xf60: /* DCISW */ 1678 case 0xf64: /* DCCMVAU */ 1679 case 0xf68: /* DCCMVAC */ 1680 case 0xf6c: /* DCCSW */ 1681 case 0xf70: /* DCCIMVAC */ 1682 case 0xf74: /* DCCISW */ 1683 case 0xf78: /* BPIALL */ 1684 /* Cache and branch predictor maintenance: for QEMU these always NOP */ 1685 break; 1686 default: 1687 bad_offset: 1688 qemu_log_mask(LOG_GUEST_ERROR, 1689 "NVIC: Bad write offset 0x%x\n", offset); 1690 } 1691 } 1692 1693 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs) 1694 { 1695 /* Return true if unprivileged access to this register is permitted. */ 1696 switch (offset) { 1697 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 1698 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that 1699 * controls access even though the CPU is in Secure state (I_QDKX). 1700 */ 1701 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK; 1702 default: 1703 /* All other user accesses cause a BusFault unconditionally */ 1704 return false; 1705 } 1706 } 1707 1708 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs) 1709 { 1710 /* Behaviour for the SHPR register field for this exception: 1711 * return M_REG_NS to use the nonsecure vector (including for 1712 * non-banked exceptions), M_REG_S for the secure version of 1713 * a banked exception, and -1 if this field should RAZ/WI. 1714 */ 1715 switch (exc) { 1716 case ARMV7M_EXCP_MEM: 1717 case ARMV7M_EXCP_USAGE: 1718 case ARMV7M_EXCP_SVC: 1719 case ARMV7M_EXCP_PENDSV: 1720 case ARMV7M_EXCP_SYSTICK: 1721 /* Banked exceptions */ 1722 return attrs.secure; 1723 case ARMV7M_EXCP_BUS: 1724 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */ 1725 if (!attrs.secure && 1726 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) { 1727 return -1; 1728 } 1729 return M_REG_NS; 1730 case ARMV7M_EXCP_SECURE: 1731 /* Not banked, RAZ/WI from nonsecure */ 1732 if (!attrs.secure) { 1733 return -1; 1734 } 1735 return M_REG_NS; 1736 case ARMV7M_EXCP_DEBUG: 1737 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */ 1738 return M_REG_NS; 1739 case 8 ... 10: 1740 case 13: 1741 /* RES0 */ 1742 return -1; 1743 default: 1744 /* Not reachable due to decode of SHPR register addresses */ 1745 g_assert_not_reached(); 1746 } 1747 } 1748 1749 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 1750 uint64_t *data, unsigned size, 1751 MemTxAttrs attrs) 1752 { 1753 NVICState *s = (NVICState *)opaque; 1754 uint32_t offset = addr; 1755 unsigned i, startvec, end; 1756 uint32_t val; 1757 1758 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1759 /* Generate BusFault for unprivileged accesses */ 1760 return MEMTX_ERROR; 1761 } 1762 1763 switch (offset) { 1764 /* reads of set and clear both return the status */ 1765 case 0x100 ... 0x13f: /* NVIC Set enable */ 1766 offset += 0x80; 1767 /* fall through */ 1768 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1769 val = 0; 1770 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */ 1771 1772 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1773 if (s->vectors[startvec + i].enabled && 1774 (attrs.secure || s->itns[startvec + i])) { 1775 val |= (1 << i); 1776 } 1777 } 1778 break; 1779 case 0x200 ... 0x23f: /* NVIC Set pend */ 1780 offset += 0x80; 1781 /* fall through */ 1782 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1783 val = 0; 1784 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1785 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1786 if (s->vectors[startvec + i].pending && 1787 (attrs.secure || s->itns[startvec + i])) { 1788 val |= (1 << i); 1789 } 1790 } 1791 break; 1792 case 0x300 ... 0x33f: /* NVIC Active */ 1793 val = 0; 1794 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ 1795 1796 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1797 if (s->vectors[startvec + i].active && 1798 (attrs.secure || s->itns[startvec + i])) { 1799 val |= (1 << i); 1800 } 1801 } 1802 break; 1803 case 0x400 ... 0x5ef: /* NVIC Priority */ 1804 val = 0; 1805 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 1806 1807 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1808 if (attrs.secure || s->itns[startvec + i]) { 1809 val |= s->vectors[startvec + i].prio << (8 * i); 1810 } 1811 } 1812 break; 1813 case 0xd18: /* System Handler Priority (SHPR1) */ 1814 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1815 val = 0; 1816 break; 1817 } 1818 /* fall through */ 1819 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 1820 val = 0; 1821 for (i = 0; i < size; i++) { 1822 unsigned hdlidx = (offset - 0xd14) + i; 1823 int sbank = shpr_bank(s, hdlidx, attrs); 1824 1825 if (sbank < 0) { 1826 continue; 1827 } 1828 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank)); 1829 } 1830 break; 1831 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1832 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1833 val = 0; 1834 break; 1835 }; 1836 /* The BFSR bits [15:8] are shared between security states 1837 * and we store them in the NS copy 1838 */ 1839 val = s->cpu->env.v7m.cfsr[attrs.secure]; 1840 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK; 1841 val = extract32(val, (offset - 0xd28) * 8, size * 8); 1842 break; 1843 case 0xfe0 ... 0xfff: /* ID. */ 1844 if (offset & 3) { 1845 val = 0; 1846 } else { 1847 val = nvic_id[(offset - 0xfe0) >> 2]; 1848 } 1849 break; 1850 default: 1851 if (size == 4) { 1852 val = nvic_readl(s, offset, attrs); 1853 } else { 1854 qemu_log_mask(LOG_GUEST_ERROR, 1855 "NVIC: Bad read of size %d at offset 0x%x\n", 1856 size, offset); 1857 val = 0; 1858 } 1859 } 1860 1861 trace_nvic_sysreg_read(addr, val, size); 1862 *data = val; 1863 return MEMTX_OK; 1864 } 1865 1866 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 1867 uint64_t value, unsigned size, 1868 MemTxAttrs attrs) 1869 { 1870 NVICState *s = (NVICState *)opaque; 1871 uint32_t offset = addr; 1872 unsigned i, startvec, end; 1873 unsigned setval = 0; 1874 1875 trace_nvic_sysreg_write(addr, value, size); 1876 1877 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) { 1878 /* Generate BusFault for unprivileged accesses */ 1879 return MEMTX_ERROR; 1880 } 1881 1882 switch (offset) { 1883 case 0x100 ... 0x13f: /* NVIC Set enable */ 1884 offset += 0x80; 1885 setval = 1; 1886 /* fall through */ 1887 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 1888 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 1889 1890 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1891 if (value & (1 << i) && 1892 (attrs.secure || s->itns[startvec + i])) { 1893 s->vectors[startvec + i].enabled = setval; 1894 } 1895 } 1896 nvic_irq_update(s); 1897 return MEMTX_OK; 1898 case 0x200 ... 0x23f: /* NVIC Set pend */ 1899 /* the special logic in armv7m_nvic_set_pending() 1900 * is not needed since IRQs are never escalated 1901 */ 1902 offset += 0x80; 1903 setval = 1; 1904 /* fall through */ 1905 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 1906 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 1907 1908 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 1909 if (value & (1 << i) && 1910 (attrs.secure || s->itns[startvec + i])) { 1911 s->vectors[startvec + i].pending = setval; 1912 } 1913 } 1914 nvic_irq_update(s); 1915 return MEMTX_OK; 1916 case 0x300 ... 0x33f: /* NVIC Active */ 1917 return MEMTX_OK; /* R/O */ 1918 case 0x400 ... 0x5ef: /* NVIC Priority */ 1919 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 1920 1921 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 1922 if (attrs.secure || s->itns[startvec + i]) { 1923 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff); 1924 } 1925 } 1926 nvic_irq_update(s); 1927 return MEMTX_OK; 1928 case 0xd18: /* System Handler Priority (SHPR1) */ 1929 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1930 return MEMTX_OK; 1931 } 1932 /* fall through */ 1933 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */ 1934 for (i = 0; i < size; i++) { 1935 unsigned hdlidx = (offset - 0xd14) + i; 1936 int newprio = extract32(value, i * 8, 8); 1937 int sbank = shpr_bank(s, hdlidx, attrs); 1938 1939 if (sbank < 0) { 1940 continue; 1941 } 1942 set_prio(s, hdlidx, sbank, newprio); 1943 } 1944 nvic_irq_update(s); 1945 return MEMTX_OK; 1946 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ 1947 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) { 1948 return MEMTX_OK; 1949 } 1950 /* All bits are W1C, so construct 32 bit value with 0s in 1951 * the parts not written by the access size 1952 */ 1953 value <<= ((offset - 0xd28) * 8); 1954 1955 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value; 1956 if (attrs.secure) { 1957 /* The BFSR bits [15:8] are shared between security states 1958 * and we store them in the NS copy. 1959 */ 1960 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK); 1961 } 1962 return MEMTX_OK; 1963 } 1964 if (size == 4) { 1965 nvic_writel(s, offset, value, attrs); 1966 return MEMTX_OK; 1967 } 1968 qemu_log_mask(LOG_GUEST_ERROR, 1969 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 1970 /* This is UNPREDICTABLE; treat as RAZ/WI */ 1971 return MEMTX_OK; 1972 } 1973 1974 static const MemoryRegionOps nvic_sysreg_ops = { 1975 .read_with_attrs = nvic_sysreg_read, 1976 .write_with_attrs = nvic_sysreg_write, 1977 .endianness = DEVICE_NATIVE_ENDIAN, 1978 }; 1979 1980 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr, 1981 uint64_t value, unsigned size, 1982 MemTxAttrs attrs) 1983 { 1984 MemoryRegion *mr = opaque; 1985 1986 if (attrs.secure) { 1987 /* S accesses to the alias act like NS accesses to the real region */ 1988 attrs.secure = 0; 1989 return memory_region_dispatch_write(mr, addr, value, size, attrs); 1990 } else { 1991 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 1992 if (attrs.user) { 1993 return MEMTX_ERROR; 1994 } 1995 return MEMTX_OK; 1996 } 1997 } 1998 1999 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr, 2000 uint64_t *data, unsigned size, 2001 MemTxAttrs attrs) 2002 { 2003 MemoryRegion *mr = opaque; 2004 2005 if (attrs.secure) { 2006 /* S accesses to the alias act like NS accesses to the real region */ 2007 attrs.secure = 0; 2008 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2009 } else { 2010 /* NS attrs are RAZ/WI for privileged, and BusFault for user */ 2011 if (attrs.user) { 2012 return MEMTX_ERROR; 2013 } 2014 *data = 0; 2015 return MEMTX_OK; 2016 } 2017 } 2018 2019 static const MemoryRegionOps nvic_sysreg_ns_ops = { 2020 .read_with_attrs = nvic_sysreg_ns_read, 2021 .write_with_attrs = nvic_sysreg_ns_write, 2022 .endianness = DEVICE_NATIVE_ENDIAN, 2023 }; 2024 2025 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr, 2026 uint64_t value, unsigned size, 2027 MemTxAttrs attrs) 2028 { 2029 NVICState *s = opaque; 2030 MemoryRegion *mr; 2031 2032 /* Direct the access to the correct systick */ 2033 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2034 return memory_region_dispatch_write(mr, addr, value, size, attrs); 2035 } 2036 2037 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr, 2038 uint64_t *data, unsigned size, 2039 MemTxAttrs attrs) 2040 { 2041 NVICState *s = opaque; 2042 MemoryRegion *mr; 2043 2044 /* Direct the access to the correct systick */ 2045 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0); 2046 return memory_region_dispatch_read(mr, addr, data, size, attrs); 2047 } 2048 2049 static const MemoryRegionOps nvic_systick_ops = { 2050 .read_with_attrs = nvic_systick_read, 2051 .write_with_attrs = nvic_systick_write, 2052 .endianness = DEVICE_NATIVE_ENDIAN, 2053 }; 2054 2055 static int nvic_post_load(void *opaque, int version_id) 2056 { 2057 NVICState *s = opaque; 2058 unsigned i; 2059 int resetprio; 2060 2061 /* Check for out of range priority settings */ 2062 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2063 2064 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio || 2065 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 2066 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 2067 return 1; 2068 } 2069 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 2070 if (s->vectors[i].prio & ~0xff) { 2071 return 1; 2072 } 2073 } 2074 2075 nvic_recompute_state(s); 2076 2077 return 0; 2078 } 2079 2080 static const VMStateDescription vmstate_VecInfo = { 2081 .name = "armv7m_nvic_info", 2082 .version_id = 1, 2083 .minimum_version_id = 1, 2084 .fields = (VMStateField[]) { 2085 VMSTATE_INT16(prio, VecInfo), 2086 VMSTATE_UINT8(enabled, VecInfo), 2087 VMSTATE_UINT8(pending, VecInfo), 2088 VMSTATE_UINT8(active, VecInfo), 2089 VMSTATE_UINT8(level, VecInfo), 2090 VMSTATE_END_OF_LIST() 2091 } 2092 }; 2093 2094 static bool nvic_security_needed(void *opaque) 2095 { 2096 NVICState *s = opaque; 2097 2098 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY); 2099 } 2100 2101 static int nvic_security_post_load(void *opaque, int version_id) 2102 { 2103 NVICState *s = opaque; 2104 int i; 2105 2106 /* Check for out of range priority settings */ 2107 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1 2108 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) { 2109 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know 2110 * if the CPU state has been migrated yet; a mismatch won't 2111 * cause the emulation to blow up, though. 2112 */ 2113 return 1; 2114 } 2115 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) { 2116 if (s->sec_vectors[i].prio & ~0xff) { 2117 return 1; 2118 } 2119 } 2120 return 0; 2121 } 2122 2123 static const VMStateDescription vmstate_nvic_security = { 2124 .name = "armv7m_nvic/m-security", 2125 .version_id = 1, 2126 .minimum_version_id = 1, 2127 .needed = nvic_security_needed, 2128 .post_load = &nvic_security_post_load, 2129 .fields = (VMStateField[]) { 2130 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1, 2131 vmstate_VecInfo, VecInfo), 2132 VMSTATE_UINT32(prigroup[M_REG_S], NVICState), 2133 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS), 2134 VMSTATE_END_OF_LIST() 2135 } 2136 }; 2137 2138 static const VMStateDescription vmstate_nvic = { 2139 .name = "armv7m_nvic", 2140 .version_id = 4, 2141 .minimum_version_id = 4, 2142 .post_load = &nvic_post_load, 2143 .fields = (VMStateField[]) { 2144 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 2145 vmstate_VecInfo, VecInfo), 2146 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState), 2147 VMSTATE_END_OF_LIST() 2148 }, 2149 .subsections = (const VMStateDescription*[]) { 2150 &vmstate_nvic_security, 2151 NULL 2152 } 2153 }; 2154 2155 static Property props_nvic[] = { 2156 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 2157 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 2158 DEFINE_PROP_END_OF_LIST() 2159 }; 2160 2161 static void armv7m_nvic_reset(DeviceState *dev) 2162 { 2163 int resetprio; 2164 NVICState *s = NVIC(dev); 2165 2166 memset(s->vectors, 0, sizeof(s->vectors)); 2167 memset(s->sec_vectors, 0, sizeof(s->sec_vectors)); 2168 s->prigroup[M_REG_NS] = 0; 2169 s->prigroup[M_REG_S] = 0; 2170 2171 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 2172 /* MEM, BUS, and USAGE are enabled through 2173 * the System Handler Control register 2174 */ 2175 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 2176 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 2177 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2178 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2179 2180 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3; 2181 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio; 2182 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 2183 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 2184 2185 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2186 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1; 2187 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1; 2188 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 2189 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 2190 2191 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */ 2192 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1; 2193 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */ 2194 s->vectors[ARMV7M_EXCP_HARD].enabled = 0; 2195 } else { 2196 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 2197 } 2198 2199 /* Strictly speaking the reset handler should be enabled. 2200 * However, we don't simulate soft resets through the NVIC, 2201 * and the reset vector should never be pended. 2202 * So we leave it disabled to catch logic errors. 2203 */ 2204 2205 s->exception_prio = NVIC_NOEXC_PRIO; 2206 s->vectpending = 0; 2207 s->vectpending_is_s_banked = false; 2208 s->vectpending_prio = NVIC_NOEXC_PRIO; 2209 2210 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2211 memset(s->itns, 0, sizeof(s->itns)); 2212 } else { 2213 /* This state is constant and not guest accessible in a non-security 2214 * NVIC; we set the bits to true to avoid having to do a feature 2215 * bit check in the NVIC enable/pend/etc register accessors. 2216 */ 2217 int i; 2218 2219 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) { 2220 s->itns[i] = true; 2221 } 2222 } 2223 } 2224 2225 static void nvic_systick_trigger(void *opaque, int n, int level) 2226 { 2227 NVICState *s = opaque; 2228 2229 if (level) { 2230 /* SysTick just asked us to pend its exception. 2231 * (This is different from an external interrupt line's 2232 * behaviour.) 2233 * n == 0 : NonSecure systick 2234 * n == 1 : Secure systick 2235 */ 2236 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n); 2237 } 2238 } 2239 2240 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 2241 { 2242 NVICState *s = NVIC(dev); 2243 Error *err = NULL; 2244 int regionlen; 2245 2246 s->cpu = ARM_CPU(qemu_get_cpu(0)); 2247 2248 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) { 2249 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU"); 2250 return; 2251 } 2252 2253 if (s->num_irq > NVIC_MAX_IRQ) { 2254 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 2255 return; 2256 } 2257 2258 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 2259 2260 /* include space for internal exception vectors */ 2261 s->num_irq += NVIC_FIRST_IRQ; 2262 2263 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, 2264 "realized", &err); 2265 if (err != NULL) { 2266 error_propagate(errp, err); 2267 return; 2268 } 2269 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0, 2270 qdev_get_gpio_in_named(dev, "systick-trigger", 2271 M_REG_NS)); 2272 2273 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) { 2274 /* We couldn't init the secure systick device in instance_init 2275 * as we didn't know then if the CPU had the security extensions; 2276 * so we have to do it here. 2277 */ 2278 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]), 2279 TYPE_SYSTICK); 2280 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default()); 2281 2282 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true, 2283 "realized", &err); 2284 if (err != NULL) { 2285 error_propagate(errp, err); 2286 return; 2287 } 2288 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0, 2289 qdev_get_gpio_in_named(dev, "systick-trigger", 2290 M_REG_S)); 2291 } 2292 2293 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 2294 * and looks like this: 2295 * 0x004 - ICTR 2296 * 0x010 - 0xff - systick 2297 * 0x100..0x7ec - NVIC 2298 * 0x7f0..0xcff - Reserved 2299 * 0xd00..0xd3c - SCS registers 2300 * 0xd40..0xeff - Reserved or Not implemented 2301 * 0xf00 - STIR 2302 * 2303 * Some registers within this space are banked between security states. 2304 * In v8M there is a second range 0xe002e000..0xe002efff which is the 2305 * NonSecure alias SCS; secure accesses to this behave like NS accesses 2306 * to the main SCS range, and non-secure accesses (including when 2307 * the security extension is not implemented) are RAZ/WI. 2308 * Note that both the main SCS range and the alias range are defined 2309 * to be exempt from memory attribution (R_BLJT) and so the memory 2310 * transaction attribute always matches the current CPU security 2311 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops 2312 * wrappers we change attrs.secure to indicate the NS access; so 2313 * generally code determining which banked register to use should 2314 * use attrs.secure; code determining actual behaviour of the system 2315 * should use env->v7m.secure. 2316 */ 2317 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000; 2318 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen); 2319 /* The system register region goes at the bottom of the priority 2320 * stack as it covers the whole page. 2321 */ 2322 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 2323 "nvic_sysregs", 0x1000); 2324 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 2325 2326 memory_region_init_io(&s->systickmem, OBJECT(s), 2327 &nvic_systick_ops, s, 2328 "nvic_systick", 0xe0); 2329 2330 memory_region_add_subregion_overlap(&s->container, 0x10, 2331 &s->systickmem, 1); 2332 2333 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) { 2334 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s), 2335 &nvic_sysreg_ns_ops, &s->sysregmem, 2336 "nvic_sysregs_ns", 0x1000); 2337 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem); 2338 memory_region_init_io(&s->systick_ns_mem, OBJECT(s), 2339 &nvic_sysreg_ns_ops, &s->systickmem, 2340 "nvic_systick_ns", 0xe0); 2341 memory_region_add_subregion_overlap(&s->container, 0x20010, 2342 &s->systick_ns_mem, 1); 2343 } 2344 2345 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 2346 } 2347 2348 static void armv7m_nvic_instance_init(Object *obj) 2349 { 2350 /* We have a different default value for the num-irq property 2351 * than our superclass. This function runs after qdev init 2352 * has set the defaults from the Property array and before 2353 * any user-specified property setting, so just modify the 2354 * value in the GICState struct. 2355 */ 2356 DeviceState *dev = DEVICE(obj); 2357 NVICState *nvic = NVIC(obj); 2358 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 2359 2360 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS], 2361 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK); 2362 /* We can't initialize the secure systick here, as we don't know 2363 * yet if we need it. 2364 */ 2365 2366 sysbus_init_irq(sbd, &nvic->excpout); 2367 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 2368 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 2369 M_REG_NUM_BANKS); 2370 } 2371 2372 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 2373 { 2374 DeviceClass *dc = DEVICE_CLASS(klass); 2375 2376 dc->vmsd = &vmstate_nvic; 2377 dc->props = props_nvic; 2378 dc->reset = armv7m_nvic_reset; 2379 dc->realize = armv7m_nvic_realize; 2380 } 2381 2382 static const TypeInfo armv7m_nvic_info = { 2383 .name = TYPE_NVIC, 2384 .parent = TYPE_SYS_BUS_DEVICE, 2385 .instance_init = armv7m_nvic_instance_init, 2386 .instance_size = sizeof(NVICState), 2387 .class_init = armv7m_nvic_class_init, 2388 .class_size = sizeof(SysBusDeviceClass), 2389 }; 2390 2391 static void armv7m_nvic_register_types(void) 2392 { 2393 type_register_static(&armv7m_nvic_info); 2394 } 2395 2396 type_init(armv7m_nvic_register_types) 2397