xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision 59a3a1c0)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "qemu/module.h"
28 #include "sysemu/kvm.h"
29 #include "sysemu/runstate.h"
30 #include "kvm_arm.h"
31 #include "gicv3_internal.h"
32 #include "vgic_common.h"
33 #include "migration/blocker.h"
34 
35 #ifdef DEBUG_GICV3_KVM
36 #define DPRINTF(fmt, ...) \
37     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
38 #else
39 #define DPRINTF(fmt, ...) \
40     do { } while (0)
41 #endif
42 
43 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
44 #define KVM_ARM_GICV3(obj) \
45      OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
46 #define KVM_ARM_GICV3_CLASS(klass) \
47      OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
48 #define KVM_ARM_GICV3_GET_CLASS(obj) \
49      OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
50 
51 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
52                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
57 
58 #define ICC_PMR_EL1     \
59     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1    \
61     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1    \
67     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1    \
69     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70 #define ICC_SRE_EL1 \
71     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
76 
77 typedef struct KVMARMGICv3Class {
78     ARMGICv3CommonClass parent_class;
79     DeviceRealize parent_realize;
80     void (*parent_reset)(DeviceState *dev);
81 } KVMARMGICv3Class;
82 
83 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
84 {
85     GICv3State *s = (GICv3State *)opaque;
86 
87     kvm_arm_gic_set_irq(s->num_irq, irq, level);
88 }
89 
90 #define KVM_VGIC_ATTR(reg, typer) \
91     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
92 
93 static inline void kvm_gicd_access(GICv3State *s, int offset,
94                                    uint32_t *val, bool write)
95 {
96     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97                       KVM_VGIC_ATTR(offset, 0),
98                       val, write, &error_abort);
99 }
100 
101 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102                                    uint32_t *val, bool write)
103 {
104     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106                       val, write, &error_abort);
107 }
108 
109 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110                                    uint64_t *val, bool write)
111 {
112     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114                       val, write, &error_abort);
115 }
116 
117 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118                                              uint32_t *val, bool write)
119 {
120     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
123                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124                       val, write, &error_abort);
125 }
126 
127 /* Loop through each distributor IRQ related register; since bits
128  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129  * is enabled, we skip those.
130  */
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
133 
134 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
135 {
136     uint32_t reg, *field;
137     int irq;
138 
139     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143      * offset.
144      */
145     field = (uint32_t *)(bmp + GIC_INTERNAL);
146     offset += (GIC_INTERNAL * 8) / 8;
147     for_each_dist_irq_reg(irq, s->num_irq, 8) {
148         kvm_gicd_access(s, offset, &reg, false);
149         *field = reg;
150         offset += 4;
151         field++;
152     }
153 }
154 
155 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
156 {
157     uint32_t reg, *field;
158     int irq;
159 
160     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164      * offset.
165      */
166     field = (uint32_t *)(bmp + GIC_INTERNAL);
167     offset += (GIC_INTERNAL * 8) / 8;
168     for_each_dist_irq_reg(irq, s->num_irq, 8) {
169         reg = *field;
170         kvm_gicd_access(s, offset, &reg, true);
171         offset += 4;
172         field++;
173     }
174 }
175 
176 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177                                       uint32_t *bmp)
178 {
179     uint32_t reg;
180     int irq;
181 
182     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186      * This matches the for_each_dist_irq_reg() macro which also skips the
187      * first GIC_INTERNAL irqs.
188      */
189     offset += (GIC_INTERNAL * 2) / 8;
190     for_each_dist_irq_reg(irq, s->num_irq, 2) {
191         kvm_gicd_access(s, offset, &reg, false);
192         reg = half_unshuffle32(reg >> 1);
193         if (irq % 32 != 0) {
194             reg = (reg << 16);
195         }
196         *gic_bmp_ptr32(bmp, irq) |=  reg;
197         offset += 4;
198     }
199 }
200 
201 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202                                       uint32_t *bmp)
203 {
204     uint32_t reg;
205     int irq;
206 
207     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211      * This matches the for_each_dist_irq_reg() macro which also skips the
212      * first GIC_INTERNAL irqs.
213      */
214     offset += (GIC_INTERNAL * 2) / 8;
215     for_each_dist_irq_reg(irq, s->num_irq, 2) {
216         reg = *gic_bmp_ptr32(bmp, irq);
217         if (irq % 32 != 0) {
218             reg = (reg & 0xffff0000) >> 16;
219         } else {
220             reg = reg & 0xffff;
221         }
222         reg = half_shuffle32(reg) << 1;
223         kvm_gicd_access(s, offset, &reg, true);
224         offset += 4;
225     }
226 }
227 
228 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
229 {
230     uint32_t reg;
231     int irq;
232 
233     for_each_dist_irq_reg(irq, s->num_irq, 1) {
234         kvm_gic_line_level_access(s, irq, 0, &reg, false);
235         *gic_bmp_ptr32(bmp, irq) = reg;
236     }
237 }
238 
239 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
240 {
241     uint32_t reg;
242     int irq;
243 
244     for_each_dist_irq_reg(irq, s->num_irq, 1) {
245         reg = *gic_bmp_ptr32(bmp, irq);
246         kvm_gic_line_level_access(s, irq, 0, &reg, true);
247     }
248 }
249 
250 /* Read a bitmap register group from the kernel VGIC. */
251 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
252 {
253     uint32_t reg;
254     int irq;
255 
256     /* For the KVM GICv3, affinity routing is always enabled, and the
257      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259      * functionality is replaced by the GICR registers. It doesn't need to sync
260      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261      * This matches the for_each_dist_irq_reg() macro which also skips the
262      * first GIC_INTERNAL irqs.
263      */
264     offset += (GIC_INTERNAL * 1) / 8;
265     for_each_dist_irq_reg(irq, s->num_irq, 1) {
266         kvm_gicd_access(s, offset, &reg, false);
267         *gic_bmp_ptr32(bmp, irq) = reg;
268         offset += 4;
269     }
270 }
271 
272 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273                             uint32_t clroffset, uint32_t *bmp)
274 {
275     uint32_t reg;
276     int irq;
277 
278     /* For the KVM GICv3, affinity routing is always enabled, and the
279      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281      * functionality is replaced by the GICR registers. It doesn't need to sync
282      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284      * first GIC_INTERNAL irqs.
285      */
286     offset += (GIC_INTERNAL * 1) / 8;
287     if (clroffset != 0) {
288         clroffset += (GIC_INTERNAL * 1) / 8;
289     }
290 
291     for_each_dist_irq_reg(irq, s->num_irq, 1) {
292         /* If this bitmap is a set/clear register pair, first write to the
293          * clear-reg to clear all bits before using the set-reg to write
294          * the 1 bits.
295          */
296         if (clroffset != 0) {
297             reg = 0;
298             kvm_gicd_access(s, clroffset, &reg, true);
299             clroffset += 4;
300         }
301         reg = *gic_bmp_ptr32(bmp, irq);
302         kvm_gicd_access(s, offset, &reg, true);
303         offset += 4;
304     }
305 }
306 
307 static void kvm_arm_gicv3_check(GICv3State *s)
308 {
309     uint32_t reg;
310     uint32_t num_irq;
311 
312     /* Sanity checking s->num_irq */
313     kvm_gicd_access(s, GICD_TYPER, &reg, false);
314     num_irq = ((reg & 0x1f) + 1) * 32;
315 
316     if (num_irq < s->num_irq) {
317         error_report("Model requests %u IRQs, but kernel supports max %u",
318                      s->num_irq, num_irq);
319         abort();
320     }
321 }
322 
323 static void kvm_arm_gicv3_put(GICv3State *s)
324 {
325     uint32_t regl, regh, reg;
326     uint64_t reg64, redist_typer;
327     int ncpu, i;
328 
329     kvm_arm_gicv3_check(s);
330 
331     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
332     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
333     redist_typer = ((uint64_t)regh << 32) | regl;
334 
335     reg = s->gicd_ctlr;
336     kvm_gicd_access(s, GICD_CTLR, &reg, true);
337 
338     if (redist_typer & GICR_TYPER_PLPIS) {
339         /* Set base addresses before LPIs are enabled by GICR_CTLR write */
340         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
341             GICv3CPUState *c = &s->cpu[ncpu];
342 
343             reg64 = c->gicr_propbaser;
344             regl = (uint32_t)reg64;
345             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
346             regh = (uint32_t)(reg64 >> 32);
347             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
348 
349             reg64 = c->gicr_pendbaser;
350             if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
351                 /* Setting PTZ is advised if LPIs are disabled, to reduce
352                  * GIC initialization time.
353                  */
354                 reg64 |= GICR_PENDBASER_PTZ;
355             }
356             regl = (uint32_t)reg64;
357             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
358             regh = (uint32_t)(reg64 >> 32);
359             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
360         }
361     }
362 
363     /* Redistributor state (one per CPU) */
364 
365     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
366         GICv3CPUState *c = &s->cpu[ncpu];
367 
368         reg = c->gicr_ctlr;
369         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
370 
371         reg = c->gicr_statusr[GICV3_NS];
372         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
373 
374         reg = c->gicr_waker;
375         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
376 
377         reg = c->gicr_igroupr0;
378         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
379 
380         reg = ~0;
381         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
382         reg = c->gicr_ienabler0;
383         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
384 
385         /* Restore config before pending so we treat level/edge correctly */
386         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
387         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
388 
389         reg = c->level;
390         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
391 
392         reg = ~0;
393         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
394         reg = c->gicr_ipendr0;
395         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
396 
397         reg = ~0;
398         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
399         reg = c->gicr_iactiver0;
400         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
401 
402         for (i = 0; i < GIC_INTERNAL; i += 4) {
403             reg = c->gicr_ipriorityr[i] |
404                 (c->gicr_ipriorityr[i + 1] << 8) |
405                 (c->gicr_ipriorityr[i + 2] << 16) |
406                 (c->gicr_ipriorityr[i + 3] << 24);
407             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
408         }
409     }
410 
411     /* Distributor state (shared between all CPUs */
412     reg = s->gicd_statusr[GICV3_NS];
413     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
414 
415     /* s->enable bitmap -> GICD_ISENABLERn */
416     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
417 
418     /* s->group bitmap -> GICD_IGROUPRn */
419     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
420 
421     /* Restore targets before pending to ensure the pending state is set on
422      * the appropriate CPU interfaces in the kernel
423      */
424 
425     /* s->gicd_irouter[irq] -> GICD_IROUTERn
426      * We can't use kvm_dist_put() here because the registers are 64-bit
427      */
428     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
429         uint32_t offset;
430 
431         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
432         reg = (uint32_t)s->gicd_irouter[i];
433         kvm_gicd_access(s, offset, &reg, true);
434 
435         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
436         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
437         kvm_gicd_access(s, offset, &reg, true);
438     }
439 
440     /* s->trigger bitmap -> GICD_ICFGRn
441      * (restore configuration registers before pending IRQs so we treat
442      * level/edge correctly)
443      */
444     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
445 
446     /* s->level bitmap ->  line_level */
447     kvm_gic_put_line_level_bmp(s, s->level);
448 
449     /* s->pending bitmap -> GICD_ISPENDRn */
450     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
451 
452     /* s->active bitmap -> GICD_ISACTIVERn */
453     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
454 
455     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
456     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
457 
458     /* CPU Interface state (one per CPU) */
459 
460     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
461         GICv3CPUState *c = &s->cpu[ncpu];
462         int num_pri_bits;
463 
464         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
465         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
466                         &c->icc_ctlr_el1[GICV3_NS], true);
467         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
468                         &c->icc_igrpen[GICV3_G0], true);
469         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
470                         &c->icc_igrpen[GICV3_G1NS], true);
471         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
472         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
473         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
474 
475         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
476                         ICC_CTLR_EL1_PRIBITS_MASK) >>
477                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
478 
479         switch (num_pri_bits) {
480         case 7:
481             reg64 = c->icc_apr[GICV3_G0][3];
482             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
483             reg64 = c->icc_apr[GICV3_G0][2];
484             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
485         case 6:
486             reg64 = c->icc_apr[GICV3_G0][1];
487             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
488         default:
489             reg64 = c->icc_apr[GICV3_G0][0];
490             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
491         }
492 
493         switch (num_pri_bits) {
494         case 7:
495             reg64 = c->icc_apr[GICV3_G1NS][3];
496             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
497             reg64 = c->icc_apr[GICV3_G1NS][2];
498             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
499         case 6:
500             reg64 = c->icc_apr[GICV3_G1NS][1];
501             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
502         default:
503             reg64 = c->icc_apr[GICV3_G1NS][0];
504             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
505         }
506     }
507 }
508 
509 static void kvm_arm_gicv3_get(GICv3State *s)
510 {
511     uint32_t regl, regh, reg;
512     uint64_t reg64, redist_typer;
513     int ncpu, i;
514 
515     kvm_arm_gicv3_check(s);
516 
517     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
518     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
519     redist_typer = ((uint64_t)regh << 32) | regl;
520 
521     kvm_gicd_access(s, GICD_CTLR, &reg, false);
522     s->gicd_ctlr = reg;
523 
524     /* Redistributor state (one per CPU) */
525 
526     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
527         GICv3CPUState *c = &s->cpu[ncpu];
528 
529         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
530         c->gicr_ctlr = reg;
531 
532         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
533         c->gicr_statusr[GICV3_NS] = reg;
534 
535         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
536         c->gicr_waker = reg;
537 
538         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
539         c->gicr_igroupr0 = reg;
540         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
541         c->gicr_ienabler0 = reg;
542         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
543         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
544         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
545         c->level = reg;
546         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
547         c->gicr_ipendr0 = reg;
548         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
549         c->gicr_iactiver0 = reg;
550 
551         for (i = 0; i < GIC_INTERNAL; i += 4) {
552             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
553             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
554             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
555             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
556             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
557         }
558     }
559 
560     if (redist_typer & GICR_TYPER_PLPIS) {
561         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
562             GICv3CPUState *c = &s->cpu[ncpu];
563 
564             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
565             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
566             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
567 
568             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
569             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
570             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
571         }
572     }
573 
574     /* Distributor state (shared between all CPUs */
575 
576     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
577     s->gicd_statusr[GICV3_NS] = reg;
578 
579     /* GICD_IGROUPRn -> s->group bitmap */
580     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
581 
582     /* GICD_ISENABLERn -> s->enabled bitmap */
583     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
584 
585     /* Line level of irq */
586     kvm_gic_get_line_level_bmp(s, s->level);
587     /* GICD_ISPENDRn -> s->pending bitmap */
588     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
589 
590     /* GICD_ISACTIVERn -> s->active bitmap */
591     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
592 
593     /* GICD_ICFGRn -> s->trigger bitmap */
594     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
595 
596     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
597     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
598 
599     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
600     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
601         uint32_t offset;
602 
603         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
604         kvm_gicd_access(s, offset, &regl, false);
605         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
606         kvm_gicd_access(s, offset, &regh, false);
607         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
608     }
609 
610     /*****************************************************************
611      * CPU Interface(s) State
612      */
613 
614     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
615         GICv3CPUState *c = &s->cpu[ncpu];
616         int num_pri_bits;
617 
618         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
619         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
620                         &c->icc_ctlr_el1[GICV3_NS], false);
621         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
622                         &c->icc_igrpen[GICV3_G0], false);
623         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
624                         &c->icc_igrpen[GICV3_G1NS], false);
625         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
626         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
627         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
628         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
629                         ICC_CTLR_EL1_PRIBITS_MASK) >>
630                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
631 
632         switch (num_pri_bits) {
633         case 7:
634             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
635             c->icc_apr[GICV3_G0][3] = reg64;
636             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
637             c->icc_apr[GICV3_G0][2] = reg64;
638         case 6:
639             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
640             c->icc_apr[GICV3_G0][1] = reg64;
641         default:
642             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
643             c->icc_apr[GICV3_G0][0] = reg64;
644         }
645 
646         switch (num_pri_bits) {
647         case 7:
648             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
649             c->icc_apr[GICV3_G1NS][3] = reg64;
650             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
651             c->icc_apr[GICV3_G1NS][2] = reg64;
652         case 6:
653             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
654             c->icc_apr[GICV3_G1NS][1] = reg64;
655         default:
656             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
657             c->icc_apr[GICV3_G1NS][0] = reg64;
658         }
659     }
660 }
661 
662 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
663 {
664     ARMCPU *cpu;
665     GICv3State *s;
666     GICv3CPUState *c;
667 
668     c = (GICv3CPUState *)env->gicv3state;
669     s = c->gic;
670     cpu = ARM_CPU(c->cpu);
671 
672     c->icc_pmr_el1 = 0;
673     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
674     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
675     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
676 
677     c->icc_sre_el1 = 0x7;
678     memset(c->icc_apr, 0, sizeof(c->icc_apr));
679     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
680 
681     if (s->migration_blocker) {
682         return;
683     }
684 
685     /* Initialize to actual HW supported configuration */
686     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
687                       KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
688                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
689 
690     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
691 }
692 
693 static void kvm_arm_gicv3_reset(DeviceState *dev)
694 {
695     GICv3State *s = ARM_GICV3_COMMON(dev);
696     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
697 
698     DPRINTF("Reset\n");
699 
700     kgc->parent_reset(dev);
701 
702     if (s->migration_blocker) {
703         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
704         return;
705     }
706 
707     kvm_arm_gicv3_put(s);
708 }
709 
710 /*
711  * CPU interface registers of GIC needs to be reset on CPU reset.
712  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
713  * below ARMCPRegInfo. As we reset the whole cpu interface under single
714  * register reset, we define only one register of CPU interface instead
715  * of defining all the registers.
716  */
717 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
718     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
719       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
720       /*
721        * If ARM_CP_NOP is used, resetfn is not called,
722        * So ARM_CP_NO_RAW is appropriate type.
723        */
724       .type = ARM_CP_NO_RAW,
725       .access = PL1_RW,
726       .readfn = arm_cp_read_zero,
727       .writefn = arm_cp_write_ignore,
728       /*
729        * We hang the whole cpu interface reset routine off here
730        * rather than parcelling it out into one little function
731        * per register
732        */
733       .resetfn = arm_gicv3_icc_reset,
734     },
735     REGINFO_SENTINEL
736 };
737 
738 /**
739  * vm_change_state_handler - VM change state callback aiming at flushing
740  * RDIST pending tables into guest RAM
741  *
742  * The tables get flushed to guest RAM whenever the VM gets stopped.
743  */
744 static void vm_change_state_handler(void *opaque, int running,
745                                     RunState state)
746 {
747     GICv3State *s = (GICv3State *)opaque;
748     Error *err = NULL;
749     int ret;
750 
751     if (running) {
752         return;
753     }
754 
755     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
756                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
757                            NULL, true, &err);
758     if (err) {
759         error_report_err(err);
760     }
761     if (ret < 0 && ret != -EFAULT) {
762         abort();
763     }
764 }
765 
766 
767 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
768 {
769     GICv3State *s = KVM_ARM_GICV3(dev);
770     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
771     bool multiple_redist_region_allowed;
772     Error *local_err = NULL;
773     int i;
774 
775     DPRINTF("kvm_arm_gicv3_realize\n");
776 
777     kgc->parent_realize(dev, &local_err);
778     if (local_err) {
779         error_propagate(errp, local_err);
780         return;
781     }
782 
783     if (s->security_extn) {
784         error_setg(errp, "the in-kernel VGICv3 does not implement the "
785                    "security extensions");
786         return;
787     }
788 
789     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
790     if (local_err) {
791         error_propagate(errp, local_err);
792         return;
793     }
794 
795     for (i = 0; i < s->num_cpu; i++) {
796         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
797 
798         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
799     }
800 
801     /* Try to create the device via the device control API */
802     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
803     if (s->dev_fd < 0) {
804         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
805         return;
806     }
807 
808     multiple_redist_region_allowed =
809         kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
810                               KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
811 
812     if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
813         error_setg(errp, "Multiple VGICv3 redistributor regions are not "
814                    "supported by this host kernel");
815         error_append_hint(errp, "A maximum of %d VCPUs can be used",
816                           s->redist_region_count[0]);
817         return;
818     }
819 
820     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
821                       0, &s->num_irq, true, &error_abort);
822 
823     /* Tell the kernel to complete VGIC initialization now */
824     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
825                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
826 
827     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
828                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
829 
830     if (!multiple_redist_region_allowed) {
831         kvm_arm_register_device(&s->iomem_redist[0], -1,
832                                 KVM_DEV_ARM_VGIC_GRP_ADDR,
833                                 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
834     } else {
835         /* we register regions in reverse order as "devices" are inserted at
836          * the head of a QSLIST and the list is then popped from the head
837          * onwards by kvm_arm_machine_init_done()
838          */
839         for (i = s->nb_redist_regions - 1; i >= 0; i--) {
840             /* Address mask made of the rdist region index and count */
841             uint64_t addr_ormask =
842                         i | ((uint64_t)s->redist_region_count[i] << 52);
843 
844             kvm_arm_register_device(&s->iomem_redist[i], -1,
845                                     KVM_DEV_ARM_VGIC_GRP_ADDR,
846                                     KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
847                                     s->dev_fd, addr_ormask);
848         }
849     }
850 
851     if (kvm_has_gsi_routing()) {
852         /* set up irq routing */
853         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
854             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
855         }
856 
857         kvm_gsi_routing_allowed = true;
858 
859         kvm_irqchip_commit_routes(kvm_state);
860     }
861 
862     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
863                                GICD_CTLR)) {
864         error_setg(&s->migration_blocker, "This operating system kernel does "
865                                           "not support vGICv3 migration");
866         migrate_add_blocker(s->migration_blocker, &local_err);
867         if (local_err) {
868             error_propagate(errp, local_err);
869             error_free(s->migration_blocker);
870             return;
871         }
872     }
873     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
874                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
875         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
876     }
877 }
878 
879 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
880 {
881     DeviceClass *dc = DEVICE_CLASS(klass);
882     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
883     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
884 
885     agcc->pre_save = kvm_arm_gicv3_get;
886     agcc->post_load = kvm_arm_gicv3_put;
887     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
888                                     &kgc->parent_realize);
889     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
890 }
891 
892 static const TypeInfo kvm_arm_gicv3_info = {
893     .name = TYPE_KVM_ARM_GICV3,
894     .parent = TYPE_ARM_GICV3_COMMON,
895     .instance_size = sizeof(GICv3State),
896     .class_init = kvm_arm_gicv3_class_init,
897     .class_size = sizeof(KVMARMGICv3Class),
898 };
899 
900 static void kvm_arm_gicv3_register_types(void)
901 {
902     type_register_static(&kvm_arm_gicv3_info);
903 }
904 
905 type_init(kvm_arm_gicv3_register_types)
906