1 /* 2 * ARM Generic Interrupt Controller using KVM in-kernel support 3 * 4 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 5 * Written by Pavel Fedin 6 * Based on vGICv2 code by Peter Maydell 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation, either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License along 19 * with this program; if not, see <http://www.gnu.org/licenses/>. 20 */ 21 22 #include "qemu/osdep.h" 23 #include "qapi/error.h" 24 #include "hw/intc/arm_gicv3_common.h" 25 #include "hw/sysbus.h" 26 #include "qemu/error-report.h" 27 #include "qemu/module.h" 28 #include "sysemu/kvm.h" 29 #include "sysemu/runstate.h" 30 #include "kvm_arm.h" 31 #include "gicv3_internal.h" 32 #include "vgic_common.h" 33 #include "migration/blocker.h" 34 #include "qom/object.h" 35 36 #ifdef DEBUG_GICV3_KVM 37 #define DPRINTF(fmt, ...) \ 38 do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0) 39 #else 40 #define DPRINTF(fmt, ...) \ 41 do { } while (0) 42 #endif 43 44 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3" 45 typedef struct KVMARMGICv3Class KVMARMGICv3Class; 46 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */ 47 DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class, 48 KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3) 49 50 #define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \ 51 (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \ 52 ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \ 53 ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \ 54 ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \ 55 ARM64_SYS_REG_SHIFT_MASK(op2, OP2)) 56 57 #define ICC_PMR_EL1 \ 58 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0) 59 #define ICC_BPR0_EL1 \ 60 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3) 61 #define ICC_AP0R_EL1(n) \ 62 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n) 63 #define ICC_AP1R_EL1(n) \ 64 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n) 65 #define ICC_BPR1_EL1 \ 66 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3) 67 #define ICC_CTLR_EL1 \ 68 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4) 69 #define ICC_SRE_EL1 \ 70 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5) 71 #define ICC_IGRPEN0_EL1 \ 72 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6) 73 #define ICC_IGRPEN1_EL1 \ 74 KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7) 75 76 struct KVMARMGICv3Class { 77 ARMGICv3CommonClass parent_class; 78 DeviceRealize parent_realize; 79 void (*parent_reset)(DeviceState *dev); 80 }; 81 82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level) 83 { 84 GICv3State *s = (GICv3State *)opaque; 85 86 kvm_arm_gic_set_irq(s->num_irq, irq, level); 87 } 88 89 #define KVM_VGIC_ATTR(reg, typer) \ 90 ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg)) 91 92 static inline void kvm_gicd_access(GICv3State *s, int offset, 93 uint32_t *val, bool write) 94 { 95 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 96 KVM_VGIC_ATTR(offset, 0), 97 val, write, &error_abort); 98 } 99 100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu, 101 uint32_t *val, bool write) 102 { 103 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS, 104 KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer), 105 val, write, &error_abort); 106 } 107 108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu, 109 uint64_t *val, bool write) 110 { 111 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS, 112 KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer), 113 val, write, &error_abort); 114 } 115 116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu, 117 uint32_t *val, bool write) 118 { 119 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO, 120 KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) | 121 (VGIC_LEVEL_INFO_LINE_LEVEL << 122 KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT), 123 val, write, &error_abort); 124 } 125 126 /* Loop through each distributor IRQ related register; since bits 127 * corresponding to SPIs and PPIs are RAZ/WI when affinity routing 128 * is enabled, we skip those. 129 */ 130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \ 131 for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width)) 132 133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp) 134 { 135 uint32_t reg, *field; 136 int irq; 137 138 /* For the KVM GICv3, affinity routing is always enabled, and the first 8 139 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding 140 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to 141 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and 142 * offset. 143 */ 144 field = (uint32_t *)(bmp + GIC_INTERNAL); 145 offset += (GIC_INTERNAL * 8) / 8; 146 for_each_dist_irq_reg(irq, s->num_irq, 8) { 147 kvm_gicd_access(s, offset, ®, false); 148 *field = reg; 149 offset += 4; 150 field++; 151 } 152 } 153 154 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp) 155 { 156 uint32_t reg, *field; 157 int irq; 158 159 /* For the KVM GICv3, affinity routing is always enabled, and the first 8 160 * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding 161 * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to 162 * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and 163 * offset. 164 */ 165 field = (uint32_t *)(bmp + GIC_INTERNAL); 166 offset += (GIC_INTERNAL * 8) / 8; 167 for_each_dist_irq_reg(irq, s->num_irq, 8) { 168 reg = *field; 169 kvm_gicd_access(s, offset, ®, true); 170 offset += 4; 171 field++; 172 } 173 } 174 175 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset, 176 uint32_t *bmp) 177 { 178 uint32_t reg; 179 int irq; 180 181 /* For the KVM GICv3, affinity routing is always enabled, and the first 2 182 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding 183 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync 184 * them. So it should increase the offset to skip GIC_INTERNAL irqs. 185 * This matches the for_each_dist_irq_reg() macro which also skips the 186 * first GIC_INTERNAL irqs. 187 */ 188 offset += (GIC_INTERNAL * 2) / 8; 189 for_each_dist_irq_reg(irq, s->num_irq, 2) { 190 kvm_gicd_access(s, offset, ®, false); 191 reg = half_unshuffle32(reg >> 1); 192 if (irq % 32 != 0) { 193 reg = (reg << 16); 194 } 195 *gic_bmp_ptr32(bmp, irq) |= reg; 196 offset += 4; 197 } 198 } 199 200 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset, 201 uint32_t *bmp) 202 { 203 uint32_t reg; 204 int irq; 205 206 /* For the KVM GICv3, affinity routing is always enabled, and the first 2 207 * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding 208 * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync 209 * them. So it should increase the offset to skip GIC_INTERNAL irqs. 210 * This matches the for_each_dist_irq_reg() macro which also skips the 211 * first GIC_INTERNAL irqs. 212 */ 213 offset += (GIC_INTERNAL * 2) / 8; 214 for_each_dist_irq_reg(irq, s->num_irq, 2) { 215 reg = *gic_bmp_ptr32(bmp, irq); 216 if (irq % 32 != 0) { 217 reg = (reg & 0xffff0000) >> 16; 218 } else { 219 reg = reg & 0xffff; 220 } 221 reg = half_shuffle32(reg) << 1; 222 kvm_gicd_access(s, offset, ®, true); 223 offset += 4; 224 } 225 } 226 227 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp) 228 { 229 uint32_t reg; 230 int irq; 231 232 for_each_dist_irq_reg(irq, s->num_irq, 1) { 233 kvm_gic_line_level_access(s, irq, 0, ®, false); 234 *gic_bmp_ptr32(bmp, irq) = reg; 235 } 236 } 237 238 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp) 239 { 240 uint32_t reg; 241 int irq; 242 243 for_each_dist_irq_reg(irq, s->num_irq, 1) { 244 reg = *gic_bmp_ptr32(bmp, irq); 245 kvm_gic_line_level_access(s, irq, 0, ®, true); 246 } 247 } 248 249 /* Read a bitmap register group from the kernel VGIC. */ 250 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp) 251 { 252 uint32_t reg; 253 int irq; 254 255 /* For the KVM GICv3, affinity routing is always enabled, and the 256 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/ 257 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding 258 * functionality is replaced by the GICR registers. It doesn't need to sync 259 * them. So it should increase the offset to skip GIC_INTERNAL irqs. 260 * This matches the for_each_dist_irq_reg() macro which also skips the 261 * first GIC_INTERNAL irqs. 262 */ 263 offset += (GIC_INTERNAL * 1) / 8; 264 for_each_dist_irq_reg(irq, s->num_irq, 1) { 265 kvm_gicd_access(s, offset, ®, false); 266 *gic_bmp_ptr32(bmp, irq) = reg; 267 offset += 4; 268 } 269 } 270 271 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset, 272 uint32_t clroffset, uint32_t *bmp) 273 { 274 uint32_t reg; 275 int irq; 276 277 /* For the KVM GICv3, affinity routing is always enabled, and the 278 * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/ 279 * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding 280 * functionality is replaced by the GICR registers. It doesn't need to sync 281 * them. So it should increase the offset and clroffset to skip GIC_INTERNAL 282 * irqs. This matches the for_each_dist_irq_reg() macro which also skips the 283 * first GIC_INTERNAL irqs. 284 */ 285 offset += (GIC_INTERNAL * 1) / 8; 286 if (clroffset != 0) { 287 clroffset += (GIC_INTERNAL * 1) / 8; 288 } 289 290 for_each_dist_irq_reg(irq, s->num_irq, 1) { 291 /* If this bitmap is a set/clear register pair, first write to the 292 * clear-reg to clear all bits before using the set-reg to write 293 * the 1 bits. 294 */ 295 if (clroffset != 0) { 296 reg = 0; 297 kvm_gicd_access(s, clroffset, ®, true); 298 clroffset += 4; 299 } 300 reg = *gic_bmp_ptr32(bmp, irq); 301 kvm_gicd_access(s, offset, ®, true); 302 offset += 4; 303 } 304 } 305 306 static void kvm_arm_gicv3_check(GICv3State *s) 307 { 308 uint32_t reg; 309 uint32_t num_irq; 310 311 /* Sanity checking s->num_irq */ 312 kvm_gicd_access(s, GICD_TYPER, ®, false); 313 num_irq = ((reg & 0x1f) + 1) * 32; 314 315 if (num_irq < s->num_irq) { 316 error_report("Model requests %u IRQs, but kernel supports max %u", 317 s->num_irq, num_irq); 318 abort(); 319 } 320 } 321 322 static void kvm_arm_gicv3_put(GICv3State *s) 323 { 324 uint32_t regl, regh, reg; 325 uint64_t reg64, redist_typer; 326 int ncpu, i; 327 328 kvm_arm_gicv3_check(s); 329 330 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false); 331 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false); 332 redist_typer = ((uint64_t)regh << 32) | regl; 333 334 reg = s->gicd_ctlr; 335 kvm_gicd_access(s, GICD_CTLR, ®, true); 336 337 if (redist_typer & GICR_TYPER_PLPIS) { 338 /* 339 * Restore base addresses before LPIs are potentially enabled by 340 * GICR_CTLR write 341 */ 342 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 343 GICv3CPUState *c = &s->cpu[ncpu]; 344 345 reg64 = c->gicr_propbaser; 346 regl = (uint32_t)reg64; 347 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, true); 348 regh = (uint32_t)(reg64 >> 32); 349 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, true); 350 351 reg64 = c->gicr_pendbaser; 352 regl = (uint32_t)reg64; 353 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, true); 354 regh = (uint32_t)(reg64 >> 32); 355 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, true); 356 } 357 } 358 359 /* Redistributor state (one per CPU) */ 360 361 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 362 GICv3CPUState *c = &s->cpu[ncpu]; 363 364 reg = c->gicr_ctlr; 365 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, true); 366 367 reg = c->gicr_statusr[GICV3_NS]; 368 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, true); 369 370 reg = c->gicr_waker; 371 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, true); 372 373 reg = c->gicr_igroupr0; 374 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, true); 375 376 reg = ~0; 377 kvm_gicr_access(s, GICR_ICENABLER0, ncpu, ®, true); 378 reg = c->gicr_ienabler0; 379 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, true); 380 381 /* Restore config before pending so we treat level/edge correctly */ 382 reg = half_shuffle32(c->edge_trigger >> 16) << 1; 383 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, true); 384 385 reg = c->level; 386 kvm_gic_line_level_access(s, 0, ncpu, ®, true); 387 388 reg = ~0; 389 kvm_gicr_access(s, GICR_ICPENDR0, ncpu, ®, true); 390 reg = c->gicr_ipendr0; 391 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, true); 392 393 reg = ~0; 394 kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, ®, true); 395 reg = c->gicr_iactiver0; 396 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, true); 397 398 for (i = 0; i < GIC_INTERNAL; i += 4) { 399 reg = c->gicr_ipriorityr[i] | 400 (c->gicr_ipriorityr[i + 1] << 8) | 401 (c->gicr_ipriorityr[i + 2] << 16) | 402 (c->gicr_ipriorityr[i + 3] << 24); 403 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, true); 404 } 405 } 406 407 /* Distributor state (shared between all CPUs */ 408 reg = s->gicd_statusr[GICV3_NS]; 409 kvm_gicd_access(s, GICD_STATUSR, ®, true); 410 411 /* s->enable bitmap -> GICD_ISENABLERn */ 412 kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled); 413 414 /* s->group bitmap -> GICD_IGROUPRn */ 415 kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group); 416 417 /* Restore targets before pending to ensure the pending state is set on 418 * the appropriate CPU interfaces in the kernel 419 */ 420 421 /* s->gicd_irouter[irq] -> GICD_IROUTERn 422 * We can't use kvm_dist_put() here because the registers are 64-bit 423 */ 424 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 425 uint32_t offset; 426 427 offset = GICD_IROUTER + (sizeof(uint32_t) * i); 428 reg = (uint32_t)s->gicd_irouter[i]; 429 kvm_gicd_access(s, offset, ®, true); 430 431 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4; 432 reg = (uint32_t)(s->gicd_irouter[i] >> 32); 433 kvm_gicd_access(s, offset, ®, true); 434 } 435 436 /* s->trigger bitmap -> GICD_ICFGRn 437 * (restore configuration registers before pending IRQs so we treat 438 * level/edge correctly) 439 */ 440 kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger); 441 442 /* s->level bitmap -> line_level */ 443 kvm_gic_put_line_level_bmp(s, s->level); 444 445 /* s->pending bitmap -> GICD_ISPENDRn */ 446 kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending); 447 448 /* s->active bitmap -> GICD_ISACTIVERn */ 449 kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active); 450 451 /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */ 452 kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority); 453 454 /* CPU Interface state (one per CPU) */ 455 456 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 457 GICv3CPUState *c = &s->cpu[ncpu]; 458 int num_pri_bits; 459 460 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true); 461 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu, 462 &c->icc_ctlr_el1[GICV3_NS], true); 463 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu, 464 &c->icc_igrpen[GICV3_G0], true); 465 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu, 466 &c->icc_igrpen[GICV3_G1NS], true); 467 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true); 468 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true); 469 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true); 470 471 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] & 472 ICC_CTLR_EL1_PRIBITS_MASK) >> 473 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1; 474 475 switch (num_pri_bits) { 476 case 7: 477 reg64 = c->icc_apr[GICV3_G0][3]; 478 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, true); 479 reg64 = c->icc_apr[GICV3_G0][2]; 480 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, true); 481 /* fall through */ 482 case 6: 483 reg64 = c->icc_apr[GICV3_G0][1]; 484 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, true); 485 /* fall through */ 486 default: 487 reg64 = c->icc_apr[GICV3_G0][0]; 488 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, true); 489 } 490 491 switch (num_pri_bits) { 492 case 7: 493 reg64 = c->icc_apr[GICV3_G1NS][3]; 494 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, true); 495 reg64 = c->icc_apr[GICV3_G1NS][2]; 496 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, true); 497 /* fall through */ 498 case 6: 499 reg64 = c->icc_apr[GICV3_G1NS][1]; 500 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, true); 501 /* fall through */ 502 default: 503 reg64 = c->icc_apr[GICV3_G1NS][0]; 504 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, true); 505 } 506 } 507 } 508 509 static void kvm_arm_gicv3_get(GICv3State *s) 510 { 511 uint32_t regl, regh, reg; 512 uint64_t reg64, redist_typer; 513 int ncpu, i; 514 515 kvm_arm_gicv3_check(s); 516 517 kvm_gicr_access(s, GICR_TYPER, 0, ®l, false); 518 kvm_gicr_access(s, GICR_TYPER + 4, 0, ®h, false); 519 redist_typer = ((uint64_t)regh << 32) | regl; 520 521 kvm_gicd_access(s, GICD_CTLR, ®, false); 522 s->gicd_ctlr = reg; 523 524 /* Redistributor state (one per CPU) */ 525 526 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 527 GICv3CPUState *c = &s->cpu[ncpu]; 528 529 kvm_gicr_access(s, GICR_CTLR, ncpu, ®, false); 530 c->gicr_ctlr = reg; 531 532 kvm_gicr_access(s, GICR_STATUSR, ncpu, ®, false); 533 c->gicr_statusr[GICV3_NS] = reg; 534 535 kvm_gicr_access(s, GICR_WAKER, ncpu, ®, false); 536 c->gicr_waker = reg; 537 538 kvm_gicr_access(s, GICR_IGROUPR0, ncpu, ®, false); 539 c->gicr_igroupr0 = reg; 540 kvm_gicr_access(s, GICR_ISENABLER0, ncpu, ®, false); 541 c->gicr_ienabler0 = reg; 542 kvm_gicr_access(s, GICR_ICFGR1, ncpu, ®, false); 543 c->edge_trigger = half_unshuffle32(reg >> 1) << 16; 544 kvm_gic_line_level_access(s, 0, ncpu, ®, false); 545 c->level = reg; 546 kvm_gicr_access(s, GICR_ISPENDR0, ncpu, ®, false); 547 c->gicr_ipendr0 = reg; 548 kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, ®, false); 549 c->gicr_iactiver0 = reg; 550 551 for (i = 0; i < GIC_INTERNAL; i += 4) { 552 kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, ®, false); 553 c->gicr_ipriorityr[i] = extract32(reg, 0, 8); 554 c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8); 555 c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8); 556 c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8); 557 } 558 } 559 560 if (redist_typer & GICR_TYPER_PLPIS) { 561 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 562 GICv3CPUState *c = &s->cpu[ncpu]; 563 564 kvm_gicr_access(s, GICR_PROPBASER, ncpu, ®l, false); 565 kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, ®h, false); 566 c->gicr_propbaser = ((uint64_t)regh << 32) | regl; 567 568 kvm_gicr_access(s, GICR_PENDBASER, ncpu, ®l, false); 569 kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, ®h, false); 570 c->gicr_pendbaser = ((uint64_t)regh << 32) | regl; 571 } 572 } 573 574 /* Distributor state (shared between all CPUs */ 575 576 kvm_gicd_access(s, GICD_STATUSR, ®, false); 577 s->gicd_statusr[GICV3_NS] = reg; 578 579 /* GICD_IGROUPRn -> s->group bitmap */ 580 kvm_dist_getbmp(s, GICD_IGROUPR, s->group); 581 582 /* GICD_ISENABLERn -> s->enabled bitmap */ 583 kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled); 584 585 /* Line level of irq */ 586 kvm_gic_get_line_level_bmp(s, s->level); 587 /* GICD_ISPENDRn -> s->pending bitmap */ 588 kvm_dist_getbmp(s, GICD_ISPENDR, s->pending); 589 590 /* GICD_ISACTIVERn -> s->active bitmap */ 591 kvm_dist_getbmp(s, GICD_ISACTIVER, s->active); 592 593 /* GICD_ICFGRn -> s->trigger bitmap */ 594 kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger); 595 596 /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */ 597 kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority); 598 599 /* GICD_IROUTERn -> s->gicd_irouter[irq] */ 600 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 601 uint32_t offset; 602 603 offset = GICD_IROUTER + (sizeof(uint32_t) * i); 604 kvm_gicd_access(s, offset, ®l, false); 605 offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4; 606 kvm_gicd_access(s, offset, ®h, false); 607 s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl; 608 } 609 610 /***************************************************************** 611 * CPU Interface(s) State 612 */ 613 614 for (ncpu = 0; ncpu < s->num_cpu; ncpu++) { 615 GICv3CPUState *c = &s->cpu[ncpu]; 616 int num_pri_bits; 617 618 kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false); 619 kvm_gicc_access(s, ICC_CTLR_EL1, ncpu, 620 &c->icc_ctlr_el1[GICV3_NS], false); 621 kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu, 622 &c->icc_igrpen[GICV3_G0], false); 623 kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu, 624 &c->icc_igrpen[GICV3_G1NS], false); 625 kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false); 626 kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false); 627 kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false); 628 num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] & 629 ICC_CTLR_EL1_PRIBITS_MASK) >> 630 ICC_CTLR_EL1_PRIBITS_SHIFT) + 1; 631 632 switch (num_pri_bits) { 633 case 7: 634 kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, ®64, false); 635 c->icc_apr[GICV3_G0][3] = reg64; 636 kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, ®64, false); 637 c->icc_apr[GICV3_G0][2] = reg64; 638 /* fall through */ 639 case 6: 640 kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, ®64, false); 641 c->icc_apr[GICV3_G0][1] = reg64; 642 /* fall through */ 643 default: 644 kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, ®64, false); 645 c->icc_apr[GICV3_G0][0] = reg64; 646 } 647 648 switch (num_pri_bits) { 649 case 7: 650 kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, ®64, false); 651 c->icc_apr[GICV3_G1NS][3] = reg64; 652 kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, ®64, false); 653 c->icc_apr[GICV3_G1NS][2] = reg64; 654 /* fall through */ 655 case 6: 656 kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, ®64, false); 657 c->icc_apr[GICV3_G1NS][1] = reg64; 658 /* fall through */ 659 default: 660 kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, ®64, false); 661 c->icc_apr[GICV3_G1NS][0] = reg64; 662 } 663 } 664 } 665 666 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 667 { 668 GICv3State *s; 669 GICv3CPUState *c; 670 671 c = (GICv3CPUState *)env->gicv3state; 672 s = c->gic; 673 674 c->icc_pmr_el1 = 0; 675 c->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 676 c->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 677 c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; 678 679 c->icc_sre_el1 = 0x7; 680 memset(c->icc_apr, 0, sizeof(c->icc_apr)); 681 memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen)); 682 683 if (s->migration_blocker) { 684 return; 685 } 686 687 /* Initialize to actual HW supported configuration */ 688 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS, 689 KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer), 690 &c->icc_ctlr_el1[GICV3_NS], false, &error_abort); 691 692 c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS]; 693 } 694 695 static void kvm_arm_gicv3_reset(DeviceState *dev) 696 { 697 GICv3State *s = ARM_GICV3_COMMON(dev); 698 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s); 699 700 DPRINTF("Reset\n"); 701 702 kgc->parent_reset(dev); 703 704 if (s->migration_blocker) { 705 DPRINTF("Cannot put kernel gic state, no kernel interface\n"); 706 return; 707 } 708 709 kvm_arm_gicv3_put(s); 710 } 711 712 /* 713 * CPU interface registers of GIC needs to be reset on CPU reset. 714 * For the calling arm_gicv3_icc_reset() on CPU reset, we register 715 * below ARMCPRegInfo. As we reset the whole cpu interface under single 716 * register reset, we define only one register of CPU interface instead 717 * of defining all the registers. 718 */ 719 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 720 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 721 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 722 /* 723 * If ARM_CP_NOP is used, resetfn is not called, 724 * So ARM_CP_NO_RAW is appropriate type. 725 */ 726 .type = ARM_CP_NO_RAW, 727 .access = PL1_RW, 728 .readfn = arm_cp_read_zero, 729 .writefn = arm_cp_write_ignore, 730 /* 731 * We hang the whole cpu interface reset routine off here 732 * rather than parcelling it out into one little function 733 * per register 734 */ 735 .resetfn = arm_gicv3_icc_reset, 736 }, 737 REGINFO_SENTINEL 738 }; 739 740 /** 741 * vm_change_state_handler - VM change state callback aiming at flushing 742 * RDIST pending tables into guest RAM 743 * 744 * The tables get flushed to guest RAM whenever the VM gets stopped. 745 */ 746 static void vm_change_state_handler(void *opaque, int running, 747 RunState state) 748 { 749 GICv3State *s = (GICv3State *)opaque; 750 Error *err = NULL; 751 int ret; 752 753 if (running) { 754 return; 755 } 756 757 ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 758 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES, 759 NULL, true, &err); 760 if (err) { 761 error_report_err(err); 762 } 763 if (ret < 0 && ret != -EFAULT) { 764 abort(); 765 } 766 } 767 768 769 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp) 770 { 771 GICv3State *s = KVM_ARM_GICV3(dev); 772 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s); 773 bool multiple_redist_region_allowed; 774 Error *local_err = NULL; 775 int i; 776 777 DPRINTF("kvm_arm_gicv3_realize\n"); 778 779 kgc->parent_realize(dev, &local_err); 780 if (local_err) { 781 error_propagate(errp, local_err); 782 return; 783 } 784 785 if (s->security_extn) { 786 error_setg(errp, "the in-kernel VGICv3 does not implement the " 787 "security extensions"); 788 return; 789 } 790 791 gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err); 792 if (local_err) { 793 error_propagate(errp, local_err); 794 return; 795 } 796 797 for (i = 0; i < s->num_cpu; i++) { 798 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 799 800 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 801 } 802 803 /* Try to create the device via the device control API */ 804 s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false); 805 if (s->dev_fd < 0) { 806 error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC"); 807 return; 808 } 809 810 multiple_redist_region_allowed = 811 kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR, 812 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION); 813 814 if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) { 815 error_setg(errp, "Multiple VGICv3 redistributor regions are not " 816 "supported by this host kernel"); 817 error_append_hint(errp, "A maximum of %d VCPUs can be used", 818 s->redist_region_count[0]); 819 return; 820 } 821 822 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS, 823 0, &s->num_irq, true, &error_abort); 824 825 /* Tell the kernel to complete VGIC initialization now */ 826 kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 827 KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort); 828 829 kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR, 830 KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0); 831 832 if (!multiple_redist_region_allowed) { 833 kvm_arm_register_device(&s->iomem_redist[0], -1, 834 KVM_DEV_ARM_VGIC_GRP_ADDR, 835 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0); 836 } else { 837 /* we register regions in reverse order as "devices" are inserted at 838 * the head of a QSLIST and the list is then popped from the head 839 * onwards by kvm_arm_machine_init_done() 840 */ 841 for (i = s->nb_redist_regions - 1; i >= 0; i--) { 842 /* Address mask made of the rdist region index and count */ 843 uint64_t addr_ormask = 844 i | ((uint64_t)s->redist_region_count[i] << 52); 845 846 kvm_arm_register_device(&s->iomem_redist[i], -1, 847 KVM_DEV_ARM_VGIC_GRP_ADDR, 848 KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION, 849 s->dev_fd, addr_ormask); 850 } 851 } 852 853 if (kvm_has_gsi_routing()) { 854 /* set up irq routing */ 855 for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) { 856 kvm_irqchip_add_irq_route(kvm_state, i, 0, i); 857 } 858 859 kvm_gsi_routing_allowed = true; 860 861 kvm_irqchip_commit_routes(kvm_state); 862 } 863 864 if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS, 865 GICD_CTLR)) { 866 error_setg(&s->migration_blocker, "This operating system kernel does " 867 "not support vGICv3 migration"); 868 if (migrate_add_blocker(s->migration_blocker, errp) < 0) { 869 error_free(s->migration_blocker); 870 return; 871 } 872 } 873 if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL, 874 KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) { 875 qemu_add_vm_change_state_handler(vm_change_state_handler, s); 876 } 877 } 878 879 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data) 880 { 881 DeviceClass *dc = DEVICE_CLASS(klass); 882 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass); 883 KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass); 884 885 agcc->pre_save = kvm_arm_gicv3_get; 886 agcc->post_load = kvm_arm_gicv3_put; 887 device_class_set_parent_realize(dc, kvm_arm_gicv3_realize, 888 &kgc->parent_realize); 889 device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset); 890 } 891 892 static const TypeInfo kvm_arm_gicv3_info = { 893 .name = TYPE_KVM_ARM_GICV3, 894 .parent = TYPE_ARM_GICV3_COMMON, 895 .instance_size = sizeof(GICv3State), 896 .class_init = kvm_arm_gicv3_class_init, 897 .class_size = sizeof(KVMARMGICv3Class), 898 }; 899 900 static void kvm_arm_gicv3_register_types(void) 901 { 902 type_register_static(&kvm_arm_gicv3_info); 903 } 904 905 type_init(kvm_arm_gicv3_register_types) 906