xref: /openbmc/qemu/hw/intc/arm_gicv3_redist.c (revision edcc4e40)
1 /*
2  * ARM GICv3 emulation: Redistributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
18 {
19     /* Return a 32-bit mask which should be applied for this set of 32
20      * interrupts; each bit is 1 if access is permitted by the
21      * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22      * not affect config register accesses, unlike GICD_NSACR.)
23      */
24     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26         return cs->gicr_igroupr0;
27     }
28     return 0xFFFFFFFFU;
29 }
30 
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
32 {
33     /* Return the 2 bit NSACR.NS_access field for this SGI */
34     assert(irq < 16);
35     return extract32(cs->gicr_nsacr, irq * 2, 2);
36 }
37 
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39                                       uint32_t *reg, uint32_t val)
40 {
41     /* Helper routine to implement writing to a "set-bitmap" register */
42     val &= mask_group(cs, attrs);
43     *reg |= val;
44     gicv3_redist_update(cs);
45 }
46 
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48                                         uint32_t *reg, uint32_t val)
49 {
50     /* Helper routine to implement writing to a "clear-bitmap" register */
51     val &= mask_group(cs, attrs);
52     *reg &= ~val;
53     gicv3_redist_update(cs);
54 }
55 
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57                                      uint32_t reg)
58 {
59     reg &= mask_group(cs, attrs);
60     return reg;
61 }
62 
63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
64                                     int irq)
65 {
66     /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
67      * honouring security state (these are RAZ/WI for Group 0 or Secure
68      * Group 1 interrupts).
69      */
70     uint32_t prio;
71 
72     prio = cs->gicr_ipriorityr[irq];
73 
74     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
75         if (!(cs->gicr_igroupr0 & (1U << irq))) {
76             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
77             return 0;
78         }
79         /* NS view of the interrupt priority */
80         prio = (prio << 1) & 0xff;
81     }
82     return prio;
83 }
84 
85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
86                                   uint8_t value)
87 {
88     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
89      * honouring security state (these are RAZ/WI for Group 0 or Secure
90      * Group 1 interrupts).
91      */
92     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
93         if (!(cs->gicr_igroupr0 & (1U << irq))) {
94             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
95             return;
96         }
97         /* NS view of the interrupt priority */
98         value = 0x80 | (value >> 1);
99     }
100     cs->gicr_ipriorityr[irq] = value;
101 }
102 
103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
104                               uint64_t *data, MemTxAttrs attrs)
105 {
106     switch (offset) {
107     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
108         *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
109         return MEMTX_OK;
110     default:
111         return MEMTX_ERROR;
112     }
113 }
114 
115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
116                                uint64_t value, MemTxAttrs attrs)
117 {
118     switch (offset) {
119     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
120         gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
121         gicv3_redist_update(cs);
122         return MEMTX_OK;
123     default:
124         return MEMTX_ERROR;
125     }
126 }
127 
128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
129                               uint64_t *data, MemTxAttrs attrs)
130 {
131     switch (offset) {
132     case GICR_CTLR:
133         *data = cs->gicr_ctlr;
134         return MEMTX_OK;
135     case GICR_IIDR:
136         *data = gicv3_iidr();
137         return MEMTX_OK;
138     case GICR_TYPER:
139         *data = extract64(cs->gicr_typer, 0, 32);
140         return MEMTX_OK;
141     case GICR_TYPER + 4:
142         *data = extract64(cs->gicr_typer, 32, 32);
143         return MEMTX_OK;
144     case GICR_STATUSR:
145         /* RAZ/WI for us (this is an optional register and our implementation
146          * does not track RO/WO/reserved violations to report them to the guest)
147          */
148         *data = 0;
149         return MEMTX_OK;
150     case GICR_WAKER:
151         *data = cs->gicr_waker;
152         return MEMTX_OK;
153     case GICR_PROPBASER:
154         *data = extract64(cs->gicr_propbaser, 0, 32);
155         return MEMTX_OK;
156     case GICR_PROPBASER + 4:
157         *data = extract64(cs->gicr_propbaser, 32, 32);
158         return MEMTX_OK;
159     case GICR_PENDBASER:
160         *data = extract64(cs->gicr_pendbaser, 0, 32);
161         return MEMTX_OK;
162     case GICR_PENDBASER + 4:
163         *data = extract64(cs->gicr_pendbaser, 32, 32);
164         return MEMTX_OK;
165     case GICR_IGROUPR0:
166         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
167             *data = 0;
168             return MEMTX_OK;
169         }
170         *data = cs->gicr_igroupr0;
171         return MEMTX_OK;
172     case GICR_ISENABLER0:
173     case GICR_ICENABLER0:
174         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
175         return MEMTX_OK;
176     case GICR_ISPENDR0:
177     case GICR_ICPENDR0:
178     {
179         /* The pending register reads as the logical OR of the pending
180          * latch and the input line level for level-triggered interrupts.
181          */
182         uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
183         *data = gicr_read_bitmap_reg(cs, attrs, val);
184         return MEMTX_OK;
185     }
186     case GICR_ISACTIVER0:
187     case GICR_ICACTIVER0:
188         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
189         return MEMTX_OK;
190     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
191     {
192         int i, irq = offset - GICR_IPRIORITYR;
193         uint32_t value = 0;
194 
195         for (i = irq + 3; i >= irq; i--) {
196             value <<= 8;
197             value |= gicr_read_ipriorityr(cs, attrs, i);
198         }
199         *data = value;
200         return MEMTX_OK;
201     }
202     case GICR_ICFGR0:
203     case GICR_ICFGR1:
204     {
205         /* Our edge_trigger bitmap is one bit per irq; take the correct
206          * half of it, and spread it out into the odd bits.
207          */
208         uint32_t value;
209 
210         value = cs->edge_trigger & mask_group(cs, attrs);
211         value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
212         value = half_shuffle32(value) << 1;
213         *data = value;
214         return MEMTX_OK;
215     }
216     case GICR_IGRPMODR0:
217         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
218             /* RAZ/WI if security disabled, or if
219              * security enabled and this is an NS access
220              */
221             *data = 0;
222             return MEMTX_OK;
223         }
224         *data = cs->gicr_igrpmodr0;
225         return MEMTX_OK;
226     case GICR_NSACR:
227         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
228             /* RAZ/WI if security disabled, or if
229              * security enabled and this is an NS access
230              */
231             *data = 0;
232             return MEMTX_OK;
233         }
234         *data = cs->gicr_nsacr;
235         return MEMTX_OK;
236     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
237         *data = gicv3_idreg(offset - GICR_IDREGS);
238         return MEMTX_OK;
239     default:
240         return MEMTX_ERROR;
241     }
242 }
243 
244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
245                                uint64_t value, MemTxAttrs attrs)
246 {
247     switch (offset) {
248     case GICR_CTLR:
249         /* For our implementation, GICR_TYPER.DPGS is 0 and so all
250          * the DPG bits are RAZ/WI. We don't do anything asynchronously,
251          * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
252          * implement LPIs) so Enable_LPIs is programmable.
253          */
254         if (cs->gicr_typer & GICR_TYPER_PLPIS) {
255             if (value & GICR_CTLR_ENABLE_LPIS) {
256                 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
257                 /* Check for any pending interr in pending table */
258                 gicv3_redist_update_lpi(cs);
259                 gicv3_redist_update(cs);
260             } else {
261                 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
262             }
263         }
264         return MEMTX_OK;
265     case GICR_STATUSR:
266         /* RAZ/WI for our implementation */
267         return MEMTX_OK;
268     case GICR_WAKER:
269         /* Only the ProcessorSleep bit is writeable. When the guest sets
270          * it it requests that we transition the channel between the
271          * redistributor and the cpu interface to quiescent, and that
272          * we set the ChildrenAsleep bit once the inteface has reached the
273          * quiescent state.
274          * Setting the ProcessorSleep to 0 reverses the quiescing, and
275          * ChildrenAsleep is cleared once the transition is complete.
276          * Since our interface is not asynchronous, we complete these
277          * transitions instantaneously, so we set ChildrenAsleep to the
278          * same value as ProcessorSleep here.
279          */
280         value &= GICR_WAKER_ProcessorSleep;
281         if (value & GICR_WAKER_ProcessorSleep) {
282             value |= GICR_WAKER_ChildrenAsleep;
283         }
284         cs->gicr_waker = value;
285         return MEMTX_OK;
286     case GICR_PROPBASER:
287         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
288         return MEMTX_OK;
289     case GICR_PROPBASER + 4:
290         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
291         return MEMTX_OK;
292     case GICR_PENDBASER:
293         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
294         return MEMTX_OK;
295     case GICR_PENDBASER + 4:
296         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
297         return MEMTX_OK;
298     case GICR_IGROUPR0:
299         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
300             return MEMTX_OK;
301         }
302         cs->gicr_igroupr0 = value;
303         gicv3_redist_update(cs);
304         return MEMTX_OK;
305     case GICR_ISENABLER0:
306         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
307         return MEMTX_OK;
308     case GICR_ICENABLER0:
309         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
310         return MEMTX_OK;
311     case GICR_ISPENDR0:
312         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
313         return MEMTX_OK;
314     case GICR_ICPENDR0:
315         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
316         return MEMTX_OK;
317     case GICR_ISACTIVER0:
318         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
319         return MEMTX_OK;
320     case GICR_ICACTIVER0:
321         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
322         return MEMTX_OK;
323     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
324     {
325         int i, irq = offset - GICR_IPRIORITYR;
326 
327         for (i = irq; i < irq + 4; i++, value >>= 8) {
328             gicr_write_ipriorityr(cs, attrs, i, value);
329         }
330         gicv3_redist_update(cs);
331         return MEMTX_OK;
332     }
333     case GICR_ICFGR0:
334         /* Register is all RAZ/WI or RAO/WI bits */
335         return MEMTX_OK;
336     case GICR_ICFGR1:
337     {
338         uint32_t mask;
339 
340         /* Since our edge_trigger bitmap is one bit per irq, our input
341          * 32-bits will compress down into 16 bits which we need
342          * to write into the bitmap.
343          */
344         value = half_unshuffle32(value >> 1) << 16;
345         mask = mask_group(cs, attrs) & 0xffff0000U;
346 
347         cs->edge_trigger &= ~mask;
348         cs->edge_trigger |= (value & mask);
349 
350         gicv3_redist_update(cs);
351         return MEMTX_OK;
352     }
353     case GICR_IGRPMODR0:
354         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
355             /* RAZ/WI if security disabled, or if
356              * security enabled and this is an NS access
357              */
358             return MEMTX_OK;
359         }
360         cs->gicr_igrpmodr0 = value;
361         gicv3_redist_update(cs);
362         return MEMTX_OK;
363     case GICR_NSACR:
364         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
365             /* RAZ/WI if security disabled, or if
366              * security enabled and this is an NS access
367              */
368             return MEMTX_OK;
369         }
370         cs->gicr_nsacr = value;
371         /* no update required as this only affects access permission checks */
372         return MEMTX_OK;
373     case GICR_IIDR:
374     case GICR_TYPER:
375     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
376         /* RO registers, ignore the write */
377         qemu_log_mask(LOG_GUEST_ERROR,
378                       "%s: invalid guest write to RO register at offset "
379                       TARGET_FMT_plx "\n", __func__, offset);
380         return MEMTX_OK;
381     default:
382         return MEMTX_ERROR;
383     }
384 }
385 
386 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
387                                uint64_t *data, MemTxAttrs attrs)
388 {
389     switch (offset) {
390     case GICR_TYPER:
391         *data = cs->gicr_typer;
392         return MEMTX_OK;
393     case GICR_PROPBASER:
394         *data = cs->gicr_propbaser;
395         return MEMTX_OK;
396     case GICR_PENDBASER:
397         *data = cs->gicr_pendbaser;
398         return MEMTX_OK;
399     default:
400         return MEMTX_ERROR;
401     }
402 }
403 
404 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
405                                 uint64_t value, MemTxAttrs attrs)
406 {
407     switch (offset) {
408     case GICR_PROPBASER:
409         cs->gicr_propbaser = value;
410         return MEMTX_OK;
411     case GICR_PENDBASER:
412         cs->gicr_pendbaser = value;
413         return MEMTX_OK;
414     case GICR_TYPER:
415         /* RO register, ignore the write */
416         qemu_log_mask(LOG_GUEST_ERROR,
417                       "%s: invalid guest write to RO register at offset "
418                       TARGET_FMT_plx "\n", __func__, offset);
419         return MEMTX_OK;
420     default:
421         return MEMTX_ERROR;
422     }
423 }
424 
425 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
426                               unsigned size, MemTxAttrs attrs)
427 {
428     GICv3RedistRegion *region = opaque;
429     GICv3State *s = region->gic;
430     GICv3CPUState *cs;
431     MemTxResult r;
432     int cpuidx;
433 
434     assert((offset & (size - 1)) == 0);
435 
436     /*
437      * There are (for GICv3) two 64K redistributor pages per CPU.
438      * In some cases the redistributor pages for all CPUs are not
439      * contiguous (eg on the virt board they are split into two
440      * parts if there are too many CPUs to all fit in the same place
441      * in the memory map); if so then the GIC has multiple MemoryRegions
442      * for the redistributors.
443      */
444     cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
445     offset %= GICV3_REDIST_SIZE;
446 
447     cs = &s->cpu[cpuidx];
448 
449     switch (size) {
450     case 1:
451         r = gicr_readb(cs, offset, data, attrs);
452         break;
453     case 4:
454         r = gicr_readl(cs, offset, data, attrs);
455         break;
456     case 8:
457         r = gicr_readll(cs, offset, data, attrs);
458         break;
459     default:
460         r = MEMTX_ERROR;
461         break;
462     }
463 
464     if (r == MEMTX_ERROR) {
465         qemu_log_mask(LOG_GUEST_ERROR,
466                       "%s: invalid guest read at offset " TARGET_FMT_plx
467                       " size %u\n", __func__, offset, size);
468         trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
469                                    size, attrs.secure);
470         /* The spec requires that reserved registers are RAZ/WI;
471          * so use MEMTX_ERROR returns from leaf functions as a way to
472          * trigger the guest-error logging but don't return it to
473          * the caller, or we'll cause a spurious guest data abort.
474          */
475         r = MEMTX_OK;
476         *data = 0;
477     } else {
478         trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
479                                 size, attrs.secure);
480     }
481     return r;
482 }
483 
484 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
485                                unsigned size, MemTxAttrs attrs)
486 {
487     GICv3RedistRegion *region = opaque;
488     GICv3State *s = region->gic;
489     GICv3CPUState *cs;
490     MemTxResult r;
491     int cpuidx;
492 
493     assert((offset & (size - 1)) == 0);
494 
495     /*
496      * There are (for GICv3) two 64K redistributor pages per CPU.
497      * In some cases the redistributor pages for all CPUs are not
498      * contiguous (eg on the virt board they are split into two
499      * parts if there are too many CPUs to all fit in the same place
500      * in the memory map); if so then the GIC has multiple MemoryRegions
501      * for the redistributors.
502      */
503     cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE;
504     offset %= GICV3_REDIST_SIZE;
505 
506     cs = &s->cpu[cpuidx];
507 
508     switch (size) {
509     case 1:
510         r = gicr_writeb(cs, offset, data, attrs);
511         break;
512     case 4:
513         r = gicr_writel(cs, offset, data, attrs);
514         break;
515     case 8:
516         r = gicr_writell(cs, offset, data, attrs);
517         break;
518     default:
519         r = MEMTX_ERROR;
520         break;
521     }
522 
523     if (r == MEMTX_ERROR) {
524         qemu_log_mask(LOG_GUEST_ERROR,
525                       "%s: invalid guest write at offset " TARGET_FMT_plx
526                       " size %u\n", __func__, offset, size);
527         trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
528                                     size, attrs.secure);
529         /* The spec requires that reserved registers are RAZ/WI;
530          * so use MEMTX_ERROR returns from leaf functions as a way to
531          * trigger the guest-error logging but don't return it to
532          * the caller, or we'll cause a spurious guest data abort.
533          */
534         r = MEMTX_OK;
535     } else {
536         trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
537                                  size, attrs.secure);
538     }
539     return r;
540 }
541 
542 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
543 {
544     AddressSpace *as = &cs->gic->dma_as;
545     uint64_t lpict_baddr;
546     uint8_t lpite;
547     uint8_t prio;
548 
549     lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
550 
551     address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) *
552                        sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite,
553                        sizeof(lpite));
554 
555     if (!(lpite & LPI_CTE_ENABLED)) {
556         return;
557     }
558 
559     if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
560         prio = lpite & LPI_PRIORITY_MASK;
561     } else {
562         prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
563     }
564 
565     if ((prio < cs->hpplpi.prio) ||
566         ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) {
567         cs->hpplpi.irq = irq;
568         cs->hpplpi.prio = prio;
569         /* LPIs are always non-secure Grp1 interrupts */
570         cs->hpplpi.grp = GICV3_G1NS;
571     }
572 }
573 
574 void gicv3_redist_update_lpi(GICv3CPUState *cs)
575 {
576     /*
577      * This function scans the LPI pending table and for each pending
578      * LPI, reads the corresponding entry from LPI configuration table
579      * to extract the priority info and determine if the current LPI
580      * priority is lower than the last computed high priority lpi interrupt.
581      * If yes, replace current LPI as the new high priority lpi interrupt.
582      */
583     AddressSpace *as = &cs->gic->dma_as;
584     uint64_t lpipt_baddr;
585     uint32_t pendt_size = 0;
586     uint8_t pend;
587     int i, bit;
588     uint64_t idbits;
589 
590     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
591                  GICD_TYPER_IDBITS);
592 
593     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
594         !cs->gicr_pendbaser) {
595         return;
596     }
597 
598     cs->hpplpi.prio = 0xff;
599 
600     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
601 
602     /* Determine the highest priority pending interrupt among LPIs */
603     pendt_size = (1ULL << (idbits + 1));
604 
605     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
606         address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend,
607                            sizeof(pend));
608 
609         while (pend) {
610             bit = ctz32(pend);
611             gicv3_redist_check_lpi_priority(cs, i * 8 + bit);
612             pend &= ~(1 << bit);
613         }
614     }
615 }
616 
617 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
618 {
619     /*
620      * This function updates the pending bit in lpi pending table for
621      * the irq being activated or deactivated.
622      */
623     AddressSpace *as = &cs->gic->dma_as;
624     uint64_t lpipt_baddr;
625     bool ispend = false;
626     uint8_t pend;
627 
628     /*
629      * get the bit value corresponding to this irq in the
630      * lpi pending table
631      */
632     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
633 
634     address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
635                        MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
636 
637     ispend = extract32(pend, irq % 8, 1);
638 
639     /* no change in the value of pending bit, return */
640     if (ispend == level) {
641         return;
642     }
643     pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
644 
645     address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)),
646                         MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend));
647 
648     /*
649      * check if this LPI is better than the current hpplpi, if yes
650      * just set hpplpi.prio and .irq without doing a full rescan
651      */
652     if (level) {
653         gicv3_redist_check_lpi_priority(cs, irq);
654     } else {
655         if (irq == cs->hpplpi.irq) {
656             gicv3_redist_update_lpi(cs);
657         }
658     }
659 }
660 
661 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
662 {
663     uint64_t idbits;
664 
665     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
666                  GICD_TYPER_IDBITS);
667 
668     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser ||
669          !cs->gicr_pendbaser || (irq > (1ULL << (idbits + 1)) - 1) ||
670          irq < GICV3_LPI_INTID_START) {
671         return;
672     }
673 
674     /* set/clear the pending bit for this irq */
675     gicv3_redist_lpi_pending(cs, irq, level);
676 
677     gicv3_redist_update(cs);
678 }
679 
680 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
681 {
682     /* Update redistributor state for a change in an external PPI input line */
683     if (level == extract32(cs->level, irq, 1)) {
684         return;
685     }
686 
687     trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
688 
689     cs->level = deposit32(cs->level, irq, 1, level);
690 
691     if (level) {
692         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
693         if (extract32(cs->edge_trigger, irq, 1)) {
694             cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
695         }
696     }
697 
698     gicv3_redist_update(cs);
699 }
700 
701 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
702 {
703     /* Update redistributor state for a generated SGI */
704     int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
705 
706     /* If we are asked for a Secure Group 1 SGI and it's actually
707      * configured as Secure Group 0 this is OK (subject to the usual
708      * NSACR checks).
709      */
710     if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
711         grp = GICV3_G0;
712     }
713 
714     if (grp != irqgrp) {
715         return;
716     }
717 
718     if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
719         /* If security is enabled we must test the NSACR bits */
720         int nsaccess = gicr_ns_access(cs, irq);
721 
722         if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
723             (irqgrp == GICV3_G1 && nsaccess < 2)) {
724             return;
725         }
726     }
727 
728     /* OK, we can accept the SGI */
729     trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
730     cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
731     gicv3_redist_update(cs);
732 }
733