1 /* 2 * ARM GICv3 emulation: Redistributor 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited. 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/log.h" 14 #include "trace.h" 15 #include "gicv3_internal.h" 16 17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) 18 { 19 /* Return a 32-bit mask which should be applied for this set of 32 20 * interrupts; each bit is 1 if access is permitted by the 21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does 22 * not affect config register accesses, unlike GICD_NSACR.) 23 */ 24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ 26 return cs->gicr_igroupr0; 27 } 28 return 0xFFFFFFFFU; 29 } 30 31 static int gicr_ns_access(GICv3CPUState *cs, int irq) 32 { 33 /* Return the 2 bit NSACR.NS_access field for this SGI */ 34 assert(irq < 16); 35 return extract32(cs->gicr_nsacr, irq * 2, 2); 36 } 37 38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, 39 uint32_t *reg, uint32_t val) 40 { 41 /* Helper routine to implement writing to a "set-bitmap" register */ 42 val &= mask_group(cs, attrs); 43 *reg |= val; 44 gicv3_redist_update(cs); 45 } 46 47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, 48 uint32_t *reg, uint32_t val) 49 { 50 /* Helper routine to implement writing to a "clear-bitmap" register */ 51 val &= mask_group(cs, attrs); 52 *reg &= ~val; 53 gicv3_redist_update(cs); 54 } 55 56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, 57 uint32_t reg) 58 { 59 reg &= mask_group(cs, attrs); 60 return reg; 61 } 62 63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, 64 int irq) 65 { 66 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt, 67 * honouring security state (these are RAZ/WI for Group 0 or Secure 68 * Group 1 interrupts). 69 */ 70 uint32_t prio; 71 72 prio = cs->gicr_ipriorityr[irq]; 73 74 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 75 if (!(cs->gicr_igroupr0 & (1U << irq))) { 76 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ 77 return 0; 78 } 79 /* NS view of the interrupt priority */ 80 prio = (prio << 1) & 0xff; 81 } 82 return prio; 83 } 84 85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, 86 uint8_t value) 87 { 88 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, 89 * honouring security state (these are RAZ/WI for Group 0 or Secure 90 * Group 1 interrupts). 91 */ 92 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 93 if (!(cs->gicr_igroupr0 & (1U << irq))) { 94 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ 95 return; 96 } 97 /* NS view of the interrupt priority */ 98 value = 0x80 | (value >> 1); 99 } 100 cs->gicr_ipriorityr[irq] = value; 101 } 102 103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, 104 uint64_t *data, MemTxAttrs attrs) 105 { 106 switch (offset) { 107 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 108 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); 109 return MEMTX_OK; 110 default: 111 return MEMTX_ERROR; 112 } 113 } 114 115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, 116 uint64_t value, MemTxAttrs attrs) 117 { 118 switch (offset) { 119 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 120 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); 121 gicv3_redist_update(cs); 122 return MEMTX_OK; 123 default: 124 return MEMTX_ERROR; 125 } 126 } 127 128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, 129 uint64_t *data, MemTxAttrs attrs) 130 { 131 switch (offset) { 132 case GICR_CTLR: 133 *data = cs->gicr_ctlr; 134 return MEMTX_OK; 135 case GICR_IIDR: 136 *data = gicv3_iidr(); 137 return MEMTX_OK; 138 case GICR_TYPER: 139 *data = extract64(cs->gicr_typer, 0, 32); 140 return MEMTX_OK; 141 case GICR_TYPER + 4: 142 *data = extract64(cs->gicr_typer, 32, 32); 143 return MEMTX_OK; 144 case GICR_STATUSR: 145 /* RAZ/WI for us (this is an optional register and our implementation 146 * does not track RO/WO/reserved violations to report them to the guest) 147 */ 148 *data = 0; 149 return MEMTX_OK; 150 case GICR_WAKER: 151 *data = cs->gicr_waker; 152 return MEMTX_OK; 153 case GICR_PROPBASER: 154 *data = extract64(cs->gicr_propbaser, 0, 32); 155 return MEMTX_OK; 156 case GICR_PROPBASER + 4: 157 *data = extract64(cs->gicr_propbaser, 32, 32); 158 return MEMTX_OK; 159 case GICR_PENDBASER: 160 *data = extract64(cs->gicr_pendbaser, 0, 32); 161 return MEMTX_OK; 162 case GICR_PENDBASER + 4: 163 *data = extract64(cs->gicr_pendbaser, 32, 32); 164 return MEMTX_OK; 165 case GICR_IGROUPR0: 166 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 167 *data = 0; 168 return MEMTX_OK; 169 } 170 *data = cs->gicr_igroupr0; 171 return MEMTX_OK; 172 case GICR_ISENABLER0: 173 case GICR_ICENABLER0: 174 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); 175 return MEMTX_OK; 176 case GICR_ISPENDR0: 177 case GICR_ICPENDR0: 178 { 179 /* The pending register reads as the logical OR of the pending 180 * latch and the input line level for level-triggered interrupts. 181 */ 182 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 183 *data = gicr_read_bitmap_reg(cs, attrs, val); 184 return MEMTX_OK; 185 } 186 case GICR_ISACTIVER0: 187 case GICR_ICACTIVER0: 188 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); 189 return MEMTX_OK; 190 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 191 { 192 int i, irq = offset - GICR_IPRIORITYR; 193 uint32_t value = 0; 194 195 for (i = irq + 3; i >= irq; i--) { 196 value <<= 8; 197 value |= gicr_read_ipriorityr(cs, attrs, i); 198 } 199 *data = value; 200 return MEMTX_OK; 201 } 202 case GICR_ICFGR0: 203 case GICR_ICFGR1: 204 { 205 /* Our edge_trigger bitmap is one bit per irq; take the correct 206 * half of it, and spread it out into the odd bits. 207 */ 208 uint32_t value; 209 210 value = cs->edge_trigger & mask_group(cs, attrs); 211 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); 212 value = half_shuffle32(value) << 1; 213 *data = value; 214 return MEMTX_OK; 215 } 216 case GICR_IGRPMODR0: 217 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 218 /* RAZ/WI if security disabled, or if 219 * security enabled and this is an NS access 220 */ 221 *data = 0; 222 return MEMTX_OK; 223 } 224 *data = cs->gicr_igrpmodr0; 225 return MEMTX_OK; 226 case GICR_NSACR: 227 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 228 /* RAZ/WI if security disabled, or if 229 * security enabled and this is an NS access 230 */ 231 *data = 0; 232 return MEMTX_OK; 233 } 234 *data = cs->gicr_nsacr; 235 return MEMTX_OK; 236 case GICR_IDREGS ... GICR_IDREGS + 0x2f: 237 *data = gicv3_idreg(offset - GICR_IDREGS); 238 return MEMTX_OK; 239 default: 240 return MEMTX_ERROR; 241 } 242 } 243 244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, 245 uint64_t value, MemTxAttrs attrs) 246 { 247 switch (offset) { 248 case GICR_CTLR: 249 /* For our implementation, GICR_TYPER.DPGS is 0 and so all 250 * the DPG bits are RAZ/WI. We don't do anything asynchronously, 251 * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we 252 * implement LPIs) so Enable_LPIs is programmable. 253 */ 254 if (cs->gicr_typer & GICR_TYPER_PLPIS) { 255 if (value & GICR_CTLR_ENABLE_LPIS) { 256 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS; 257 /* Check for any pending interr in pending table */ 258 gicv3_redist_update_lpi(cs); 259 gicv3_redist_update(cs); 260 } else { 261 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS; 262 } 263 } 264 return MEMTX_OK; 265 case GICR_STATUSR: 266 /* RAZ/WI for our implementation */ 267 return MEMTX_OK; 268 case GICR_WAKER: 269 /* Only the ProcessorSleep bit is writeable. When the guest sets 270 * it it requests that we transition the channel between the 271 * redistributor and the cpu interface to quiescent, and that 272 * we set the ChildrenAsleep bit once the inteface has reached the 273 * quiescent state. 274 * Setting the ProcessorSleep to 0 reverses the quiescing, and 275 * ChildrenAsleep is cleared once the transition is complete. 276 * Since our interface is not asynchronous, we complete these 277 * transitions instantaneously, so we set ChildrenAsleep to the 278 * same value as ProcessorSleep here. 279 */ 280 value &= GICR_WAKER_ProcessorSleep; 281 if (value & GICR_WAKER_ProcessorSleep) { 282 value |= GICR_WAKER_ChildrenAsleep; 283 } 284 cs->gicr_waker = value; 285 return MEMTX_OK; 286 case GICR_PROPBASER: 287 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); 288 return MEMTX_OK; 289 case GICR_PROPBASER + 4: 290 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); 291 return MEMTX_OK; 292 case GICR_PENDBASER: 293 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); 294 return MEMTX_OK; 295 case GICR_PENDBASER + 4: 296 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); 297 return MEMTX_OK; 298 case GICR_IGROUPR0: 299 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 300 return MEMTX_OK; 301 } 302 cs->gicr_igroupr0 = value; 303 gicv3_redist_update(cs); 304 return MEMTX_OK; 305 case GICR_ISENABLER0: 306 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); 307 return MEMTX_OK; 308 case GICR_ICENABLER0: 309 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); 310 return MEMTX_OK; 311 case GICR_ISPENDR0: 312 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); 313 return MEMTX_OK; 314 case GICR_ICPENDR0: 315 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); 316 return MEMTX_OK; 317 case GICR_ISACTIVER0: 318 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); 319 return MEMTX_OK; 320 case GICR_ICACTIVER0: 321 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); 322 return MEMTX_OK; 323 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 324 { 325 int i, irq = offset - GICR_IPRIORITYR; 326 327 for (i = irq; i < irq + 4; i++, value >>= 8) { 328 gicr_write_ipriorityr(cs, attrs, i, value); 329 } 330 gicv3_redist_update(cs); 331 return MEMTX_OK; 332 } 333 case GICR_ICFGR0: 334 /* Register is all RAZ/WI or RAO/WI bits */ 335 return MEMTX_OK; 336 case GICR_ICFGR1: 337 { 338 uint32_t mask; 339 340 /* Since our edge_trigger bitmap is one bit per irq, our input 341 * 32-bits will compress down into 16 bits which we need 342 * to write into the bitmap. 343 */ 344 value = half_unshuffle32(value >> 1) << 16; 345 mask = mask_group(cs, attrs) & 0xffff0000U; 346 347 cs->edge_trigger &= ~mask; 348 cs->edge_trigger |= (value & mask); 349 350 gicv3_redist_update(cs); 351 return MEMTX_OK; 352 } 353 case GICR_IGRPMODR0: 354 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 355 /* RAZ/WI if security disabled, or if 356 * security enabled and this is an NS access 357 */ 358 return MEMTX_OK; 359 } 360 cs->gicr_igrpmodr0 = value; 361 gicv3_redist_update(cs); 362 return MEMTX_OK; 363 case GICR_NSACR: 364 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 365 /* RAZ/WI if security disabled, or if 366 * security enabled and this is an NS access 367 */ 368 return MEMTX_OK; 369 } 370 cs->gicr_nsacr = value; 371 /* no update required as this only affects access permission checks */ 372 return MEMTX_OK; 373 case GICR_IIDR: 374 case GICR_TYPER: 375 case GICR_IDREGS ... GICR_IDREGS + 0x2f: 376 /* RO registers, ignore the write */ 377 qemu_log_mask(LOG_GUEST_ERROR, 378 "%s: invalid guest write to RO register at offset " 379 TARGET_FMT_plx "\n", __func__, offset); 380 return MEMTX_OK; 381 default: 382 return MEMTX_ERROR; 383 } 384 } 385 386 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, 387 uint64_t *data, MemTxAttrs attrs) 388 { 389 switch (offset) { 390 case GICR_TYPER: 391 *data = cs->gicr_typer; 392 return MEMTX_OK; 393 case GICR_PROPBASER: 394 *data = cs->gicr_propbaser; 395 return MEMTX_OK; 396 case GICR_PENDBASER: 397 *data = cs->gicr_pendbaser; 398 return MEMTX_OK; 399 default: 400 return MEMTX_ERROR; 401 } 402 } 403 404 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, 405 uint64_t value, MemTxAttrs attrs) 406 { 407 switch (offset) { 408 case GICR_PROPBASER: 409 cs->gicr_propbaser = value; 410 return MEMTX_OK; 411 case GICR_PENDBASER: 412 cs->gicr_pendbaser = value; 413 return MEMTX_OK; 414 case GICR_TYPER: 415 /* RO register, ignore the write */ 416 qemu_log_mask(LOG_GUEST_ERROR, 417 "%s: invalid guest write to RO register at offset " 418 TARGET_FMT_plx "\n", __func__, offset); 419 return MEMTX_OK; 420 default: 421 return MEMTX_ERROR; 422 } 423 } 424 425 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, 426 unsigned size, MemTxAttrs attrs) 427 { 428 GICv3RedistRegion *region = opaque; 429 GICv3State *s = region->gic; 430 GICv3CPUState *cs; 431 MemTxResult r; 432 int cpuidx; 433 434 assert((offset & (size - 1)) == 0); 435 436 /* 437 * There are (for GICv3) two 64K redistributor pages per CPU. 438 * In some cases the redistributor pages for all CPUs are not 439 * contiguous (eg on the virt board they are split into two 440 * parts if there are too many CPUs to all fit in the same place 441 * in the memory map); if so then the GIC has multiple MemoryRegions 442 * for the redistributors. 443 */ 444 cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE; 445 offset %= GICV3_REDIST_SIZE; 446 447 cs = &s->cpu[cpuidx]; 448 449 switch (size) { 450 case 1: 451 r = gicr_readb(cs, offset, data, attrs); 452 break; 453 case 4: 454 r = gicr_readl(cs, offset, data, attrs); 455 break; 456 case 8: 457 r = gicr_readll(cs, offset, data, attrs); 458 break; 459 default: 460 r = MEMTX_ERROR; 461 break; 462 } 463 464 if (r == MEMTX_ERROR) { 465 qemu_log_mask(LOG_GUEST_ERROR, 466 "%s: invalid guest read at offset " TARGET_FMT_plx 467 " size %u\n", __func__, offset, size); 468 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, 469 size, attrs.secure); 470 /* The spec requires that reserved registers are RAZ/WI; 471 * so use MEMTX_ERROR returns from leaf functions as a way to 472 * trigger the guest-error logging but don't return it to 473 * the caller, or we'll cause a spurious guest data abort. 474 */ 475 r = MEMTX_OK; 476 *data = 0; 477 } else { 478 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, 479 size, attrs.secure); 480 } 481 return r; 482 } 483 484 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, 485 unsigned size, MemTxAttrs attrs) 486 { 487 GICv3RedistRegion *region = opaque; 488 GICv3State *s = region->gic; 489 GICv3CPUState *cs; 490 MemTxResult r; 491 int cpuidx; 492 493 assert((offset & (size - 1)) == 0); 494 495 /* 496 * There are (for GICv3) two 64K redistributor pages per CPU. 497 * In some cases the redistributor pages for all CPUs are not 498 * contiguous (eg on the virt board they are split into two 499 * parts if there are too many CPUs to all fit in the same place 500 * in the memory map); if so then the GIC has multiple MemoryRegions 501 * for the redistributors. 502 */ 503 cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE; 504 offset %= GICV3_REDIST_SIZE; 505 506 cs = &s->cpu[cpuidx]; 507 508 switch (size) { 509 case 1: 510 r = gicr_writeb(cs, offset, data, attrs); 511 break; 512 case 4: 513 r = gicr_writel(cs, offset, data, attrs); 514 break; 515 case 8: 516 r = gicr_writell(cs, offset, data, attrs); 517 break; 518 default: 519 r = MEMTX_ERROR; 520 break; 521 } 522 523 if (r == MEMTX_ERROR) { 524 qemu_log_mask(LOG_GUEST_ERROR, 525 "%s: invalid guest write at offset " TARGET_FMT_plx 526 " size %u\n", __func__, offset, size); 527 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, 528 size, attrs.secure); 529 /* The spec requires that reserved registers are RAZ/WI; 530 * so use MEMTX_ERROR returns from leaf functions as a way to 531 * trigger the guest-error logging but don't return it to 532 * the caller, or we'll cause a spurious guest data abort. 533 */ 534 r = MEMTX_OK; 535 } else { 536 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, 537 size, attrs.secure); 538 } 539 return r; 540 } 541 542 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq) 543 { 544 AddressSpace *as = &cs->gic->dma_as; 545 uint64_t lpict_baddr; 546 uint8_t lpite; 547 uint8_t prio; 548 549 lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK; 550 551 address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) * 552 sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite, 553 sizeof(lpite)); 554 555 if (!(lpite & LPI_CTE_ENABLED)) { 556 return; 557 } 558 559 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 560 prio = lpite & LPI_PRIORITY_MASK; 561 } else { 562 prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80; 563 } 564 565 if ((prio < cs->hpplpi.prio) || 566 ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) { 567 cs->hpplpi.irq = irq; 568 cs->hpplpi.prio = prio; 569 /* LPIs are always non-secure Grp1 interrupts */ 570 cs->hpplpi.grp = GICV3_G1NS; 571 } 572 } 573 574 void gicv3_redist_update_lpi(GICv3CPUState *cs) 575 { 576 /* 577 * This function scans the LPI pending table and for each pending 578 * LPI, reads the corresponding entry from LPI configuration table 579 * to extract the priority info and determine if the current LPI 580 * priority is lower than the last computed high priority lpi interrupt. 581 * If yes, replace current LPI as the new high priority lpi interrupt. 582 */ 583 AddressSpace *as = &cs->gic->dma_as; 584 uint64_t lpipt_baddr; 585 uint32_t pendt_size = 0; 586 uint8_t pend; 587 int i, bit; 588 uint64_t idbits; 589 590 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), 591 GICD_TYPER_IDBITS); 592 593 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser || 594 !cs->gicr_pendbaser) { 595 return; 596 } 597 598 cs->hpplpi.prio = 0xff; 599 600 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; 601 602 /* Determine the highest priority pending interrupt among LPIs */ 603 pendt_size = (1ULL << (idbits + 1)); 604 605 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) { 606 address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend, 607 sizeof(pend)); 608 609 while (pend) { 610 bit = ctz32(pend); 611 gicv3_redist_check_lpi_priority(cs, i * 8 + bit); 612 pend &= ~(1 << bit); 613 } 614 } 615 } 616 617 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level) 618 { 619 /* 620 * This function updates the pending bit in lpi pending table for 621 * the irq being activated or deactivated. 622 */ 623 AddressSpace *as = &cs->gic->dma_as; 624 uint64_t lpipt_baddr; 625 bool ispend = false; 626 uint8_t pend; 627 628 /* 629 * get the bit value corresponding to this irq in the 630 * lpi pending table 631 */ 632 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; 633 634 address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)), 635 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); 636 637 ispend = extract32(pend, irq % 8, 1); 638 639 /* no change in the value of pending bit, return */ 640 if (ispend == level) { 641 return; 642 } 643 pend = deposit32(pend, irq % 8, 1, level ? 1 : 0); 644 645 address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)), 646 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); 647 648 /* 649 * check if this LPI is better than the current hpplpi, if yes 650 * just set hpplpi.prio and .irq without doing a full rescan 651 */ 652 if (level) { 653 gicv3_redist_check_lpi_priority(cs, irq); 654 } else { 655 if (irq == cs->hpplpi.irq) { 656 gicv3_redist_update_lpi(cs); 657 } 658 } 659 } 660 661 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level) 662 { 663 uint64_t idbits; 664 665 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), 666 GICD_TYPER_IDBITS); 667 668 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser || 669 !cs->gicr_pendbaser || (irq > (1ULL << (idbits + 1)) - 1) || 670 irq < GICV3_LPI_INTID_START) { 671 return; 672 } 673 674 /* set/clear the pending bit for this irq */ 675 gicv3_redist_lpi_pending(cs, irq, level); 676 677 gicv3_redist_update(cs); 678 } 679 680 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level) 681 { 682 /* Update redistributor state for a change in an external PPI input line */ 683 if (level == extract32(cs->level, irq, 1)) { 684 return; 685 } 686 687 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level); 688 689 cs->level = deposit32(cs->level, irq, 1, level); 690 691 if (level) { 692 /* 0->1 edges latch the pending bit for edge-triggered interrupts */ 693 if (extract32(cs->edge_trigger, irq, 1)) { 694 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); 695 } 696 } 697 698 gicv3_redist_update(cs); 699 } 700 701 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns) 702 { 703 /* Update redistributor state for a generated SGI */ 704 int irqgrp = gicv3_irq_group(cs->gic, cs, irq); 705 706 /* If we are asked for a Secure Group 1 SGI and it's actually 707 * configured as Secure Group 0 this is OK (subject to the usual 708 * NSACR checks). 709 */ 710 if (grp == GICV3_G1 && irqgrp == GICV3_G0) { 711 grp = GICV3_G0; 712 } 713 714 if (grp != irqgrp) { 715 return; 716 } 717 718 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 719 /* If security is enabled we must test the NSACR bits */ 720 int nsaccess = gicr_ns_access(cs, irq); 721 722 if ((irqgrp == GICV3_G0 && nsaccess < 1) || 723 (irqgrp == GICV3_G1 && nsaccess < 2)) { 724 return; 725 } 726 } 727 728 /* OK, we can accept the SGI */ 729 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq); 730 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); 731 gicv3_redist_update(cs); 732 } 733