xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision f7160f32)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "qemu/module.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_arm.h"
31 #include "gicv3_internal.h"
32 #include "vgic_common.h"
33 #include "migration/blocker.h"
34 
35 #ifdef DEBUG_GICV3_KVM
36 #define DPRINTF(fmt, ...) \
37     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40     do { } while (0)
41 #endif
42 
43 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
44 #define KVM_ARM_GICV3(obj) \
45      OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
46 #define KVM_ARM_GICV3_CLASS(klass) \
47      OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
48 #define KVM_ARM_GICV3_GET_CLASS(obj) \
49      OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
50 
51 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
52                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
57 
58 #define ICC_PMR_EL1     \
59     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1    \
61     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1    \
67     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1    \
69     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70 #define ICC_SRE_EL1 \
71     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
76 
77 typedef struct KVMARMGICv3Class {
78     ARMGICv3CommonClass parent_class;
79     DeviceRealize parent_realize;
80     void (*parent_reset)(DeviceState *dev);
81 } KVMARMGICv3Class;
82 
83 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
84 {
85     GICv3State *s = (GICv3State *)opaque;
86 
87     kvm_arm_gic_set_irq(s->num_irq, irq, level);
88 }
89 
90 #define KVM_VGIC_ATTR(reg, typer) \
91     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
92 
93 static inline void kvm_gicd_access(GICv3State *s, int offset,
94                                    uint32_t *val, bool write)
95 {
96     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97                       KVM_VGIC_ATTR(offset, 0),
98                       val, write, &error_abort);
99 }
100 
101 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102                                    uint32_t *val, bool write)
103 {
104     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106                       val, write, &error_abort);
107 }
108 
109 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110                                    uint64_t *val, bool write)
111 {
112     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114                       val, write, &error_abort);
115 }
116 
117 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118                                              uint32_t *val, bool write)
119 {
120     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
123                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124                       val, write, &error_abort);
125 }
126 
127 /* Loop through each distributor IRQ related register; since bits
128  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129  * is enabled, we skip those.
130  */
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
133 
134 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
135 {
136     uint32_t reg, *field;
137     int irq;
138 
139     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143      * offset.
144      */
145     field = (uint32_t *)(bmp + GIC_INTERNAL);
146     offset += (GIC_INTERNAL * 8) / 8;
147     for_each_dist_irq_reg(irq, s->num_irq, 8) {
148         kvm_gicd_access(s, offset, &reg, false);
149         *field = reg;
150         offset += 4;
151         field++;
152     }
153 }
154 
155 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
156 {
157     uint32_t reg, *field;
158     int irq;
159 
160     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164      * offset.
165      */
166     field = (uint32_t *)(bmp + GIC_INTERNAL);
167     offset += (GIC_INTERNAL * 8) / 8;
168     for_each_dist_irq_reg(irq, s->num_irq, 8) {
169         reg = *field;
170         kvm_gicd_access(s, offset, &reg, true);
171         offset += 4;
172         field++;
173     }
174 }
175 
176 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177                                       uint32_t *bmp)
178 {
179     uint32_t reg;
180     int irq;
181 
182     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186      * This matches the for_each_dist_irq_reg() macro which also skips the
187      * first GIC_INTERNAL irqs.
188      */
189     offset += (GIC_INTERNAL * 2) / 8;
190     for_each_dist_irq_reg(irq, s->num_irq, 2) {
191         kvm_gicd_access(s, offset, &reg, false);
192         reg = half_unshuffle32(reg >> 1);
193         if (irq % 32 != 0) {
194             reg = (reg << 16);
195         }
196         *gic_bmp_ptr32(bmp, irq) |=  reg;
197         offset += 4;
198     }
199 }
200 
201 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202                                       uint32_t *bmp)
203 {
204     uint32_t reg;
205     int irq;
206 
207     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211      * This matches the for_each_dist_irq_reg() macro which also skips the
212      * first GIC_INTERNAL irqs.
213      */
214     offset += (GIC_INTERNAL * 2) / 8;
215     for_each_dist_irq_reg(irq, s->num_irq, 2) {
216         reg = *gic_bmp_ptr32(bmp, irq);
217         if (irq % 32 != 0) {
218             reg = (reg & 0xffff0000) >> 16;
219         } else {
220             reg = reg & 0xffff;
221         }
222         reg = half_shuffle32(reg) << 1;
223         kvm_gicd_access(s, offset, &reg, true);
224         offset += 4;
225     }
226 }
227 
228 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
229 {
230     uint32_t reg;
231     int irq;
232 
233     for_each_dist_irq_reg(irq, s->num_irq, 1) {
234         kvm_gic_line_level_access(s, irq, 0, &reg, false);
235         *gic_bmp_ptr32(bmp, irq) = reg;
236     }
237 }
238 
239 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
240 {
241     uint32_t reg;
242     int irq;
243 
244     for_each_dist_irq_reg(irq, s->num_irq, 1) {
245         reg = *gic_bmp_ptr32(bmp, irq);
246         kvm_gic_line_level_access(s, irq, 0, &reg, true);
247     }
248 }
249 
250 /* Read a bitmap register group from the kernel VGIC. */
251 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
252 {
253     uint32_t reg;
254     int irq;
255 
256     /* For the KVM GICv3, affinity routing is always enabled, and the
257      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259      * functionality is replaced by the GICR registers. It doesn't need to sync
260      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261      * This matches the for_each_dist_irq_reg() macro which also skips the
262      * first GIC_INTERNAL irqs.
263      */
264     offset += (GIC_INTERNAL * 1) / 8;
265     for_each_dist_irq_reg(irq, s->num_irq, 1) {
266         kvm_gicd_access(s, offset, &reg, false);
267         *gic_bmp_ptr32(bmp, irq) = reg;
268         offset += 4;
269     }
270 }
271 
272 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273                             uint32_t clroffset, uint32_t *bmp)
274 {
275     uint32_t reg;
276     int irq;
277 
278     /* For the KVM GICv3, affinity routing is always enabled, and the
279      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281      * functionality is replaced by the GICR registers. It doesn't need to sync
282      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284      * first GIC_INTERNAL irqs.
285      */
286     offset += (GIC_INTERNAL * 1) / 8;
287     if (clroffset != 0) {
288         clroffset += (GIC_INTERNAL * 1) / 8;
289     }
290 
291     for_each_dist_irq_reg(irq, s->num_irq, 1) {
292         /* If this bitmap is a set/clear register pair, first write to the
293          * clear-reg to clear all bits before using the set-reg to write
294          * the 1 bits.
295          */
296         if (clroffset != 0) {
297             reg = 0;
298             kvm_gicd_access(s, clroffset, &reg, true);
299             clroffset += 4;
300         }
301         reg = *gic_bmp_ptr32(bmp, irq);
302         kvm_gicd_access(s, offset, &reg, true);
303         offset += 4;
304     }
305 }
306 
307 static void kvm_arm_gicv3_check(GICv3State *s)
308 {
309     uint32_t reg;
310     uint32_t num_irq;
311 
312     /* Sanity checking s->num_irq */
313     kvm_gicd_access(s, GICD_TYPER, &reg, false);
314     num_irq = ((reg & 0x1f) + 1) * 32;
315 
316     if (num_irq < s->num_irq) {
317         error_report("Model requests %u IRQs, but kernel supports max %u",
318                      s->num_irq, num_irq);
319         abort();
320     }
321 }
322 
323 static void kvm_arm_gicv3_put(GICv3State *s)
324 {
325     uint32_t regl, regh, reg;
326     uint64_t reg64, redist_typer;
327     int ncpu, i;
328 
329     kvm_arm_gicv3_check(s);
330 
331     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
332     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
333     redist_typer = ((uint64_t)regh << 32) | regl;
334 
335     reg = s->gicd_ctlr;
336     kvm_gicd_access(s, GICD_CTLR, &reg, true);
337 
338     if (redist_typer & GICR_TYPER_PLPIS) {
339         /*
340          * Restore base addresses before LPIs are potentially enabled by
341          * GICR_CTLR write
342          */
343         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
344             GICv3CPUState *c = &s->cpu[ncpu];
345 
346             reg64 = c->gicr_propbaser;
347             regl = (uint32_t)reg64;
348             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
349             regh = (uint32_t)(reg64 >> 32);
350             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
351 
352             reg64 = c->gicr_pendbaser;
353             regl = (uint32_t)reg64;
354             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
355             regh = (uint32_t)(reg64 >> 32);
356             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
357         }
358     }
359 
360     /* Redistributor state (one per CPU) */
361 
362     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
363         GICv3CPUState *c = &s->cpu[ncpu];
364 
365         reg = c->gicr_ctlr;
366         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
367 
368         reg = c->gicr_statusr[GICV3_NS];
369         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
370 
371         reg = c->gicr_waker;
372         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
373 
374         reg = c->gicr_igroupr0;
375         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
376 
377         reg = ~0;
378         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
379         reg = c->gicr_ienabler0;
380         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
381 
382         /* Restore config before pending so we treat level/edge correctly */
383         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
384         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
385 
386         reg = c->level;
387         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
388 
389         reg = ~0;
390         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
391         reg = c->gicr_ipendr0;
392         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
393 
394         reg = ~0;
395         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
396         reg = c->gicr_iactiver0;
397         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
398 
399         for (i = 0; i < GIC_INTERNAL; i += 4) {
400             reg = c->gicr_ipriorityr[i] |
401                 (c->gicr_ipriorityr[i + 1] << 8) |
402                 (c->gicr_ipriorityr[i + 2] << 16) |
403                 (c->gicr_ipriorityr[i + 3] << 24);
404             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
405         }
406     }
407 
408     /* Distributor state (shared between all CPUs */
409     reg = s->gicd_statusr[GICV3_NS];
410     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
411 
412     /* s->enable bitmap -> GICD_ISENABLERn */
413     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
414 
415     /* s->group bitmap -> GICD_IGROUPRn */
416     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
417 
418     /* Restore targets before pending to ensure the pending state is set on
419      * the appropriate CPU interfaces in the kernel
420      */
421 
422     /* s->gicd_irouter[irq] -> GICD_IROUTERn
423      * We can't use kvm_dist_put() here because the registers are 64-bit
424      */
425     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
426         uint32_t offset;
427 
428         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
429         reg = (uint32_t)s->gicd_irouter[i];
430         kvm_gicd_access(s, offset, &reg, true);
431 
432         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
433         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
434         kvm_gicd_access(s, offset, &reg, true);
435     }
436 
437     /* s->trigger bitmap -> GICD_ICFGRn
438      * (restore configuration registers before pending IRQs so we treat
439      * level/edge correctly)
440      */
441     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
442 
443     /* s->level bitmap ->  line_level */
444     kvm_gic_put_line_level_bmp(s, s->level);
445 
446     /* s->pending bitmap -> GICD_ISPENDRn */
447     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
448 
449     /* s->active bitmap -> GICD_ISACTIVERn */
450     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
451 
452     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
453     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
454 
455     /* CPU Interface state (one per CPU) */
456 
457     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
458         GICv3CPUState *c = &s->cpu[ncpu];
459         int num_pri_bits;
460 
461         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
462         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
463                         &c->icc_ctlr_el1[GICV3_NS], true);
464         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
465                         &c->icc_igrpen[GICV3_G0], true);
466         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
467                         &c->icc_igrpen[GICV3_G1NS], true);
468         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
469         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
470         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
471 
472         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
473                         ICC_CTLR_EL1_PRIBITS_MASK) >>
474                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
475 
476         switch (num_pri_bits) {
477         case 7:
478             reg64 = c->icc_apr[GICV3_G0][3];
479             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
480             reg64 = c->icc_apr[GICV3_G0][2];
481             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
482         case 6:
483             reg64 = c->icc_apr[GICV3_G0][1];
484             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
485         default:
486             reg64 = c->icc_apr[GICV3_G0][0];
487             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
488         }
489 
490         switch (num_pri_bits) {
491         case 7:
492             reg64 = c->icc_apr[GICV3_G1NS][3];
493             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
494             reg64 = c->icc_apr[GICV3_G1NS][2];
495             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
496         case 6:
497             reg64 = c->icc_apr[GICV3_G1NS][1];
498             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
499         default:
500             reg64 = c->icc_apr[GICV3_G1NS][0];
501             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
502         }
503     }
504 }
505 
506 static void kvm_arm_gicv3_get(GICv3State *s)
507 {
508     uint32_t regl, regh, reg;
509     uint64_t reg64, redist_typer;
510     int ncpu, i;
511 
512     kvm_arm_gicv3_check(s);
513 
514     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
515     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
516     redist_typer = ((uint64_t)regh << 32) | regl;
517 
518     kvm_gicd_access(s, GICD_CTLR, &reg, false);
519     s->gicd_ctlr = reg;
520 
521     /* Redistributor state (one per CPU) */
522 
523     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
524         GICv3CPUState *c = &s->cpu[ncpu];
525 
526         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
527         c->gicr_ctlr = reg;
528 
529         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
530         c->gicr_statusr[GICV3_NS] = reg;
531 
532         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
533         c->gicr_waker = reg;
534 
535         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
536         c->gicr_igroupr0 = reg;
537         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
538         c->gicr_ienabler0 = reg;
539         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
540         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
541         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
542         c->level = reg;
543         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
544         c->gicr_ipendr0 = reg;
545         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
546         c->gicr_iactiver0 = reg;
547 
548         for (i = 0; i < GIC_INTERNAL; i += 4) {
549             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
550             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
551             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
552             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
553             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
554         }
555     }
556 
557     if (redist_typer & GICR_TYPER_PLPIS) {
558         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
559             GICv3CPUState *c = &s->cpu[ncpu];
560 
561             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
562             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
563             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
564 
565             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
566             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
567             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
568         }
569     }
570 
571     /* Distributor state (shared between all CPUs */
572 
573     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
574     s->gicd_statusr[GICV3_NS] = reg;
575 
576     /* GICD_IGROUPRn -> s->group bitmap */
577     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
578 
579     /* GICD_ISENABLERn -> s->enabled bitmap */
580     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
581 
582     /* Line level of irq */
583     kvm_gic_get_line_level_bmp(s, s->level);
584     /* GICD_ISPENDRn -> s->pending bitmap */
585     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
586 
587     /* GICD_ISACTIVERn -> s->active bitmap */
588     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
589 
590     /* GICD_ICFGRn -> s->trigger bitmap */
591     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
592 
593     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
594     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
595 
596     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
597     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
598         uint32_t offset;
599 
600         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
601         kvm_gicd_access(s, offset, &regl, false);
602         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
603         kvm_gicd_access(s, offset, &regh, false);
604         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
605     }
606 
607     /*****************************************************************
608      * CPU Interface(s) State
609      */
610 
611     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
612         GICv3CPUState *c = &s->cpu[ncpu];
613         int num_pri_bits;
614 
615         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
616         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
617                         &c->icc_ctlr_el1[GICV3_NS], false);
618         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
619                         &c->icc_igrpen[GICV3_G0], false);
620         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
621                         &c->icc_igrpen[GICV3_G1NS], false);
622         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
623         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
624         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
625         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
626                         ICC_CTLR_EL1_PRIBITS_MASK) >>
627                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
628 
629         switch (num_pri_bits) {
630         case 7:
631             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
632             c->icc_apr[GICV3_G0][3] = reg64;
633             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
634             c->icc_apr[GICV3_G0][2] = reg64;
635         case 6:
636             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
637             c->icc_apr[GICV3_G0][1] = reg64;
638         default:
639             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
640             c->icc_apr[GICV3_G0][0] = reg64;
641         }
642 
643         switch (num_pri_bits) {
644         case 7:
645             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
646             c->icc_apr[GICV3_G1NS][3] = reg64;
647             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
648             c->icc_apr[GICV3_G1NS][2] = reg64;
649         case 6:
650             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
651             c->icc_apr[GICV3_G1NS][1] = reg64;
652         default:
653             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
654             c->icc_apr[GICV3_G1NS][0] = reg64;
655         }
656     }
657 }
658 
659 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
660 {
661     GICv3State *s;
662     GICv3CPUState *c;
663 
664     c = (GICv3CPUState *)env->gicv3state;
665     s = c->gic;
666 
667     c->icc_pmr_el1 = 0;
668     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
669     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
670     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
671 
672     c->icc_sre_el1 = 0x7;
673     memset(c->icc_apr, 0, sizeof(c->icc_apr));
674     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
675 
676     if (s->migration_blocker) {
677         return;
678     }
679 
680     /* Initialize to actual HW supported configuration */
681     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
682                       KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
683                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
684 
685     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
686 }
687 
688 static void kvm_arm_gicv3_reset(DeviceState *dev)
689 {
690     GICv3State *s = ARM_GICV3_COMMON(dev);
691     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
692 
693     DPRINTF("Reset\n");
694 
695     kgc->parent_reset(dev);
696 
697     if (s->migration_blocker) {
698         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
699         return;
700     }
701 
702     kvm_arm_gicv3_put(s);
703 }
704 
705 /*
706  * CPU interface registers of GIC needs to be reset on CPU reset.
707  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
708  * below ARMCPRegInfo. As we reset the whole cpu interface under single
709  * register reset, we define only one register of CPU interface instead
710  * of defining all the registers.
711  */
712 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
713     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
714       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
715       /*
716        * If ARM_CP_NOP is used, resetfn is not called,
717        * So ARM_CP_NO_RAW is appropriate type.
718        */
719       .type = ARM_CP_NO_RAW,
720       .access = PL1_RW,
721       .readfn = arm_cp_read_zero,
722       .writefn = arm_cp_write_ignore,
723       /*
724        * We hang the whole cpu interface reset routine off here
725        * rather than parcelling it out into one little function
726        * per register
727        */
728       .resetfn = arm_gicv3_icc_reset,
729     },
730     REGINFO_SENTINEL
731 };
732 
733 /**
734  * vm_change_state_handler - VM change state callback aiming at flushing
735  * RDIST pending tables into guest RAM
736  *
737  * The tables get flushed to guest RAM whenever the VM gets stopped.
738  */
739 static void vm_change_state_handler(void *opaque, int running,
740                                     RunState state)
741 {
742     GICv3State *s = (GICv3State *)opaque;
743     Error *err = NULL;
744     int ret;
745 
746     if (running) {
747         return;
748     }
749 
750     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
751                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
752                            NULL, true, &err);
753     if (err) {
754         error_report_err(err);
755     }
756     if (ret < 0 && ret != -EFAULT) {
757         abort();
758     }
759 }
760 
761 
762 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
763 {
764     GICv3State *s = KVM_ARM_GICV3(dev);
765     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
766     bool multiple_redist_region_allowed;
767     Error *local_err = NULL;
768     int i;
769 
770     DPRINTF("kvm_arm_gicv3_realize\n");
771 
772     kgc->parent_realize(dev, &local_err);
773     if (local_err) {
774         error_propagate(errp, local_err);
775         return;
776     }
777 
778     if (s->security_extn) {
779         error_setg(errp, "the in-kernel VGICv3 does not implement the "
780                    "security extensions");
781         return;
782     }
783 
784     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
785     if (local_err) {
786         error_propagate(errp, local_err);
787         return;
788     }
789 
790     for (i = 0; i < s->num_cpu; i++) {
791         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
792 
793         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
794     }
795 
796     /* Try to create the device via the device control API */
797     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
798     if (s->dev_fd < 0) {
799         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
800         return;
801     }
802 
803     multiple_redist_region_allowed =
804         kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
805                               KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
806 
807     if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
808         error_setg(errp, "Multiple VGICv3 redistributor regions are not "
809                    "supported by this host kernel");
810         error_append_hint(errp, "A maximum of %d VCPUs can be used",
811                           s->redist_region_count[0]);
812         return;
813     }
814 
815     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
816                       0, &s->num_irq, true, &error_abort);
817 
818     /* Tell the kernel to complete VGIC initialization now */
819     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
820                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
821 
822     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
823                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
824 
825     if (!multiple_redist_region_allowed) {
826         kvm_arm_register_device(&s->iomem_redist[0], -1,
827                                 KVM_DEV_ARM_VGIC_GRP_ADDR,
828                                 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
829     } else {
830         /* we register regions in reverse order as "devices" are inserted at
831          * the head of a QSLIST and the list is then popped from the head
832          * onwards by kvm_arm_machine_init_done()
833          */
834         for (i = s->nb_redist_regions - 1; i >= 0; i--) {
835             /* Address mask made of the rdist region index and count */
836             uint64_t addr_ormask =
837                         i | ((uint64_t)s->redist_region_count[i] << 52);
838 
839             kvm_arm_register_device(&s->iomem_redist[i], -1,
840                                     KVM_DEV_ARM_VGIC_GRP_ADDR,
841                                     KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
842                                     s->dev_fd, addr_ormask);
843         }
844     }
845 
846     if (kvm_has_gsi_routing()) {
847         /* set up irq routing */
848         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
849             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
850         }
851 
852         kvm_gsi_routing_allowed = true;
853 
854         kvm_irqchip_commit_routes(kvm_state);
855     }
856 
857     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
858                                GICD_CTLR)) {
859         error_setg(&s->migration_blocker, "This operating system kernel does "
860                                           "not support vGICv3 migration");
861         if (migrate_add_blocker(s->migration_blocker, errp) < 0) {
862             error_free(s->migration_blocker);
863             return;
864         }
865     }
866     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
867                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
868         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
869     }
870 }
871 
872 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
873 {
874     DeviceClass *dc = DEVICE_CLASS(klass);
875     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
876     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
877 
878     agcc->pre_save = kvm_arm_gicv3_get;
879     agcc->post_load = kvm_arm_gicv3_put;
880     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
881                                     &kgc->parent_realize);
882     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
883 }
884 
885 static const TypeInfo kvm_arm_gicv3_info = {
886     .name = TYPE_KVM_ARM_GICV3,
887     .parent = TYPE_ARM_GICV3_COMMON,
888     .instance_size = sizeof(GICv3State),
889     .class_init = kvm_arm_gicv3_class_init,
890     .class_size = sizeof(KVMARMGICv3Class),
891 };
892 
893 static void kvm_arm_gicv3_register_types(void)
894 {
895     type_register_static(&kvm_arm_gicv3_info);
896 }
897 
898 type_init(kvm_arm_gicv3_register_types)
899