xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision e7bbc9b1)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/sysemu.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 
34 #ifdef DEBUG_GICV3_KVM
35 #define DPRINTF(fmt, ...) \
36     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41 
42 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
43 #define KVM_ARM_GICV3(obj) \
44      OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
45 #define KVM_ARM_GICV3_CLASS(klass) \
46      OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
47 #define KVM_ARM_GICV3_GET_CLASS(obj) \
48      OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49 
50 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
51                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56 
57 #define ICC_PMR_EL1     \
58     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1    \
60     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1    \
66     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1    \
68     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75 
76 typedef struct KVMARMGICv3Class {
77     ARMGICv3CommonClass parent_class;
78     DeviceRealize parent_realize;
79     void (*parent_reset)(DeviceState *dev);
80 } KVMARMGICv3Class;
81 
82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84     GICv3State *s = (GICv3State *)opaque;
85 
86     kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88 
89 #define KVM_VGIC_ATTR(reg, typer) \
90     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91 
92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93                                    uint32_t *val, bool write)
94 {
95     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96                       KVM_VGIC_ATTR(offset, 0),
97                       val, write, &error_abort);
98 }
99 
100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101                                    uint32_t *val, bool write)
102 {
103     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105                       val, write, &error_abort);
106 }
107 
108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109                                    uint64_t *val, bool write)
110 {
111     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113                       val, write, &error_abort);
114 }
115 
116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117                                              uint32_t *val, bool write)
118 {
119     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
122                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123                       val, write, &error_abort);
124 }
125 
126 /* Loop through each distributor IRQ related register; since bits
127  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128  * is enabled, we skip those.
129  */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132 
133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135     uint32_t reg, *field;
136     int irq;
137 
138     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
139      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
140      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
141      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
142      * offset.
143      */
144     field = (uint32_t *)(bmp + GIC_INTERNAL);
145     offset += (GIC_INTERNAL * 8) / 8;
146     for_each_dist_irq_reg(irq, s->num_irq, 8) {
147         kvm_gicd_access(s, offset, &reg, false);
148         *field = reg;
149         offset += 4;
150         field++;
151     }
152 }
153 
154 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
155 {
156     uint32_t reg, *field;
157     int irq;
158 
159     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
160      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
161      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
162      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
163      * offset.
164      */
165     field = (uint32_t *)(bmp + GIC_INTERNAL);
166     offset += (GIC_INTERNAL * 8) / 8;
167     for_each_dist_irq_reg(irq, s->num_irq, 8) {
168         reg = *field;
169         kvm_gicd_access(s, offset, &reg, true);
170         offset += 4;
171         field++;
172     }
173 }
174 
175 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
176                                       uint32_t *bmp)
177 {
178     uint32_t reg;
179     int irq;
180 
181     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
182      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
183      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
184      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
185      * This matches the for_each_dist_irq_reg() macro which also skips the
186      * first GIC_INTERNAL irqs.
187      */
188     offset += (GIC_INTERNAL * 2) / 8;
189     for_each_dist_irq_reg(irq, s->num_irq, 2) {
190         kvm_gicd_access(s, offset, &reg, false);
191         reg = half_unshuffle32(reg >> 1);
192         if (irq % 32 != 0) {
193             reg = (reg << 16);
194         }
195         *gic_bmp_ptr32(bmp, irq) |=  reg;
196         offset += 4;
197     }
198 }
199 
200 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
201                                       uint32_t *bmp)
202 {
203     uint32_t reg;
204     int irq;
205 
206     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
207      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
208      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
209      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
210      * This matches the for_each_dist_irq_reg() macro which also skips the
211      * first GIC_INTERNAL irqs.
212      */
213     offset += (GIC_INTERNAL * 2) / 8;
214     for_each_dist_irq_reg(irq, s->num_irq, 2) {
215         reg = *gic_bmp_ptr32(bmp, irq);
216         if (irq % 32 != 0) {
217             reg = (reg & 0xffff0000) >> 16;
218         } else {
219             reg = reg & 0xffff;
220         }
221         reg = half_shuffle32(reg) << 1;
222         kvm_gicd_access(s, offset, &reg, true);
223         offset += 4;
224     }
225 }
226 
227 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
228 {
229     uint32_t reg;
230     int irq;
231 
232     for_each_dist_irq_reg(irq, s->num_irq, 1) {
233         kvm_gic_line_level_access(s, irq, 0, &reg, false);
234         *gic_bmp_ptr32(bmp, irq) = reg;
235     }
236 }
237 
238 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
239 {
240     uint32_t reg;
241     int irq;
242 
243     for_each_dist_irq_reg(irq, s->num_irq, 1) {
244         reg = *gic_bmp_ptr32(bmp, irq);
245         kvm_gic_line_level_access(s, irq, 0, &reg, true);
246     }
247 }
248 
249 /* Read a bitmap register group from the kernel VGIC. */
250 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
251 {
252     uint32_t reg;
253     int irq;
254 
255     /* For the KVM GICv3, affinity routing is always enabled, and the
256      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
257      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
258      * functionality is replaced by the GICR registers. It doesn't need to sync
259      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
260      * This matches the for_each_dist_irq_reg() macro which also skips the
261      * first GIC_INTERNAL irqs.
262      */
263     offset += (GIC_INTERNAL * 1) / 8;
264     for_each_dist_irq_reg(irq, s->num_irq, 1) {
265         kvm_gicd_access(s, offset, &reg, false);
266         *gic_bmp_ptr32(bmp, irq) = reg;
267         offset += 4;
268     }
269 }
270 
271 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
272                             uint32_t clroffset, uint32_t *bmp)
273 {
274     uint32_t reg;
275     int irq;
276 
277     /* For the KVM GICv3, affinity routing is always enabled, and the
278      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
279      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
280      * functionality is replaced by the GICR registers. It doesn't need to sync
281      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
282      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
283      * first GIC_INTERNAL irqs.
284      */
285     offset += (GIC_INTERNAL * 1) / 8;
286     if (clroffset != 0) {
287         clroffset += (GIC_INTERNAL * 1) / 8;
288     }
289 
290     for_each_dist_irq_reg(irq, s->num_irq, 1) {
291         /* If this bitmap is a set/clear register pair, first write to the
292          * clear-reg to clear all bits before using the set-reg to write
293          * the 1 bits.
294          */
295         if (clroffset != 0) {
296             reg = 0;
297             kvm_gicd_access(s, clroffset, &reg, true);
298             clroffset += 4;
299         }
300         reg = *gic_bmp_ptr32(bmp, irq);
301         kvm_gicd_access(s, offset, &reg, true);
302         offset += 4;
303     }
304 }
305 
306 static void kvm_arm_gicv3_check(GICv3State *s)
307 {
308     uint32_t reg;
309     uint32_t num_irq;
310 
311     /* Sanity checking s->num_irq */
312     kvm_gicd_access(s, GICD_TYPER, &reg, false);
313     num_irq = ((reg & 0x1f) + 1) * 32;
314 
315     if (num_irq < s->num_irq) {
316         error_report("Model requests %u IRQs, but kernel supports max %u",
317                      s->num_irq, num_irq);
318         abort();
319     }
320 }
321 
322 static void kvm_arm_gicv3_put(GICv3State *s)
323 {
324     uint32_t regl, regh, reg;
325     uint64_t reg64, redist_typer;
326     int ncpu, i;
327 
328     kvm_arm_gicv3_check(s);
329 
330     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
331     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
332     redist_typer = ((uint64_t)regh << 32) | regl;
333 
334     reg = s->gicd_ctlr;
335     kvm_gicd_access(s, GICD_CTLR, &reg, true);
336 
337     if (redist_typer & GICR_TYPER_PLPIS) {
338         /* Set base addresses before LPIs are enabled by GICR_CTLR write */
339         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
340             GICv3CPUState *c = &s->cpu[ncpu];
341 
342             reg64 = c->gicr_propbaser;
343             regl = (uint32_t)reg64;
344             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
345             regh = (uint32_t)(reg64 >> 32);
346             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
347 
348             reg64 = c->gicr_pendbaser;
349             if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
350                 /* Setting PTZ is advised if LPIs are disabled, to reduce
351                  * GIC initialization time.
352                  */
353                 reg64 |= GICR_PENDBASER_PTZ;
354             }
355             regl = (uint32_t)reg64;
356             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
357             regh = (uint32_t)(reg64 >> 32);
358             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
359         }
360     }
361 
362     /* Redistributor state (one per CPU) */
363 
364     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
365         GICv3CPUState *c = &s->cpu[ncpu];
366 
367         reg = c->gicr_ctlr;
368         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
369 
370         reg = c->gicr_statusr[GICV3_NS];
371         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
372 
373         reg = c->gicr_waker;
374         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
375 
376         reg = c->gicr_igroupr0;
377         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
378 
379         reg = ~0;
380         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
381         reg = c->gicr_ienabler0;
382         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
383 
384         /* Restore config before pending so we treat level/edge correctly */
385         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
386         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
387 
388         reg = c->level;
389         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
390 
391         reg = ~0;
392         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
393         reg = c->gicr_ipendr0;
394         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
395 
396         reg = ~0;
397         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
398         reg = c->gicr_iactiver0;
399         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
400 
401         for (i = 0; i < GIC_INTERNAL; i += 4) {
402             reg = c->gicr_ipriorityr[i] |
403                 (c->gicr_ipriorityr[i + 1] << 8) |
404                 (c->gicr_ipriorityr[i + 2] << 16) |
405                 (c->gicr_ipriorityr[i + 3] << 24);
406             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
407         }
408     }
409 
410     /* Distributor state (shared between all CPUs */
411     reg = s->gicd_statusr[GICV3_NS];
412     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
413 
414     /* s->enable bitmap -> GICD_ISENABLERn */
415     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
416 
417     /* s->group bitmap -> GICD_IGROUPRn */
418     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
419 
420     /* Restore targets before pending to ensure the pending state is set on
421      * the appropriate CPU interfaces in the kernel
422      */
423 
424     /* s->gicd_irouter[irq] -> GICD_IROUTERn
425      * We can't use kvm_dist_put() here because the registers are 64-bit
426      */
427     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
428         uint32_t offset;
429 
430         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
431         reg = (uint32_t)s->gicd_irouter[i];
432         kvm_gicd_access(s, offset, &reg, true);
433 
434         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
435         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
436         kvm_gicd_access(s, offset, &reg, true);
437     }
438 
439     /* s->trigger bitmap -> GICD_ICFGRn
440      * (restore configuration registers before pending IRQs so we treat
441      * level/edge correctly)
442      */
443     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
444 
445     /* s->level bitmap ->  line_level */
446     kvm_gic_put_line_level_bmp(s, s->level);
447 
448     /* s->pending bitmap -> GICD_ISPENDRn */
449     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
450 
451     /* s->active bitmap -> GICD_ISACTIVERn */
452     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
453 
454     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
455     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
456 
457     /* CPU Interface state (one per CPU) */
458 
459     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
460         GICv3CPUState *c = &s->cpu[ncpu];
461         int num_pri_bits;
462 
463         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
464         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
465                         &c->icc_ctlr_el1[GICV3_NS], true);
466         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
467                         &c->icc_igrpen[GICV3_G0], true);
468         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
469                         &c->icc_igrpen[GICV3_G1NS], true);
470         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
471         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
472         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
473 
474         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
475                         ICC_CTLR_EL1_PRIBITS_MASK) >>
476                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
477 
478         switch (num_pri_bits) {
479         case 7:
480             reg64 = c->icc_apr[GICV3_G0][3];
481             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
482             reg64 = c->icc_apr[GICV3_G0][2];
483             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
484         case 6:
485             reg64 = c->icc_apr[GICV3_G0][1];
486             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
487         default:
488             reg64 = c->icc_apr[GICV3_G0][0];
489             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
490         }
491 
492         switch (num_pri_bits) {
493         case 7:
494             reg64 = c->icc_apr[GICV3_G1NS][3];
495             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
496             reg64 = c->icc_apr[GICV3_G1NS][2];
497             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
498         case 6:
499             reg64 = c->icc_apr[GICV3_G1NS][1];
500             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
501         default:
502             reg64 = c->icc_apr[GICV3_G1NS][0];
503             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
504         }
505     }
506 }
507 
508 static void kvm_arm_gicv3_get(GICv3State *s)
509 {
510     uint32_t regl, regh, reg;
511     uint64_t reg64, redist_typer;
512     int ncpu, i;
513 
514     kvm_arm_gicv3_check(s);
515 
516     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
517     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
518     redist_typer = ((uint64_t)regh << 32) | regl;
519 
520     kvm_gicd_access(s, GICD_CTLR, &reg, false);
521     s->gicd_ctlr = reg;
522 
523     /* Redistributor state (one per CPU) */
524 
525     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
526         GICv3CPUState *c = &s->cpu[ncpu];
527 
528         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
529         c->gicr_ctlr = reg;
530 
531         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
532         c->gicr_statusr[GICV3_NS] = reg;
533 
534         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
535         c->gicr_waker = reg;
536 
537         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
538         c->gicr_igroupr0 = reg;
539         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
540         c->gicr_ienabler0 = reg;
541         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
542         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
543         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
544         c->level = reg;
545         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
546         c->gicr_ipendr0 = reg;
547         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
548         c->gicr_iactiver0 = reg;
549 
550         for (i = 0; i < GIC_INTERNAL; i += 4) {
551             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
552             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
553             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
554             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
555             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
556         }
557     }
558 
559     if (redist_typer & GICR_TYPER_PLPIS) {
560         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
561             GICv3CPUState *c = &s->cpu[ncpu];
562 
563             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
564             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
565             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
566 
567             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
568             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
569             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
570         }
571     }
572 
573     /* Distributor state (shared between all CPUs */
574 
575     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
576     s->gicd_statusr[GICV3_NS] = reg;
577 
578     /* GICD_IGROUPRn -> s->group bitmap */
579     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
580 
581     /* GICD_ISENABLERn -> s->enabled bitmap */
582     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
583 
584     /* Line level of irq */
585     kvm_gic_get_line_level_bmp(s, s->level);
586     /* GICD_ISPENDRn -> s->pending bitmap */
587     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
588 
589     /* GICD_ISACTIVERn -> s->active bitmap */
590     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
591 
592     /* GICD_ICFGRn -> s->trigger bitmap */
593     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
594 
595     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
596     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
597 
598     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
599     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
600         uint32_t offset;
601 
602         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
603         kvm_gicd_access(s, offset, &regl, false);
604         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
605         kvm_gicd_access(s, offset, &regh, false);
606         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
607     }
608 
609     /*****************************************************************
610      * CPU Interface(s) State
611      */
612 
613     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
614         GICv3CPUState *c = &s->cpu[ncpu];
615         int num_pri_bits;
616 
617         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
618         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
619                         &c->icc_ctlr_el1[GICV3_NS], false);
620         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
621                         &c->icc_igrpen[GICV3_G0], false);
622         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
623                         &c->icc_igrpen[GICV3_G1NS], false);
624         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
625         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
626         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
627         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
628                         ICC_CTLR_EL1_PRIBITS_MASK) >>
629                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
630 
631         switch (num_pri_bits) {
632         case 7:
633             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
634             c->icc_apr[GICV3_G0][3] = reg64;
635             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
636             c->icc_apr[GICV3_G0][2] = reg64;
637         case 6:
638             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
639             c->icc_apr[GICV3_G0][1] = reg64;
640         default:
641             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
642             c->icc_apr[GICV3_G0][0] = reg64;
643         }
644 
645         switch (num_pri_bits) {
646         case 7:
647             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
648             c->icc_apr[GICV3_G1NS][3] = reg64;
649             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
650             c->icc_apr[GICV3_G1NS][2] = reg64;
651         case 6:
652             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
653             c->icc_apr[GICV3_G1NS][1] = reg64;
654         default:
655             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
656             c->icc_apr[GICV3_G1NS][0] = reg64;
657         }
658     }
659 }
660 
661 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
662 {
663     ARMCPU *cpu;
664     GICv3State *s;
665     GICv3CPUState *c;
666 
667     c = (GICv3CPUState *)env->gicv3state;
668     s = c->gic;
669     cpu = ARM_CPU(c->cpu);
670 
671     c->icc_pmr_el1 = 0;
672     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
673     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
674     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
675 
676     c->icc_sre_el1 = 0x7;
677     memset(c->icc_apr, 0, sizeof(c->icc_apr));
678     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
679 
680     if (s->migration_blocker) {
681         return;
682     }
683 
684     /* Initialize to actual HW supported configuration */
685     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
686                       KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
687                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
688 
689     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
690 }
691 
692 static void kvm_arm_gicv3_reset(DeviceState *dev)
693 {
694     GICv3State *s = ARM_GICV3_COMMON(dev);
695     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
696 
697     DPRINTF("Reset\n");
698 
699     kgc->parent_reset(dev);
700 
701     if (s->migration_blocker) {
702         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
703         return;
704     }
705 
706     kvm_arm_gicv3_put(s);
707 }
708 
709 /*
710  * CPU interface registers of GIC needs to be reset on CPU reset.
711  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
712  * below ARMCPRegInfo. As we reset the whole cpu interface under single
713  * register reset, we define only one register of CPU interface instead
714  * of defining all the registers.
715  */
716 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
717     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
718       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
719       /*
720        * If ARM_CP_NOP is used, resetfn is not called,
721        * So ARM_CP_NO_RAW is appropriate type.
722        */
723       .type = ARM_CP_NO_RAW,
724       .access = PL1_RW,
725       .readfn = arm_cp_read_zero,
726       .writefn = arm_cp_write_ignore,
727       /*
728        * We hang the whole cpu interface reset routine off here
729        * rather than parcelling it out into one little function
730        * per register
731        */
732       .resetfn = arm_gicv3_icc_reset,
733     },
734     REGINFO_SENTINEL
735 };
736 
737 /**
738  * vm_change_state_handler - VM change state callback aiming at flushing
739  * RDIST pending tables into guest RAM
740  *
741  * The tables get flushed to guest RAM whenever the VM gets stopped.
742  */
743 static void vm_change_state_handler(void *opaque, int running,
744                                     RunState state)
745 {
746     GICv3State *s = (GICv3State *)opaque;
747     Error *err = NULL;
748     int ret;
749 
750     if (running) {
751         return;
752     }
753 
754     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
755                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
756                            NULL, true, &err);
757     if (err) {
758         error_report_err(err);
759     }
760     if (ret < 0 && ret != -EFAULT) {
761         abort();
762     }
763 }
764 
765 
766 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
767 {
768     GICv3State *s = KVM_ARM_GICV3(dev);
769     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
770     bool multiple_redist_region_allowed;
771     Error *local_err = NULL;
772     int i;
773 
774     DPRINTF("kvm_arm_gicv3_realize\n");
775 
776     kgc->parent_realize(dev, &local_err);
777     if (local_err) {
778         error_propagate(errp, local_err);
779         return;
780     }
781 
782     if (s->security_extn) {
783         error_setg(errp, "the in-kernel VGICv3 does not implement the "
784                    "security extensions");
785         return;
786     }
787 
788     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
789     if (local_err) {
790         error_propagate(errp, local_err);
791         return;
792     }
793 
794     for (i = 0; i < s->num_cpu; i++) {
795         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
796 
797         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
798     }
799 
800     /* Try to create the device via the device control API */
801     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
802     if (s->dev_fd < 0) {
803         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
804         return;
805     }
806 
807     multiple_redist_region_allowed =
808         kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
809                               KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
810 
811     if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
812         error_setg(errp, "Multiple VGICv3 redistributor regions are not "
813                    "supported by this host kernel");
814         error_append_hint(errp, "A maximum of %d VCPUs can be used",
815                           s->redist_region_count[0]);
816         return;
817     }
818 
819     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
820                       0, &s->num_irq, true, &error_abort);
821 
822     /* Tell the kernel to complete VGIC initialization now */
823     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
824                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
825 
826     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
827                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
828 
829     if (!multiple_redist_region_allowed) {
830         kvm_arm_register_device(&s->iomem_redist[0], -1,
831                                 KVM_DEV_ARM_VGIC_GRP_ADDR,
832                                 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
833     } else {
834         /* we register regions in reverse order as "devices" are inserted at
835          * the head of a QSLIST and the list is then popped from the head
836          * onwards by kvm_arm_machine_init_done()
837          */
838         for (i = s->nb_redist_regions - 1; i >= 0; i--) {
839             /* Address mask made of the rdist region index and count */
840             uint64_t addr_ormask =
841                         i | ((uint64_t)s->redist_region_count[i] << 52);
842 
843             kvm_arm_register_device(&s->iomem_redist[i], -1,
844                                     KVM_DEV_ARM_VGIC_GRP_ADDR,
845                                     KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
846                                     s->dev_fd, addr_ormask);
847         }
848     }
849 
850     if (kvm_has_gsi_routing()) {
851         /* set up irq routing */
852         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
853             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
854         }
855 
856         kvm_gsi_routing_allowed = true;
857 
858         kvm_irqchip_commit_routes(kvm_state);
859     }
860 
861     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
862                                GICD_CTLR)) {
863         error_setg(&s->migration_blocker, "This operating system kernel does "
864                                           "not support vGICv3 migration");
865         migrate_add_blocker(s->migration_blocker, &local_err);
866         if (local_err) {
867             error_propagate(errp, local_err);
868             error_free(s->migration_blocker);
869             return;
870         }
871     }
872     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
873                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
874         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
875     }
876 }
877 
878 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
879 {
880     DeviceClass *dc = DEVICE_CLASS(klass);
881     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
882     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
883 
884     agcc->pre_save = kvm_arm_gicv3_get;
885     agcc->post_load = kvm_arm_gicv3_put;
886     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
887                                     &kgc->parent_realize);
888     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
889 }
890 
891 static const TypeInfo kvm_arm_gicv3_info = {
892     .name = TYPE_KVM_ARM_GICV3,
893     .parent = TYPE_ARM_GICV3_COMMON,
894     .instance_size = sizeof(GICv3State),
895     .class_init = kvm_arm_gicv3_class_init,
896     .class_size = sizeof(KVMARMGICv3Class),
897 };
898 
899 static void kvm_arm_gicv3_register_types(void)
900 {
901     type_register_static(&kvm_arm_gicv3_info);
902 }
903 
904 type_init(kvm_arm_gicv3_register_types)
905