1 /* 2 * ARM GICv3 emulation: Redistributor 3 * 4 * Copyright (c) 2015 Huawei. 5 * Copyright (c) 2016 Linaro Limited. 6 * Written by Shlomo Pongratz, Peter Maydell 7 * 8 * This code is licensed under the GPL, version 2 or (at your option) 9 * any later version. 10 */ 11 12 #include "qemu/osdep.h" 13 #include "qemu/log.h" 14 #include "trace.h" 15 #include "gicv3_internal.h" 16 17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs) 18 { 19 /* Return a 32-bit mask which should be applied for this set of 32 20 * interrupts; each bit is 1 if access is permitted by the 21 * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does 22 * not affect config register accesses, unlike GICD_NSACR.) 23 */ 24 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 25 /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */ 26 return cs->gicr_igroupr0; 27 } 28 return 0xFFFFFFFFU; 29 } 30 31 static int gicr_ns_access(GICv3CPUState *cs, int irq) 32 { 33 /* Return the 2 bit NSACR.NS_access field for this SGI */ 34 assert(irq < 16); 35 return extract32(cs->gicr_nsacr, irq * 2, 2); 36 } 37 38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, 39 uint32_t *reg, uint32_t val) 40 { 41 /* Helper routine to implement writing to a "set-bitmap" register */ 42 val &= mask_group(cs, attrs); 43 *reg |= val; 44 gicv3_redist_update(cs); 45 } 46 47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, 48 uint32_t *reg, uint32_t val) 49 { 50 /* Helper routine to implement writing to a "clear-bitmap" register */ 51 val &= mask_group(cs, attrs); 52 *reg &= ~val; 53 gicv3_redist_update(cs); 54 } 55 56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs, 57 uint32_t reg) 58 { 59 reg &= mask_group(cs, attrs); 60 return reg; 61 } 62 63 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, 64 int irq) 65 { 66 /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt, 67 * honouring security state (these are RAZ/WI for Group 0 or Secure 68 * Group 1 interrupts). 69 */ 70 uint32_t prio; 71 72 prio = cs->gicr_ipriorityr[irq]; 73 74 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 75 if (!(cs->gicr_igroupr0 & (1U << irq))) { 76 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ 77 return 0; 78 } 79 /* NS view of the interrupt priority */ 80 prio = (prio << 1) & 0xff; 81 } 82 return prio; 83 } 84 85 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq, 86 uint8_t value) 87 { 88 /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt, 89 * honouring security state (these are RAZ/WI for Group 0 or Secure 90 * Group 1 interrupts). 91 */ 92 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 93 if (!(cs->gicr_igroupr0 & (1U << irq))) { 94 /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */ 95 return; 96 } 97 /* NS view of the interrupt priority */ 98 value = 0x80 | (value >> 1); 99 } 100 cs->gicr_ipriorityr[irq] = value; 101 } 102 103 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset, 104 uint64_t *data, MemTxAttrs attrs) 105 { 106 switch (offset) { 107 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 108 *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR); 109 return MEMTX_OK; 110 default: 111 return MEMTX_ERROR; 112 } 113 } 114 115 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset, 116 uint64_t value, MemTxAttrs attrs) 117 { 118 switch (offset) { 119 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 120 gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value); 121 gicv3_redist_update(cs); 122 return MEMTX_OK; 123 default: 124 return MEMTX_ERROR; 125 } 126 } 127 128 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset, 129 uint64_t *data, MemTxAttrs attrs) 130 { 131 switch (offset) { 132 case GICR_CTLR: 133 *data = cs->gicr_ctlr; 134 return MEMTX_OK; 135 case GICR_IIDR: 136 *data = gicv3_iidr(); 137 return MEMTX_OK; 138 case GICR_TYPER: 139 *data = extract64(cs->gicr_typer, 0, 32); 140 return MEMTX_OK; 141 case GICR_TYPER + 4: 142 *data = extract64(cs->gicr_typer, 32, 32); 143 return MEMTX_OK; 144 case GICR_STATUSR: 145 /* RAZ/WI for us (this is an optional register and our implementation 146 * does not track RO/WO/reserved violations to report them to the guest) 147 */ 148 *data = 0; 149 return MEMTX_OK; 150 case GICR_WAKER: 151 *data = cs->gicr_waker; 152 return MEMTX_OK; 153 case GICR_PROPBASER: 154 *data = extract64(cs->gicr_propbaser, 0, 32); 155 return MEMTX_OK; 156 case GICR_PROPBASER + 4: 157 *data = extract64(cs->gicr_propbaser, 32, 32); 158 return MEMTX_OK; 159 case GICR_PENDBASER: 160 *data = extract64(cs->gicr_pendbaser, 0, 32); 161 return MEMTX_OK; 162 case GICR_PENDBASER + 4: 163 *data = extract64(cs->gicr_pendbaser, 32, 32); 164 return MEMTX_OK; 165 case GICR_IGROUPR0: 166 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 167 *data = 0; 168 return MEMTX_OK; 169 } 170 *data = cs->gicr_igroupr0; 171 return MEMTX_OK; 172 case GICR_ISENABLER0: 173 case GICR_ICENABLER0: 174 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0); 175 return MEMTX_OK; 176 case GICR_ISPENDR0: 177 case GICR_ICPENDR0: 178 { 179 /* The pending register reads as the logical OR of the pending 180 * latch and the input line level for level-triggered interrupts. 181 */ 182 uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level); 183 *data = gicr_read_bitmap_reg(cs, attrs, val); 184 return MEMTX_OK; 185 } 186 case GICR_ISACTIVER0: 187 case GICR_ICACTIVER0: 188 *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0); 189 return MEMTX_OK; 190 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 191 { 192 int i, irq = offset - GICR_IPRIORITYR; 193 uint32_t value = 0; 194 195 for (i = irq + 3; i >= irq; i--) { 196 value <<= 8; 197 value |= gicr_read_ipriorityr(cs, attrs, i); 198 } 199 *data = value; 200 return MEMTX_OK; 201 } 202 case GICR_ICFGR0: 203 case GICR_ICFGR1: 204 { 205 /* Our edge_trigger bitmap is one bit per irq; take the correct 206 * half of it, and spread it out into the odd bits. 207 */ 208 uint32_t value; 209 210 value = cs->edge_trigger & mask_group(cs, attrs); 211 value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16); 212 value = half_shuffle32(value) << 1; 213 *data = value; 214 return MEMTX_OK; 215 } 216 case GICR_IGRPMODR0: 217 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 218 /* RAZ/WI if security disabled, or if 219 * security enabled and this is an NS access 220 */ 221 *data = 0; 222 return MEMTX_OK; 223 } 224 *data = cs->gicr_igrpmodr0; 225 return MEMTX_OK; 226 case GICR_NSACR: 227 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 228 /* RAZ/WI if security disabled, or if 229 * security enabled and this is an NS access 230 */ 231 *data = 0; 232 return MEMTX_OK; 233 } 234 *data = cs->gicr_nsacr; 235 return MEMTX_OK; 236 case GICR_IDREGS ... GICR_IDREGS + 0x2f: 237 *data = gicv3_idreg(offset - GICR_IDREGS); 238 return MEMTX_OK; 239 default: 240 return MEMTX_ERROR; 241 } 242 } 243 244 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset, 245 uint64_t value, MemTxAttrs attrs) 246 { 247 switch (offset) { 248 case GICR_CTLR: 249 /* For our implementation, GICR_TYPER.DPGS is 0 and so all 250 * the DPG bits are RAZ/WI. We don't do anything asynchronously, 251 * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we 252 * implement LPIs) so Enable_LPIs is programmable. 253 */ 254 if (cs->gicr_typer & GICR_TYPER_PLPIS) { 255 if (value & GICR_CTLR_ENABLE_LPIS) { 256 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS; 257 /* Check for any pending interr in pending table */ 258 gicv3_redist_update_lpi(cs); 259 } else { 260 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS; 261 /* cs->hppi might have been an LPI; recalculate */ 262 gicv3_redist_update(cs); 263 } 264 } 265 return MEMTX_OK; 266 case GICR_STATUSR: 267 /* RAZ/WI for our implementation */ 268 return MEMTX_OK; 269 case GICR_WAKER: 270 /* Only the ProcessorSleep bit is writeable. When the guest sets 271 * it it requests that we transition the channel between the 272 * redistributor and the cpu interface to quiescent, and that 273 * we set the ChildrenAsleep bit once the inteface has reached the 274 * quiescent state. 275 * Setting the ProcessorSleep to 0 reverses the quiescing, and 276 * ChildrenAsleep is cleared once the transition is complete. 277 * Since our interface is not asynchronous, we complete these 278 * transitions instantaneously, so we set ChildrenAsleep to the 279 * same value as ProcessorSleep here. 280 */ 281 value &= GICR_WAKER_ProcessorSleep; 282 if (value & GICR_WAKER_ProcessorSleep) { 283 value |= GICR_WAKER_ChildrenAsleep; 284 } 285 cs->gicr_waker = value; 286 return MEMTX_OK; 287 case GICR_PROPBASER: 288 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value); 289 return MEMTX_OK; 290 case GICR_PROPBASER + 4: 291 cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value); 292 return MEMTX_OK; 293 case GICR_PENDBASER: 294 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value); 295 return MEMTX_OK; 296 case GICR_PENDBASER + 4: 297 cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value); 298 return MEMTX_OK; 299 case GICR_IGROUPR0: 300 if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 301 return MEMTX_OK; 302 } 303 cs->gicr_igroupr0 = value; 304 gicv3_redist_update(cs); 305 return MEMTX_OK; 306 case GICR_ISENABLER0: 307 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); 308 return MEMTX_OK; 309 case GICR_ICENABLER0: 310 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value); 311 return MEMTX_OK; 312 case GICR_ISPENDR0: 313 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); 314 return MEMTX_OK; 315 case GICR_ICPENDR0: 316 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value); 317 return MEMTX_OK; 318 case GICR_ISACTIVER0: 319 gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); 320 return MEMTX_OK; 321 case GICR_ICACTIVER0: 322 gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value); 323 return MEMTX_OK; 324 case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f: 325 { 326 int i, irq = offset - GICR_IPRIORITYR; 327 328 for (i = irq; i < irq + 4; i++, value >>= 8) { 329 gicr_write_ipriorityr(cs, attrs, i, value); 330 } 331 gicv3_redist_update(cs); 332 return MEMTX_OK; 333 } 334 case GICR_ICFGR0: 335 /* Register is all RAZ/WI or RAO/WI bits */ 336 return MEMTX_OK; 337 case GICR_ICFGR1: 338 { 339 uint32_t mask; 340 341 /* Since our edge_trigger bitmap is one bit per irq, our input 342 * 32-bits will compress down into 16 bits which we need 343 * to write into the bitmap. 344 */ 345 value = half_unshuffle32(value >> 1) << 16; 346 mask = mask_group(cs, attrs) & 0xffff0000U; 347 348 cs->edge_trigger &= ~mask; 349 cs->edge_trigger |= (value & mask); 350 351 gicv3_redist_update(cs); 352 return MEMTX_OK; 353 } 354 case GICR_IGRPMODR0: 355 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 356 /* RAZ/WI if security disabled, or if 357 * security enabled and this is an NS access 358 */ 359 return MEMTX_OK; 360 } 361 cs->gicr_igrpmodr0 = value; 362 gicv3_redist_update(cs); 363 return MEMTX_OK; 364 case GICR_NSACR: 365 if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) { 366 /* RAZ/WI if security disabled, or if 367 * security enabled and this is an NS access 368 */ 369 return MEMTX_OK; 370 } 371 cs->gicr_nsacr = value; 372 /* no update required as this only affects access permission checks */ 373 return MEMTX_OK; 374 case GICR_IIDR: 375 case GICR_TYPER: 376 case GICR_IDREGS ... GICR_IDREGS + 0x2f: 377 /* RO registers, ignore the write */ 378 qemu_log_mask(LOG_GUEST_ERROR, 379 "%s: invalid guest write to RO register at offset " 380 TARGET_FMT_plx "\n", __func__, offset); 381 return MEMTX_OK; 382 default: 383 return MEMTX_ERROR; 384 } 385 } 386 387 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset, 388 uint64_t *data, MemTxAttrs attrs) 389 { 390 switch (offset) { 391 case GICR_TYPER: 392 *data = cs->gicr_typer; 393 return MEMTX_OK; 394 case GICR_PROPBASER: 395 *data = cs->gicr_propbaser; 396 return MEMTX_OK; 397 case GICR_PENDBASER: 398 *data = cs->gicr_pendbaser; 399 return MEMTX_OK; 400 default: 401 return MEMTX_ERROR; 402 } 403 } 404 405 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset, 406 uint64_t value, MemTxAttrs attrs) 407 { 408 switch (offset) { 409 case GICR_PROPBASER: 410 cs->gicr_propbaser = value; 411 return MEMTX_OK; 412 case GICR_PENDBASER: 413 cs->gicr_pendbaser = value; 414 return MEMTX_OK; 415 case GICR_TYPER: 416 /* RO register, ignore the write */ 417 qemu_log_mask(LOG_GUEST_ERROR, 418 "%s: invalid guest write to RO register at offset " 419 TARGET_FMT_plx "\n", __func__, offset); 420 return MEMTX_OK; 421 default: 422 return MEMTX_ERROR; 423 } 424 } 425 426 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data, 427 unsigned size, MemTxAttrs attrs) 428 { 429 GICv3RedistRegion *region = opaque; 430 GICv3State *s = region->gic; 431 GICv3CPUState *cs; 432 MemTxResult r; 433 int cpuidx; 434 435 assert((offset & (size - 1)) == 0); 436 437 /* 438 * There are (for GICv3) two 64K redistributor pages per CPU. 439 * In some cases the redistributor pages for all CPUs are not 440 * contiguous (eg on the virt board they are split into two 441 * parts if there are too many CPUs to all fit in the same place 442 * in the memory map); if so then the GIC has multiple MemoryRegions 443 * for the redistributors. 444 */ 445 cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE; 446 offset %= GICV3_REDIST_SIZE; 447 448 cs = &s->cpu[cpuidx]; 449 450 switch (size) { 451 case 1: 452 r = gicr_readb(cs, offset, data, attrs); 453 break; 454 case 4: 455 r = gicr_readl(cs, offset, data, attrs); 456 break; 457 case 8: 458 r = gicr_readll(cs, offset, data, attrs); 459 break; 460 default: 461 r = MEMTX_ERROR; 462 break; 463 } 464 465 if (r != MEMTX_OK) { 466 qemu_log_mask(LOG_GUEST_ERROR, 467 "%s: invalid guest read at offset " TARGET_FMT_plx 468 " size %u\n", __func__, offset, size); 469 trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset, 470 size, attrs.secure); 471 /* The spec requires that reserved registers are RAZ/WI; 472 * so use MEMTX_ERROR returns from leaf functions as a way to 473 * trigger the guest-error logging but don't return it to 474 * the caller, or we'll cause a spurious guest data abort. 475 */ 476 r = MEMTX_OK; 477 *data = 0; 478 } else { 479 trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data, 480 size, attrs.secure); 481 } 482 return r; 483 } 484 485 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data, 486 unsigned size, MemTxAttrs attrs) 487 { 488 GICv3RedistRegion *region = opaque; 489 GICv3State *s = region->gic; 490 GICv3CPUState *cs; 491 MemTxResult r; 492 int cpuidx; 493 494 assert((offset & (size - 1)) == 0); 495 496 /* 497 * There are (for GICv3) two 64K redistributor pages per CPU. 498 * In some cases the redistributor pages for all CPUs are not 499 * contiguous (eg on the virt board they are split into two 500 * parts if there are too many CPUs to all fit in the same place 501 * in the memory map); if so then the GIC has multiple MemoryRegions 502 * for the redistributors. 503 */ 504 cpuidx = region->cpuidx + offset / GICV3_REDIST_SIZE; 505 offset %= GICV3_REDIST_SIZE; 506 507 cs = &s->cpu[cpuidx]; 508 509 switch (size) { 510 case 1: 511 r = gicr_writeb(cs, offset, data, attrs); 512 break; 513 case 4: 514 r = gicr_writel(cs, offset, data, attrs); 515 break; 516 case 8: 517 r = gicr_writell(cs, offset, data, attrs); 518 break; 519 default: 520 r = MEMTX_ERROR; 521 break; 522 } 523 524 if (r != MEMTX_OK) { 525 qemu_log_mask(LOG_GUEST_ERROR, 526 "%s: invalid guest write at offset " TARGET_FMT_plx 527 " size %u\n", __func__, offset, size); 528 trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data, 529 size, attrs.secure); 530 /* The spec requires that reserved registers are RAZ/WI; 531 * so use MEMTX_ERROR returns from leaf functions as a way to 532 * trigger the guest-error logging but don't return it to 533 * the caller, or we'll cause a spurious guest data abort. 534 */ 535 r = MEMTX_OK; 536 } else { 537 trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data, 538 size, attrs.secure); 539 } 540 return r; 541 } 542 543 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq) 544 { 545 AddressSpace *as = &cs->gic->dma_as; 546 uint64_t lpict_baddr; 547 uint8_t lpite; 548 uint8_t prio; 549 550 lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK; 551 552 address_space_read(as, lpict_baddr + ((irq - GICV3_LPI_INTID_START) * 553 sizeof(lpite)), MEMTXATTRS_UNSPECIFIED, &lpite, 554 sizeof(lpite)); 555 556 if (!(lpite & LPI_CTE_ENABLED)) { 557 return; 558 } 559 560 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) { 561 prio = lpite & LPI_PRIORITY_MASK; 562 } else { 563 prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80; 564 } 565 566 if ((prio < cs->hpplpi.prio) || 567 ((prio == cs->hpplpi.prio) && (irq <= cs->hpplpi.irq))) { 568 cs->hpplpi.irq = irq; 569 cs->hpplpi.prio = prio; 570 /* LPIs are always non-secure Grp1 interrupts */ 571 cs->hpplpi.grp = GICV3_G1NS; 572 } 573 } 574 575 void gicv3_redist_update_lpi_only(GICv3CPUState *cs) 576 { 577 /* 578 * This function scans the LPI pending table and for each pending 579 * LPI, reads the corresponding entry from LPI configuration table 580 * to extract the priority info and determine if the current LPI 581 * priority is lower than the last computed high priority lpi interrupt. 582 * If yes, replace current LPI as the new high priority lpi interrupt. 583 */ 584 AddressSpace *as = &cs->gic->dma_as; 585 uint64_t lpipt_baddr; 586 uint32_t pendt_size = 0; 587 uint8_t pend; 588 int i, bit; 589 uint64_t idbits; 590 591 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), 592 GICD_TYPER_IDBITS); 593 594 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser || 595 !cs->gicr_pendbaser) { 596 return; 597 } 598 599 cs->hpplpi.prio = 0xff; 600 601 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; 602 603 /* Determine the highest priority pending interrupt among LPIs */ 604 pendt_size = (1ULL << (idbits + 1)); 605 606 for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) { 607 address_space_read(as, lpipt_baddr + i, MEMTXATTRS_UNSPECIFIED, &pend, 608 sizeof(pend)); 609 610 while (pend) { 611 bit = ctz32(pend); 612 gicv3_redist_check_lpi_priority(cs, i * 8 + bit); 613 pend &= ~(1 << bit); 614 } 615 } 616 } 617 618 void gicv3_redist_update_lpi(GICv3CPUState *cs) 619 { 620 gicv3_redist_update_lpi_only(cs); 621 gicv3_redist_update(cs); 622 } 623 624 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level) 625 { 626 /* 627 * This function updates the pending bit in lpi pending table for 628 * the irq being activated or deactivated. 629 */ 630 AddressSpace *as = &cs->gic->dma_as; 631 uint64_t lpipt_baddr; 632 bool ispend = false; 633 uint8_t pend; 634 635 /* 636 * get the bit value corresponding to this irq in the 637 * lpi pending table 638 */ 639 lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK; 640 641 address_space_read(as, lpipt_baddr + ((irq / 8) * sizeof(pend)), 642 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); 643 644 ispend = extract32(pend, irq % 8, 1); 645 646 /* no change in the value of pending bit, return */ 647 if (ispend == level) { 648 return; 649 } 650 pend = deposit32(pend, irq % 8, 1, level ? 1 : 0); 651 652 address_space_write(as, lpipt_baddr + ((irq / 8) * sizeof(pend)), 653 MEMTXATTRS_UNSPECIFIED, &pend, sizeof(pend)); 654 655 /* 656 * check if this LPI is better than the current hpplpi, if yes 657 * just set hpplpi.prio and .irq without doing a full rescan 658 */ 659 if (level) { 660 gicv3_redist_check_lpi_priority(cs, irq); 661 gicv3_redist_update(cs); 662 } else { 663 if (irq == cs->hpplpi.irq) { 664 gicv3_redist_update_lpi(cs); 665 } 666 } 667 } 668 669 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level) 670 { 671 uint64_t idbits; 672 673 idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS), 674 GICD_TYPER_IDBITS); 675 676 if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) || !cs->gicr_propbaser || 677 !cs->gicr_pendbaser || (irq > (1ULL << (idbits + 1)) - 1) || 678 irq < GICV3_LPI_INTID_START) { 679 return; 680 } 681 682 /* set/clear the pending bit for this irq */ 683 gicv3_redist_lpi_pending(cs, irq, level); 684 } 685 686 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level) 687 { 688 /* Update redistributor state for a change in an external PPI input line */ 689 if (level == extract32(cs->level, irq, 1)) { 690 return; 691 } 692 693 trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level); 694 695 cs->level = deposit32(cs->level, irq, 1, level); 696 697 if (level) { 698 /* 0->1 edges latch the pending bit for edge-triggered interrupts */ 699 if (extract32(cs->edge_trigger, irq, 1)) { 700 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); 701 } 702 } 703 704 gicv3_redist_update(cs); 705 } 706 707 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns) 708 { 709 /* Update redistributor state for a generated SGI */ 710 int irqgrp = gicv3_irq_group(cs->gic, cs, irq); 711 712 /* If we are asked for a Secure Group 1 SGI and it's actually 713 * configured as Secure Group 0 this is OK (subject to the usual 714 * NSACR checks). 715 */ 716 if (grp == GICV3_G1 && irqgrp == GICV3_G0) { 717 grp = GICV3_G0; 718 } 719 720 if (grp != irqgrp) { 721 return; 722 } 723 724 if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) { 725 /* If security is enabled we must test the NSACR bits */ 726 int nsaccess = gicr_ns_access(cs, irq); 727 728 if ((irqgrp == GICV3_G0 && nsaccess < 1) || 729 (irqgrp == GICV3_G1 && nsaccess < 2)) { 730 return; 731 } 732 } 733 734 /* OK, we can accept the SGI */ 735 trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq); 736 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1); 737 gicv3_redist_update(cs); 738 } 739