xref: /openbmc/qemu/hw/intc/armv7m_nvic.c (revision 0999e87fa5b45f579670a48f168c77f6235e996f)
1 /*
2  * ARM Nested Vectored Interrupt Controller
3  *
4  * Copyright (c) 2006-2007 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licensed under the GPL.
8  *
9  * The ARMv7M System controller is fairly tightly tied in with the
10  * NVIC.  Much of that is also implemented here.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qemu-common.h"
16 #include "cpu.h"
17 #include "hw/sysbus.h"
18 #include "qemu/timer.h"
19 #include "hw/arm/arm.h"
20 #include "hw/intc/armv7m_nvic.h"
21 #include "target/arm/cpu.h"
22 #include "exec/exec-all.h"
23 #include "qemu/log.h"
24 #include "trace.h"
25 
26 /* IRQ number counting:
27  *
28  * the num-irq property counts the number of external IRQ lines
29  *
30  * NVICState::num_irq counts the total number of exceptions
31  * (external IRQs, the 15 internal exceptions including reset,
32  * and one for the unused exception number 0).
33  *
34  * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35  *
36  * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37  *
38  * Iterating through all exceptions should typically be done with
39  * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40  *
41  * The external qemu_irq lines are the NVIC's external IRQ lines,
42  * so line 0 is exception 16.
43  *
44  * In the terminology of the architecture manual, "interrupts" are
45  * a subcategory of exception referring to the external interrupts
46  * (which are exception numbers NVIC_FIRST_IRQ and upward).
47  * For historical reasons QEMU tends to use "interrupt" and
48  * "exception" more or less interchangeably.
49  */
50 #define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52 
53 /* Effective running priority of the CPU when no exception is active
54  * (higher than the highest possible priority value)
55  */
56 #define NVIC_NOEXC_PRIO 0x100
57 /* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58 #define NVIC_NS_PRIO_LIMIT 0x80
59 
60 static const uint8_t nvic_id[] = {
61     0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62 };
63 
64 static int nvic_pending_prio(NVICState *s)
65 {
66     /* return the group priority of the current pending interrupt,
67      * or NVIC_NOEXC_PRIO if no interrupt is pending
68      */
69     return s->vectpending_prio;
70 }
71 
72 /* Return the value of the ISCR RETTOBASE bit:
73  * 1 if there is exactly one active exception
74  * 0 if there is more than one active exception
75  * UNKNOWN if there are no active exceptions (we choose 1,
76  * which matches the choice Cortex-M3 is documented as making).
77  *
78  * NB: some versions of the documentation talk about this
79  * counting "active exceptions other than the one shown by IPSR";
80  * this is only different in the obscure corner case where guest
81  * code has manually deactivated an exception and is about
82  * to fail an exception-return integrity check. The definition
83  * above is the one from the v8M ARM ARM and is also in line
84  * with the behaviour documented for the Cortex-M3.
85  */
86 static bool nvic_rettobase(NVICState *s)
87 {
88     int irq, nhand = 0;
89     bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
90 
91     for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
92         if (s->vectors[irq].active ||
93             (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94              s->sec_vectors[irq].active)) {
95             nhand++;
96             if (nhand == 2) {
97                 return 0;
98             }
99         }
100     }
101 
102     return 1;
103 }
104 
105 /* Return the value of the ISCR ISRPENDING bit:
106  * 1 if an external interrupt is pending
107  * 0 if no external interrupt is pending
108  */
109 static bool nvic_isrpending(NVICState *s)
110 {
111     int irq;
112 
113     /* We can shortcut if the highest priority pending interrupt
114      * happens to be external or if there is nothing pending.
115      */
116     if (s->vectpending > NVIC_FIRST_IRQ) {
117         return true;
118     }
119     if (s->vectpending == 0) {
120         return false;
121     }
122 
123     for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124         if (s->vectors[irq].pending) {
125             return true;
126         }
127     }
128     return false;
129 }
130 
131 static bool exc_is_banked(int exc)
132 {
133     /* Return true if this is one of the limited set of exceptions which
134      * are banked (and thus have state in sec_vectors[])
135      */
136     return exc == ARMV7M_EXCP_HARD ||
137         exc == ARMV7M_EXCP_MEM ||
138         exc == ARMV7M_EXCP_USAGE ||
139         exc == ARMV7M_EXCP_SVC ||
140         exc == ARMV7M_EXCP_PENDSV ||
141         exc == ARMV7M_EXCP_SYSTICK;
142 }
143 
144 /* Return a mask word which clears the subpriority bits from
145  * a priority value for an M-profile exception, leaving only
146  * the group priority.
147  */
148 static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
149 {
150     return ~0U << (s->prigroup[secure] + 1);
151 }
152 
153 static bool exc_targets_secure(NVICState *s, int exc)
154 {
155     /* Return true if this non-banked exception targets Secure state. */
156     if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157         return false;
158     }
159 
160     if (exc >= NVIC_FIRST_IRQ) {
161         return !s->itns[exc];
162     }
163 
164     /* Function shouldn't be called for banked exceptions. */
165     assert(!exc_is_banked(exc));
166 
167     switch (exc) {
168     case ARMV7M_EXCP_NMI:
169     case ARMV7M_EXCP_BUS:
170         return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171     case ARMV7M_EXCP_SECURE:
172         return true;
173     case ARMV7M_EXCP_DEBUG:
174         /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175         return false;
176     default:
177         /* reset, and reserved (unused) low exception numbers.
178          * We'll get called by code that loops through all the exception
179          * numbers, but it doesn't matter what we return here as these
180          * non-existent exceptions will never be pended or active.
181          */
182         return true;
183     }
184 }
185 
186 static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187 {
188     /* Return the group priority for this exception, given its raw
189      * (group-and-subgroup) priority value and whether it is targeting
190      * secure state or not.
191      */
192     if (rawprio < 0) {
193         return rawprio;
194     }
195     rawprio &= nvic_gprio_mask(s, targets_secure);
196     /* AIRCR.PRIS causes us to squash all NS priorities into the
197      * lower half of the total range
198      */
199     if (!targets_secure &&
200         (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201         rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202     }
203     return rawprio;
204 }
205 
206 /* Recompute vectpending and exception_prio for a CPU which implements
207  * the Security extension
208  */
209 static void nvic_recompute_state_secure(NVICState *s)
210 {
211     int i, bank;
212     int pend_prio = NVIC_NOEXC_PRIO;
213     int active_prio = NVIC_NOEXC_PRIO;
214     int pend_irq = 0;
215     bool pending_is_s_banked = false;
216 
217     /* R_CQRV: precedence is by:
218      *  - lowest group priority; if both the same then
219      *  - lowest subpriority; if both the same then
220      *  - lowest exception number; if both the same (ie banked) then
221      *  - secure exception takes precedence
222      * Compare pseudocode RawExecutionPriority.
223      * Annoyingly, now we have two prigroup values (for S and NS)
224      * we can't do the loop comparison on raw priority values.
225      */
226     for (i = 1; i < s->num_irq; i++) {
227         for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228             VecInfo *vec;
229             int prio;
230             bool targets_secure;
231 
232             if (bank == M_REG_S) {
233                 if (!exc_is_banked(i)) {
234                     continue;
235                 }
236                 vec = &s->sec_vectors[i];
237                 targets_secure = true;
238             } else {
239                 vec = &s->vectors[i];
240                 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241             }
242 
243             prio = exc_group_prio(s, vec->prio, targets_secure);
244             if (vec->enabled && vec->pending && prio < pend_prio) {
245                 pend_prio = prio;
246                 pend_irq = i;
247                 pending_is_s_banked = (bank == M_REG_S);
248             }
249             if (vec->active && prio < active_prio) {
250                 active_prio = prio;
251             }
252         }
253     }
254 
255     s->vectpending_is_s_banked = pending_is_s_banked;
256     s->vectpending = pend_irq;
257     s->vectpending_prio = pend_prio;
258     s->exception_prio = active_prio;
259 
260     trace_nvic_recompute_state_secure(s->vectpending,
261                                       s->vectpending_is_s_banked,
262                                       s->vectpending_prio,
263                                       s->exception_prio);
264 }
265 
266 /* Recompute vectpending and exception_prio */
267 static void nvic_recompute_state(NVICState *s)
268 {
269     int i;
270     int pend_prio = NVIC_NOEXC_PRIO;
271     int active_prio = NVIC_NOEXC_PRIO;
272     int pend_irq = 0;
273 
274     /* In theory we could write one function that handled both
275      * the "security extension present" and "not present"; however
276      * the security related changes significantly complicate the
277      * recomputation just by themselves and mixing both cases together
278      * would be even worse, so we retain a separate non-secure-only
279      * version for CPUs which don't implement the security extension.
280      */
281     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282         nvic_recompute_state_secure(s);
283         return;
284     }
285 
286     for (i = 1; i < s->num_irq; i++) {
287         VecInfo *vec = &s->vectors[i];
288 
289         if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290             pend_prio = vec->prio;
291             pend_irq = i;
292         }
293         if (vec->active && vec->prio < active_prio) {
294             active_prio = vec->prio;
295         }
296     }
297 
298     if (active_prio > 0) {
299         active_prio &= nvic_gprio_mask(s, false);
300     }
301 
302     if (pend_prio > 0) {
303         pend_prio &= nvic_gprio_mask(s, false);
304     }
305 
306     s->vectpending = pend_irq;
307     s->vectpending_prio = pend_prio;
308     s->exception_prio = active_prio;
309 
310     trace_nvic_recompute_state(s->vectpending,
311                                s->vectpending_prio,
312                                s->exception_prio);
313 }
314 
315 /* Return the current execution priority of the CPU
316  * (equivalent to the pseudocode ExecutionPriority function).
317  * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318  */
319 static inline int nvic_exec_prio(NVICState *s)
320 {
321     CPUARMState *env = &s->cpu->env;
322     int running = NVIC_NOEXC_PRIO;
323 
324     if (env->v7m.basepri[M_REG_NS] > 0) {
325         running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326     }
327 
328     if (env->v7m.basepri[M_REG_S] > 0) {
329         int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330         if (running > basepri) {
331             running = basepri;
332         }
333     }
334 
335     if (env->v7m.primask[M_REG_NS]) {
336         if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337             if (running > NVIC_NS_PRIO_LIMIT) {
338                 running = NVIC_NS_PRIO_LIMIT;
339             }
340         } else {
341             running = 0;
342         }
343     }
344 
345     if (env->v7m.primask[M_REG_S]) {
346         running = 0;
347     }
348 
349     if (env->v7m.faultmask[M_REG_NS]) {
350         if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351             running = -1;
352         } else {
353             if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354                 if (running > NVIC_NS_PRIO_LIMIT) {
355                     running = NVIC_NS_PRIO_LIMIT;
356                 }
357             } else {
358                 running = 0;
359             }
360         }
361     }
362 
363     if (env->v7m.faultmask[M_REG_S]) {
364         running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365     }
366 
367     /* consider priority of active handler */
368     return MIN(running, s->exception_prio);
369 }
370 
371 bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372 {
373     /* Return true if the requested execution priority is negative
374      * for the specified security state, ie that security state
375      * has an active NMI or HardFault or has set its FAULTMASK.
376      * Note that this is not the same as whether the execution
377      * priority is actually negative (for instance AIRCR.PRIS may
378      * mean we don't allow FAULTMASK_NS to actually make the execution
379      * priority negative). Compare pseudocode IsReqExcPriNeg().
380      */
381     NVICState *s = opaque;
382 
383     if (s->cpu->env.v7m.faultmask[secure]) {
384         return true;
385     }
386 
387     if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388         s->vectors[ARMV7M_EXCP_HARD].active) {
389         return true;
390     }
391 
392     if (s->vectors[ARMV7M_EXCP_NMI].active &&
393         exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394         return true;
395     }
396 
397     return false;
398 }
399 
400 bool armv7m_nvic_can_take_pending_exception(void *opaque)
401 {
402     NVICState *s = opaque;
403 
404     return nvic_exec_prio(s) > nvic_pending_prio(s);
405 }
406 
407 int armv7m_nvic_raw_execution_priority(void *opaque)
408 {
409     NVICState *s = opaque;
410 
411     return s->exception_prio;
412 }
413 
414 /* caller must call nvic_irq_update() after this.
415  * secure indicates the bank to use for banked exceptions (we assert if
416  * we are passed secure=true for a non-banked exception).
417  */
418 static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
419 {
420     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421     assert(irq < s->num_irq);
422 
423     if (secure) {
424         assert(exc_is_banked(irq));
425         s->sec_vectors[irq].prio = prio;
426     } else {
427         s->vectors[irq].prio = prio;
428     }
429 
430     trace_nvic_set_prio(irq, secure, prio);
431 }
432 
433 /* Return the current raw priority register value.
434  * secure indicates the bank to use for banked exceptions (we assert if
435  * we are passed secure=true for a non-banked exception).
436  */
437 static int get_prio(NVICState *s, unsigned irq, bool secure)
438 {
439     assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440     assert(irq < s->num_irq);
441 
442     if (secure) {
443         assert(exc_is_banked(irq));
444         return s->sec_vectors[irq].prio;
445     } else {
446         return s->vectors[irq].prio;
447     }
448 }
449 
450 /* Recompute state and assert irq line accordingly.
451  * Must be called after changes to:
452  *  vec->active, vec->enabled, vec->pending or vec->prio for any vector
453  *  prigroup
454  */
455 static void nvic_irq_update(NVICState *s)
456 {
457     int lvl;
458     int pend_prio;
459 
460     nvic_recompute_state(s);
461     pend_prio = nvic_pending_prio(s);
462 
463     /* Raise NVIC output if this IRQ would be taken, except that we
464      * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465      * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466      * to those CPU registers don't cause us to recalculate the NVIC
467      * pending info.
468      */
469     lvl = (pend_prio < s->exception_prio);
470     trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471     qemu_set_irq(s->excpout, lvl);
472 }
473 
474 /**
475  * armv7m_nvic_clear_pending: mark the specified exception as not pending
476  * @opaque: the NVIC
477  * @irq: the exception number to mark as not pending
478  * @secure: false for non-banked exceptions or for the nonsecure
479  * version of a banked exception, true for the secure version of a banked
480  * exception.
481  *
482  * Marks the specified exception as not pending. Note that we will assert()
483  * if @secure is true and @irq does not specify one of the fixed set
484  * of architecturally banked exceptions.
485  */
486 static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
487 {
488     NVICState *s = (NVICState *)opaque;
489     VecInfo *vec;
490 
491     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492 
493     if (secure) {
494         assert(exc_is_banked(irq));
495         vec = &s->sec_vectors[irq];
496     } else {
497         vec = &s->vectors[irq];
498     }
499     trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
500     if (vec->pending) {
501         vec->pending = 0;
502         nvic_irq_update(s);
503     }
504 }
505 
506 static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507                                        bool derived)
508 {
509     /* Pend an exception, including possibly escalating it to HardFault.
510      *
511      * This function handles both "normal" pending of interrupts and
512      * exceptions, and also derived exceptions (ones which occur as
513      * a result of trying to take some other exception).
514      *
515      * If derived == true, the caller guarantees that we are part way through
516      * trying to take an exception (but have not yet called
517      * armv7m_nvic_acknowledge_irq() to make it active), and so:
518      *  - s->vectpending is the "original exception" we were trying to take
519      *  - irq is the "derived exception"
520      *  - nvic_exec_prio(s) gives the priority before exception entry
521      * Here we handle the prioritization logic which the pseudocode puts
522      * in the DerivedLateArrival() function.
523      */
524 
525     NVICState *s = (NVICState *)opaque;
526     bool banked = exc_is_banked(irq);
527     VecInfo *vec;
528 
529     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
530     assert(!secure || banked);
531 
532     vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
533 
534     trace_nvic_set_pending(irq, secure, derived, vec->enabled, vec->prio);
535 
536     if (derived) {
537         /* Derived exceptions are always synchronous. */
538         assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
539 
540         if (irq == ARMV7M_EXCP_DEBUG &&
541             exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
542             /* DebugMonitorFault, but its priority is lower than the
543              * preempted exception priority: just ignore it.
544              */
545             return;
546         }
547 
548         if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
549             /* If this is a terminal exception (one which means we cannot
550              * take the original exception, like a failure to read its
551              * vector table entry), then we must take the derived exception.
552              * If the derived exception can't take priority over the
553              * original exception, then we go into Lockup.
554              *
555              * For QEMU, we rely on the fact that a derived exception is
556              * terminal if and only if it's reported to us as HardFault,
557              * which saves having to have an extra argument is_terminal
558              * that we'd only use in one place.
559              */
560             cpu_abort(&s->cpu->parent_obj,
561                       "Lockup: can't take terminal derived exception "
562                       "(original exception priority %d)\n",
563                       s->vectpending_prio);
564         }
565         /* We now continue with the same code as for a normal pending
566          * exception, which will cause us to pend the derived exception.
567          * We'll then take either the original or the derived exception
568          * based on which is higher priority by the usual mechanism
569          * for selecting the highest priority pending interrupt.
570          */
571     }
572 
573     if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
574         /* If a synchronous exception is pending then it may be
575          * escalated to HardFault if:
576          *  * it is equal or lower priority to current execution
577          *  * it is disabled
578          * (ie we need to take it immediately but we can't do so).
579          * Asynchronous exceptions (and interrupts) simply remain pending.
580          *
581          * For QEMU, we don't have any imprecise (asynchronous) faults,
582          * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
583          * synchronous.
584          * Debug exceptions are awkward because only Debug exceptions
585          * resulting from the BKPT instruction should be escalated,
586          * but we don't currently implement any Debug exceptions other
587          * than those that result from BKPT, so we treat all debug exceptions
588          * as needing escalation.
589          *
590          * This all means we can identify whether to escalate based only on
591          * the exception number and don't (yet) need the caller to explicitly
592          * tell us whether this exception is synchronous or not.
593          */
594         int running = nvic_exec_prio(s);
595         bool escalate = false;
596 
597         if (exc_group_prio(s, vec->prio, secure) >= running) {
598             trace_nvic_escalate_prio(irq, vec->prio, running);
599             escalate = true;
600         } else if (!vec->enabled) {
601             trace_nvic_escalate_disabled(irq);
602             escalate = true;
603         }
604 
605         if (escalate) {
606 
607             /* We need to escalate this exception to a synchronous HardFault.
608              * If BFHFNMINS is set then we escalate to the banked HF for
609              * the target security state of the original exception; otherwise
610              * we take a Secure HardFault.
611              */
612             irq = ARMV7M_EXCP_HARD;
613             if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
614                 (secure ||
615                  !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
616                 vec = &s->sec_vectors[irq];
617             } else {
618                 vec = &s->vectors[irq];
619             }
620             if (running <= vec->prio) {
621                 /* We want to escalate to HardFault but we can't take the
622                  * synchronous HardFault at this point either. This is a
623                  * Lockup condition due to a guest bug. We don't model
624                  * Lockup, so report via cpu_abort() instead.
625                  */
626                 cpu_abort(&s->cpu->parent_obj,
627                           "Lockup: can't escalate %d to HardFault "
628                           "(current priority %d)\n", irq, running);
629             }
630 
631             /* HF may be banked but there is only one shared HFSR */
632             s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
633         }
634     }
635 
636     if (!vec->pending) {
637         vec->pending = 1;
638         nvic_irq_update(s);
639     }
640 }
641 
642 void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
643 {
644     do_armv7m_nvic_set_pending(opaque, irq, secure, false);
645 }
646 
647 void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
648 {
649     do_armv7m_nvic_set_pending(opaque, irq, secure, true);
650 }
651 
652 /* Make pending IRQ active.  */
653 void armv7m_nvic_acknowledge_irq(void *opaque)
654 {
655     NVICState *s = (NVICState *)opaque;
656     CPUARMState *env = &s->cpu->env;
657     const int pending = s->vectpending;
658     const int running = nvic_exec_prio(s);
659     VecInfo *vec;
660 
661     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
662 
663     if (s->vectpending_is_s_banked) {
664         vec = &s->sec_vectors[pending];
665     } else {
666         vec = &s->vectors[pending];
667     }
668 
669     assert(vec->enabled);
670     assert(vec->pending);
671 
672     assert(s->vectpending_prio < running);
673 
674     trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
675 
676     vec->active = 1;
677     vec->pending = 0;
678 
679     write_v7m_exception(env, s->vectpending);
680 
681     nvic_irq_update(s);
682 }
683 
684 void armv7m_nvic_get_pending_irq_info(void *opaque,
685                                       int *pirq, bool *ptargets_secure)
686 {
687     NVICState *s = (NVICState *)opaque;
688     const int pending = s->vectpending;
689     bool targets_secure;
690 
691     assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
692 
693     if (s->vectpending_is_s_banked) {
694         targets_secure = true;
695     } else {
696         targets_secure = !exc_is_banked(pending) &&
697             exc_targets_secure(s, pending);
698     }
699 
700     trace_nvic_get_pending_irq_info(pending, targets_secure);
701 
702     *ptargets_secure = targets_secure;
703     *pirq = pending;
704 }
705 
706 int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
707 {
708     NVICState *s = (NVICState *)opaque;
709     VecInfo *vec;
710     int ret;
711 
712     assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
713 
714     if (secure && exc_is_banked(irq)) {
715         vec = &s->sec_vectors[irq];
716     } else {
717         vec = &s->vectors[irq];
718     }
719 
720     trace_nvic_complete_irq(irq, secure);
721 
722     if (!vec->active) {
723         /* Tell the caller this was an illegal exception return */
724         return -1;
725     }
726 
727     ret = nvic_rettobase(s);
728 
729     vec->active = 0;
730     if (vec->level) {
731         /* Re-pend the exception if it's still held high; only
732          * happens for extenal IRQs
733          */
734         assert(irq >= NVIC_FIRST_IRQ);
735         vec->pending = 1;
736     }
737 
738     nvic_irq_update(s);
739 
740     return ret;
741 }
742 
743 /* callback when external interrupt line is changed */
744 static void set_irq_level(void *opaque, int n, int level)
745 {
746     NVICState *s = opaque;
747     VecInfo *vec;
748 
749     n += NVIC_FIRST_IRQ;
750 
751     assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
752 
753     trace_nvic_set_irq_level(n, level);
754 
755     /* The pending status of an external interrupt is
756      * latched on rising edge and exception handler return.
757      *
758      * Pulsing the IRQ will always run the handler
759      * once, and the handler will re-run until the
760      * level is low when the handler completes.
761      */
762     vec = &s->vectors[n];
763     if (level != vec->level) {
764         vec->level = level;
765         if (level) {
766             armv7m_nvic_set_pending(s, n, false);
767         }
768     }
769 }
770 
771 static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
772 {
773     ARMCPU *cpu = s->cpu;
774     uint32_t val;
775 
776     switch (offset) {
777     case 4: /* Interrupt Control Type.  */
778         return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
779     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
780     {
781         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
782         int i;
783 
784         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
785             goto bad_offset;
786         }
787         if (!attrs.secure) {
788             return 0;
789         }
790         val = 0;
791         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
792             if (s->itns[startvec + i]) {
793                 val |= (1 << i);
794             }
795         }
796         return val;
797     }
798     case 0xd00: /* CPUID Base.  */
799         return cpu->midr;
800     case 0xd04: /* Interrupt Control State (ICSR) */
801         /* VECTACTIVE */
802         val = cpu->env.v7m.exception;
803         /* VECTPENDING */
804         val |= (s->vectpending & 0xff) << 12;
805         /* ISRPENDING - set if any external IRQ is pending */
806         if (nvic_isrpending(s)) {
807             val |= (1 << 22);
808         }
809         /* RETTOBASE - set if only one handler is active */
810         if (nvic_rettobase(s)) {
811             val |= (1 << 11);
812         }
813         if (attrs.secure) {
814             /* PENDSTSET */
815             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
816                 val |= (1 << 26);
817             }
818             /* PENDSVSET */
819             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
820                 val |= (1 << 28);
821             }
822         } else {
823             /* PENDSTSET */
824             if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
825                 val |= (1 << 26);
826             }
827             /* PENDSVSET */
828             if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
829                 val |= (1 << 28);
830             }
831         }
832         /* NMIPENDSET */
833         if ((cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
834             s->vectors[ARMV7M_EXCP_NMI].pending) {
835             val |= (1 << 31);
836         }
837         /* ISRPREEMPT: RES0 when halting debug not implemented */
838         /* STTNS: RES0 for the Main Extension */
839         return val;
840     case 0xd08: /* Vector Table Offset.  */
841         return cpu->env.v7m.vecbase[attrs.secure];
842     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
843         val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
844         if (attrs.secure) {
845             /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
846             val |= cpu->env.v7m.aircr;
847         } else {
848             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
849                 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
850                  * security isn't supported then BFHFNMINS is RAO (and
851                  * the bit in env.v7m.aircr is always set).
852                  */
853                 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
854             }
855         }
856         return val;
857     case 0xd10: /* System Control.  */
858         /* TODO: Implement SLEEPONEXIT.  */
859         return 0;
860     case 0xd14: /* Configuration Control.  */
861         /* The BFHFNMIGN bit is the only non-banked bit; we
862          * keep it in the non-secure copy of the register.
863          */
864         val = cpu->env.v7m.ccr[attrs.secure];
865         val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
866         return val;
867     case 0xd24: /* System Handler Control and State (SHCSR) */
868         val = 0;
869         if (attrs.secure) {
870             if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
871                 val |= (1 << 0);
872             }
873             if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
874                 val |= (1 << 2);
875             }
876             if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
877                 val |= (1 << 3);
878             }
879             if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
880                 val |= (1 << 7);
881             }
882             if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
883                 val |= (1 << 10);
884             }
885             if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
886                 val |= (1 << 11);
887             }
888             if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
889                 val |= (1 << 12);
890             }
891             if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
892                 val |= (1 << 13);
893             }
894             if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
895                 val |= (1 << 15);
896             }
897             if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
898                 val |= (1 << 16);
899             }
900             if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
901                 val |= (1 << 18);
902             }
903             if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
904                 val |= (1 << 21);
905             }
906             /* SecureFault is not banked but is always RAZ/WI to NS */
907             if (s->vectors[ARMV7M_EXCP_SECURE].active) {
908                 val |= (1 << 4);
909             }
910             if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
911                 val |= (1 << 19);
912             }
913             if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
914                 val |= (1 << 20);
915             }
916         } else {
917             if (s->vectors[ARMV7M_EXCP_MEM].active) {
918                 val |= (1 << 0);
919             }
920             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
921                 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
922                 if (s->vectors[ARMV7M_EXCP_HARD].active) {
923                     val |= (1 << 2);
924                 }
925                 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
926                     val |= (1 << 21);
927                 }
928             }
929             if (s->vectors[ARMV7M_EXCP_USAGE].active) {
930                 val |= (1 << 3);
931             }
932             if (s->vectors[ARMV7M_EXCP_SVC].active) {
933                 val |= (1 << 7);
934             }
935             if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
936                 val |= (1 << 10);
937             }
938             if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
939                 val |= (1 << 11);
940             }
941             if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
942                 val |= (1 << 12);
943             }
944             if (s->vectors[ARMV7M_EXCP_MEM].pending) {
945                 val |= (1 << 13);
946             }
947             if (s->vectors[ARMV7M_EXCP_SVC].pending) {
948                 val |= (1 << 15);
949             }
950             if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
951                 val |= (1 << 16);
952             }
953             if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
954                 val |= (1 << 18);
955             }
956         }
957         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
958             if (s->vectors[ARMV7M_EXCP_BUS].active) {
959                 val |= (1 << 1);
960             }
961             if (s->vectors[ARMV7M_EXCP_BUS].pending) {
962                 val |= (1 << 14);
963             }
964             if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
965                 val |= (1 << 17);
966             }
967             if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
968                 s->vectors[ARMV7M_EXCP_NMI].active) {
969                 /* NMIACT is not present in v7M */
970                 val |= (1 << 5);
971             }
972         }
973 
974         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
975         if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
976             val |= (1 << 8);
977         }
978         return val;
979     case 0xd2c: /* Hard Fault Status.  */
980         return cpu->env.v7m.hfsr;
981     case 0xd30: /* Debug Fault Status.  */
982         return cpu->env.v7m.dfsr;
983     case 0xd34: /* MMFAR MemManage Fault Address */
984         return cpu->env.v7m.mmfar[attrs.secure];
985     case 0xd38: /* Bus Fault Address.  */
986         return cpu->env.v7m.bfar;
987     case 0xd3c: /* Aux Fault Status.  */
988         /* TODO: Implement fault status registers.  */
989         qemu_log_mask(LOG_UNIMP,
990                       "Aux Fault status registers unimplemented\n");
991         return 0;
992     case 0xd40: /* PFR0.  */
993         return 0x00000030;
994     case 0xd44: /* PRF1.  */
995         return 0x00000200;
996     case 0xd48: /* DFR0.  */
997         return 0x00100000;
998     case 0xd4c: /* AFR0.  */
999         return 0x00000000;
1000     case 0xd50: /* MMFR0.  */
1001         return 0x00000030;
1002     case 0xd54: /* MMFR1.  */
1003         return 0x00000000;
1004     case 0xd58: /* MMFR2.  */
1005         return 0x00000000;
1006     case 0xd5c: /* MMFR3.  */
1007         return 0x00000000;
1008     case 0xd60: /* ISAR0.  */
1009         return 0x01141110;
1010     case 0xd64: /* ISAR1.  */
1011         return 0x02111000;
1012     case 0xd68: /* ISAR2.  */
1013         return 0x21112231;
1014     case 0xd6c: /* ISAR3.  */
1015         return 0x01111110;
1016     case 0xd70: /* ISAR4.  */
1017         return 0x01310102;
1018     /* TODO: Implement debug registers.  */
1019     case 0xd90: /* MPU_TYPE */
1020         /* Unified MPU; if the MPU is not present this value is zero */
1021         return cpu->pmsav7_dregion << 8;
1022         break;
1023     case 0xd94: /* MPU_CTRL */
1024         return cpu->env.v7m.mpu_ctrl[attrs.secure];
1025     case 0xd98: /* MPU_RNR */
1026         return cpu->env.pmsav7.rnr[attrs.secure];
1027     case 0xd9c: /* MPU_RBAR */
1028     case 0xda4: /* MPU_RBAR_A1 */
1029     case 0xdac: /* MPU_RBAR_A2 */
1030     case 0xdb4: /* MPU_RBAR_A3 */
1031     {
1032         int region = cpu->env.pmsav7.rnr[attrs.secure];
1033 
1034         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1035             /* PMSAv8M handling of the aliases is different from v7M:
1036              * aliases A1, A2, A3 override the low two bits of the region
1037              * number in MPU_RNR, and there is no 'region' field in the
1038              * RBAR register.
1039              */
1040             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1041             if (aliasno) {
1042                 region = deposit32(region, 0, 2, aliasno);
1043             }
1044             if (region >= cpu->pmsav7_dregion) {
1045                 return 0;
1046             }
1047             return cpu->env.pmsav8.rbar[attrs.secure][region];
1048         }
1049 
1050         if (region >= cpu->pmsav7_dregion) {
1051             return 0;
1052         }
1053         return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
1054     }
1055     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1056     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1057     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1058     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1059     {
1060         int region = cpu->env.pmsav7.rnr[attrs.secure];
1061 
1062         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1063             /* PMSAv8M handling of the aliases is different from v7M:
1064              * aliases A1, A2, A3 override the low two bits of the region
1065              * number in MPU_RNR.
1066              */
1067             int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1068             if (aliasno) {
1069                 region = deposit32(region, 0, 2, aliasno);
1070             }
1071             if (region >= cpu->pmsav7_dregion) {
1072                 return 0;
1073             }
1074             return cpu->env.pmsav8.rlar[attrs.secure][region];
1075         }
1076 
1077         if (region >= cpu->pmsav7_dregion) {
1078             return 0;
1079         }
1080         return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1081             (cpu->env.pmsav7.drsr[region] & 0xffff);
1082     }
1083     case 0xdc0: /* MPU_MAIR0 */
1084         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1085             goto bad_offset;
1086         }
1087         return cpu->env.pmsav8.mair0[attrs.secure];
1088     case 0xdc4: /* MPU_MAIR1 */
1089         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1090             goto bad_offset;
1091         }
1092         return cpu->env.pmsav8.mair1[attrs.secure];
1093     case 0xdd0: /* SAU_CTRL */
1094         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1095             goto bad_offset;
1096         }
1097         if (!attrs.secure) {
1098             return 0;
1099         }
1100         return cpu->env.sau.ctrl;
1101     case 0xdd4: /* SAU_TYPE */
1102         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1103             goto bad_offset;
1104         }
1105         if (!attrs.secure) {
1106             return 0;
1107         }
1108         return cpu->sau_sregion;
1109     case 0xdd8: /* SAU_RNR */
1110         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1111             goto bad_offset;
1112         }
1113         if (!attrs.secure) {
1114             return 0;
1115         }
1116         return cpu->env.sau.rnr;
1117     case 0xddc: /* SAU_RBAR */
1118     {
1119         int region = cpu->env.sau.rnr;
1120 
1121         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1122             goto bad_offset;
1123         }
1124         if (!attrs.secure) {
1125             return 0;
1126         }
1127         if (region >= cpu->sau_sregion) {
1128             return 0;
1129         }
1130         return cpu->env.sau.rbar[region];
1131     }
1132     case 0xde0: /* SAU_RLAR */
1133     {
1134         int region = cpu->env.sau.rnr;
1135 
1136         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1137             goto bad_offset;
1138         }
1139         if (!attrs.secure) {
1140             return 0;
1141         }
1142         if (region >= cpu->sau_sregion) {
1143             return 0;
1144         }
1145         return cpu->env.sau.rlar[region];
1146     }
1147     case 0xde4: /* SFSR */
1148         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1149             goto bad_offset;
1150         }
1151         if (!attrs.secure) {
1152             return 0;
1153         }
1154         return cpu->env.v7m.sfsr;
1155     case 0xde8: /* SFAR */
1156         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1157             goto bad_offset;
1158         }
1159         if (!attrs.secure) {
1160             return 0;
1161         }
1162         return cpu->env.v7m.sfar;
1163     default:
1164     bad_offset:
1165         qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1166         return 0;
1167     }
1168 }
1169 
1170 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1171                         MemTxAttrs attrs)
1172 {
1173     ARMCPU *cpu = s->cpu;
1174 
1175     switch (offset) {
1176     case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1177     {
1178         int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
1179         int i;
1180 
1181         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1182             goto bad_offset;
1183         }
1184         if (!attrs.secure) {
1185             break;
1186         }
1187         for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1188             s->itns[startvec + i] = (value >> i) & 1;
1189         }
1190         nvic_irq_update(s);
1191         break;
1192     }
1193     case 0xd04: /* Interrupt Control State (ICSR) */
1194         if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1195             if (value & (1 << 31)) {
1196                 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1197             } else if (value & (1 << 30) &&
1198                        arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1199                 /* PENDNMICLR didn't exist in v7M */
1200                 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1201             }
1202         }
1203         if (value & (1 << 28)) {
1204             armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1205         } else if (value & (1 << 27)) {
1206             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
1207         }
1208         if (value & (1 << 26)) {
1209             armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1210         } else if (value & (1 << 25)) {
1211             armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
1212         }
1213         break;
1214     case 0xd08: /* Vector Table Offset.  */
1215         cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
1216         break;
1217     case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1218         if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1219             if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1220                 if (attrs.secure ||
1221                     !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1222                     qemu_irq_pulse(s->sysresetreq);
1223                 }
1224             }
1225             if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
1226                 qemu_log_mask(LOG_GUEST_ERROR,
1227                               "Setting VECTCLRACTIVE when not in DEBUG mode "
1228                               "is UNPREDICTABLE\n");
1229             }
1230             if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1231                 /* NB: this bit is RES0 in v8M */
1232                 qemu_log_mask(LOG_GUEST_ERROR,
1233                               "Setting VECTRESET when not in DEBUG mode "
1234                               "is UNPREDICTABLE\n");
1235             }
1236             s->prigroup[attrs.secure] = extract32(value,
1237                                                   R_V7M_AIRCR_PRIGROUP_SHIFT,
1238                                                   R_V7M_AIRCR_PRIGROUP_LENGTH);
1239             if (attrs.secure) {
1240                 /* These bits are only writable by secure */
1241                 cpu->env.v7m.aircr = value &
1242                     (R_V7M_AIRCR_SYSRESETREQS_MASK |
1243                      R_V7M_AIRCR_BFHFNMINS_MASK |
1244                      R_V7M_AIRCR_PRIS_MASK);
1245                 /* BFHFNMINS changes the priority of Secure HardFault, and
1246                  * allows a pending Non-secure HardFault to preempt (which
1247                  * we implement by marking it enabled).
1248                  */
1249                 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1250                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
1251                     s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
1252                 } else {
1253                     s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
1254                     s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
1255                 }
1256             }
1257             nvic_irq_update(s);
1258         }
1259         break;
1260     case 0xd10: /* System Control.  */
1261         /* TODO: Implement control registers.  */
1262         qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n");
1263         break;
1264     case 0xd14: /* Configuration Control.  */
1265         /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1266         value &= (R_V7M_CCR_STKALIGN_MASK |
1267                   R_V7M_CCR_BFHFNMIGN_MASK |
1268                   R_V7M_CCR_DIV_0_TRP_MASK |
1269                   R_V7M_CCR_UNALIGN_TRP_MASK |
1270                   R_V7M_CCR_USERSETMPEND_MASK |
1271                   R_V7M_CCR_NONBASETHRDENA_MASK);
1272 
1273         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1274             /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1275             value |= R_V7M_CCR_NONBASETHRDENA_MASK
1276                 | R_V7M_CCR_STKALIGN_MASK;
1277         }
1278         if (attrs.secure) {
1279             /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1280             cpu->env.v7m.ccr[M_REG_NS] =
1281                 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1282                 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1283             value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1284         }
1285 
1286         cpu->env.v7m.ccr[attrs.secure] = value;
1287         break;
1288     case 0xd24: /* System Handler Control and State (SHCSR) */
1289         if (attrs.secure) {
1290             s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1291             /* Secure HardFault active bit cannot be written */
1292             s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1293             s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1294             s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1295                 (value & (1 << 10)) != 0;
1296             s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1297                 (value & (1 << 11)) != 0;
1298             s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1299                 (value & (1 << 12)) != 0;
1300             s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1301             s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1302             s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1303             s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1304             s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1305                 (value & (1 << 18)) != 0;
1306             s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1307             /* SecureFault not banked, but RAZ/WI to NS */
1308             s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1309             s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1310             s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1311         } else {
1312             s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1313             if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1314                 /* HARDFAULTPENDED is not present in v7M */
1315                 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1316             }
1317             s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1318             s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1319             s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1320             s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1321             s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1322             s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1323             s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1324             s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1325             s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1326         }
1327         if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1328             s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1329             s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1330             s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1331         }
1332         /* NMIACT can only be written if the write is of a zero, with
1333          * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1334          */
1335         if (!attrs.secure && cpu->env.v7m.secure &&
1336             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1337             (value & (1 << 5)) == 0) {
1338             s->vectors[ARMV7M_EXCP_NMI].active = 0;
1339         }
1340         /* HARDFAULTACT can only be written if the write is of a zero
1341          * to the non-secure HardFault state by the CPU in secure state.
1342          * The only case where we can be targeting the non-secure HF state
1343          * when in secure state is if this is a write via the NS alias
1344          * and BFHFNMINS is 1.
1345          */
1346         if (!attrs.secure && cpu->env.v7m.secure &&
1347             (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1348             (value & (1 << 2)) == 0) {
1349             s->vectors[ARMV7M_EXCP_HARD].active = 0;
1350         }
1351 
1352         /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
1353         s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
1354         nvic_irq_update(s);
1355         break;
1356     case 0xd2c: /* Hard Fault Status.  */
1357         cpu->env.v7m.hfsr &= ~value; /* W1C */
1358         break;
1359     case 0xd30: /* Debug Fault Status.  */
1360         cpu->env.v7m.dfsr &= ~value; /* W1C */
1361         break;
1362     case 0xd34: /* Mem Manage Address.  */
1363         cpu->env.v7m.mmfar[attrs.secure] = value;
1364         return;
1365     case 0xd38: /* Bus Fault Address.  */
1366         cpu->env.v7m.bfar = value;
1367         return;
1368     case 0xd3c: /* Aux Fault Status.  */
1369         qemu_log_mask(LOG_UNIMP,
1370                       "NVIC: Aux fault status registers unimplemented\n");
1371         break;
1372     case 0xd90: /* MPU_TYPE */
1373         return; /* RO */
1374     case 0xd94: /* MPU_CTRL */
1375         if ((value &
1376              (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1377             == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1378             qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1379                           "UNPREDICTABLE\n");
1380         }
1381         cpu->env.v7m.mpu_ctrl[attrs.secure]
1382             = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1383                        R_V7M_MPU_CTRL_HFNMIENA_MASK |
1384                        R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
1385         tlb_flush(CPU(cpu));
1386         break;
1387     case 0xd98: /* MPU_RNR */
1388         if (value >= cpu->pmsav7_dregion) {
1389             qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1390                           PRIu32 "/%" PRIu32 "\n",
1391                           value, cpu->pmsav7_dregion);
1392         } else {
1393             cpu->env.pmsav7.rnr[attrs.secure] = value;
1394         }
1395         break;
1396     case 0xd9c: /* MPU_RBAR */
1397     case 0xda4: /* MPU_RBAR_A1 */
1398     case 0xdac: /* MPU_RBAR_A2 */
1399     case 0xdb4: /* MPU_RBAR_A3 */
1400     {
1401         int region;
1402 
1403         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1404             /* PMSAv8M handling of the aliases is different from v7M:
1405              * aliases A1, A2, A3 override the low two bits of the region
1406              * number in MPU_RNR, and there is no 'region' field in the
1407              * RBAR register.
1408              */
1409             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1410 
1411             region = cpu->env.pmsav7.rnr[attrs.secure];
1412             if (aliasno) {
1413                 region = deposit32(region, 0, 2, aliasno);
1414             }
1415             if (region >= cpu->pmsav7_dregion) {
1416                 return;
1417             }
1418             cpu->env.pmsav8.rbar[attrs.secure][region] = value;
1419             tlb_flush(CPU(cpu));
1420             return;
1421         }
1422 
1423         if (value & (1 << 4)) {
1424             /* VALID bit means use the region number specified in this
1425              * value and also update MPU_RNR.REGION with that value.
1426              */
1427             region = extract32(value, 0, 4);
1428             if (region >= cpu->pmsav7_dregion) {
1429                 qemu_log_mask(LOG_GUEST_ERROR,
1430                               "MPU region out of range %u/%" PRIu32 "\n",
1431                               region, cpu->pmsav7_dregion);
1432                 return;
1433             }
1434             cpu->env.pmsav7.rnr[attrs.secure] = region;
1435         } else {
1436             region = cpu->env.pmsav7.rnr[attrs.secure];
1437         }
1438 
1439         if (region >= cpu->pmsav7_dregion) {
1440             return;
1441         }
1442 
1443         cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1444         tlb_flush(CPU(cpu));
1445         break;
1446     }
1447     case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1448     case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1449     case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1450     case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
1451     {
1452         int region = cpu->env.pmsav7.rnr[attrs.secure];
1453 
1454         if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1455             /* PMSAv8M handling of the aliases is different from v7M:
1456              * aliases A1, A2, A3 override the low two bits of the region
1457              * number in MPU_RNR.
1458              */
1459             int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1460 
1461             region = cpu->env.pmsav7.rnr[attrs.secure];
1462             if (aliasno) {
1463                 region = deposit32(region, 0, 2, aliasno);
1464             }
1465             if (region >= cpu->pmsav7_dregion) {
1466                 return;
1467             }
1468             cpu->env.pmsav8.rlar[attrs.secure][region] = value;
1469             tlb_flush(CPU(cpu));
1470             return;
1471         }
1472 
1473         if (region >= cpu->pmsav7_dregion) {
1474             return;
1475         }
1476 
1477         cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1478         cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1479         tlb_flush(CPU(cpu));
1480         break;
1481     }
1482     case 0xdc0: /* MPU_MAIR0 */
1483         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1484             goto bad_offset;
1485         }
1486         if (cpu->pmsav7_dregion) {
1487             /* Register is RES0 if no MPU regions are implemented */
1488             cpu->env.pmsav8.mair0[attrs.secure] = value;
1489         }
1490         /* We don't need to do anything else because memory attributes
1491          * only affect cacheability, and we don't implement caching.
1492          */
1493         break;
1494     case 0xdc4: /* MPU_MAIR1 */
1495         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1496             goto bad_offset;
1497         }
1498         if (cpu->pmsav7_dregion) {
1499             /* Register is RES0 if no MPU regions are implemented */
1500             cpu->env.pmsav8.mair1[attrs.secure] = value;
1501         }
1502         /* We don't need to do anything else because memory attributes
1503          * only affect cacheability, and we don't implement caching.
1504          */
1505         break;
1506     case 0xdd0: /* SAU_CTRL */
1507         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1508             goto bad_offset;
1509         }
1510         if (!attrs.secure) {
1511             return;
1512         }
1513         cpu->env.sau.ctrl = value & 3;
1514         break;
1515     case 0xdd4: /* SAU_TYPE */
1516         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1517             goto bad_offset;
1518         }
1519         break;
1520     case 0xdd8: /* SAU_RNR */
1521         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1522             goto bad_offset;
1523         }
1524         if (!attrs.secure) {
1525             return;
1526         }
1527         if (value >= cpu->sau_sregion) {
1528             qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1529                           PRIu32 "/%" PRIu32 "\n",
1530                           value, cpu->sau_sregion);
1531         } else {
1532             cpu->env.sau.rnr = value;
1533         }
1534         break;
1535     case 0xddc: /* SAU_RBAR */
1536     {
1537         int region = cpu->env.sau.rnr;
1538 
1539         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1540             goto bad_offset;
1541         }
1542         if (!attrs.secure) {
1543             return;
1544         }
1545         if (region >= cpu->sau_sregion) {
1546             return;
1547         }
1548         cpu->env.sau.rbar[region] = value & ~0x1f;
1549         tlb_flush(CPU(cpu));
1550         break;
1551     }
1552     case 0xde0: /* SAU_RLAR */
1553     {
1554         int region = cpu->env.sau.rnr;
1555 
1556         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1557             goto bad_offset;
1558         }
1559         if (!attrs.secure) {
1560             return;
1561         }
1562         if (region >= cpu->sau_sregion) {
1563             return;
1564         }
1565         cpu->env.sau.rlar[region] = value & ~0x1c;
1566         tlb_flush(CPU(cpu));
1567         break;
1568     }
1569     case 0xde4: /* SFSR */
1570         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1571             goto bad_offset;
1572         }
1573         if (!attrs.secure) {
1574             return;
1575         }
1576         cpu->env.v7m.sfsr &= ~value; /* W1C */
1577         break;
1578     case 0xde8: /* SFAR */
1579         if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1580             goto bad_offset;
1581         }
1582         if (!attrs.secure) {
1583             return;
1584         }
1585         cpu->env.v7m.sfsr = value;
1586         break;
1587     case 0xf00: /* Software Triggered Interrupt Register */
1588     {
1589         int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
1590         if (excnum < s->num_irq) {
1591             armv7m_nvic_set_pending(s, excnum, false);
1592         }
1593         break;
1594     }
1595     default:
1596     bad_offset:
1597         qemu_log_mask(LOG_GUEST_ERROR,
1598                       "NVIC: Bad write offset 0x%x\n", offset);
1599     }
1600 }
1601 
1602 static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
1603 {
1604     /* Return true if unprivileged access to this register is permitted. */
1605     switch (offset) {
1606     case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
1607         /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1608          * controls access even though the CPU is in Secure state (I_QDKX).
1609          */
1610         return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
1611     default:
1612         /* All other user accesses cause a BusFault unconditionally */
1613         return false;
1614     }
1615 }
1616 
1617 static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1618 {
1619     /* Behaviour for the SHPR register field for this exception:
1620      * return M_REG_NS to use the nonsecure vector (including for
1621      * non-banked exceptions), M_REG_S for the secure version of
1622      * a banked exception, and -1 if this field should RAZ/WI.
1623      */
1624     switch (exc) {
1625     case ARMV7M_EXCP_MEM:
1626     case ARMV7M_EXCP_USAGE:
1627     case ARMV7M_EXCP_SVC:
1628     case ARMV7M_EXCP_PENDSV:
1629     case ARMV7M_EXCP_SYSTICK:
1630         /* Banked exceptions */
1631         return attrs.secure;
1632     case ARMV7M_EXCP_BUS:
1633         /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1634         if (!attrs.secure &&
1635             !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1636             return -1;
1637         }
1638         return M_REG_NS;
1639     case ARMV7M_EXCP_SECURE:
1640         /* Not banked, RAZ/WI from nonsecure */
1641         if (!attrs.secure) {
1642             return -1;
1643         }
1644         return M_REG_NS;
1645     case ARMV7M_EXCP_DEBUG:
1646         /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1647         return M_REG_NS;
1648     case 8 ... 10:
1649     case 13:
1650         /* RES0 */
1651         return -1;
1652     default:
1653         /* Not reachable due to decode of SHPR register addresses */
1654         g_assert_not_reached();
1655     }
1656 }
1657 
1658 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1659                                     uint64_t *data, unsigned size,
1660                                     MemTxAttrs attrs)
1661 {
1662     NVICState *s = (NVICState *)opaque;
1663     uint32_t offset = addr;
1664     unsigned i, startvec, end;
1665     uint32_t val;
1666 
1667     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1668         /* Generate BusFault for unprivileged accesses */
1669         return MEMTX_ERROR;
1670     }
1671 
1672     switch (offset) {
1673     /* reads of set and clear both return the status */
1674     case 0x100 ... 0x13f: /* NVIC Set enable */
1675         offset += 0x80;
1676         /* fall through */
1677     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1678         val = 0;
1679         startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */
1680 
1681         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1682             if (s->vectors[startvec + i].enabled &&
1683                 (attrs.secure || s->itns[startvec + i])) {
1684                 val |= (1 << i);
1685             }
1686         }
1687         break;
1688     case 0x200 ... 0x23f: /* NVIC Set pend */
1689         offset += 0x80;
1690         /* fall through */
1691     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1692         val = 0;
1693         startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */
1694         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1695             if (s->vectors[startvec + i].pending &&
1696                 (attrs.secure || s->itns[startvec + i])) {
1697                 val |= (1 << i);
1698             }
1699         }
1700         break;
1701     case 0x300 ... 0x33f: /* NVIC Active */
1702         val = 0;
1703         startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */
1704 
1705         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1706             if (s->vectors[startvec + i].active &&
1707                 (attrs.secure || s->itns[startvec + i])) {
1708                 val |= (1 << i);
1709             }
1710         }
1711         break;
1712     case 0x400 ... 0x5ef: /* NVIC Priority */
1713         val = 0;
1714         startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1715 
1716         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1717             if (attrs.secure || s->itns[startvec + i]) {
1718                 val |= s->vectors[startvec + i].prio << (8 * i);
1719             }
1720         }
1721         break;
1722     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1723         val = 0;
1724         for (i = 0; i < size; i++) {
1725             unsigned hdlidx = (offset - 0xd14) + i;
1726             int sbank = shpr_bank(s, hdlidx, attrs);
1727 
1728             if (sbank < 0) {
1729                 continue;
1730             }
1731             val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
1732         }
1733         break;
1734     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1735         /* The BFSR bits [15:8] are shared between security states
1736          * and we store them in the NS copy
1737          */
1738         val = s->cpu->env.v7m.cfsr[attrs.secure];
1739         val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1740         val = extract32(val, (offset - 0xd28) * 8, size * 8);
1741         break;
1742     case 0xfe0 ... 0xfff: /* ID.  */
1743         if (offset & 3) {
1744             val = 0;
1745         } else {
1746             val = nvic_id[(offset - 0xfe0) >> 2];
1747         }
1748         break;
1749     default:
1750         if (size == 4) {
1751             val = nvic_readl(s, offset, attrs);
1752         } else {
1753             qemu_log_mask(LOG_GUEST_ERROR,
1754                           "NVIC: Bad read of size %d at offset 0x%x\n",
1755                           size, offset);
1756             val = 0;
1757         }
1758     }
1759 
1760     trace_nvic_sysreg_read(addr, val, size);
1761     *data = val;
1762     return MEMTX_OK;
1763 }
1764 
1765 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1766                                      uint64_t value, unsigned size,
1767                                      MemTxAttrs attrs)
1768 {
1769     NVICState *s = (NVICState *)opaque;
1770     uint32_t offset = addr;
1771     unsigned i, startvec, end;
1772     unsigned setval = 0;
1773 
1774     trace_nvic_sysreg_write(addr, value, size);
1775 
1776     if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
1777         /* Generate BusFault for unprivileged accesses */
1778         return MEMTX_ERROR;
1779     }
1780 
1781     switch (offset) {
1782     case 0x100 ... 0x13f: /* NVIC Set enable */
1783         offset += 0x80;
1784         setval = 1;
1785         /* fall through */
1786     case 0x180 ... 0x1bf: /* NVIC Clear enable */
1787         startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1788 
1789         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1790             if (value & (1 << i) &&
1791                 (attrs.secure || s->itns[startvec + i])) {
1792                 s->vectors[startvec + i].enabled = setval;
1793             }
1794         }
1795         nvic_irq_update(s);
1796         return MEMTX_OK;
1797     case 0x200 ... 0x23f: /* NVIC Set pend */
1798         /* the special logic in armv7m_nvic_set_pending()
1799          * is not needed since IRQs are never escalated
1800          */
1801         offset += 0x80;
1802         setval = 1;
1803         /* fall through */
1804     case 0x280 ... 0x2bf: /* NVIC Clear pend */
1805         startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1806 
1807         for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
1808             if (value & (1 << i) &&
1809                 (attrs.secure || s->itns[startvec + i])) {
1810                 s->vectors[startvec + i].pending = setval;
1811             }
1812         }
1813         nvic_irq_update(s);
1814         return MEMTX_OK;
1815     case 0x300 ... 0x33f: /* NVIC Active */
1816         return MEMTX_OK; /* R/O */
1817     case 0x400 ... 0x5ef: /* NVIC Priority */
1818         startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
1819 
1820         for (i = 0; i < size && startvec + i < s->num_irq; i++) {
1821             if (attrs.secure || s->itns[startvec + i]) {
1822                 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
1823             }
1824         }
1825         nvic_irq_update(s);
1826         return MEMTX_OK;
1827     case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */
1828         for (i = 0; i < size; i++) {
1829             unsigned hdlidx = (offset - 0xd14) + i;
1830             int newprio = extract32(value, i * 8, 8);
1831             int sbank = shpr_bank(s, hdlidx, attrs);
1832 
1833             if (sbank < 0) {
1834                 continue;
1835             }
1836             set_prio(s, hdlidx, sbank, newprio);
1837         }
1838         nvic_irq_update(s);
1839         return MEMTX_OK;
1840     case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
1841         /* All bits are W1C, so construct 32 bit value with 0s in
1842          * the parts not written by the access size
1843          */
1844         value <<= ((offset - 0xd28) * 8);
1845 
1846         s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1847         if (attrs.secure) {
1848             /* The BFSR bits [15:8] are shared between security states
1849              * and we store them in the NS copy.
1850              */
1851             s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1852         }
1853         return MEMTX_OK;
1854     }
1855     if (size == 4) {
1856         nvic_writel(s, offset, value, attrs);
1857         return MEMTX_OK;
1858     }
1859     qemu_log_mask(LOG_GUEST_ERROR,
1860                   "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
1861     /* This is UNPREDICTABLE; treat as RAZ/WI */
1862     return MEMTX_OK;
1863 }
1864 
1865 static const MemoryRegionOps nvic_sysreg_ops = {
1866     .read_with_attrs = nvic_sysreg_read,
1867     .write_with_attrs = nvic_sysreg_write,
1868     .endianness = DEVICE_NATIVE_ENDIAN,
1869 };
1870 
1871 static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1872                                         uint64_t value, unsigned size,
1873                                         MemTxAttrs attrs)
1874 {
1875     MemoryRegion *mr = opaque;
1876 
1877     if (attrs.secure) {
1878         /* S accesses to the alias act like NS accesses to the real region */
1879         attrs.secure = 0;
1880         return memory_region_dispatch_write(mr, addr, value, size, attrs);
1881     } else {
1882         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1883         if (attrs.user) {
1884             return MEMTX_ERROR;
1885         }
1886         return MEMTX_OK;
1887     }
1888 }
1889 
1890 static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1891                                        uint64_t *data, unsigned size,
1892                                        MemTxAttrs attrs)
1893 {
1894     MemoryRegion *mr = opaque;
1895 
1896     if (attrs.secure) {
1897         /* S accesses to the alias act like NS accesses to the real region */
1898         attrs.secure = 0;
1899         return memory_region_dispatch_read(mr, addr, data, size, attrs);
1900     } else {
1901         /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1902         if (attrs.user) {
1903             return MEMTX_ERROR;
1904         }
1905         *data = 0;
1906         return MEMTX_OK;
1907     }
1908 }
1909 
1910 static const MemoryRegionOps nvic_sysreg_ns_ops = {
1911     .read_with_attrs = nvic_sysreg_ns_read,
1912     .write_with_attrs = nvic_sysreg_ns_write,
1913     .endianness = DEVICE_NATIVE_ENDIAN,
1914 };
1915 
1916 static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
1917                                       uint64_t value, unsigned size,
1918                                       MemTxAttrs attrs)
1919 {
1920     NVICState *s = opaque;
1921     MemoryRegion *mr;
1922 
1923     /* Direct the access to the correct systick */
1924     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1925     return memory_region_dispatch_write(mr, addr, value, size, attrs);
1926 }
1927 
1928 static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
1929                                      uint64_t *data, unsigned size,
1930                                      MemTxAttrs attrs)
1931 {
1932     NVICState *s = opaque;
1933     MemoryRegion *mr;
1934 
1935     /* Direct the access to the correct systick */
1936     mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
1937     return memory_region_dispatch_read(mr, addr, data, size, attrs);
1938 }
1939 
1940 static const MemoryRegionOps nvic_systick_ops = {
1941     .read_with_attrs = nvic_systick_read,
1942     .write_with_attrs = nvic_systick_write,
1943     .endianness = DEVICE_NATIVE_ENDIAN,
1944 };
1945 
1946 static int nvic_post_load(void *opaque, int version_id)
1947 {
1948     NVICState *s = opaque;
1949     unsigned i;
1950     int resetprio;
1951 
1952     /* Check for out of range priority settings */
1953     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
1954 
1955     if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
1956         s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
1957         s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
1958         return 1;
1959     }
1960     for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
1961         if (s->vectors[i].prio & ~0xff) {
1962             return 1;
1963         }
1964     }
1965 
1966     nvic_recompute_state(s);
1967 
1968     return 0;
1969 }
1970 
1971 static const VMStateDescription vmstate_VecInfo = {
1972     .name = "armv7m_nvic_info",
1973     .version_id = 1,
1974     .minimum_version_id = 1,
1975     .fields = (VMStateField[]) {
1976         VMSTATE_INT16(prio, VecInfo),
1977         VMSTATE_UINT8(enabled, VecInfo),
1978         VMSTATE_UINT8(pending, VecInfo),
1979         VMSTATE_UINT8(active, VecInfo),
1980         VMSTATE_UINT8(level, VecInfo),
1981         VMSTATE_END_OF_LIST()
1982     }
1983 };
1984 
1985 static bool nvic_security_needed(void *opaque)
1986 {
1987     NVICState *s = opaque;
1988 
1989     return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
1990 }
1991 
1992 static int nvic_security_post_load(void *opaque, int version_id)
1993 {
1994     NVICState *s = opaque;
1995     int i;
1996 
1997     /* Check for out of range priority settings */
1998     if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
1999         && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2000         /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2001          * if the CPU state has been migrated yet; a mismatch won't
2002          * cause the emulation to blow up, though.
2003          */
2004         return 1;
2005     }
2006     for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2007         if (s->sec_vectors[i].prio & ~0xff) {
2008             return 1;
2009         }
2010     }
2011     return 0;
2012 }
2013 
2014 static const VMStateDescription vmstate_nvic_security = {
2015     .name = "nvic/m-security",
2016     .version_id = 1,
2017     .minimum_version_id = 1,
2018     .needed = nvic_security_needed,
2019     .post_load = &nvic_security_post_load,
2020     .fields = (VMStateField[]) {
2021         VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2022                              vmstate_VecInfo, VecInfo),
2023         VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
2024         VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
2025         VMSTATE_END_OF_LIST()
2026     }
2027 };
2028 
2029 static const VMStateDescription vmstate_nvic = {
2030     .name = "armv7m_nvic",
2031     .version_id = 4,
2032     .minimum_version_id = 4,
2033     .post_load = &nvic_post_load,
2034     .fields = (VMStateField[]) {
2035         VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2036                              vmstate_VecInfo, VecInfo),
2037         VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
2038         VMSTATE_END_OF_LIST()
2039     },
2040     .subsections = (const VMStateDescription*[]) {
2041         &vmstate_nvic_security,
2042         NULL
2043     }
2044 };
2045 
2046 static Property props_nvic[] = {
2047     /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2048     DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2049     DEFINE_PROP_END_OF_LIST()
2050 };
2051 
2052 static void armv7m_nvic_reset(DeviceState *dev)
2053 {
2054     int resetprio;
2055     NVICState *s = NVIC(dev);
2056 
2057     memset(s->vectors, 0, sizeof(s->vectors));
2058     memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2059     s->prigroup[M_REG_NS] = 0;
2060     s->prigroup[M_REG_S] = 0;
2061 
2062     s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
2063     /* MEM, BUS, and USAGE are enabled through
2064      * the System Handler Control register
2065      */
2066     s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2067     s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2068     s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2069     s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2070 
2071     resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2072     s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
2073     s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2074     s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2075 
2076     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2077         s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2078         s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2079         s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2080         s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2081 
2082         /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2083         s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
2084         /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2085         s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2086     } else {
2087         s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
2088     }
2089 
2090     /* Strictly speaking the reset handler should be enabled.
2091      * However, we don't simulate soft resets through the NVIC,
2092      * and the reset vector should never be pended.
2093      * So we leave it disabled to catch logic errors.
2094      */
2095 
2096     s->exception_prio = NVIC_NOEXC_PRIO;
2097     s->vectpending = 0;
2098     s->vectpending_is_s_banked = false;
2099     s->vectpending_prio = NVIC_NOEXC_PRIO;
2100 
2101     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2102         memset(s->itns, 0, sizeof(s->itns));
2103     } else {
2104         /* This state is constant and not guest accessible in a non-security
2105          * NVIC; we set the bits to true to avoid having to do a feature
2106          * bit check in the NVIC enable/pend/etc register accessors.
2107          */
2108         int i;
2109 
2110         for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2111             s->itns[i] = true;
2112         }
2113     }
2114 }
2115 
2116 static void nvic_systick_trigger(void *opaque, int n, int level)
2117 {
2118     NVICState *s = opaque;
2119 
2120     if (level) {
2121         /* SysTick just asked us to pend its exception.
2122          * (This is different from an external interrupt line's
2123          * behaviour.)
2124          * n == 0 : NonSecure systick
2125          * n == 1 : Secure systick
2126          */
2127         armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
2128     }
2129 }
2130 
2131 static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
2132 {
2133     NVICState *s = NVIC(dev);
2134     Error *err = NULL;
2135     int regionlen;
2136 
2137     s->cpu = ARM_CPU(qemu_get_cpu(0));
2138     assert(s->cpu);
2139 
2140     if (s->num_irq > NVIC_MAX_IRQ) {
2141         error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
2142         return;
2143     }
2144 
2145     qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2146 
2147     /* include space for internal exception vectors */
2148     s->num_irq += NVIC_FIRST_IRQ;
2149 
2150     object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2151                              "realized", &err);
2152     if (err != NULL) {
2153         error_propagate(errp, err);
2154         return;
2155     }
2156     sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2157                        qdev_get_gpio_in_named(dev, "systick-trigger",
2158                                               M_REG_NS));
2159 
2160     if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2161         /* We couldn't init the secure systick device in instance_init
2162          * as we didn't know then if the CPU had the security extensions;
2163          * so we have to do it here.
2164          */
2165         object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2166                           TYPE_SYSTICK);
2167         qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2168 
2169         object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2170                                  "realized", &err);
2171         if (err != NULL) {
2172             error_propagate(errp, err);
2173             return;
2174         }
2175         sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2176                            qdev_get_gpio_in_named(dev, "systick-trigger",
2177                                                   M_REG_S));
2178     }
2179 
2180     /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2181      * and looks like this:
2182      *  0x004 - ICTR
2183      *  0x010 - 0xff - systick
2184      *  0x100..0x7ec - NVIC
2185      *  0x7f0..0xcff - Reserved
2186      *  0xd00..0xd3c - SCS registers
2187      *  0xd40..0xeff - Reserved or Not implemented
2188      *  0xf00 - STIR
2189      *
2190      * Some registers within this space are banked between security states.
2191      * In v8M there is a second range 0xe002e000..0xe002efff which is the
2192      * NonSecure alias SCS; secure accesses to this behave like NS accesses
2193      * to the main SCS range, and non-secure accesses (including when
2194      * the security extension is not implemented) are RAZ/WI.
2195      * Note that both the main SCS range and the alias range are defined
2196      * to be exempt from memory attribution (R_BLJT) and so the memory
2197      * transaction attribute always matches the current CPU security
2198      * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2199      * wrappers we change attrs.secure to indicate the NS access; so
2200      * generally code determining which banked register to use should
2201      * use attrs.secure; code determining actual behaviour of the system
2202      * should use env->v7m.secure.
2203      */
2204     regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2205     memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2206     /* The system register region goes at the bottom of the priority
2207      * stack as it covers the whole page.
2208      */
2209     memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2210                           "nvic_sysregs", 0x1000);
2211     memory_region_add_subregion(&s->container, 0, &s->sysregmem);
2212 
2213     memory_region_init_io(&s->systickmem, OBJECT(s),
2214                           &nvic_systick_ops, s,
2215                           "nvic_systick", 0xe0);
2216 
2217     memory_region_add_subregion_overlap(&s->container, 0x10,
2218                                         &s->systickmem, 1);
2219 
2220     if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2221         memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
2222                               &nvic_sysreg_ns_ops, &s->sysregmem,
2223                               "nvic_sysregs_ns", 0x1000);
2224         memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
2225         memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2226                               &nvic_sysreg_ns_ops, &s->systickmem,
2227                               "nvic_systick_ns", 0xe0);
2228         memory_region_add_subregion_overlap(&s->container, 0x20010,
2229                                             &s->systick_ns_mem, 1);
2230     }
2231 
2232     sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
2233 }
2234 
2235 static void armv7m_nvic_instance_init(Object *obj)
2236 {
2237     /* We have a different default value for the num-irq property
2238      * than our superclass. This function runs after qdev init
2239      * has set the defaults from the Property array and before
2240      * any user-specified property setting, so just modify the
2241      * value in the GICState struct.
2242      */
2243     DeviceState *dev = DEVICE(obj);
2244     NVICState *nvic = NVIC(obj);
2245     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2246 
2247     object_initialize(&nvic->systick[M_REG_NS],
2248                       sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
2249     qdev_set_parent_bus(DEVICE(&nvic->systick[M_REG_NS]), sysbus_get_default());
2250     /* We can't initialize the secure systick here, as we don't know
2251      * yet if we need it.
2252      */
2253 
2254     sysbus_init_irq(sbd, &nvic->excpout);
2255     qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
2256     qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2257                             M_REG_NUM_BANKS);
2258 }
2259 
2260 static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2261 {
2262     DeviceClass *dc = DEVICE_CLASS(klass);
2263 
2264     dc->vmsd  = &vmstate_nvic;
2265     dc->props = props_nvic;
2266     dc->reset = armv7m_nvic_reset;
2267     dc->realize = armv7m_nvic_realize;
2268 }
2269 
2270 static const TypeInfo armv7m_nvic_info = {
2271     .name          = TYPE_NVIC,
2272     .parent        = TYPE_SYS_BUS_DEVICE,
2273     .instance_init = armv7m_nvic_instance_init,
2274     .instance_size = sizeof(NVICState),
2275     .class_init    = armv7m_nvic_class_init,
2276     .class_size    = sizeof(SysBusDeviceClass),
2277 };
2278 
2279 static void armv7m_nvic_register_types(void)
2280 {
2281     type_register_static(&armv7m_nvic_info);
2282 }
2283 
2284 type_init(armv7m_nvic_register_types)
2285