1 /* 2 * ARM Nested Vectored Interrupt Controller 3 * 4 * Copyright (c) 2006-2007 CodeSourcery. 5 * Written by Paul Brook 6 * 7 * This code is licensed under the GPL. 8 * 9 * The ARMv7M System controller is fairly tightly tied in with the 10 * NVIC. Much of that is also implemented here. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qemu-common.h" 16 #include "cpu.h" 17 #include "hw/sysbus.h" 18 #include "qemu/timer.h" 19 #include "hw/arm/arm.h" 20 #include "hw/intc/armv7m_nvic.h" 21 #include "target/arm/cpu.h" 22 #include "exec/exec-all.h" 23 #include "qemu/log.h" 24 #include "trace.h" 25 26 /* IRQ number counting: 27 * 28 * the num-irq property counts the number of external IRQ lines 29 * 30 * NVICState::num_irq counts the total number of exceptions 31 * (external IRQs, the 15 internal exceptions including reset, 32 * and one for the unused exception number 0). 33 * 34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines. 35 * 36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions. 37 * 38 * Iterating through all exceptions should typically be done with 39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0. 40 * 41 * The external qemu_irq lines are the NVIC's external IRQ lines, 42 * so line 0 is exception 16. 43 * 44 * In the terminology of the architecture manual, "interrupts" are 45 * a subcategory of exception referring to the external interrupts 46 * (which are exception numbers NVIC_FIRST_IRQ and upward). 47 * For historical reasons QEMU tends to use "interrupt" and 48 * "exception" more or less interchangeably. 49 */ 50 #define NVIC_FIRST_IRQ 16 51 #define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ) 52 53 /* Effective running priority of the CPU when no exception is active 54 * (higher than the highest possible priority value) 55 */ 56 #define NVIC_NOEXC_PRIO 0x100 57 58 static const uint8_t nvic_id[] = { 59 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 60 }; 61 62 static int nvic_pending_prio(NVICState *s) 63 { 64 /* return the priority of the current pending interrupt, 65 * or NVIC_NOEXC_PRIO if no interrupt is pending 66 */ 67 return s->vectpending ? s->vectors[s->vectpending].prio : NVIC_NOEXC_PRIO; 68 } 69 70 /* Return the value of the ISCR RETTOBASE bit: 71 * 1 if there is exactly one active exception 72 * 0 if there is more than one active exception 73 * UNKNOWN if there are no active exceptions (we choose 1, 74 * which matches the choice Cortex-M3 is documented as making). 75 * 76 * NB: some versions of the documentation talk about this 77 * counting "active exceptions other than the one shown by IPSR"; 78 * this is only different in the obscure corner case where guest 79 * code has manually deactivated an exception and is about 80 * to fail an exception-return integrity check. The definition 81 * above is the one from the v8M ARM ARM and is also in line 82 * with the behaviour documented for the Cortex-M3. 83 */ 84 static bool nvic_rettobase(NVICState *s) 85 { 86 int irq, nhand = 0; 87 88 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) { 89 if (s->vectors[irq].active) { 90 nhand++; 91 if (nhand == 2) { 92 return 0; 93 } 94 } 95 } 96 97 return 1; 98 } 99 100 /* Return the value of the ISCR ISRPENDING bit: 101 * 1 if an external interrupt is pending 102 * 0 if no external interrupt is pending 103 */ 104 static bool nvic_isrpending(NVICState *s) 105 { 106 int irq; 107 108 /* We can shortcut if the highest priority pending interrupt 109 * happens to be external or if there is nothing pending. 110 */ 111 if (s->vectpending > NVIC_FIRST_IRQ) { 112 return true; 113 } 114 if (s->vectpending == 0) { 115 return false; 116 } 117 118 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) { 119 if (s->vectors[irq].pending) { 120 return true; 121 } 122 } 123 return false; 124 } 125 126 /* Return a mask word which clears the subpriority bits from 127 * a priority value for an M-profile exception, leaving only 128 * the group priority. 129 */ 130 static inline uint32_t nvic_gprio_mask(NVICState *s) 131 { 132 return ~0U << (s->prigroup + 1); 133 } 134 135 /* Recompute vectpending and exception_prio */ 136 static void nvic_recompute_state(NVICState *s) 137 { 138 int i; 139 int pend_prio = NVIC_NOEXC_PRIO; 140 int active_prio = NVIC_NOEXC_PRIO; 141 int pend_irq = 0; 142 143 for (i = 1; i < s->num_irq; i++) { 144 VecInfo *vec = &s->vectors[i]; 145 146 if (vec->enabled && vec->pending && vec->prio < pend_prio) { 147 pend_prio = vec->prio; 148 pend_irq = i; 149 } 150 if (vec->active && vec->prio < active_prio) { 151 active_prio = vec->prio; 152 } 153 } 154 155 s->vectpending = pend_irq; 156 s->exception_prio = active_prio & nvic_gprio_mask(s); 157 158 trace_nvic_recompute_state(s->vectpending, s->exception_prio); 159 } 160 161 /* Return the current execution priority of the CPU 162 * (equivalent to the pseudocode ExecutionPriority function). 163 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO. 164 */ 165 static inline int nvic_exec_prio(NVICState *s) 166 { 167 CPUARMState *env = &s->cpu->env; 168 int running; 169 170 if (env->v7m.faultmask) { 171 running = -1; 172 } else if (env->v7m.primask) { 173 running = 0; 174 } else if (env->v7m.basepri > 0) { 175 running = env->v7m.basepri & nvic_gprio_mask(s); 176 } else { 177 running = NVIC_NOEXC_PRIO; /* lower than any possible priority */ 178 } 179 /* consider priority of active handler */ 180 return MIN(running, s->exception_prio); 181 } 182 183 bool armv7m_nvic_can_take_pending_exception(void *opaque) 184 { 185 NVICState *s = opaque; 186 187 return nvic_exec_prio(s) > nvic_pending_prio(s); 188 } 189 190 /* caller must call nvic_irq_update() after this */ 191 static void set_prio(NVICState *s, unsigned irq, uint8_t prio) 192 { 193 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ 194 assert(irq < s->num_irq); 195 196 s->vectors[irq].prio = prio; 197 198 trace_nvic_set_prio(irq, prio); 199 } 200 201 /* Recompute state and assert irq line accordingly. 202 * Must be called after changes to: 203 * vec->active, vec->enabled, vec->pending or vec->prio for any vector 204 * prigroup 205 */ 206 static void nvic_irq_update(NVICState *s) 207 { 208 int lvl; 209 int pend_prio; 210 211 nvic_recompute_state(s); 212 pend_prio = nvic_pending_prio(s); 213 214 /* Raise NVIC output if this IRQ would be taken, except that we 215 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which 216 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes 217 * to those CPU registers don't cause us to recalculate the NVIC 218 * pending info. 219 */ 220 lvl = (pend_prio < s->exception_prio); 221 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl); 222 qemu_set_irq(s->excpout, lvl); 223 } 224 225 static void armv7m_nvic_clear_pending(void *opaque, int irq) 226 { 227 NVICState *s = (NVICState *)opaque; 228 VecInfo *vec; 229 230 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 231 232 vec = &s->vectors[irq]; 233 trace_nvic_clear_pending(irq, vec->enabled, vec->prio); 234 if (vec->pending) { 235 vec->pending = 0; 236 nvic_irq_update(s); 237 } 238 } 239 240 void armv7m_nvic_set_pending(void *opaque, int irq) 241 { 242 NVICState *s = (NVICState *)opaque; 243 VecInfo *vec; 244 245 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 246 247 vec = &s->vectors[irq]; 248 trace_nvic_set_pending(irq, vec->enabled, vec->prio); 249 250 251 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) { 252 /* If a synchronous exception is pending then it may be 253 * escalated to HardFault if: 254 * * it is equal or lower priority to current execution 255 * * it is disabled 256 * (ie we need to take it immediately but we can't do so). 257 * Asynchronous exceptions (and interrupts) simply remain pending. 258 * 259 * For QEMU, we don't have any imprecise (asynchronous) faults, 260 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always 261 * synchronous. 262 * Debug exceptions are awkward because only Debug exceptions 263 * resulting from the BKPT instruction should be escalated, 264 * but we don't currently implement any Debug exceptions other 265 * than those that result from BKPT, so we treat all debug exceptions 266 * as needing escalation. 267 * 268 * This all means we can identify whether to escalate based only on 269 * the exception number and don't (yet) need the caller to explicitly 270 * tell us whether this exception is synchronous or not. 271 */ 272 int running = nvic_exec_prio(s); 273 bool escalate = false; 274 275 if (vec->prio >= running) { 276 trace_nvic_escalate_prio(irq, vec->prio, running); 277 escalate = true; 278 } else if (!vec->enabled) { 279 trace_nvic_escalate_disabled(irq); 280 escalate = true; 281 } 282 283 if (escalate) { 284 if (running < 0) { 285 /* We want to escalate to HardFault but we can't take a 286 * synchronous HardFault at this point either. This is a 287 * Lockup condition due to a guest bug. We don't model 288 * Lockup, so report via cpu_abort() instead. 289 */ 290 cpu_abort(&s->cpu->parent_obj, 291 "Lockup: can't escalate %d to HardFault " 292 "(current priority %d)\n", irq, running); 293 } 294 295 /* We can do the escalation, so we take HardFault instead */ 296 irq = ARMV7M_EXCP_HARD; 297 vec = &s->vectors[irq]; 298 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK; 299 } 300 } 301 302 if (!vec->pending) { 303 vec->pending = 1; 304 nvic_irq_update(s); 305 } 306 } 307 308 /* Make pending IRQ active. */ 309 void armv7m_nvic_acknowledge_irq(void *opaque) 310 { 311 NVICState *s = (NVICState *)opaque; 312 CPUARMState *env = &s->cpu->env; 313 const int pending = s->vectpending; 314 const int running = nvic_exec_prio(s); 315 int pendgroupprio; 316 VecInfo *vec; 317 318 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq); 319 320 vec = &s->vectors[pending]; 321 322 assert(vec->enabled); 323 assert(vec->pending); 324 325 pendgroupprio = vec->prio & nvic_gprio_mask(s); 326 assert(pendgroupprio < running); 327 328 trace_nvic_acknowledge_irq(pending, vec->prio); 329 330 vec->active = 1; 331 vec->pending = 0; 332 333 env->v7m.exception = s->vectpending; 334 335 nvic_irq_update(s); 336 } 337 338 int armv7m_nvic_complete_irq(void *opaque, int irq) 339 { 340 NVICState *s = (NVICState *)opaque; 341 VecInfo *vec; 342 int ret; 343 344 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq); 345 346 vec = &s->vectors[irq]; 347 348 trace_nvic_complete_irq(irq); 349 350 if (!vec->active) { 351 /* Tell the caller this was an illegal exception return */ 352 return -1; 353 } 354 355 ret = nvic_rettobase(s); 356 357 vec->active = 0; 358 if (vec->level) { 359 /* Re-pend the exception if it's still held high; only 360 * happens for extenal IRQs 361 */ 362 assert(irq >= NVIC_FIRST_IRQ); 363 vec->pending = 1; 364 } 365 366 nvic_irq_update(s); 367 368 return ret; 369 } 370 371 /* callback when external interrupt line is changed */ 372 static void set_irq_level(void *opaque, int n, int level) 373 { 374 NVICState *s = opaque; 375 VecInfo *vec; 376 377 n += NVIC_FIRST_IRQ; 378 379 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq); 380 381 trace_nvic_set_irq_level(n, level); 382 383 /* The pending status of an external interrupt is 384 * latched on rising edge and exception handler return. 385 * 386 * Pulsing the IRQ will always run the handler 387 * once, and the handler will re-run until the 388 * level is low when the handler completes. 389 */ 390 vec = &s->vectors[n]; 391 if (level != vec->level) { 392 vec->level = level; 393 if (level) { 394 armv7m_nvic_set_pending(s, n); 395 } 396 } 397 } 398 399 static uint32_t nvic_readl(NVICState *s, uint32_t offset) 400 { 401 ARMCPU *cpu = s->cpu; 402 uint32_t val; 403 404 switch (offset) { 405 case 4: /* Interrupt Control Type. */ 406 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; 407 case 0xd00: /* CPUID Base. */ 408 return cpu->midr; 409 case 0xd04: /* Interrupt Control State. */ 410 /* VECTACTIVE */ 411 val = cpu->env.v7m.exception; 412 /* VECTPENDING */ 413 val |= (s->vectpending & 0xff) << 12; 414 /* ISRPENDING - set if any external IRQ is pending */ 415 if (nvic_isrpending(s)) { 416 val |= (1 << 22); 417 } 418 /* RETTOBASE - set if only one handler is active */ 419 if (nvic_rettobase(s)) { 420 val |= (1 << 11); 421 } 422 /* PENDSTSET */ 423 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) { 424 val |= (1 << 26); 425 } 426 /* PENDSVSET */ 427 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) { 428 val |= (1 << 28); 429 } 430 /* NMIPENDSET */ 431 if (s->vectors[ARMV7M_EXCP_NMI].pending) { 432 val |= (1 << 31); 433 } 434 /* ISRPREEMPT not implemented */ 435 return val; 436 case 0xd08: /* Vector Table Offset. */ 437 return cpu->env.v7m.vecbase; 438 case 0xd0c: /* Application Interrupt/Reset Control. */ 439 return 0xfa050000 | (s->prigroup << 8); 440 case 0xd10: /* System Control. */ 441 /* TODO: Implement SLEEPONEXIT. */ 442 return 0; 443 case 0xd14: /* Configuration Control. */ 444 return cpu->env.v7m.ccr; 445 case 0xd24: /* System Handler Status. */ 446 val = 0; 447 if (s->vectors[ARMV7M_EXCP_MEM].active) { 448 val |= (1 << 0); 449 } 450 if (s->vectors[ARMV7M_EXCP_BUS].active) { 451 val |= (1 << 1); 452 } 453 if (s->vectors[ARMV7M_EXCP_USAGE].active) { 454 val |= (1 << 3); 455 } 456 if (s->vectors[ARMV7M_EXCP_SVC].active) { 457 val |= (1 << 7); 458 } 459 if (s->vectors[ARMV7M_EXCP_DEBUG].active) { 460 val |= (1 << 8); 461 } 462 if (s->vectors[ARMV7M_EXCP_PENDSV].active) { 463 val |= (1 << 10); 464 } 465 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) { 466 val |= (1 << 11); 467 } 468 if (s->vectors[ARMV7M_EXCP_USAGE].pending) { 469 val |= (1 << 12); 470 } 471 if (s->vectors[ARMV7M_EXCP_MEM].pending) { 472 val |= (1 << 13); 473 } 474 if (s->vectors[ARMV7M_EXCP_BUS].pending) { 475 val |= (1 << 14); 476 } 477 if (s->vectors[ARMV7M_EXCP_SVC].pending) { 478 val |= (1 << 15); 479 } 480 if (s->vectors[ARMV7M_EXCP_MEM].enabled) { 481 val |= (1 << 16); 482 } 483 if (s->vectors[ARMV7M_EXCP_BUS].enabled) { 484 val |= (1 << 17); 485 } 486 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) { 487 val |= (1 << 18); 488 } 489 return val; 490 case 0xd28: /* Configurable Fault Status. */ 491 return cpu->env.v7m.cfsr; 492 case 0xd2c: /* Hard Fault Status. */ 493 return cpu->env.v7m.hfsr; 494 case 0xd30: /* Debug Fault Status. */ 495 return cpu->env.v7m.dfsr; 496 case 0xd34: /* MMFAR MemManage Fault Address */ 497 return cpu->env.v7m.mmfar; 498 case 0xd38: /* Bus Fault Address. */ 499 return cpu->env.v7m.bfar; 500 case 0xd3c: /* Aux Fault Status. */ 501 /* TODO: Implement fault status registers. */ 502 qemu_log_mask(LOG_UNIMP, 503 "Aux Fault status registers unimplemented\n"); 504 return 0; 505 case 0xd40: /* PFR0. */ 506 return 0x00000030; 507 case 0xd44: /* PRF1. */ 508 return 0x00000200; 509 case 0xd48: /* DFR0. */ 510 return 0x00100000; 511 case 0xd4c: /* AFR0. */ 512 return 0x00000000; 513 case 0xd50: /* MMFR0. */ 514 return 0x00000030; 515 case 0xd54: /* MMFR1. */ 516 return 0x00000000; 517 case 0xd58: /* MMFR2. */ 518 return 0x00000000; 519 case 0xd5c: /* MMFR3. */ 520 return 0x00000000; 521 case 0xd60: /* ISAR0. */ 522 return 0x01141110; 523 case 0xd64: /* ISAR1. */ 524 return 0x02111000; 525 case 0xd68: /* ISAR2. */ 526 return 0x21112231; 527 case 0xd6c: /* ISAR3. */ 528 return 0x01111110; 529 case 0xd70: /* ISAR4. */ 530 return 0x01310102; 531 /* TODO: Implement debug registers. */ 532 case 0xd90: /* MPU_TYPE */ 533 /* Unified MPU; if the MPU is not present this value is zero */ 534 return cpu->pmsav7_dregion << 8; 535 break; 536 case 0xd94: /* MPU_CTRL */ 537 return cpu->env.v7m.mpu_ctrl; 538 case 0xd98: /* MPU_RNR */ 539 return cpu->env.pmsav7.rnr; 540 case 0xd9c: /* MPU_RBAR */ 541 case 0xda4: /* MPU_RBAR_A1 */ 542 case 0xdac: /* MPU_RBAR_A2 */ 543 case 0xdb4: /* MPU_RBAR_A3 */ 544 { 545 int region = cpu->env.pmsav7.rnr; 546 547 if (region >= cpu->pmsav7_dregion) { 548 return 0; 549 } 550 return (cpu->env.pmsav7.drbar[region] & 0x1f) | (region & 0xf); 551 } 552 case 0xda0: /* MPU_RASR */ 553 case 0xda8: /* MPU_RASR_A1 */ 554 case 0xdb0: /* MPU_RASR_A2 */ 555 case 0xdb8: /* MPU_RASR_A3 */ 556 { 557 int region = cpu->env.pmsav7.rnr; 558 559 if (region >= cpu->pmsav7_dregion) { 560 return 0; 561 } 562 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) | 563 (cpu->env.pmsav7.drsr[region] & 0xffff); 564 } 565 default: 566 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); 567 return 0; 568 } 569 } 570 571 static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value) 572 { 573 ARMCPU *cpu = s->cpu; 574 575 switch (offset) { 576 case 0xd04: /* Interrupt Control State. */ 577 if (value & (1 << 31)) { 578 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); 579 } 580 if (value & (1 << 28)) { 581 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); 582 } else if (value & (1 << 27)) { 583 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV); 584 } 585 if (value & (1 << 26)) { 586 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 587 } else if (value & (1 << 25)) { 588 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK); 589 } 590 break; 591 case 0xd08: /* Vector Table Offset. */ 592 cpu->env.v7m.vecbase = value & 0xffffff80; 593 break; 594 case 0xd0c: /* Application Interrupt/Reset Control. */ 595 if ((value >> 16) == 0x05fa) { 596 if (value & 4) { 597 qemu_irq_pulse(s->sysresetreq); 598 } 599 if (value & 2) { 600 qemu_log_mask(LOG_GUEST_ERROR, 601 "Setting VECTCLRACTIVE when not in DEBUG mode " 602 "is UNPREDICTABLE\n"); 603 } 604 if (value & 1) { 605 qemu_log_mask(LOG_GUEST_ERROR, 606 "Setting VECTRESET when not in DEBUG mode " 607 "is UNPREDICTABLE\n"); 608 } 609 s->prigroup = extract32(value, 8, 3); 610 nvic_irq_update(s); 611 } 612 break; 613 case 0xd10: /* System Control. */ 614 /* TODO: Implement control registers. */ 615 qemu_log_mask(LOG_UNIMP, "NVIC: SCR unimplemented\n"); 616 break; 617 case 0xd14: /* Configuration Control. */ 618 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ 619 value &= (R_V7M_CCR_STKALIGN_MASK | 620 R_V7M_CCR_BFHFNMIGN_MASK | 621 R_V7M_CCR_DIV_0_TRP_MASK | 622 R_V7M_CCR_UNALIGN_TRP_MASK | 623 R_V7M_CCR_USERSETMPEND_MASK | 624 R_V7M_CCR_NONBASETHRDENA_MASK); 625 626 cpu->env.v7m.ccr = value; 627 break; 628 case 0xd24: /* System Handler Control. */ 629 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; 630 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0; 631 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0; 632 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0; 633 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0; 634 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0; 635 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0; 636 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0; 637 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0; 638 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0; 639 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0; 640 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; 641 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; 642 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; 643 nvic_irq_update(s); 644 break; 645 case 0xd28: /* Configurable Fault Status. */ 646 cpu->env.v7m.cfsr &= ~value; /* W1C */ 647 break; 648 case 0xd2c: /* Hard Fault Status. */ 649 cpu->env.v7m.hfsr &= ~value; /* W1C */ 650 break; 651 case 0xd30: /* Debug Fault Status. */ 652 cpu->env.v7m.dfsr &= ~value; /* W1C */ 653 break; 654 case 0xd34: /* Mem Manage Address. */ 655 cpu->env.v7m.mmfar = value; 656 return; 657 case 0xd38: /* Bus Fault Address. */ 658 cpu->env.v7m.bfar = value; 659 return; 660 case 0xd3c: /* Aux Fault Status. */ 661 qemu_log_mask(LOG_UNIMP, 662 "NVIC: Aux fault status registers unimplemented\n"); 663 break; 664 case 0xd90: /* MPU_TYPE */ 665 return; /* RO */ 666 case 0xd94: /* MPU_CTRL */ 667 if ((value & 668 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK)) 669 == R_V7M_MPU_CTRL_HFNMIENA_MASK) { 670 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is " 671 "UNPREDICTABLE\n"); 672 } 673 cpu->env.v7m.mpu_ctrl = value & (R_V7M_MPU_CTRL_ENABLE_MASK | 674 R_V7M_MPU_CTRL_HFNMIENA_MASK | 675 R_V7M_MPU_CTRL_PRIVDEFENA_MASK); 676 tlb_flush(CPU(cpu)); 677 break; 678 case 0xd98: /* MPU_RNR */ 679 if (value >= cpu->pmsav7_dregion) { 680 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %" 681 PRIu32 "/%" PRIu32 "\n", 682 value, cpu->pmsav7_dregion); 683 } else { 684 cpu->env.pmsav7.rnr = value; 685 } 686 break; 687 case 0xd9c: /* MPU_RBAR */ 688 case 0xda4: /* MPU_RBAR_A1 */ 689 case 0xdac: /* MPU_RBAR_A2 */ 690 case 0xdb4: /* MPU_RBAR_A3 */ 691 { 692 int region; 693 694 if (value & (1 << 4)) { 695 /* VALID bit means use the region number specified in this 696 * value and also update MPU_RNR.REGION with that value. 697 */ 698 region = extract32(value, 0, 4); 699 if (region >= cpu->pmsav7_dregion) { 700 qemu_log_mask(LOG_GUEST_ERROR, 701 "MPU region out of range %u/%" PRIu32 "\n", 702 region, cpu->pmsav7_dregion); 703 return; 704 } 705 cpu->env.pmsav7.rnr = region; 706 } else { 707 region = cpu->env.pmsav7.rnr; 708 } 709 710 if (region >= cpu->pmsav7_dregion) { 711 return; 712 } 713 714 cpu->env.pmsav7.drbar[region] = value & ~0x1f; 715 tlb_flush(CPU(cpu)); 716 break; 717 } 718 case 0xda0: /* MPU_RASR */ 719 case 0xda8: /* MPU_RASR_A1 */ 720 case 0xdb0: /* MPU_RASR_A2 */ 721 case 0xdb8: /* MPU_RASR_A3 */ 722 { 723 int region = cpu->env.pmsav7.rnr; 724 725 if (region >= cpu->pmsav7_dregion) { 726 return; 727 } 728 729 cpu->env.pmsav7.drsr[region] = value & 0xff3f; 730 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f; 731 tlb_flush(CPU(cpu)); 732 break; 733 } 734 case 0xf00: /* Software Triggered Interrupt Register */ 735 { 736 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; 737 if (excnum < s->num_irq) { 738 armv7m_nvic_set_pending(s, excnum); 739 } 740 break; 741 } 742 default: 743 qemu_log_mask(LOG_GUEST_ERROR, 744 "NVIC: Bad write offset 0x%x\n", offset); 745 } 746 } 747 748 static bool nvic_user_access_ok(NVICState *s, hwaddr offset) 749 { 750 /* Return true if unprivileged access to this register is permitted. */ 751 switch (offset) { 752 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */ 753 return s->cpu->env.v7m.ccr & R_V7M_CCR_USERSETMPEND_MASK; 754 default: 755 /* All other user accesses cause a BusFault unconditionally */ 756 return false; 757 } 758 } 759 760 static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr, 761 uint64_t *data, unsigned size, 762 MemTxAttrs attrs) 763 { 764 NVICState *s = (NVICState *)opaque; 765 uint32_t offset = addr; 766 unsigned i, startvec, end; 767 uint32_t val; 768 769 if (attrs.user && !nvic_user_access_ok(s, addr)) { 770 /* Generate BusFault for unprivileged accesses */ 771 return MEMTX_ERROR; 772 } 773 774 switch (offset) { 775 /* reads of set and clear both return the status */ 776 case 0x100 ... 0x13f: /* NVIC Set enable */ 777 offset += 0x80; 778 /* fall through */ 779 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 780 val = 0; 781 startvec = offset - 0x180 + NVIC_FIRST_IRQ; /* vector # */ 782 783 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 784 if (s->vectors[startvec + i].enabled) { 785 val |= (1 << i); 786 } 787 } 788 break; 789 case 0x200 ... 0x23f: /* NVIC Set pend */ 790 offset += 0x80; 791 /* fall through */ 792 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 793 val = 0; 794 startvec = offset - 0x280 + NVIC_FIRST_IRQ; /* vector # */ 795 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 796 if (s->vectors[startvec + i].pending) { 797 val |= (1 << i); 798 } 799 } 800 break; 801 case 0x300 ... 0x33f: /* NVIC Active */ 802 val = 0; 803 startvec = offset - 0x300 + NVIC_FIRST_IRQ; /* vector # */ 804 805 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 806 if (s->vectors[startvec + i].active) { 807 val |= (1 << i); 808 } 809 } 810 break; 811 case 0x400 ... 0x5ef: /* NVIC Priority */ 812 val = 0; 813 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */ 814 815 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 816 val |= s->vectors[startvec + i].prio << (8 * i); 817 } 818 break; 819 case 0xd18 ... 0xd23: /* System Handler Priority. */ 820 val = 0; 821 for (i = 0; i < size; i++) { 822 val |= s->vectors[(offset - 0xd14) + i].prio << (i * 8); 823 } 824 break; 825 case 0xfe0 ... 0xfff: /* ID. */ 826 if (offset & 3) { 827 val = 0; 828 } else { 829 val = nvic_id[(offset - 0xfe0) >> 2]; 830 } 831 break; 832 default: 833 if (size == 4) { 834 val = nvic_readl(s, offset); 835 } else { 836 qemu_log_mask(LOG_GUEST_ERROR, 837 "NVIC: Bad read of size %d at offset 0x%x\n", 838 size, offset); 839 val = 0; 840 } 841 } 842 843 trace_nvic_sysreg_read(addr, val, size); 844 *data = val; 845 return MEMTX_OK; 846 } 847 848 static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr, 849 uint64_t value, unsigned size, 850 MemTxAttrs attrs) 851 { 852 NVICState *s = (NVICState *)opaque; 853 uint32_t offset = addr; 854 unsigned i, startvec, end; 855 unsigned setval = 0; 856 857 trace_nvic_sysreg_write(addr, value, size); 858 859 if (attrs.user && !nvic_user_access_ok(s, addr)) { 860 /* Generate BusFault for unprivileged accesses */ 861 return MEMTX_ERROR; 862 } 863 864 switch (offset) { 865 case 0x100 ... 0x13f: /* NVIC Set enable */ 866 offset += 0x80; 867 setval = 1; 868 /* fall through */ 869 case 0x180 ... 0x1bf: /* NVIC Clear enable */ 870 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; 871 872 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 873 if (value & (1 << i)) { 874 s->vectors[startvec + i].enabled = setval; 875 } 876 } 877 nvic_irq_update(s); 878 return MEMTX_OK; 879 case 0x200 ... 0x23f: /* NVIC Set pend */ 880 /* the special logic in armv7m_nvic_set_pending() 881 * is not needed since IRQs are never escalated 882 */ 883 offset += 0x80; 884 setval = 1; 885 /* fall through */ 886 case 0x280 ... 0x2bf: /* NVIC Clear pend */ 887 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */ 888 889 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { 890 if (value & (1 << i)) { 891 s->vectors[startvec + i].pending = setval; 892 } 893 } 894 nvic_irq_update(s); 895 return MEMTX_OK; 896 case 0x300 ... 0x33f: /* NVIC Active */ 897 return MEMTX_OK; /* R/O */ 898 case 0x400 ... 0x5ef: /* NVIC Priority */ 899 startvec = 8 * (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */ 900 901 for (i = 0; i < size && startvec + i < s->num_irq; i++) { 902 set_prio(s, startvec + i, (value >> (i * 8)) & 0xff); 903 } 904 nvic_irq_update(s); 905 return MEMTX_OK; 906 case 0xd18 ... 0xd23: /* System Handler Priority. */ 907 for (i = 0; i < size; i++) { 908 unsigned hdlidx = (offset - 0xd14) + i; 909 set_prio(s, hdlidx, (value >> (i * 8)) & 0xff); 910 } 911 nvic_irq_update(s); 912 return MEMTX_OK; 913 } 914 if (size == 4) { 915 nvic_writel(s, offset, value); 916 return MEMTX_OK; 917 } 918 qemu_log_mask(LOG_GUEST_ERROR, 919 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); 920 /* This is UNPREDICTABLE; treat as RAZ/WI */ 921 return MEMTX_OK; 922 } 923 924 static const MemoryRegionOps nvic_sysreg_ops = { 925 .read_with_attrs = nvic_sysreg_read, 926 .write_with_attrs = nvic_sysreg_write, 927 .endianness = DEVICE_NATIVE_ENDIAN, 928 }; 929 930 static int nvic_post_load(void *opaque, int version_id) 931 { 932 NVICState *s = opaque; 933 unsigned i; 934 935 /* Check for out of range priority settings */ 936 if (s->vectors[ARMV7M_EXCP_RESET].prio != -3 || 937 s->vectors[ARMV7M_EXCP_NMI].prio != -2 || 938 s->vectors[ARMV7M_EXCP_HARD].prio != -1) { 939 return 1; 940 } 941 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) { 942 if (s->vectors[i].prio & ~0xff) { 943 return 1; 944 } 945 } 946 947 nvic_recompute_state(s); 948 949 return 0; 950 } 951 952 static const VMStateDescription vmstate_VecInfo = { 953 .name = "armv7m_nvic_info", 954 .version_id = 1, 955 .minimum_version_id = 1, 956 .fields = (VMStateField[]) { 957 VMSTATE_INT16(prio, VecInfo), 958 VMSTATE_UINT8(enabled, VecInfo), 959 VMSTATE_UINT8(pending, VecInfo), 960 VMSTATE_UINT8(active, VecInfo), 961 VMSTATE_UINT8(level, VecInfo), 962 VMSTATE_END_OF_LIST() 963 } 964 }; 965 966 static const VMStateDescription vmstate_nvic = { 967 .name = "armv7m_nvic", 968 .version_id = 4, 969 .minimum_version_id = 4, 970 .post_load = &nvic_post_load, 971 .fields = (VMStateField[]) { 972 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1, 973 vmstate_VecInfo, VecInfo), 974 VMSTATE_UINT32(prigroup, NVICState), 975 VMSTATE_END_OF_LIST() 976 } 977 }; 978 979 static Property props_nvic[] = { 980 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */ 981 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64), 982 DEFINE_PROP_END_OF_LIST() 983 }; 984 985 static void armv7m_nvic_reset(DeviceState *dev) 986 { 987 NVICState *s = NVIC(dev); 988 989 s->vectors[ARMV7M_EXCP_NMI].enabled = 1; 990 s->vectors[ARMV7M_EXCP_HARD].enabled = 1; 991 /* MEM, BUS, and USAGE are enabled through 992 * the System Handler Control register 993 */ 994 s->vectors[ARMV7M_EXCP_SVC].enabled = 1; 995 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1; 996 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1; 997 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1; 998 999 s->vectors[ARMV7M_EXCP_RESET].prio = -3; 1000 s->vectors[ARMV7M_EXCP_NMI].prio = -2; 1001 s->vectors[ARMV7M_EXCP_HARD].prio = -1; 1002 1003 /* Strictly speaking the reset handler should be enabled. 1004 * However, we don't simulate soft resets through the NVIC, 1005 * and the reset vector should never be pended. 1006 * So we leave it disabled to catch logic errors. 1007 */ 1008 1009 s->exception_prio = NVIC_NOEXC_PRIO; 1010 s->vectpending = 0; 1011 } 1012 1013 static void nvic_systick_trigger(void *opaque, int n, int level) 1014 { 1015 NVICState *s = opaque; 1016 1017 if (level) { 1018 /* SysTick just asked us to pend its exception. 1019 * (This is different from an external interrupt line's 1020 * behaviour.) 1021 */ 1022 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); 1023 } 1024 } 1025 1026 static void armv7m_nvic_realize(DeviceState *dev, Error **errp) 1027 { 1028 NVICState *s = NVIC(dev); 1029 SysBusDevice *systick_sbd; 1030 Error *err = NULL; 1031 1032 s->cpu = ARM_CPU(qemu_get_cpu(0)); 1033 assert(s->cpu); 1034 1035 if (s->num_irq > NVIC_MAX_IRQ) { 1036 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq); 1037 return; 1038 } 1039 1040 qdev_init_gpio_in(dev, set_irq_level, s->num_irq); 1041 1042 /* include space for internal exception vectors */ 1043 s->num_irq += NVIC_FIRST_IRQ; 1044 1045 object_property_set_bool(OBJECT(&s->systick), true, "realized", &err); 1046 if (err != NULL) { 1047 error_propagate(errp, err); 1048 return; 1049 } 1050 systick_sbd = SYS_BUS_DEVICE(&s->systick); 1051 sysbus_connect_irq(systick_sbd, 0, 1052 qdev_get_gpio_in_named(dev, "systick-trigger", 0)); 1053 1054 /* The NVIC and System Control Space (SCS) starts at 0xe000e000 1055 * and looks like this: 1056 * 0x004 - ICTR 1057 * 0x010 - 0xff - systick 1058 * 0x100..0x7ec - NVIC 1059 * 0x7f0..0xcff - Reserved 1060 * 0xd00..0xd3c - SCS registers 1061 * 0xd40..0xeff - Reserved or Not implemented 1062 * 0xf00 - STIR 1063 */ 1064 memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000); 1065 /* The system register region goes at the bottom of the priority 1066 * stack as it covers the whole page. 1067 */ 1068 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, 1069 "nvic_sysregs", 0x1000); 1070 memory_region_add_subregion(&s->container, 0, &s->sysregmem); 1071 memory_region_add_subregion_overlap(&s->container, 0x10, 1072 sysbus_mmio_get_region(systick_sbd, 0), 1073 1); 1074 1075 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container); 1076 } 1077 1078 static void armv7m_nvic_instance_init(Object *obj) 1079 { 1080 /* We have a different default value for the num-irq property 1081 * than our superclass. This function runs after qdev init 1082 * has set the defaults from the Property array and before 1083 * any user-specified property setting, so just modify the 1084 * value in the GICState struct. 1085 */ 1086 DeviceState *dev = DEVICE(obj); 1087 NVICState *nvic = NVIC(obj); 1088 SysBusDevice *sbd = SYS_BUS_DEVICE(obj); 1089 1090 object_initialize(&nvic->systick, sizeof(nvic->systick), TYPE_SYSTICK); 1091 qdev_set_parent_bus(DEVICE(&nvic->systick), sysbus_get_default()); 1092 1093 sysbus_init_irq(sbd, &nvic->excpout); 1094 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1); 1095 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger", 1); 1096 } 1097 1098 static void armv7m_nvic_class_init(ObjectClass *klass, void *data) 1099 { 1100 DeviceClass *dc = DEVICE_CLASS(klass); 1101 1102 dc->vmsd = &vmstate_nvic; 1103 dc->props = props_nvic; 1104 dc->reset = armv7m_nvic_reset; 1105 dc->realize = armv7m_nvic_realize; 1106 } 1107 1108 static const TypeInfo armv7m_nvic_info = { 1109 .name = TYPE_NVIC, 1110 .parent = TYPE_SYS_BUS_DEVICE, 1111 .instance_init = armv7m_nvic_instance_init, 1112 .instance_size = sizeof(NVICState), 1113 .class_init = armv7m_nvic_class_init, 1114 .class_size = sizeof(SysBusDeviceClass), 1115 }; 1116 1117 static void armv7m_nvic_register_types(void) 1118 { 1119 type_register_static(&armv7m_nvic_info); 1120 } 1121 1122 type_init(armv7m_nvic_register_types) 1123