xref: /openbmc/qemu/hw/intc/arm_gicv3_redist.c (revision 8ab5e8a5)
1 /*
2  * ARM GICv3 emulation: Redistributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 static uint32_t mask_group(GICv3CPUState *cs, MemTxAttrs attrs)
18 {
19     /* Return a 32-bit mask which should be applied for this set of 32
20      * interrupts; each bit is 1 if access is permitted by the
21      * combination of attrs.secure and GICR_GROUPR. (GICR_NSACR does
22      * not affect config register accesses, unlike GICD_NSACR.)
23      */
24     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
25         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI */
26         return cs->gicr_igroupr0;
27     }
28     return 0xFFFFFFFFU;
29 }
30 
31 static int gicr_ns_access(GICv3CPUState *cs, int irq)
32 {
33     /* Return the 2 bit NSACR.NS_access field for this SGI */
34     assert(irq < 16);
35     return extract32(cs->gicr_nsacr, irq * 2, 2);
36 }
37 
38 static void gicr_write_set_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
39                                       uint32_t *reg, uint32_t val)
40 {
41     /* Helper routine to implement writing to a "set-bitmap" register */
42     val &= mask_group(cs, attrs);
43     *reg |= val;
44     gicv3_redist_update(cs);
45 }
46 
47 static void gicr_write_clear_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
48                                         uint32_t *reg, uint32_t val)
49 {
50     /* Helper routine to implement writing to a "clear-bitmap" register */
51     val &= mask_group(cs, attrs);
52     *reg &= ~val;
53     gicv3_redist_update(cs);
54 }
55 
56 static uint32_t gicr_read_bitmap_reg(GICv3CPUState *cs, MemTxAttrs attrs,
57                                      uint32_t reg)
58 {
59     reg &= mask_group(cs, attrs);
60     return reg;
61 }
62 
63 static bool vcpu_resident(GICv3CPUState *cs, uint64_t vptaddr)
64 {
65     /*
66      * Return true if a vCPU is resident, which is defined by
67      * whether the GICR_VPENDBASER register is marked VALID and
68      * has the right virtual pending table address.
69      */
70     if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
71         return false;
72     }
73     return vptaddr == (cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK);
74 }
75 
76 /**
77  * update_for_one_lpi: Update pending information if this LPI is better
78  *
79  * @cs: GICv3CPUState
80  * @irq: interrupt to look up in the LPI Configuration table
81  * @ctbase: physical address of the LPI Configuration table to use
82  * @ds: true if priority value should not be shifted
83  * @hpp: points to pending information to update
84  *
85  * Look up @irq in the Configuration table specified by @ctbase
86  * to see if it is enabled and what its priority is. If it is an
87  * enabled interrupt with a higher priority than that currently
88  * recorded in @hpp, update @hpp.
89  */
90 static void update_for_one_lpi(GICv3CPUState *cs, int irq,
91                                uint64_t ctbase, bool ds, PendingIrq *hpp)
92 {
93     uint8_t lpite;
94     uint8_t prio;
95 
96     address_space_read(&cs->gic->dma_as,
97                        ctbase + ((irq - GICV3_LPI_INTID_START) * sizeof(lpite)),
98                        MEMTXATTRS_UNSPECIFIED, &lpite, sizeof(lpite));
99 
100     if (!(lpite & LPI_CTE_ENABLED)) {
101         return;
102     }
103 
104     if (ds) {
105         prio = lpite & LPI_PRIORITY_MASK;
106     } else {
107         prio = ((lpite & LPI_PRIORITY_MASK) >> 1) | 0x80;
108     }
109 
110     if ((prio < hpp->prio) ||
111         ((prio == hpp->prio) && (irq <= hpp->irq))) {
112         hpp->irq = irq;
113         hpp->prio = prio;
114         /* LPIs and vLPIs are always non-secure Grp1 interrupts */
115         hpp->grp = GICV3_G1NS;
116     }
117 }
118 
119 /**
120  * update_for_all_lpis: Fully scan LPI tables and find best pending LPI
121  *
122  * @cs: GICv3CPUState
123  * @ptbase: physical address of LPI Pending table
124  * @ctbase: physical address of LPI Configuration table
125  * @ptsizebits: size of tables, specified as number of interrupt ID bits minus 1
126  * @ds: true if priority value should not be shifted
127  * @hpp: points to pending information to set
128  *
129  * Recalculate the highest priority pending enabled LPI from scratch,
130  * and set @hpp accordingly.
131  *
132  * We scan the LPI pending table @ptbase; for each pending LPI, we read the
133  * corresponding entry in the LPI configuration table @ctbase to extract
134  * the priority and enabled information.
135  *
136  * We take @ptsizebits in the form idbits-1 because this is the way that
137  * LPI table sizes are architecturally specified in GICR_PROPBASER.IDBits
138  * and in the VMAPP command's VPT_size field.
139  */
140 static void update_for_all_lpis(GICv3CPUState *cs, uint64_t ptbase,
141                                 uint64_t ctbase, unsigned ptsizebits,
142                                 bool ds, PendingIrq *hpp)
143 {
144     AddressSpace *as = &cs->gic->dma_as;
145     uint8_t pend;
146     uint32_t pendt_size = (1ULL << (ptsizebits + 1));
147     int i, bit;
148 
149     hpp->prio = 0xff;
150 
151     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
152         address_space_read(as, ptbase + i, MEMTXATTRS_UNSPECIFIED, &pend, 1);
153         while (pend) {
154             bit = ctz32(pend);
155             update_for_one_lpi(cs, i * 8 + bit, ctbase, ds, hpp);
156             pend &= ~(1 << bit);
157         }
158     }
159 }
160 
161 /**
162  * set_lpi_pending_bit: Set or clear pending bit for an LPI
163  *
164  * @cs: GICv3CPUState
165  * @ptbase: physical address of LPI Pending table
166  * @irq: LPI to change pending state for
167  * @level: false to clear pending state, true to set
168  *
169  * Returns true if we needed to do something, false if the pending bit
170  * was already at @level.
171  */
172 static bool set_pending_table_bit(GICv3CPUState *cs, uint64_t ptbase,
173                                   int irq, bool level)
174 {
175     AddressSpace *as = &cs->gic->dma_as;
176     uint64_t addr = ptbase + irq / 8;
177     uint8_t pend;
178 
179     address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
180     if (extract32(pend, irq % 8, 1) == level) {
181         /* Bit already at requested state, no action required */
182         return false;
183     }
184     pend = deposit32(pend, irq % 8, 1, level ? 1 : 0);
185     address_space_write(as, addr, MEMTXATTRS_UNSPECIFIED, &pend, 1);
186     return true;
187 }
188 
189 static uint8_t gicr_read_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs,
190                                     int irq)
191 {
192     /* Read the value of GICR_IPRIORITYR<n> for the specified interrupt,
193      * honouring security state (these are RAZ/WI for Group 0 or Secure
194      * Group 1 interrupts).
195      */
196     uint32_t prio;
197 
198     prio = cs->gicr_ipriorityr[irq];
199 
200     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
201         if (!(cs->gicr_igroupr0 & (1U << irq))) {
202             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
203             return 0;
204         }
205         /* NS view of the interrupt priority */
206         prio = (prio << 1) & 0xff;
207     }
208     return prio;
209 }
210 
211 static void gicr_write_ipriorityr(GICv3CPUState *cs, MemTxAttrs attrs, int irq,
212                                   uint8_t value)
213 {
214     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
215      * honouring security state (these are RAZ/WI for Group 0 or Secure
216      * Group 1 interrupts).
217      */
218     if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
219         if (!(cs->gicr_igroupr0 & (1U << irq))) {
220             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
221             return;
222         }
223         /* NS view of the interrupt priority */
224         value = 0x80 | (value >> 1);
225     }
226     cs->gicr_ipriorityr[irq] = value;
227 }
228 
229 static void gicv3_redist_update_vlpi_only(GICv3CPUState *cs)
230 {
231     uint64_t ptbase, ctbase, idbits;
232 
233     if (!FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID)) {
234         cs->hppvlpi.prio = 0xff;
235         return;
236     }
237 
238     ptbase = cs->gicr_vpendbaser & R_GICR_VPENDBASER_PHYADDR_MASK;
239     ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
240     idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
241 
242     update_for_all_lpis(cs, ptbase, ctbase, idbits, true, &cs->hppvlpi);
243 }
244 
245 static void gicv3_redist_update_vlpi(GICv3CPUState *cs)
246 {
247     gicv3_redist_update_vlpi_only(cs);
248     gicv3_cpuif_virt_irq_fiq_update(cs);
249 }
250 
251 static void gicr_write_vpendbaser(GICv3CPUState *cs, uint64_t newval)
252 {
253     /* Write @newval to GICR_VPENDBASER, handling its effects */
254     bool oldvalid = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, VALID);
255     bool newvalid = FIELD_EX64(newval, GICR_VPENDBASER, VALID);
256     bool pendinglast;
257 
258     /*
259      * The DIRTY bit is read-only and for us is always zero;
260      * other fields are writable.
261      */
262     newval &= R_GICR_VPENDBASER_INNERCACHE_MASK |
263         R_GICR_VPENDBASER_SHAREABILITY_MASK |
264         R_GICR_VPENDBASER_PHYADDR_MASK |
265         R_GICR_VPENDBASER_OUTERCACHE_MASK |
266         R_GICR_VPENDBASER_PENDINGLAST_MASK |
267         R_GICR_VPENDBASER_IDAI_MASK |
268         R_GICR_VPENDBASER_VALID_MASK;
269 
270     if (oldvalid && newvalid) {
271         /*
272          * Changing other fields while VALID is 1 is UNPREDICTABLE;
273          * we choose to log and ignore the write.
274          */
275         if (cs->gicr_vpendbaser ^ newval) {
276             qemu_log_mask(LOG_GUEST_ERROR,
277                           "%s: Changing GICR_VPENDBASER when VALID=1 "
278                           "is UNPREDICTABLE\n", __func__);
279         }
280         return;
281     }
282     if (!oldvalid && !newvalid) {
283         cs->gicr_vpendbaser = newval;
284         return;
285     }
286 
287     if (newvalid) {
288         /*
289          * Valid going from 0 to 1: update hppvlpi from tables.
290          * If IDAI is 0 we are allowed to use the info we cached in
291          * the IMPDEF area of the table.
292          * PendingLast is RES1 when we make this transition.
293          */
294         pendinglast = true;
295     } else {
296         /*
297          * Valid going from 1 to 0:
298          * Set PendingLast if there was a pending enabled interrupt
299          * for the vPE that was just descheduled.
300          * If we cache info in the IMPDEF area, write it out here.
301          */
302         pendinglast = cs->hppvlpi.prio != 0xff;
303     }
304 
305     newval = FIELD_DP64(newval, GICR_VPENDBASER, PENDINGLAST, pendinglast);
306     cs->gicr_vpendbaser = newval;
307     gicv3_redist_update_vlpi(cs);
308 }
309 
310 static MemTxResult gicr_readb(GICv3CPUState *cs, hwaddr offset,
311                               uint64_t *data, MemTxAttrs attrs)
312 {
313     switch (offset) {
314     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
315         *data = gicr_read_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR);
316         return MEMTX_OK;
317     default:
318         return MEMTX_ERROR;
319     }
320 }
321 
322 static MemTxResult gicr_writeb(GICv3CPUState *cs, hwaddr offset,
323                                uint64_t value, MemTxAttrs attrs)
324 {
325     switch (offset) {
326     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
327         gicr_write_ipriorityr(cs, attrs, offset - GICR_IPRIORITYR, value);
328         gicv3_redist_update(cs);
329         return MEMTX_OK;
330     default:
331         return MEMTX_ERROR;
332     }
333 }
334 
335 static MemTxResult gicr_readl(GICv3CPUState *cs, hwaddr offset,
336                               uint64_t *data, MemTxAttrs attrs)
337 {
338     switch (offset) {
339     case GICR_CTLR:
340         *data = cs->gicr_ctlr;
341         return MEMTX_OK;
342     case GICR_IIDR:
343         *data = gicv3_iidr();
344         return MEMTX_OK;
345     case GICR_TYPER:
346         *data = extract64(cs->gicr_typer, 0, 32);
347         return MEMTX_OK;
348     case GICR_TYPER + 4:
349         *data = extract64(cs->gicr_typer, 32, 32);
350         return MEMTX_OK;
351     case GICR_STATUSR:
352         /* RAZ/WI for us (this is an optional register and our implementation
353          * does not track RO/WO/reserved violations to report them to the guest)
354          */
355         *data = 0;
356         return MEMTX_OK;
357     case GICR_WAKER:
358         *data = cs->gicr_waker;
359         return MEMTX_OK;
360     case GICR_PROPBASER:
361         *data = extract64(cs->gicr_propbaser, 0, 32);
362         return MEMTX_OK;
363     case GICR_PROPBASER + 4:
364         *data = extract64(cs->gicr_propbaser, 32, 32);
365         return MEMTX_OK;
366     case GICR_PENDBASER:
367         *data = extract64(cs->gicr_pendbaser, 0, 32);
368         return MEMTX_OK;
369     case GICR_PENDBASER + 4:
370         *data = extract64(cs->gicr_pendbaser, 32, 32);
371         return MEMTX_OK;
372     case GICR_IGROUPR0:
373         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
374             *data = 0;
375             return MEMTX_OK;
376         }
377         *data = cs->gicr_igroupr0;
378         return MEMTX_OK;
379     case GICR_ISENABLER0:
380     case GICR_ICENABLER0:
381         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_ienabler0);
382         return MEMTX_OK;
383     case GICR_ISPENDR0:
384     case GICR_ICPENDR0:
385     {
386         /* The pending register reads as the logical OR of the pending
387          * latch and the input line level for level-triggered interrupts.
388          */
389         uint32_t val = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
390         *data = gicr_read_bitmap_reg(cs, attrs, val);
391         return MEMTX_OK;
392     }
393     case GICR_ISACTIVER0:
394     case GICR_ICACTIVER0:
395         *data = gicr_read_bitmap_reg(cs, attrs, cs->gicr_iactiver0);
396         return MEMTX_OK;
397     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
398     {
399         int i, irq = offset - GICR_IPRIORITYR;
400         uint32_t value = 0;
401 
402         for (i = irq + 3; i >= irq; i--) {
403             value <<= 8;
404             value |= gicr_read_ipriorityr(cs, attrs, i);
405         }
406         *data = value;
407         return MEMTX_OK;
408     }
409     case GICR_ICFGR0:
410     case GICR_ICFGR1:
411     {
412         /* Our edge_trigger bitmap is one bit per irq; take the correct
413          * half of it, and spread it out into the odd bits.
414          */
415         uint32_t value;
416 
417         value = cs->edge_trigger & mask_group(cs, attrs);
418         value = extract32(value, (offset == GICR_ICFGR1) ? 16 : 0, 16);
419         value = half_shuffle32(value) << 1;
420         *data = value;
421         return MEMTX_OK;
422     }
423     case GICR_IGRPMODR0:
424         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
425             /* RAZ/WI if security disabled, or if
426              * security enabled and this is an NS access
427              */
428             *data = 0;
429             return MEMTX_OK;
430         }
431         *data = cs->gicr_igrpmodr0;
432         return MEMTX_OK;
433     case GICR_NSACR:
434         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
435             /* RAZ/WI if security disabled, or if
436              * security enabled and this is an NS access
437              */
438             *data = 0;
439             return MEMTX_OK;
440         }
441         *data = cs->gicr_nsacr;
442         return MEMTX_OK;
443     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
444         *data = gicv3_idreg(cs->gic, offset - GICR_IDREGS, GICV3_PIDR0_REDIST);
445         return MEMTX_OK;
446         /*
447          * VLPI frame registers. We don't need a version check for
448          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
449          * prevent pre-v4 GIC from passing us offsets this high.
450          */
451     case GICR_VPROPBASER:
452         *data = extract64(cs->gicr_vpropbaser, 0, 32);
453         return MEMTX_OK;
454     case GICR_VPROPBASER + 4:
455         *data = extract64(cs->gicr_vpropbaser, 32, 32);
456         return MEMTX_OK;
457     case GICR_VPENDBASER:
458         *data = extract64(cs->gicr_vpendbaser, 0, 32);
459         return MEMTX_OK;
460     case GICR_VPENDBASER + 4:
461         *data = extract64(cs->gicr_vpendbaser, 32, 32);
462         return MEMTX_OK;
463     default:
464         return MEMTX_ERROR;
465     }
466 }
467 
468 static MemTxResult gicr_writel(GICv3CPUState *cs, hwaddr offset,
469                                uint64_t value, MemTxAttrs attrs)
470 {
471     switch (offset) {
472     case GICR_CTLR:
473         /* For our implementation, GICR_TYPER.DPGS is 0 and so all
474          * the DPG bits are RAZ/WI. We don't do anything asynchronously,
475          * so UWP and RWP are RAZ/WI. GICR_TYPER.LPIS is 1 (we
476          * implement LPIs) so Enable_LPIs is programmable.
477          */
478         if (cs->gicr_typer & GICR_TYPER_PLPIS) {
479             if (value & GICR_CTLR_ENABLE_LPIS) {
480                 cs->gicr_ctlr |= GICR_CTLR_ENABLE_LPIS;
481                 /* Check for any pending interr in pending table */
482                 gicv3_redist_update_lpi(cs);
483             } else {
484                 cs->gicr_ctlr &= ~GICR_CTLR_ENABLE_LPIS;
485                 /* cs->hppi might have been an LPI; recalculate */
486                 gicv3_redist_update(cs);
487             }
488         }
489         return MEMTX_OK;
490     case GICR_STATUSR:
491         /* RAZ/WI for our implementation */
492         return MEMTX_OK;
493     case GICR_WAKER:
494         /* Only the ProcessorSleep bit is writable. When the guest sets
495          * it, it requests that we transition the channel between the
496          * redistributor and the cpu interface to quiescent, and that
497          * we set the ChildrenAsleep bit once the inteface has reached the
498          * quiescent state.
499          * Setting the ProcessorSleep to 0 reverses the quiescing, and
500          * ChildrenAsleep is cleared once the transition is complete.
501          * Since our interface is not asynchronous, we complete these
502          * transitions instantaneously, so we set ChildrenAsleep to the
503          * same value as ProcessorSleep here.
504          */
505         value &= GICR_WAKER_ProcessorSleep;
506         if (value & GICR_WAKER_ProcessorSleep) {
507             value |= GICR_WAKER_ChildrenAsleep;
508         }
509         cs->gicr_waker = value;
510         return MEMTX_OK;
511     case GICR_PROPBASER:
512         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 0, 32, value);
513         return MEMTX_OK;
514     case GICR_PROPBASER + 4:
515         cs->gicr_propbaser = deposit64(cs->gicr_propbaser, 32, 32, value);
516         return MEMTX_OK;
517     case GICR_PENDBASER:
518         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 0, 32, value);
519         return MEMTX_OK;
520     case GICR_PENDBASER + 4:
521         cs->gicr_pendbaser = deposit64(cs->gicr_pendbaser, 32, 32, value);
522         return MEMTX_OK;
523     case GICR_IGROUPR0:
524         if (!attrs.secure && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
525             return MEMTX_OK;
526         }
527         cs->gicr_igroupr0 = value;
528         gicv3_redist_update(cs);
529         return MEMTX_OK;
530     case GICR_ISENABLER0:
531         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
532         return MEMTX_OK;
533     case GICR_ICENABLER0:
534         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ienabler0, value);
535         return MEMTX_OK;
536     case GICR_ISPENDR0:
537         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
538         return MEMTX_OK;
539     case GICR_ICPENDR0:
540         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_ipendr0, value);
541         return MEMTX_OK;
542     case GICR_ISACTIVER0:
543         gicr_write_set_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
544         return MEMTX_OK;
545     case GICR_ICACTIVER0:
546         gicr_write_clear_bitmap_reg(cs, attrs, &cs->gicr_iactiver0, value);
547         return MEMTX_OK;
548     case GICR_IPRIORITYR ... GICR_IPRIORITYR + 0x1f:
549     {
550         int i, irq = offset - GICR_IPRIORITYR;
551 
552         for (i = irq; i < irq + 4; i++, value >>= 8) {
553             gicr_write_ipriorityr(cs, attrs, i, value);
554         }
555         gicv3_redist_update(cs);
556         return MEMTX_OK;
557     }
558     case GICR_ICFGR0:
559         /* Register is all RAZ/WI or RAO/WI bits */
560         return MEMTX_OK;
561     case GICR_ICFGR1:
562     {
563         uint32_t mask;
564 
565         /* Since our edge_trigger bitmap is one bit per irq, our input
566          * 32-bits will compress down into 16 bits which we need
567          * to write into the bitmap.
568          */
569         value = half_unshuffle32(value >> 1) << 16;
570         mask = mask_group(cs, attrs) & 0xffff0000U;
571 
572         cs->edge_trigger &= ~mask;
573         cs->edge_trigger |= (value & mask);
574 
575         gicv3_redist_update(cs);
576         return MEMTX_OK;
577     }
578     case GICR_IGRPMODR0:
579         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
580             /* RAZ/WI if security disabled, or if
581              * security enabled and this is an NS access
582              */
583             return MEMTX_OK;
584         }
585         cs->gicr_igrpmodr0 = value;
586         gicv3_redist_update(cs);
587         return MEMTX_OK;
588     case GICR_NSACR:
589         if ((cs->gic->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
590             /* RAZ/WI if security disabled, or if
591              * security enabled and this is an NS access
592              */
593             return MEMTX_OK;
594         }
595         cs->gicr_nsacr = value;
596         /* no update required as this only affects access permission checks */
597         return MEMTX_OK;
598     case GICR_IIDR:
599     case GICR_TYPER:
600     case GICR_IDREGS ... GICR_IDREGS + 0x2f:
601         /* RO registers, ignore the write */
602         qemu_log_mask(LOG_GUEST_ERROR,
603                       "%s: invalid guest write to RO register at offset "
604                       HWADDR_FMT_plx "\n", __func__, offset);
605         return MEMTX_OK;
606         /*
607          * VLPI frame registers. We don't need a version check for
608          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
609          * prevent pre-v4 GIC from passing us offsets this high.
610          */
611     case GICR_VPROPBASER:
612         cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 0, 32, value);
613         return MEMTX_OK;
614     case GICR_VPROPBASER + 4:
615         cs->gicr_vpropbaser = deposit64(cs->gicr_vpropbaser, 32, 32, value);
616         return MEMTX_OK;
617     case GICR_VPENDBASER:
618         gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 0, 32, value));
619         return MEMTX_OK;
620     case GICR_VPENDBASER + 4:
621         gicr_write_vpendbaser(cs, deposit64(cs->gicr_vpendbaser, 32, 32, value));
622         return MEMTX_OK;
623     default:
624         return MEMTX_ERROR;
625     }
626 }
627 
628 static MemTxResult gicr_readll(GICv3CPUState *cs, hwaddr offset,
629                                uint64_t *data, MemTxAttrs attrs)
630 {
631     switch (offset) {
632     case GICR_TYPER:
633         *data = cs->gicr_typer;
634         return MEMTX_OK;
635     case GICR_PROPBASER:
636         *data = cs->gicr_propbaser;
637         return MEMTX_OK;
638     case GICR_PENDBASER:
639         *data = cs->gicr_pendbaser;
640         return MEMTX_OK;
641         /*
642          * VLPI frame registers. We don't need a version check for
643          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
644          * prevent pre-v4 GIC from passing us offsets this high.
645          */
646     case GICR_VPROPBASER:
647         *data = cs->gicr_vpropbaser;
648         return MEMTX_OK;
649     case GICR_VPENDBASER:
650         *data = cs->gicr_vpendbaser;
651         return MEMTX_OK;
652     default:
653         return MEMTX_ERROR;
654     }
655 }
656 
657 static MemTxResult gicr_writell(GICv3CPUState *cs, hwaddr offset,
658                                 uint64_t value, MemTxAttrs attrs)
659 {
660     switch (offset) {
661     case GICR_PROPBASER:
662         cs->gicr_propbaser = value;
663         return MEMTX_OK;
664     case GICR_PENDBASER:
665         cs->gicr_pendbaser = value;
666         return MEMTX_OK;
667     case GICR_TYPER:
668         /* RO register, ignore the write */
669         qemu_log_mask(LOG_GUEST_ERROR,
670                       "%s: invalid guest write to RO register at offset "
671                       HWADDR_FMT_plx "\n", __func__, offset);
672         return MEMTX_OK;
673         /*
674          * VLPI frame registers. We don't need a version check for
675          * VPROPBASER and VPENDBASER because gicv3_redist_size() will
676          * prevent pre-v4 GIC from passing us offsets this high.
677          */
678     case GICR_VPROPBASER:
679         cs->gicr_vpropbaser = value;
680         return MEMTX_OK;
681     case GICR_VPENDBASER:
682         gicr_write_vpendbaser(cs, value);
683         return MEMTX_OK;
684     default:
685         return MEMTX_ERROR;
686     }
687 }
688 
689 MemTxResult gicv3_redist_read(void *opaque, hwaddr offset, uint64_t *data,
690                               unsigned size, MemTxAttrs attrs)
691 {
692     GICv3RedistRegion *region = opaque;
693     GICv3State *s = region->gic;
694     GICv3CPUState *cs;
695     MemTxResult r;
696     int cpuidx;
697 
698     assert((offset & (size - 1)) == 0);
699 
700     /*
701      * There are (for GICv3) two 64K redistributor pages per CPU.
702      * In some cases the redistributor pages for all CPUs are not
703      * contiguous (eg on the virt board they are split into two
704      * parts if there are too many CPUs to all fit in the same place
705      * in the memory map); if so then the GIC has multiple MemoryRegions
706      * for the redistributors.
707      */
708     cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
709     offset %= gicv3_redist_size(s);
710 
711     cs = &s->cpu[cpuidx];
712 
713     switch (size) {
714     case 1:
715         r = gicr_readb(cs, offset, data, attrs);
716         break;
717     case 4:
718         r = gicr_readl(cs, offset, data, attrs);
719         break;
720     case 8:
721         r = gicr_readll(cs, offset, data, attrs);
722         break;
723     default:
724         r = MEMTX_ERROR;
725         break;
726     }
727 
728     if (r != MEMTX_OK) {
729         qemu_log_mask(LOG_GUEST_ERROR,
730                       "%s: invalid guest read at offset " HWADDR_FMT_plx
731                       " size %u\n", __func__, offset, size);
732         trace_gicv3_redist_badread(gicv3_redist_affid(cs), offset,
733                                    size, attrs.secure);
734         /* The spec requires that reserved registers are RAZ/WI;
735          * so use MEMTX_ERROR returns from leaf functions as a way to
736          * trigger the guest-error logging but don't return it to
737          * the caller, or we'll cause a spurious guest data abort.
738          */
739         r = MEMTX_OK;
740         *data = 0;
741     } else {
742         trace_gicv3_redist_read(gicv3_redist_affid(cs), offset, *data,
743                                 size, attrs.secure);
744     }
745     return r;
746 }
747 
748 MemTxResult gicv3_redist_write(void *opaque, hwaddr offset, uint64_t data,
749                                unsigned size, MemTxAttrs attrs)
750 {
751     GICv3RedistRegion *region = opaque;
752     GICv3State *s = region->gic;
753     GICv3CPUState *cs;
754     MemTxResult r;
755     int cpuidx;
756 
757     assert((offset & (size - 1)) == 0);
758 
759     /*
760      * There are (for GICv3) two 64K redistributor pages per CPU.
761      * In some cases the redistributor pages for all CPUs are not
762      * contiguous (eg on the virt board they are split into two
763      * parts if there are too many CPUs to all fit in the same place
764      * in the memory map); if so then the GIC has multiple MemoryRegions
765      * for the redistributors.
766      */
767     cpuidx = region->cpuidx + offset / gicv3_redist_size(s);
768     offset %= gicv3_redist_size(s);
769 
770     cs = &s->cpu[cpuidx];
771 
772     switch (size) {
773     case 1:
774         r = gicr_writeb(cs, offset, data, attrs);
775         break;
776     case 4:
777         r = gicr_writel(cs, offset, data, attrs);
778         break;
779     case 8:
780         r = gicr_writell(cs, offset, data, attrs);
781         break;
782     default:
783         r = MEMTX_ERROR;
784         break;
785     }
786 
787     if (r != MEMTX_OK) {
788         qemu_log_mask(LOG_GUEST_ERROR,
789                       "%s: invalid guest write at offset " HWADDR_FMT_plx
790                       " size %u\n", __func__, offset, size);
791         trace_gicv3_redist_badwrite(gicv3_redist_affid(cs), offset, data,
792                                     size, attrs.secure);
793         /* The spec requires that reserved registers are RAZ/WI;
794          * so use MEMTX_ERROR returns from leaf functions as a way to
795          * trigger the guest-error logging but don't return it to
796          * the caller, or we'll cause a spurious guest data abort.
797          */
798         r = MEMTX_OK;
799     } else {
800         trace_gicv3_redist_write(gicv3_redist_affid(cs), offset, data,
801                                  size, attrs.secure);
802     }
803     return r;
804 }
805 
806 static void gicv3_redist_check_lpi_priority(GICv3CPUState *cs, int irq)
807 {
808     uint64_t lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
809 
810     update_for_one_lpi(cs, irq, lpict_baddr,
811                        cs->gic->gicd_ctlr & GICD_CTLR_DS,
812                        &cs->hpplpi);
813 }
814 
815 void gicv3_redist_update_lpi_only(GICv3CPUState *cs)
816 {
817     /*
818      * This function scans the LPI pending table and for each pending
819      * LPI, reads the corresponding entry from LPI configuration table
820      * to extract the priority info and determine if the current LPI
821      * priority is lower than the last computed high priority lpi interrupt.
822      * If yes, replace current LPI as the new high priority lpi interrupt.
823      */
824     uint64_t lpipt_baddr, lpict_baddr;
825     uint64_t idbits;
826 
827     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
828                  GICD_TYPER_IDBITS);
829 
830     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
831         return;
832     }
833 
834     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
835     lpict_baddr = cs->gicr_propbaser & R_GICR_PROPBASER_PHYADDR_MASK;
836 
837     update_for_all_lpis(cs, lpipt_baddr, lpict_baddr, idbits,
838                         cs->gic->gicd_ctlr & GICD_CTLR_DS, &cs->hpplpi);
839 }
840 
841 void gicv3_redist_update_lpi(GICv3CPUState *cs)
842 {
843     gicv3_redist_update_lpi_only(cs);
844     gicv3_redist_update(cs);
845 }
846 
847 void gicv3_redist_lpi_pending(GICv3CPUState *cs, int irq, int level)
848 {
849     /*
850      * This function updates the pending bit in lpi pending table for
851      * the irq being activated or deactivated.
852      */
853     uint64_t lpipt_baddr;
854 
855     lpipt_baddr = cs->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
856     if (!set_pending_table_bit(cs, lpipt_baddr, irq, level)) {
857         /* no change in the value of pending bit, return */
858         return;
859     }
860 
861     /*
862      * check if this LPI is better than the current hpplpi, if yes
863      * just set hpplpi.prio and .irq without doing a full rescan
864      */
865     if (level) {
866         gicv3_redist_check_lpi_priority(cs, irq);
867         gicv3_redist_update(cs);
868     } else {
869         if (irq == cs->hpplpi.irq) {
870             gicv3_redist_update_lpi(cs);
871         }
872     }
873 }
874 
875 void gicv3_redist_process_lpi(GICv3CPUState *cs, int irq, int level)
876 {
877     uint64_t idbits;
878 
879     idbits = MIN(FIELD_EX64(cs->gicr_propbaser, GICR_PROPBASER, IDBITS),
880                  GICD_TYPER_IDBITS);
881 
882     if (!(cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
883         (irq > (1ULL << (idbits + 1)) - 1) || irq < GICV3_LPI_INTID_START) {
884         return;
885     }
886 
887     /* set/clear the pending bit for this irq */
888     gicv3_redist_lpi_pending(cs, irq, level);
889 }
890 
891 void gicv3_redist_inv_lpi(GICv3CPUState *cs, int irq)
892 {
893     /*
894      * The only cached information for LPIs we have is the HPPLPI.
895      * We could be cleverer about identifying when we don't need
896      * to do a full rescan of the pending table, but until we find
897      * this is a performance issue, just always recalculate.
898      */
899     gicv3_redist_update_lpi(cs);
900 }
901 
902 void gicv3_redist_mov_lpi(GICv3CPUState *src, GICv3CPUState *dest, int irq)
903 {
904     /*
905      * Move the specified LPI's pending state from the source redistributor
906      * to the destination.
907      *
908      * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
909      * we choose to NOP. If LPIs are disabled on source there's nothing
910      * to be transferred anyway.
911      */
912     uint64_t idbits;
913     uint32_t pendt_size;
914     uint64_t src_baddr;
915 
916     if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
917         !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
918         return;
919     }
920 
921     idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
922                  GICD_TYPER_IDBITS);
923     idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
924                  idbits);
925 
926     pendt_size = 1ULL << (idbits + 1);
927     if ((irq / 8) >= pendt_size) {
928         return;
929     }
930 
931     src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
932 
933     if (!set_pending_table_bit(src, src_baddr, irq, 0)) {
934         /* Not pending on source, nothing to do */
935         return;
936     }
937     if (irq == src->hpplpi.irq) {
938         /*
939          * We just made this LPI not-pending so only need to update
940          * if it was previously the highest priority pending LPI
941          */
942         gicv3_redist_update_lpi(src);
943     }
944     /* Mark it pending on the destination */
945     gicv3_redist_lpi_pending(dest, irq, 1);
946 }
947 
948 void gicv3_redist_movall_lpis(GICv3CPUState *src, GICv3CPUState *dest)
949 {
950     /*
951      * We must move all pending LPIs from the source redistributor
952      * to the destination. That is, for every pending LPI X on
953      * src, we must set it not-pending on src and pending on dest.
954      * LPIs that are already pending on dest are not cleared.
955      *
956      * If LPIs are disabled on dest this is CONSTRAINED UNPREDICTABLE:
957      * we choose to NOP. If LPIs are disabled on source there's nothing
958      * to be transferred anyway.
959      */
960     AddressSpace *as = &src->gic->dma_as;
961     uint64_t idbits;
962     uint32_t pendt_size;
963     uint64_t src_baddr, dest_baddr;
964     int i;
965 
966     if (!(src->gicr_ctlr & GICR_CTLR_ENABLE_LPIS) ||
967         !(dest->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
968         return;
969     }
970 
971     idbits = MIN(FIELD_EX64(src->gicr_propbaser, GICR_PROPBASER, IDBITS),
972                  GICD_TYPER_IDBITS);
973     idbits = MIN(FIELD_EX64(dest->gicr_propbaser, GICR_PROPBASER, IDBITS),
974                  idbits);
975 
976     pendt_size = 1ULL << (idbits + 1);
977     src_baddr = src->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
978     dest_baddr = dest->gicr_pendbaser & R_GICR_PENDBASER_PHYADDR_MASK;
979 
980     for (i = GICV3_LPI_INTID_START / 8; i < pendt_size / 8; i++) {
981         uint8_t src_pend, dest_pend;
982 
983         address_space_read(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
984                            &src_pend, sizeof(src_pend));
985         if (!src_pend) {
986             continue;
987         }
988         address_space_read(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
989                            &dest_pend, sizeof(dest_pend));
990         dest_pend |= src_pend;
991         src_pend = 0;
992         address_space_write(as, src_baddr + i, MEMTXATTRS_UNSPECIFIED,
993                             &src_pend, sizeof(src_pend));
994         address_space_write(as, dest_baddr + i, MEMTXATTRS_UNSPECIFIED,
995                             &dest_pend, sizeof(dest_pend));
996     }
997 
998     gicv3_redist_update_lpi(src);
999     gicv3_redist_update_lpi(dest);
1000 }
1001 
1002 void gicv3_redist_vlpi_pending(GICv3CPUState *cs, int irq, int level)
1003 {
1004     /*
1005      * Change the pending state of the specified vLPI.
1006      * Unlike gicv3_redist_process_vlpi(), we know here that the
1007      * vCPU is definitely resident on this redistributor, and that
1008      * the irq is in range.
1009      */
1010     uint64_t vptbase, ctbase;
1011 
1012     vptbase = FIELD_EX64(cs->gicr_vpendbaser, GICR_VPENDBASER, PHYADDR) << 16;
1013 
1014     if (set_pending_table_bit(cs, vptbase, irq, level)) {
1015         if (level) {
1016             /* Check whether this vLPI is now the best */
1017             ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
1018             update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
1019             gicv3_cpuif_virt_irq_fiq_update(cs);
1020         } else {
1021             /* Only need to recalculate if this was previously the best vLPI */
1022             if (irq == cs->hppvlpi.irq) {
1023                 gicv3_redist_update_vlpi(cs);
1024             }
1025         }
1026     }
1027 }
1028 
1029 void gicv3_redist_process_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr,
1030                                int doorbell, int level)
1031 {
1032     bool bit_changed;
1033     bool resident = vcpu_resident(cs, vptaddr);
1034     uint64_t ctbase;
1035 
1036     if (resident) {
1037         uint32_t idbits = FIELD_EX64(cs->gicr_vpropbaser, GICR_VPROPBASER, IDBITS);
1038         if (irq >= (1ULL << (idbits + 1))) {
1039             return;
1040         }
1041     }
1042 
1043     bit_changed = set_pending_table_bit(cs, vptaddr, irq, level);
1044     if (resident && bit_changed) {
1045         if (level) {
1046             /* Check whether this vLPI is now the best */
1047             ctbase = cs->gicr_vpropbaser & R_GICR_VPROPBASER_PHYADDR_MASK;
1048             update_for_one_lpi(cs, irq, ctbase, true, &cs->hppvlpi);
1049             gicv3_cpuif_virt_irq_fiq_update(cs);
1050         } else {
1051             /* Only need to recalculate if this was previously the best vLPI */
1052             if (irq == cs->hppvlpi.irq) {
1053                 gicv3_redist_update_vlpi(cs);
1054             }
1055         }
1056     }
1057 
1058     if (!resident && level && doorbell != INTID_SPURIOUS &&
1059         (cs->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
1060         /* vCPU is not currently resident: ring the doorbell */
1061         gicv3_redist_process_lpi(cs, doorbell, 1);
1062     }
1063 }
1064 
1065 void gicv3_redist_mov_vlpi(GICv3CPUState *src, uint64_t src_vptaddr,
1066                            GICv3CPUState *dest, uint64_t dest_vptaddr,
1067                            int irq, int doorbell)
1068 {
1069     /*
1070      * Move the specified vLPI's pending state from the source redistributor
1071      * to the destination.
1072      */
1073     if (!set_pending_table_bit(src, src_vptaddr, irq, 0)) {
1074         /* Not pending on source, nothing to do */
1075         return;
1076     }
1077     if (vcpu_resident(src, src_vptaddr) && irq == src->hppvlpi.irq) {
1078         /*
1079          * Update src's cached highest-priority pending vLPI if we just made
1080          * it not-pending
1081          */
1082         gicv3_redist_update_vlpi(src);
1083     }
1084     /*
1085      * Mark the vLPI pending on the destination (ringing the doorbell
1086      * if the vCPU isn't resident)
1087      */
1088     gicv3_redist_process_vlpi(dest, irq, dest_vptaddr, doorbell, irq);
1089 }
1090 
1091 void gicv3_redist_vinvall(GICv3CPUState *cs, uint64_t vptaddr)
1092 {
1093     if (!vcpu_resident(cs, vptaddr)) {
1094         /* We don't have anything cached if the vCPU isn't resident */
1095         return;
1096     }
1097 
1098     /* Otherwise, our only cached information is the HPPVLPI info */
1099     gicv3_redist_update_vlpi(cs);
1100 }
1101 
1102 void gicv3_redist_inv_vlpi(GICv3CPUState *cs, int irq, uint64_t vptaddr)
1103 {
1104     /*
1105      * The only cached information for LPIs we have is the HPPLPI.
1106      * We could be cleverer about identifying when we don't need
1107      * to do a full rescan of the pending table, but until we find
1108      * this is a performance issue, just always recalculate.
1109      */
1110     gicv3_redist_vinvall(cs, vptaddr);
1111 }
1112 
1113 void gicv3_redist_set_irq(GICv3CPUState *cs, int irq, int level)
1114 {
1115     /* Update redistributor state for a change in an external PPI input line */
1116     if (level == extract32(cs->level, irq, 1)) {
1117         return;
1118     }
1119 
1120     trace_gicv3_redist_set_irq(gicv3_redist_affid(cs), irq, level);
1121 
1122     cs->level = deposit32(cs->level, irq, 1, level);
1123 
1124     if (level) {
1125         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
1126         if (extract32(cs->edge_trigger, irq, 1)) {
1127             cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
1128         }
1129     }
1130 
1131     gicv3_redist_update(cs);
1132 }
1133 
1134 void gicv3_redist_send_sgi(GICv3CPUState *cs, int grp, int irq, bool ns)
1135 {
1136     /* Update redistributor state for a generated SGI */
1137     int irqgrp = gicv3_irq_group(cs->gic, cs, irq);
1138 
1139     /* If we are asked for a Secure Group 1 SGI and it's actually
1140      * configured as Secure Group 0 this is OK (subject to the usual
1141      * NSACR checks).
1142      */
1143     if (grp == GICV3_G1 && irqgrp == GICV3_G0) {
1144         grp = GICV3_G0;
1145     }
1146 
1147     if (grp != irqgrp) {
1148         return;
1149     }
1150 
1151     if (ns && !(cs->gic->gicd_ctlr & GICD_CTLR_DS)) {
1152         /* If security is enabled we must test the NSACR bits */
1153         int nsaccess = gicr_ns_access(cs, irq);
1154 
1155         if ((irqgrp == GICV3_G0 && nsaccess < 1) ||
1156             (irqgrp == GICV3_G1 && nsaccess < 2)) {
1157             return;
1158         }
1159     }
1160 
1161     /* OK, we can accept the SGI */
1162     trace_gicv3_redist_send_sgi(gicv3_redist_affid(cs), irq);
1163     cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 1);
1164     gicv3_redist_update(cs);
1165 }
1166