xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision 2f95279a)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "qemu/error-report.h"
26 #include "qemu/module.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/runstate.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 #include "qom/object.h"
34 #include "target/arm/cpregs.h"
35 
36 
37 #ifdef DEBUG_GICV3_KVM
38 #define DPRINTF(fmt, ...) \
39     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF(fmt, ...) \
42     do { } while (0)
43 #endif
44 
45 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
46 typedef struct KVMARMGICv3Class KVMARMGICv3Class;
47 /* This is reusing the GICv3State typedef from ARM_GICV3_ITS_COMMON */
48 DECLARE_OBJ_CHECKERS(GICv3State, KVMARMGICv3Class,
49                      KVM_ARM_GICV3, TYPE_KVM_ARM_GICV3)
50 
51 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
52                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
53                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
55                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
56                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
57 
58 #define ICC_PMR_EL1     \
59     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
60 #define ICC_BPR0_EL1    \
61     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
62 #define ICC_AP0R_EL1(n) \
63     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
64 #define ICC_AP1R_EL1(n) \
65     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
66 #define ICC_BPR1_EL1    \
67     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
68 #define ICC_CTLR_EL1    \
69     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
70 #define ICC_SRE_EL1 \
71     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
72 #define ICC_IGRPEN0_EL1 \
73     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
74 #define ICC_IGRPEN1_EL1 \
75     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
76 
77 struct KVMARMGICv3Class {
78     ARMGICv3CommonClass parent_class;
79     DeviceRealize parent_realize;
80     ResettablePhases parent_phases;
81 };
82 
83 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
84 {
85     GICv3State *s = (GICv3State *)opaque;
86 
87     kvm_arm_gic_set_irq(s->num_irq, irq, level);
88 }
89 
90 #define KVM_VGIC_ATTR(reg, typer) \
91     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
92 
93 static inline void kvm_gicd_access(GICv3State *s, int offset,
94                                    uint32_t *val, bool write)
95 {
96     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
97                       KVM_VGIC_ATTR(offset, 0),
98                       val, write, &error_abort);
99 }
100 
101 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
102                                    uint32_t *val, bool write)
103 {
104     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
105                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
106                       val, write, &error_abort);
107 }
108 
109 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
110                                    uint64_t *val, bool write)
111 {
112     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
113                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
114                       val, write, &error_abort);
115 }
116 
117 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
118                                              uint32_t *val, bool write)
119 {
120     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
121                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
122                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
123                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
124                       val, write, &error_abort);
125 }
126 
127 /* Loop through each distributor IRQ related register; since bits
128  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
129  * is enabled, we skip those.
130  */
131 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
132     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
133 
134 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
135 {
136     uint32_t reg, *field;
137     int irq;
138 
139     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
140      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
141      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
142      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
143      * offset.
144      */
145     field = (uint32_t *)(bmp + GIC_INTERNAL);
146     offset += (GIC_INTERNAL * 8) / 8;
147     for_each_dist_irq_reg(irq, s->num_irq, 8) {
148         kvm_gicd_access(s, offset, &reg, false);
149         *field = reg;
150         offset += 4;
151         field++;
152     }
153 }
154 
155 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
156 {
157     uint32_t reg, *field;
158     int irq;
159 
160     /* For the KVM GICv3, affinity routing is always enabled, and the first 8
161      * GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
162      * functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
163      * sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
164      * offset.
165      */
166     field = (uint32_t *)(bmp + GIC_INTERNAL);
167     offset += (GIC_INTERNAL * 8) / 8;
168     for_each_dist_irq_reg(irq, s->num_irq, 8) {
169         reg = *field;
170         kvm_gicd_access(s, offset, &reg, true);
171         offset += 4;
172         field++;
173     }
174 }
175 
176 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
177                                       uint32_t *bmp)
178 {
179     uint32_t reg;
180     int irq;
181 
182     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
183      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
184      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
185      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
186      * This matches the for_each_dist_irq_reg() macro which also skips the
187      * first GIC_INTERNAL irqs.
188      */
189     offset += (GIC_INTERNAL * 2) / 8;
190     for_each_dist_irq_reg(irq, s->num_irq, 2) {
191         kvm_gicd_access(s, offset, &reg, false);
192         reg = half_unshuffle32(reg >> 1);
193         if (irq % 32 != 0) {
194             reg = (reg << 16);
195         }
196         *gic_bmp_ptr32(bmp, irq) |=  reg;
197         offset += 4;
198     }
199 }
200 
201 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
202                                       uint32_t *bmp)
203 {
204     uint32_t reg;
205     int irq;
206 
207     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
208      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
209      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
210      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
211      * This matches the for_each_dist_irq_reg() macro which also skips the
212      * first GIC_INTERNAL irqs.
213      */
214     offset += (GIC_INTERNAL * 2) / 8;
215     for_each_dist_irq_reg(irq, s->num_irq, 2) {
216         reg = *gic_bmp_ptr32(bmp, irq);
217         if (irq % 32 != 0) {
218             reg = (reg & 0xffff0000) >> 16;
219         } else {
220             reg = reg & 0xffff;
221         }
222         reg = half_shuffle32(reg) << 1;
223         kvm_gicd_access(s, offset, &reg, true);
224         offset += 4;
225     }
226 }
227 
228 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
229 {
230     uint32_t reg;
231     int irq;
232 
233     for_each_dist_irq_reg(irq, s->num_irq, 1) {
234         kvm_gic_line_level_access(s, irq, 0, &reg, false);
235         *gic_bmp_ptr32(bmp, irq) = reg;
236     }
237 }
238 
239 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
240 {
241     uint32_t reg;
242     int irq;
243 
244     for_each_dist_irq_reg(irq, s->num_irq, 1) {
245         reg = *gic_bmp_ptr32(bmp, irq);
246         kvm_gic_line_level_access(s, irq, 0, &reg, true);
247     }
248 }
249 
250 /* Read a bitmap register group from the kernel VGIC. */
251 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
252 {
253     uint32_t reg;
254     int irq;
255 
256     /* For the KVM GICv3, affinity routing is always enabled, and the
257      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
258      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
259      * functionality is replaced by the GICR registers. It doesn't need to sync
260      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
261      * This matches the for_each_dist_irq_reg() macro which also skips the
262      * first GIC_INTERNAL irqs.
263      */
264     offset += (GIC_INTERNAL * 1) / 8;
265     for_each_dist_irq_reg(irq, s->num_irq, 1) {
266         kvm_gicd_access(s, offset, &reg, false);
267         *gic_bmp_ptr32(bmp, irq) = reg;
268         offset += 4;
269     }
270 }
271 
272 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
273                             uint32_t clroffset, uint32_t *bmp)
274 {
275     uint32_t reg;
276     int irq;
277 
278     /* For the KVM GICv3, affinity routing is always enabled, and the
279      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
280      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
281      * functionality is replaced by the GICR registers. It doesn't need to sync
282      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
283      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
284      * first GIC_INTERNAL irqs.
285      */
286     offset += (GIC_INTERNAL * 1) / 8;
287     if (clroffset != 0) {
288         clroffset += (GIC_INTERNAL * 1) / 8;
289     }
290 
291     for_each_dist_irq_reg(irq, s->num_irq, 1) {
292         /* If this bitmap is a set/clear register pair, first write to the
293          * clear-reg to clear all bits before using the set-reg to write
294          * the 1 bits.
295          */
296         if (clroffset != 0) {
297             reg = 0;
298             kvm_gicd_access(s, clroffset, &reg, true);
299             clroffset += 4;
300         }
301         reg = *gic_bmp_ptr32(bmp, irq);
302         kvm_gicd_access(s, offset, &reg, true);
303         offset += 4;
304     }
305 }
306 
307 static void kvm_arm_gicv3_check(GICv3State *s)
308 {
309     uint32_t reg;
310     uint32_t num_irq;
311 
312     /* Sanity checking s->num_irq */
313     kvm_gicd_access(s, GICD_TYPER, &reg, false);
314     num_irq = ((reg & 0x1f) + 1) * 32;
315 
316     if (num_irq < s->num_irq) {
317         error_report("Model requests %u IRQs, but kernel supports max %u",
318                      s->num_irq, num_irq);
319         abort();
320     }
321 }
322 
323 static void kvm_arm_gicv3_put(GICv3State *s)
324 {
325     uint32_t regl, regh, reg;
326     uint64_t reg64, redist_typer;
327     int ncpu, i;
328 
329     kvm_arm_gicv3_check(s);
330 
331     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
332     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
333     redist_typer = ((uint64_t)regh << 32) | regl;
334 
335     reg = s->gicd_ctlr;
336     kvm_gicd_access(s, GICD_CTLR, &reg, true);
337 
338     if (redist_typer & GICR_TYPER_PLPIS) {
339         /*
340          * Restore base addresses before LPIs are potentially enabled by
341          * GICR_CTLR write
342          */
343         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
344             GICv3CPUState *c = &s->cpu[ncpu];
345 
346             reg64 = c->gicr_propbaser;
347             regl = (uint32_t)reg64;
348             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
349             regh = (uint32_t)(reg64 >> 32);
350             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
351 
352             reg64 = c->gicr_pendbaser;
353             regl = (uint32_t)reg64;
354             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
355             regh = (uint32_t)(reg64 >> 32);
356             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
357         }
358     }
359 
360     /* Redistributor state (one per CPU) */
361 
362     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
363         GICv3CPUState *c = &s->cpu[ncpu];
364 
365         reg = c->gicr_ctlr;
366         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
367 
368         reg = c->gicr_statusr[GICV3_NS];
369         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
370 
371         reg = c->gicr_waker;
372         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
373 
374         reg = c->gicr_igroupr0;
375         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
376 
377         reg = ~0;
378         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
379         reg = c->gicr_ienabler0;
380         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
381 
382         /* Restore config before pending so we treat level/edge correctly */
383         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
384         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
385 
386         reg = c->level;
387         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
388 
389         reg = ~0;
390         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
391         reg = c->gicr_ipendr0;
392         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
393 
394         reg = ~0;
395         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
396         reg = c->gicr_iactiver0;
397         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
398 
399         for (i = 0; i < GIC_INTERNAL; i += 4) {
400             reg = c->gicr_ipriorityr[i] |
401                 (c->gicr_ipriorityr[i + 1] << 8) |
402                 (c->gicr_ipriorityr[i + 2] << 16) |
403                 (c->gicr_ipriorityr[i + 3] << 24);
404             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
405         }
406     }
407 
408     /* Distributor state (shared between all CPUs */
409     reg = s->gicd_statusr[GICV3_NS];
410     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
411 
412     /* s->enable bitmap -> GICD_ISENABLERn */
413     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
414 
415     /* s->group bitmap -> GICD_IGROUPRn */
416     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
417 
418     /* Restore targets before pending to ensure the pending state is set on
419      * the appropriate CPU interfaces in the kernel
420      */
421 
422     /* s->gicd_irouter[irq] -> GICD_IROUTERn
423      * We can't use kvm_dist_put() here because the registers are 64-bit
424      */
425     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
426         uint32_t offset;
427 
428         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
429         reg = (uint32_t)s->gicd_irouter[i];
430         kvm_gicd_access(s, offset, &reg, true);
431 
432         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
433         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
434         kvm_gicd_access(s, offset, &reg, true);
435     }
436 
437     /* s->trigger bitmap -> GICD_ICFGRn
438      * (restore configuration registers before pending IRQs so we treat
439      * level/edge correctly)
440      */
441     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
442 
443     /* s->level bitmap ->  line_level */
444     kvm_gic_put_line_level_bmp(s, s->level);
445 
446     /* s->pending bitmap -> GICD_ISPENDRn */
447     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
448 
449     /* s->active bitmap -> GICD_ISACTIVERn */
450     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
451 
452     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
453     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
454 
455     /* CPU Interface state (one per CPU) */
456 
457     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
458         GICv3CPUState *c = &s->cpu[ncpu];
459         int num_pri_bits;
460 
461         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
462         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
463                         &c->icc_ctlr_el1[GICV3_NS], true);
464         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
465                         &c->icc_igrpen[GICV3_G0], true);
466         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
467                         &c->icc_igrpen[GICV3_G1NS], true);
468         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
469         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
470         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
471 
472         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
473                         ICC_CTLR_EL1_PRIBITS_MASK) >>
474                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
475 
476         switch (num_pri_bits) {
477         case 7:
478             reg64 = c->icc_apr[GICV3_G0][3];
479             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
480             reg64 = c->icc_apr[GICV3_G0][2];
481             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
482             /* fall through */
483         case 6:
484             reg64 = c->icc_apr[GICV3_G0][1];
485             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
486             /* fall through */
487         default:
488             reg64 = c->icc_apr[GICV3_G0][0];
489             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
490         }
491 
492         switch (num_pri_bits) {
493         case 7:
494             reg64 = c->icc_apr[GICV3_G1NS][3];
495             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
496             reg64 = c->icc_apr[GICV3_G1NS][2];
497             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
498             /* fall through */
499         case 6:
500             reg64 = c->icc_apr[GICV3_G1NS][1];
501             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
502             /* fall through */
503         default:
504             reg64 = c->icc_apr[GICV3_G1NS][0];
505             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
506         }
507     }
508 }
509 
510 static void kvm_arm_gicv3_get(GICv3State *s)
511 {
512     uint32_t regl, regh, reg;
513     uint64_t reg64, redist_typer;
514     int ncpu, i;
515 
516     kvm_arm_gicv3_check(s);
517 
518     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
519     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
520     redist_typer = ((uint64_t)regh << 32) | regl;
521 
522     kvm_gicd_access(s, GICD_CTLR, &reg, false);
523     s->gicd_ctlr = reg;
524 
525     /* Redistributor state (one per CPU) */
526 
527     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
528         GICv3CPUState *c = &s->cpu[ncpu];
529 
530         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
531         c->gicr_ctlr = reg;
532 
533         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
534         c->gicr_statusr[GICV3_NS] = reg;
535 
536         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
537         c->gicr_waker = reg;
538 
539         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
540         c->gicr_igroupr0 = reg;
541         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
542         c->gicr_ienabler0 = reg;
543         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
544         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
545         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
546         c->level = reg;
547         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
548         c->gicr_ipendr0 = reg;
549         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
550         c->gicr_iactiver0 = reg;
551 
552         for (i = 0; i < GIC_INTERNAL; i += 4) {
553             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
554             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
555             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
556             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
557             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
558         }
559     }
560 
561     if (redist_typer & GICR_TYPER_PLPIS) {
562         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
563             GICv3CPUState *c = &s->cpu[ncpu];
564 
565             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
566             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
567             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
568 
569             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
570             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
571             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
572         }
573     }
574 
575     /* Distributor state (shared between all CPUs */
576 
577     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
578     s->gicd_statusr[GICV3_NS] = reg;
579 
580     /* GICD_IGROUPRn -> s->group bitmap */
581     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
582 
583     /* GICD_ISENABLERn -> s->enabled bitmap */
584     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
585 
586     /* Line level of irq */
587     kvm_gic_get_line_level_bmp(s, s->level);
588     /* GICD_ISPENDRn -> s->pending bitmap */
589     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
590 
591     /* GICD_ISACTIVERn -> s->active bitmap */
592     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
593 
594     /* GICD_ICFGRn -> s->trigger bitmap */
595     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
596 
597     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
598     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
599 
600     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
601     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
602         uint32_t offset;
603 
604         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
605         kvm_gicd_access(s, offset, &regl, false);
606         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
607         kvm_gicd_access(s, offset, &regh, false);
608         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
609     }
610 
611     /*****************************************************************
612      * CPU Interface(s) State
613      */
614 
615     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
616         GICv3CPUState *c = &s->cpu[ncpu];
617         int num_pri_bits;
618 
619         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
620         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
621                         &c->icc_ctlr_el1[GICV3_NS], false);
622         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
623                         &c->icc_igrpen[GICV3_G0], false);
624         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
625                         &c->icc_igrpen[GICV3_G1NS], false);
626         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
627         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
628         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
629         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
630                         ICC_CTLR_EL1_PRIBITS_MASK) >>
631                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
632 
633         switch (num_pri_bits) {
634         case 7:
635             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
636             c->icc_apr[GICV3_G0][3] = reg64;
637             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
638             c->icc_apr[GICV3_G0][2] = reg64;
639             /* fall through */
640         case 6:
641             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
642             c->icc_apr[GICV3_G0][1] = reg64;
643             /* fall through */
644         default:
645             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
646             c->icc_apr[GICV3_G0][0] = reg64;
647         }
648 
649         switch (num_pri_bits) {
650         case 7:
651             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
652             c->icc_apr[GICV3_G1NS][3] = reg64;
653             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
654             c->icc_apr[GICV3_G1NS][2] = reg64;
655             /* fall through */
656         case 6:
657             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
658             c->icc_apr[GICV3_G1NS][1] = reg64;
659             /* fall through */
660         default:
661             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
662             c->icc_apr[GICV3_G1NS][0] = reg64;
663         }
664     }
665 }
666 
667 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
668 {
669     GICv3State *s;
670     GICv3CPUState *c;
671 
672     c = (GICv3CPUState *)env->gicv3state;
673     s = c->gic;
674 
675     c->icc_pmr_el1 = 0;
676     /*
677      * Architecturally the reset value of the ICC_BPR registers
678      * is UNKNOWN. We set them all to 0 here; when the kernel
679      * uses these values to program the ICH_VMCR_EL2 fields that
680      * determine the guest-visible ICC_BPR register values, the
681      * hardware's "writing a value less than the minimum sets
682      * the field to the minimum value" behaviour will result in
683      * them effectively resetting to the correct minimum value
684      * for the host GIC.
685      */
686     c->icc_bpr[GICV3_G0] = 0;
687     c->icc_bpr[GICV3_G1] = 0;
688     c->icc_bpr[GICV3_G1NS] = 0;
689 
690     c->icc_sre_el1 = 0x7;
691     memset(c->icc_apr, 0, sizeof(c->icc_apr));
692     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
693 
694     if (s->migration_blocker) {
695         return;
696     }
697 
698     /* Initialize to actual HW supported configuration */
699     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
700                       KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
701                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
702 
703     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
704 }
705 
706 static void kvm_arm_gicv3_reset_hold(Object *obj, ResetType type)
707 {
708     GICv3State *s = ARM_GICV3_COMMON(obj);
709     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
710 
711     DPRINTF("Reset\n");
712 
713     if (kgc->parent_phases.hold) {
714         kgc->parent_phases.hold(obj, type);
715     }
716 
717     if (s->migration_blocker) {
718         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
719         return;
720     }
721 
722     kvm_arm_gicv3_put(s);
723 }
724 
725 /*
726  * CPU interface registers of GIC needs to be reset on CPU reset.
727  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
728  * below ARMCPRegInfo. As we reset the whole cpu interface under single
729  * register reset, we define only one register of CPU interface instead
730  * of defining all the registers.
731  */
732 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
733     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
734       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
735       /*
736        * If ARM_CP_NOP is used, resetfn is not called,
737        * So ARM_CP_NO_RAW is appropriate type.
738        */
739       .type = ARM_CP_NO_RAW,
740       .access = PL1_RW,
741       .readfn = arm_cp_read_zero,
742       .writefn = arm_cp_write_ignore,
743       /*
744        * We hang the whole cpu interface reset routine off here
745        * rather than parcelling it out into one little function
746        * per register
747        */
748       .resetfn = arm_gicv3_icc_reset,
749     },
750 };
751 
752 /**
753  * vm_change_state_handler - VM change state callback aiming at flushing
754  * RDIST pending tables into guest RAM
755  *
756  * The tables get flushed to guest RAM whenever the VM gets stopped.
757  */
758 static void vm_change_state_handler(void *opaque, bool running,
759                                     RunState state)
760 {
761     GICv3State *s = (GICv3State *)opaque;
762     Error *err = NULL;
763     int ret;
764 
765     if (running) {
766         return;
767     }
768 
769     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
770                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
771                            NULL, true, &err);
772     if (err) {
773         error_report_err(err);
774     }
775     if (ret < 0 && ret != -EFAULT) {
776         abort();
777     }
778 }
779 
780 
781 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
782 {
783     GICv3State *s = KVM_ARM_GICV3(dev);
784     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
785     bool multiple_redist_region_allowed;
786     Error *local_err = NULL;
787     int i;
788 
789     DPRINTF("kvm_arm_gicv3_realize\n");
790 
791     kgc->parent_realize(dev, &local_err);
792     if (local_err) {
793         error_propagate(errp, local_err);
794         return;
795     }
796 
797     if (s->revision != 3) {
798         error_setg(errp, "unsupported GIC revision %d for in-kernel GIC",
799                    s->revision);
800     }
801 
802     if (s->security_extn) {
803         error_setg(errp, "the in-kernel VGICv3 does not implement the "
804                    "security extensions");
805         return;
806     }
807 
808     if (s->nmi_support) {
809         error_setg(errp, "NMI is not supported with the in-kernel GIC");
810         return;
811     }
812 
813     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
814 
815     for (i = 0; i < s->num_cpu; i++) {
816         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
817 
818         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
819     }
820 
821     /* Try to create the device via the device control API */
822     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
823     if (s->dev_fd < 0) {
824         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
825         return;
826     }
827 
828     multiple_redist_region_allowed =
829         kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
830                               KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
831 
832     if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
833         error_setg(errp, "Multiple VGICv3 redistributor regions are not "
834                    "supported by this host kernel");
835         error_append_hint(errp, "A maximum of %d VCPUs can be used",
836                           s->redist_region_count[0]);
837         return;
838     }
839 
840     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
841                       0, &s->num_irq, true, &error_abort);
842 
843     /* Tell the kernel to complete VGIC initialization now */
844     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
845                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
846 
847     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
848                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
849 
850     if (!multiple_redist_region_allowed) {
851         kvm_arm_register_device(&s->redist_regions[0].iomem, -1,
852                                 KVM_DEV_ARM_VGIC_GRP_ADDR,
853                                 KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
854     } else {
855         /* we register regions in reverse order as "devices" are inserted at
856          * the head of a QSLIST and the list is then popped from the head
857          * onwards by kvm_arm_machine_init_done()
858          */
859         for (i = s->nb_redist_regions - 1; i >= 0; i--) {
860             /* Address mask made of the rdist region index and count */
861             uint64_t addr_ormask =
862                         i | ((uint64_t)s->redist_region_count[i] << 52);
863 
864             kvm_arm_register_device(&s->redist_regions[i].iomem, -1,
865                                     KVM_DEV_ARM_VGIC_GRP_ADDR,
866                                     KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
867                                     s->dev_fd, addr_ormask);
868         }
869     }
870 
871     if (kvm_has_gsi_routing()) {
872         /* set up irq routing */
873         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
874             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
875         }
876 
877         kvm_gsi_routing_allowed = true;
878 
879         kvm_irqchip_commit_routes(kvm_state);
880     }
881 
882     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
883                                GICD_CTLR)) {
884         error_setg(&s->migration_blocker, "This operating system kernel does "
885                                           "not support vGICv3 migration");
886         if (migrate_add_blocker(&s->migration_blocker, errp) < 0) {
887             return;
888         }
889     }
890     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
891                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
892         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
893     }
894 }
895 
896 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
897 {
898     DeviceClass *dc = DEVICE_CLASS(klass);
899     ResettableClass *rc = RESETTABLE_CLASS(klass);
900     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
901     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
902 
903     agcc->pre_save = kvm_arm_gicv3_get;
904     agcc->post_load = kvm_arm_gicv3_put;
905     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
906                                     &kgc->parent_realize);
907     resettable_class_set_parent_phases(rc, NULL, kvm_arm_gicv3_reset_hold, NULL,
908                                        &kgc->parent_phases);
909 }
910 
911 static const TypeInfo kvm_arm_gicv3_info = {
912     .name = TYPE_KVM_ARM_GICV3,
913     .parent = TYPE_ARM_GICV3_COMMON,
914     .instance_size = sizeof(GICv3State),
915     .class_init = kvm_arm_gicv3_class_init,
916     .class_size = sizeof(KVMARMGICv3Class),
917 };
918 
919 static void kvm_arm_gicv3_register_types(void)
920 {
921     type_register_static(&kvm_arm_gicv3_info);
922 }
923 
924 type_init(kvm_arm_gicv3_register_types)
925