xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 14b6d44d4720681a57b5d2c58cabdfc6364f8263)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "hw/sysbus.h"
16 #include "qemu/timer.h"
17 #include "hw/arm/arm.h"
18 #include "exec/address-spaces.h"
19 #include "gic_internal.h"
20 
21 typedef struct {
22     GICState gic;
23     struct {
24         uint32_t control;
25         uint32_t reload;
26         int64_t tick;
27         QEMUTimer *timer;
28     } systick;
29     MemoryRegion sysregmem;
30     MemoryRegion gic_iomem_alias;
31     MemoryRegion container;
32     uint32_t num_irq;
33     qemu_irq sysresetreq;
34 } nvic_state;
35 
36 #define TYPE_NVIC "armv7m_nvic"
37 /**
38  * NVICClass:
39  * @parent_reset: the parent class' reset handler.
40  *
41  * A model of the v7M NVIC and System Controller
42  */
43 typedef struct NVICClass {
44     /*< private >*/
45     ARMGICClass parent_class;
46     /*< public >*/
47     DeviceRealize parent_realize;
48     void (*parent_reset)(DeviceState *dev);
49 } NVICClass;
50 
51 #define NVIC_CLASS(klass) \
52     OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC)
53 #define NVIC_GET_CLASS(obj) \
54     OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC)
55 #define NVIC(obj) \
56     OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC)
57 
58 static const uint8_t nvic_id[] = {
59     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
60 };
61 
62 /* qemu timers run at 1GHz.   We want something closer to 1MHz.  */
63 #define SYSTICK_SCALE 1000ULL
64 
65 #define SYSTICK_ENABLE    (1 << 0)
66 #define SYSTICK_TICKINT   (1 << 1)
67 #define SYSTICK_CLKSOURCE (1 << 2)
68 #define SYSTICK_COUNTFLAG (1 << 16)
69 
70 int system_clock_scale;
71 
72 /* Conversion factor from qemu timer to SysTick frequencies.  */
73 static inline int64_t systick_scale(nvic_state *s)
74 {
75     if (s->systick.control & SYSTICK_CLKSOURCE)
76         return system_clock_scale;
77     else
78         return 1000;
79 }
80 
81 static void systick_reload(nvic_state *s, int reset)
82 {
83     /* The Cortex-M3 Devices Generic User Guide says that "When the
84      * ENABLE bit is set to 1, the counter loads the RELOAD value from the
85      * SYST RVR register and then counts down". So, we need to check the
86      * ENABLE bit before reloading the value.
87      */
88     if ((s->systick.control & SYSTICK_ENABLE) == 0) {
89         return;
90     }
91 
92     if (reset)
93         s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
94     s->systick.tick += (s->systick.reload + 1) * systick_scale(s);
95     timer_mod(s->systick.timer, s->systick.tick);
96 }
97 
98 static void systick_timer_tick(void * opaque)
99 {
100     nvic_state *s = (nvic_state *)opaque;
101     s->systick.control |= SYSTICK_COUNTFLAG;
102     if (s->systick.control & SYSTICK_TICKINT) {
103         /* Trigger the interrupt.  */
104         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
105     }
106     if (s->systick.reload == 0) {
107         s->systick.control &= ~SYSTICK_ENABLE;
108     } else {
109         systick_reload(s, 0);
110     }
111 }
112 
113 static void systick_reset(nvic_state *s)
114 {
115     s->systick.control = 0;
116     s->systick.reload = 0;
117     s->systick.tick = 0;
118     timer_del(s->systick.timer);
119 }
120 
121 /* The external routines use the hardware vector numbering, ie. the first
122    IRQ is #16.  The internal GIC routines use #32 as the first IRQ.  */
123 void armv7m_nvic_set_pending(void *opaque, int irq)
124 {
125     nvic_state *s = (nvic_state *)opaque;
126     if (irq >= 16)
127         irq += 16;
128     gic_set_pending_private(&s->gic, 0, irq);
129 }
130 
131 /* Make pending IRQ active.  */
132 int armv7m_nvic_acknowledge_irq(void *opaque)
133 {
134     nvic_state *s = (nvic_state *)opaque;
135     uint32_t irq;
136 
137     irq = gic_acknowledge_irq(&s->gic, 0, MEMTXATTRS_UNSPECIFIED);
138     if (irq == 1023)
139         hw_error("Interrupt but no vector\n");
140     if (irq >= 32)
141         irq -= 16;
142     return irq;
143 }
144 
145 void armv7m_nvic_complete_irq(void *opaque, int irq)
146 {
147     nvic_state *s = (nvic_state *)opaque;
148     if (irq >= 16)
149         irq += 16;
150     gic_complete_irq(&s->gic, 0, irq, MEMTXATTRS_UNSPECIFIED);
151 }
152 
153 static uint32_t nvic_readl(nvic_state *s, uint32_t offset)
154 {
155     ARMCPU *cpu;
156     uint32_t val;
157     int irq;
158 
159     switch (offset) {
160     case 4: /* Interrupt Control Type.  */
161         return (s->num_irq / 32) - 1;
162     case 0x10: /* SysTick Control and Status.  */
163         val = s->systick.control;
164         s->systick.control &= ~SYSTICK_COUNTFLAG;
165         return val;
166     case 0x14: /* SysTick Reload Value.  */
167         return s->systick.reload;
168     case 0x18: /* SysTick Current Value.  */
169         {
170             int64_t t;
171             if ((s->systick.control & SYSTICK_ENABLE) == 0)
172                 return 0;
173             t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
174             if (t >= s->systick.tick)
175                 return 0;
176             val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1;
177             /* The interrupt in triggered when the timer reaches zero.
178                However the counter is not reloaded until the next clock
179                tick.  This is a hack to return zero during the first tick.  */
180             if (val > s->systick.reload)
181                 val = 0;
182             return val;
183         }
184     case 0x1c: /* SysTick Calibration Value.  */
185         return 10000;
186     case 0xd00: /* CPUID Base.  */
187         cpu = ARM_CPU(current_cpu);
188         return cpu->midr;
189     case 0xd04: /* Interrupt Control State.  */
190         /* VECTACTIVE */
191         cpu = ARM_CPU(current_cpu);
192         val = cpu->env.v7m.exception;
193         if (val == 1023) {
194             val = 0;
195         } else if (val >= 32) {
196             val -= 16;
197         }
198         /* VECTPENDING */
199         if (s->gic.current_pending[0] != 1023)
200             val |= (s->gic.current_pending[0] << 12);
201         /* ISRPENDING and RETTOBASE */
202         for (irq = 32; irq < s->num_irq; irq++) {
203             if (s->gic.irq_state[irq].pending) {
204                 val |= (1 << 22);
205                 break;
206             }
207             if (irq != cpu->env.v7m.exception && s->gic.irq_state[irq].active) {
208                 val |= (1 << 11);
209             }
210         }
211         /* PENDSTSET */
212         if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending)
213             val |= (1 << 26);
214         /* PENDSVSET */
215         if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending)
216             val |= (1 << 28);
217         /* NMIPENDSET */
218         if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending)
219             val |= (1 << 31);
220         return val;
221     case 0xd08: /* Vector Table Offset.  */
222         cpu = ARM_CPU(current_cpu);
223         return cpu->env.v7m.vecbase;
224     case 0xd0c: /* Application Interrupt/Reset Control.  */
225         return 0xfa050000;
226     case 0xd10: /* System Control.  */
227         /* TODO: Implement SLEEPONEXIT.  */
228         return 0;
229     case 0xd14: /* Configuration Control.  */
230         /* TODO: Implement Configuration Control bits.  */
231         return 0;
232     case 0xd24: /* System Handler Status.  */
233         val = 0;
234         if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0);
235         if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1);
236         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3);
237         if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7);
238         if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8);
239         if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10);
240         if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11);
241         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12);
242         if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13);
243         if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14);
244         if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15);
245         if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16);
246         if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17);
247         if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18);
248         return val;
249     case 0xd28: /* Configurable Fault Status.  */
250         /* TODO: Implement Fault Status.  */
251         qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n");
252         return 0;
253     case 0xd2c: /* Hard Fault Status.  */
254     case 0xd30: /* Debug Fault Status.  */
255     case 0xd34: /* Mem Manage Address.  */
256     case 0xd38: /* Bus Fault Address.  */
257     case 0xd3c: /* Aux Fault Status.  */
258         /* TODO: Implement fault status registers.  */
259         qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n");
260         return 0;
261     case 0xd40: /* PFR0.  */
262         return 0x00000030;
263     case 0xd44: /* PRF1.  */
264         return 0x00000200;
265     case 0xd48: /* DFR0.  */
266         return 0x00100000;
267     case 0xd4c: /* AFR0.  */
268         return 0x00000000;
269     case 0xd50: /* MMFR0.  */
270         return 0x00000030;
271     case 0xd54: /* MMFR1.  */
272         return 0x00000000;
273     case 0xd58: /* MMFR2.  */
274         return 0x00000000;
275     case 0xd5c: /* MMFR3.  */
276         return 0x00000000;
277     case 0xd60: /* ISAR0.  */
278         return 0x01141110;
279     case 0xd64: /* ISAR1.  */
280         return 0x02111000;
281     case 0xd68: /* ISAR2.  */
282         return 0x21112231;
283     case 0xd6c: /* ISAR3.  */
284         return 0x01111110;
285     case 0xd70: /* ISAR4.  */
286         return 0x01310102;
287     /* TODO: Implement debug registers.  */
288     default:
289         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
290         return 0;
291     }
292 }
293 
294 static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value)
295 {
296     ARMCPU *cpu;
297     uint32_t oldval;
298     switch (offset) {
299     case 0x10: /* SysTick Control and Status.  */
300         oldval = s->systick.control;
301         s->systick.control &= 0xfffffff8;
302         s->systick.control |= value & 7;
303         if ((oldval ^ value) & SYSTICK_ENABLE) {
304             int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
305             if (value & SYSTICK_ENABLE) {
306                 if (s->systick.tick) {
307                     s->systick.tick += now;
308                     timer_mod(s->systick.timer, s->systick.tick);
309                 } else {
310                     systick_reload(s, 1);
311                 }
312             } else {
313                 timer_del(s->systick.timer);
314                 s->systick.tick -= now;
315                 if (s->systick.tick < 0)
316                   s->systick.tick = 0;
317             }
318         } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) {
319             /* This is a hack. Force the timer to be reloaded
320                when the reference clock is changed.  */
321             systick_reload(s, 1);
322         }
323         break;
324     case 0x14: /* SysTick Reload Value.  */
325         s->systick.reload = value;
326         break;
327     case 0x18: /* SysTick Current Value.  Writes reload the timer.  */
328         systick_reload(s, 1);
329         s->systick.control &= ~SYSTICK_COUNTFLAG;
330         break;
331     case 0xd04: /* Interrupt Control State.  */
332         if (value & (1 << 31)) {
333             armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI);
334         }
335         if (value & (1 << 28)) {
336             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV);
337         } else if (value & (1 << 27)) {
338             s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0;
339             gic_update(&s->gic);
340         }
341         if (value & (1 << 26)) {
342             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK);
343         } else if (value & (1 << 25)) {
344             s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0;
345             gic_update(&s->gic);
346         }
347         break;
348     case 0xd08: /* Vector Table Offset.  */
349         cpu = ARM_CPU(current_cpu);
350         cpu->env.v7m.vecbase = value & 0xffffff80;
351         break;
352     case 0xd0c: /* Application Interrupt/Reset Control.  */
353         if ((value >> 16) == 0x05fa) {
354             if (value & 4) {
355                 qemu_irq_pulse(s->sysresetreq);
356             }
357             if (value & 2) {
358                 qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n");
359             }
360             if (value & 1) {
361                 qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n");
362             }
363             if (value & 0x700) {
364                 qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n");
365             }
366         }
367         break;
368     case 0xd10: /* System Control.  */
369     case 0xd14: /* Configuration Control.  */
370         /* TODO: Implement control registers.  */
371         qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n");
372         break;
373     case 0xd24: /* System Handler Control.  */
374         /* TODO: Real hardware allows you to set/clear the active bits
375            under some circumstances.  We don't implement this.  */
376         s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
377         s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
378         s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
379         break;
380     case 0xd28: /* Configurable Fault Status.  */
381     case 0xd2c: /* Hard Fault Status.  */
382     case 0xd30: /* Debug Fault Status.  */
383     case 0xd34: /* Mem Manage Address.  */
384     case 0xd38: /* Bus Fault Address.  */
385     case 0xd3c: /* Aux Fault Status.  */
386         qemu_log_mask(LOG_UNIMP,
387                       "NVIC: fault status registers unimplemented\n");
388         break;
389     case 0xf00: /* Software Triggered Interrupt Register */
390         if ((value & 0x1ff) < s->num_irq) {
391             gic_set_pending_private(&s->gic, 0, value & 0x1ff);
392         }
393         break;
394     default:
395         qemu_log_mask(LOG_GUEST_ERROR,
396                       "NVIC: Bad write offset 0x%x\n", offset);
397     }
398 }
399 
400 static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr,
401                                  unsigned size)
402 {
403     nvic_state *s = (nvic_state *)opaque;
404     uint32_t offset = addr;
405     int i;
406     uint32_t val;
407 
408     switch (offset) {
409     case 0xd18 ... 0xd23: /* System Handler Priority.  */
410         val = 0;
411         for (i = 0; i < size; i++) {
412             val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8);
413         }
414         return val;
415     case 0xfe0 ... 0xfff: /* ID.  */
416         if (offset & 3) {
417             return 0;
418         }
419         return nvic_id[(offset - 0xfe0) >> 2];
420     }
421     if (size == 4) {
422         return nvic_readl(s, offset);
423     }
424     qemu_log_mask(LOG_GUEST_ERROR,
425                   "NVIC: Bad read of size %d at offset 0x%x\n", size, offset);
426     return 0;
427 }
428 
429 static void nvic_sysreg_write(void *opaque, hwaddr addr,
430                               uint64_t value, unsigned size)
431 {
432     nvic_state *s = (nvic_state *)opaque;
433     uint32_t offset = addr;
434     int i;
435 
436     switch (offset) {
437     case 0xd18 ... 0xd23: /* System Handler Priority.  */
438         for (i = 0; i < size; i++) {
439             s->gic.priority1[(offset - 0xd14) + i][0] =
440                 (value >> (i * 8)) & 0xff;
441         }
442         gic_update(&s->gic);
443         return;
444     }
445     if (size == 4) {
446         nvic_writel(s, offset, value);
447         return;
448     }
449     qemu_log_mask(LOG_GUEST_ERROR,
450                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
451 }
452 
453 static const MemoryRegionOps nvic_sysreg_ops = {
454     .read = nvic_sysreg_read,
455     .write = nvic_sysreg_write,
456     .endianness = DEVICE_NATIVE_ENDIAN,
457 };
458 
459 static const VMStateDescription vmstate_nvic = {
460     .name = "armv7m_nvic",
461     .version_id = 1,
462     .minimum_version_id = 1,
463     .fields = (VMStateField[]) {
464         VMSTATE_UINT32(systick.control, nvic_state),
465         VMSTATE_UINT32(systick.reload, nvic_state),
466         VMSTATE_INT64(systick.tick, nvic_state),
467         VMSTATE_TIMER_PTR(systick.timer, nvic_state),
468         VMSTATE_END_OF_LIST()
469     }
470 };
471 
472 static void armv7m_nvic_reset(DeviceState *dev)
473 {
474     nvic_state *s = NVIC(dev);
475     NVICClass *nc = NVIC_GET_CLASS(s);
476     nc->parent_reset(dev);
477     /* Common GIC reset resets to disabled; the NVIC doesn't have
478      * per-CPU interfaces so mark our non-existent CPU interface
479      * as enabled by default, and with a priority mask which allows
480      * all interrupts through.
481      */
482     s->gic.cpu_ctlr[0] = GICC_CTLR_EN_GRP0;
483     s->gic.priority_mask[0] = 0x100;
484     /* The NVIC as a whole is always enabled. */
485     s->gic.ctlr = 1;
486     systick_reset(s);
487 }
488 
489 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
490 {
491     nvic_state *s = NVIC(dev);
492     NVICClass *nc = NVIC_GET_CLASS(s);
493     Error *local_err = NULL;
494 
495     /* The NVIC always has only one CPU */
496     s->gic.num_cpu = 1;
497     /* Tell the common code we're an NVIC */
498     s->gic.revision = 0xffffffff;
499     s->num_irq = s->gic.num_irq;
500     nc->parent_realize(dev, &local_err);
501     if (local_err) {
502         error_propagate(errp, local_err);
503         return;
504     }
505     gic_init_irqs_and_distributor(&s->gic);
506     /* The NVIC and system controller register area looks like this:
507      *  0..0xff : system control registers, including systick
508      *  0x100..0xcff : GIC-like registers
509      *  0xd00..0xfff : system control registers
510      * We use overlaying to put the GIC like registers
511      * over the top of the system control register region.
512      */
513     memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000);
514     /* The system register region goes at the bottom of the priority
515      * stack as it covers the whole page.
516      */
517     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
518                           "nvic_sysregs", 0x1000);
519     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
520     /* Alias the GIC region so we can get only the section of it
521      * we need, and layer it on top of the system register region.
522      */
523     memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s),
524                              "nvic-gic", &s->gic.iomem,
525                              0x100, 0xc00);
526     memory_region_add_subregion_overlap(&s->container, 0x100,
527                                         &s->gic_iomem_alias, 1);
528     /* Map the whole thing into system memory at the location required
529      * by the v7M architecture.
530      */
531     memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container);
532     s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s);
533 }
534 
535 static void armv7m_nvic_instance_init(Object *obj)
536 {
537     /* We have a different default value for the num-irq property
538      * than our superclass. This function runs after qdev init
539      * has set the defaults from the Property array and before
540      * any user-specified property setting, so just modify the
541      * value in the GICState struct.
542      */
543     GICState *s = ARM_GIC_COMMON(obj);
544     DeviceState *dev = DEVICE(obj);
545     nvic_state *nvic = NVIC(obj);
546     /* The ARM v7m may have anything from 0 to 496 external interrupt
547      * IRQ lines. We default to 64. Other boards may differ and should
548      * set the num-irq property appropriately.
549      */
550     s->num_irq = 64;
551     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
552 }
553 
554 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
555 {
556     NVICClass *nc = NVIC_CLASS(klass);
557     DeviceClass *dc = DEVICE_CLASS(klass);
558 
559     nc->parent_reset = dc->reset;
560     nc->parent_realize = dc->realize;
561     dc->vmsd  = &vmstate_nvic;
562     dc->reset = armv7m_nvic_reset;
563     dc->realize = armv7m_nvic_realize;
564 }
565 
566 static const TypeInfo armv7m_nvic_info = {
567     .name          = TYPE_NVIC,
568     .parent        = TYPE_ARM_GIC_COMMON,
569     .instance_init = armv7m_nvic_instance_init,
570     .instance_size = sizeof(nvic_state),
571     .class_init    = armv7m_nvic_class_init,
572     .class_size    = sizeof(NVICClass),
573 };
574 
575 static void armv7m_nvic_register_types(void)
576 {
577     type_register_static(&armv7m_nvic_info);
578 }
579 
580 type_init(armv7m_nvic_register_types)
581