xref: /openbmc/qemu/hw/intc/arm_gicv3_kvm.c (revision 265b578c)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/sysemu.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 
34 #ifdef DEBUG_GICV3_KVM
35 #define DPRINTF(fmt, ...) \
36     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41 
42 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
43 #define KVM_ARM_GICV3(obj) \
44      OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
45 #define KVM_ARM_GICV3_CLASS(klass) \
46      OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
47 #define KVM_ARM_GICV3_GET_CLASS(obj) \
48      OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49 
50 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
51                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56 
57 #define ICC_PMR_EL1     \
58     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1    \
60     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1    \
66     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1    \
68     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75 
76 typedef struct KVMARMGICv3Class {
77     ARMGICv3CommonClass parent_class;
78     DeviceRealize parent_realize;
79     void (*parent_reset)(DeviceState *dev);
80 } KVMARMGICv3Class;
81 
82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84     GICv3State *s = (GICv3State *)opaque;
85 
86     kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88 
89 #define KVM_VGIC_ATTR(reg, typer) \
90     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91 
92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93                                    uint32_t *val, bool write)
94 {
95     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96                       KVM_VGIC_ATTR(offset, 0),
97                       val, write, &error_abort);
98 }
99 
100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101                                    uint32_t *val, bool write)
102 {
103     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105                       val, write, &error_abort);
106 }
107 
108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109                                    uint64_t *val, bool write)
110 {
111     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113                       val, write, &error_abort);
114 }
115 
116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117                                              uint32_t *val, bool write)
118 {
119     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
122                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123                       val, write, &error_abort);
124 }
125 
126 /* Loop through each distributor IRQ related register; since bits
127  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128  * is enabled, we skip those.
129  */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132 
133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135     uint32_t reg, *field;
136     int irq;
137 
138     field = (uint32_t *)bmp;
139     for_each_dist_irq_reg(irq, s->num_irq, 8) {
140         kvm_gicd_access(s, offset, &reg, false);
141         *field = reg;
142         offset += 4;
143         field++;
144     }
145 }
146 
147 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
148 {
149     uint32_t reg, *field;
150     int irq;
151 
152     field = (uint32_t *)bmp;
153     for_each_dist_irq_reg(irq, s->num_irq, 8) {
154         reg = *field;
155         kvm_gicd_access(s, offset, &reg, true);
156         offset += 4;
157         field++;
158     }
159 }
160 
161 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
162                                       uint32_t *bmp)
163 {
164     uint32_t reg;
165     int irq;
166 
167     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
168      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
169      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
170      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
171      * This matches the for_each_dist_irq_reg() macro which also skips the
172      * first GIC_INTERNAL irqs.
173      */
174     offset += (GIC_INTERNAL * 2) / 8;
175     for_each_dist_irq_reg(irq, s->num_irq, 2) {
176         kvm_gicd_access(s, offset, &reg, false);
177         reg = half_unshuffle32(reg >> 1);
178         if (irq % 32 != 0) {
179             reg = (reg << 16);
180         }
181         *gic_bmp_ptr32(bmp, irq) |=  reg;
182         offset += 4;
183     }
184 }
185 
186 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
187                                       uint32_t *bmp)
188 {
189     uint32_t reg;
190     int irq;
191 
192     /* For the KVM GICv3, affinity routing is always enabled, and the first 2
193      * GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
194      * functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
195      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
196      * This matches the for_each_dist_irq_reg() macro which also skips the
197      * first GIC_INTERNAL irqs.
198      */
199     offset += (GIC_INTERNAL * 2) / 8;
200     for_each_dist_irq_reg(irq, s->num_irq, 2) {
201         reg = *gic_bmp_ptr32(bmp, irq);
202         if (irq % 32 != 0) {
203             reg = (reg & 0xffff0000) >> 16;
204         } else {
205             reg = reg & 0xffff;
206         }
207         reg = half_shuffle32(reg) << 1;
208         kvm_gicd_access(s, offset, &reg, true);
209         offset += 4;
210     }
211 }
212 
213 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
214 {
215     uint32_t reg;
216     int irq;
217 
218     for_each_dist_irq_reg(irq, s->num_irq, 1) {
219         kvm_gic_line_level_access(s, irq, 0, &reg, false);
220         *gic_bmp_ptr32(bmp, irq) = reg;
221     }
222 }
223 
224 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
225 {
226     uint32_t reg;
227     int irq;
228 
229     for_each_dist_irq_reg(irq, s->num_irq, 1) {
230         reg = *gic_bmp_ptr32(bmp, irq);
231         kvm_gic_line_level_access(s, irq, 0, &reg, true);
232     }
233 }
234 
235 /* Read a bitmap register group from the kernel VGIC. */
236 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
237 {
238     uint32_t reg;
239     int irq;
240 
241     /* For the KVM GICv3, affinity routing is always enabled, and the
242      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
243      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
244      * functionality is replaced by the GICR registers. It doesn't need to sync
245      * them. So it should increase the offset to skip GIC_INTERNAL irqs.
246      * This matches the for_each_dist_irq_reg() macro which also skips the
247      * first GIC_INTERNAL irqs.
248      */
249     offset += (GIC_INTERNAL * 1) / 8;
250     for_each_dist_irq_reg(irq, s->num_irq, 1) {
251         kvm_gicd_access(s, offset, &reg, false);
252         *gic_bmp_ptr32(bmp, irq) = reg;
253         offset += 4;
254     }
255 }
256 
257 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
258                             uint32_t clroffset, uint32_t *bmp)
259 {
260     uint32_t reg;
261     int irq;
262 
263     /* For the KVM GICv3, affinity routing is always enabled, and the
264      * GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
265      * GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
266      * functionality is replaced by the GICR registers. It doesn't need to sync
267      * them. So it should increase the offset and clroffset to skip GIC_INTERNAL
268      * irqs. This matches the for_each_dist_irq_reg() macro which also skips the
269      * first GIC_INTERNAL irqs.
270      */
271     offset += (GIC_INTERNAL * 1) / 8;
272     if (clroffset != 0) {
273         clroffset += (GIC_INTERNAL * 1) / 8;
274     }
275 
276     for_each_dist_irq_reg(irq, s->num_irq, 1) {
277         /* If this bitmap is a set/clear register pair, first write to the
278          * clear-reg to clear all bits before using the set-reg to write
279          * the 1 bits.
280          */
281         if (clroffset != 0) {
282             reg = 0;
283             kvm_gicd_access(s, clroffset, &reg, true);
284             clroffset += 4;
285         }
286         reg = *gic_bmp_ptr32(bmp, irq);
287         kvm_gicd_access(s, offset, &reg, true);
288         offset += 4;
289     }
290 }
291 
292 static void kvm_arm_gicv3_check(GICv3State *s)
293 {
294     uint32_t reg;
295     uint32_t num_irq;
296 
297     /* Sanity checking s->num_irq */
298     kvm_gicd_access(s, GICD_TYPER, &reg, false);
299     num_irq = ((reg & 0x1f) + 1) * 32;
300 
301     if (num_irq < s->num_irq) {
302         error_report("Model requests %u IRQs, but kernel supports max %u",
303                      s->num_irq, num_irq);
304         abort();
305     }
306 }
307 
308 static void kvm_arm_gicv3_put(GICv3State *s)
309 {
310     uint32_t regl, regh, reg;
311     uint64_t reg64, redist_typer;
312     int ncpu, i;
313 
314     kvm_arm_gicv3_check(s);
315 
316     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
317     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
318     redist_typer = ((uint64_t)regh << 32) | regl;
319 
320     reg = s->gicd_ctlr;
321     kvm_gicd_access(s, GICD_CTLR, &reg, true);
322 
323     if (redist_typer & GICR_TYPER_PLPIS) {
324         /* Set base addresses before LPIs are enabled by GICR_CTLR write */
325         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
326             GICv3CPUState *c = &s->cpu[ncpu];
327 
328             reg64 = c->gicr_propbaser;
329             regl = (uint32_t)reg64;
330             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
331             regh = (uint32_t)(reg64 >> 32);
332             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
333 
334             reg64 = c->gicr_pendbaser;
335             if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
336                 /* Setting PTZ is advised if LPIs are disabled, to reduce
337                  * GIC initialization time.
338                  */
339                 reg64 |= GICR_PENDBASER_PTZ;
340             }
341             regl = (uint32_t)reg64;
342             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
343             regh = (uint32_t)(reg64 >> 32);
344             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
345         }
346     }
347 
348     /* Redistributor state (one per CPU) */
349 
350     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
351         GICv3CPUState *c = &s->cpu[ncpu];
352 
353         reg = c->gicr_ctlr;
354         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
355 
356         reg = c->gicr_statusr[GICV3_NS];
357         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
358 
359         reg = c->gicr_waker;
360         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
361 
362         reg = c->gicr_igroupr0;
363         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
364 
365         reg = ~0;
366         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
367         reg = c->gicr_ienabler0;
368         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
369 
370         /* Restore config before pending so we treat level/edge correctly */
371         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
372         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
373 
374         reg = c->level;
375         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
376 
377         reg = ~0;
378         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
379         reg = c->gicr_ipendr0;
380         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
381 
382         reg = ~0;
383         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
384         reg = c->gicr_iactiver0;
385         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
386 
387         for (i = 0; i < GIC_INTERNAL; i += 4) {
388             reg = c->gicr_ipriorityr[i] |
389                 (c->gicr_ipriorityr[i + 1] << 8) |
390                 (c->gicr_ipriorityr[i + 2] << 16) |
391                 (c->gicr_ipriorityr[i + 3] << 24);
392             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
393         }
394     }
395 
396     /* Distributor state (shared between all CPUs */
397     reg = s->gicd_statusr[GICV3_NS];
398     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
399 
400     /* s->enable bitmap -> GICD_ISENABLERn */
401     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
402 
403     /* s->group bitmap -> GICD_IGROUPRn */
404     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
405 
406     /* Restore targets before pending to ensure the pending state is set on
407      * the appropriate CPU interfaces in the kernel
408      */
409 
410     /* s->gicd_irouter[irq] -> GICD_IROUTERn
411      * We can't use kvm_dist_put() here because the registers are 64-bit
412      */
413     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
414         uint32_t offset;
415 
416         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
417         reg = (uint32_t)s->gicd_irouter[i];
418         kvm_gicd_access(s, offset, &reg, true);
419 
420         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
421         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
422         kvm_gicd_access(s, offset, &reg, true);
423     }
424 
425     /* s->trigger bitmap -> GICD_ICFGRn
426      * (restore configuration registers before pending IRQs so we treat
427      * level/edge correctly)
428      */
429     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
430 
431     /* s->level bitmap ->  line_level */
432     kvm_gic_put_line_level_bmp(s, s->level);
433 
434     /* s->pending bitmap -> GICD_ISPENDRn */
435     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
436 
437     /* s->active bitmap -> GICD_ISACTIVERn */
438     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
439 
440     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
441     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
442 
443     /* CPU Interface state (one per CPU) */
444 
445     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
446         GICv3CPUState *c = &s->cpu[ncpu];
447         int num_pri_bits;
448 
449         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
450         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
451                         &c->icc_ctlr_el1[GICV3_NS], true);
452         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
453                         &c->icc_igrpen[GICV3_G0], true);
454         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
455                         &c->icc_igrpen[GICV3_G1NS], true);
456         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
457         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
458         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
459 
460         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
461                         ICC_CTLR_EL1_PRIBITS_MASK) >>
462                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
463 
464         switch (num_pri_bits) {
465         case 7:
466             reg64 = c->icc_apr[GICV3_G0][3];
467             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
468             reg64 = c->icc_apr[GICV3_G0][2];
469             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
470         case 6:
471             reg64 = c->icc_apr[GICV3_G0][1];
472             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
473         default:
474             reg64 = c->icc_apr[GICV3_G0][0];
475             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
476         }
477 
478         switch (num_pri_bits) {
479         case 7:
480             reg64 = c->icc_apr[GICV3_G1NS][3];
481             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
482             reg64 = c->icc_apr[GICV3_G1NS][2];
483             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
484         case 6:
485             reg64 = c->icc_apr[GICV3_G1NS][1];
486             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
487         default:
488             reg64 = c->icc_apr[GICV3_G1NS][0];
489             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
490         }
491     }
492 }
493 
494 static void kvm_arm_gicv3_get(GICv3State *s)
495 {
496     uint32_t regl, regh, reg;
497     uint64_t reg64, redist_typer;
498     int ncpu, i;
499 
500     kvm_arm_gicv3_check(s);
501 
502     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
503     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
504     redist_typer = ((uint64_t)regh << 32) | regl;
505 
506     kvm_gicd_access(s, GICD_CTLR, &reg, false);
507     s->gicd_ctlr = reg;
508 
509     /* Redistributor state (one per CPU) */
510 
511     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
512         GICv3CPUState *c = &s->cpu[ncpu];
513 
514         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
515         c->gicr_ctlr = reg;
516 
517         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
518         c->gicr_statusr[GICV3_NS] = reg;
519 
520         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
521         c->gicr_waker = reg;
522 
523         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
524         c->gicr_igroupr0 = reg;
525         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
526         c->gicr_ienabler0 = reg;
527         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
528         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
529         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
530         c->level = reg;
531         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
532         c->gicr_ipendr0 = reg;
533         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
534         c->gicr_iactiver0 = reg;
535 
536         for (i = 0; i < GIC_INTERNAL; i += 4) {
537             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
538             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
539             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
540             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
541             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
542         }
543     }
544 
545     if (redist_typer & GICR_TYPER_PLPIS) {
546         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
547             GICv3CPUState *c = &s->cpu[ncpu];
548 
549             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
550             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
551             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
552 
553             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
554             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
555             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
556         }
557     }
558 
559     /* Distributor state (shared between all CPUs */
560 
561     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
562     s->gicd_statusr[GICV3_NS] = reg;
563 
564     /* GICD_IGROUPRn -> s->group bitmap */
565     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
566 
567     /* GICD_ISENABLERn -> s->enabled bitmap */
568     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
569 
570     /* Line level of irq */
571     kvm_gic_get_line_level_bmp(s, s->level);
572     /* GICD_ISPENDRn -> s->pending bitmap */
573     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
574 
575     /* GICD_ISACTIVERn -> s->active bitmap */
576     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
577 
578     /* GICD_ICFGRn -> s->trigger bitmap */
579     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
580 
581     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
582     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
583 
584     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
585     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
586         uint32_t offset;
587 
588         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
589         kvm_gicd_access(s, offset, &regl, false);
590         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
591         kvm_gicd_access(s, offset, &regh, false);
592         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
593     }
594 
595     /*****************************************************************
596      * CPU Interface(s) State
597      */
598 
599     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
600         GICv3CPUState *c = &s->cpu[ncpu];
601         int num_pri_bits;
602 
603         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
604         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
605                         &c->icc_ctlr_el1[GICV3_NS], false);
606         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
607                         &c->icc_igrpen[GICV3_G0], false);
608         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
609                         &c->icc_igrpen[GICV3_G1NS], false);
610         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
611         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
612         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
613         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
614                         ICC_CTLR_EL1_PRIBITS_MASK) >>
615                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
616 
617         switch (num_pri_bits) {
618         case 7:
619             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
620             c->icc_apr[GICV3_G0][3] = reg64;
621             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
622             c->icc_apr[GICV3_G0][2] = reg64;
623         case 6:
624             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
625             c->icc_apr[GICV3_G0][1] = reg64;
626         default:
627             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
628             c->icc_apr[GICV3_G0][0] = reg64;
629         }
630 
631         switch (num_pri_bits) {
632         case 7:
633             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
634             c->icc_apr[GICV3_G1NS][3] = reg64;
635             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
636             c->icc_apr[GICV3_G1NS][2] = reg64;
637         case 6:
638             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
639             c->icc_apr[GICV3_G1NS][1] = reg64;
640         default:
641             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
642             c->icc_apr[GICV3_G1NS][0] = reg64;
643         }
644     }
645 }
646 
647 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
648 {
649     ARMCPU *cpu;
650     GICv3State *s;
651     GICv3CPUState *c;
652 
653     c = (GICv3CPUState *)env->gicv3state;
654     s = c->gic;
655     cpu = ARM_CPU(c->cpu);
656 
657     c->icc_pmr_el1 = 0;
658     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
659     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
660     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
661 
662     c->icc_sre_el1 = 0x7;
663     memset(c->icc_apr, 0, sizeof(c->icc_apr));
664     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
665 
666     if (s->migration_blocker) {
667         return;
668     }
669 
670     /* Initialize to actual HW supported configuration */
671     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
672                       KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
673                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
674 
675     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
676 }
677 
678 static void kvm_arm_gicv3_reset(DeviceState *dev)
679 {
680     GICv3State *s = ARM_GICV3_COMMON(dev);
681     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
682 
683     DPRINTF("Reset\n");
684 
685     kgc->parent_reset(dev);
686 
687     if (s->migration_blocker) {
688         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
689         return;
690     }
691 
692     kvm_arm_gicv3_put(s);
693 }
694 
695 /*
696  * CPU interface registers of GIC needs to be reset on CPU reset.
697  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
698  * below ARMCPRegInfo. As we reset the whole cpu interface under single
699  * register reset, we define only one register of CPU interface instead
700  * of defining all the registers.
701  */
702 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
703     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
704       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
705       /*
706        * If ARM_CP_NOP is used, resetfn is not called,
707        * So ARM_CP_NO_RAW is appropriate type.
708        */
709       .type = ARM_CP_NO_RAW,
710       .access = PL1_RW,
711       .readfn = arm_cp_read_zero,
712       .writefn = arm_cp_write_ignore,
713       /*
714        * We hang the whole cpu interface reset routine off here
715        * rather than parcelling it out into one little function
716        * per register
717        */
718       .resetfn = arm_gicv3_icc_reset,
719     },
720     REGINFO_SENTINEL
721 };
722 
723 /**
724  * vm_change_state_handler - VM change state callback aiming at flushing
725  * RDIST pending tables into guest RAM
726  *
727  * The tables get flushed to guest RAM whenever the VM gets stopped.
728  */
729 static void vm_change_state_handler(void *opaque, int running,
730                                     RunState state)
731 {
732     GICv3State *s = (GICv3State *)opaque;
733     Error *err = NULL;
734     int ret;
735 
736     if (running) {
737         return;
738     }
739 
740     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
741                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
742                            NULL, true, &err);
743     if (err) {
744         error_report_err(err);
745     }
746     if (ret < 0 && ret != -EFAULT) {
747         abort();
748     }
749 }
750 
751 
752 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
753 {
754     GICv3State *s = KVM_ARM_GICV3(dev);
755     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
756     Error *local_err = NULL;
757     int i;
758 
759     DPRINTF("kvm_arm_gicv3_realize\n");
760 
761     kgc->parent_realize(dev, &local_err);
762     if (local_err) {
763         error_propagate(errp, local_err);
764         return;
765     }
766 
767     if (s->security_extn) {
768         error_setg(errp, "the in-kernel VGICv3 does not implement the "
769                    "security extensions");
770         return;
771     }
772 
773     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
774 
775     for (i = 0; i < s->num_cpu; i++) {
776         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
777 
778         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
779     }
780 
781     /* Try to create the device via the device control API */
782     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
783     if (s->dev_fd < 0) {
784         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
785         return;
786     }
787 
788     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
789                       0, &s->num_irq, true, &error_abort);
790 
791     /* Tell the kernel to complete VGIC initialization now */
792     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
793                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
794 
795     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
796                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
797     kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
798                             KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
799 
800     if (kvm_has_gsi_routing()) {
801         /* set up irq routing */
802         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
803             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
804         }
805 
806         kvm_gsi_routing_allowed = true;
807 
808         kvm_irqchip_commit_routes(kvm_state);
809     }
810 
811     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
812                                GICD_CTLR)) {
813         error_setg(&s->migration_blocker, "This operating system kernel does "
814                                           "not support vGICv3 migration");
815         migrate_add_blocker(s->migration_blocker, &local_err);
816         if (local_err) {
817             error_propagate(errp, local_err);
818             error_free(s->migration_blocker);
819             return;
820         }
821     }
822     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
823                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
824         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
825     }
826 }
827 
828 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
829 {
830     DeviceClass *dc = DEVICE_CLASS(klass);
831     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
832     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
833 
834     agcc->pre_save = kvm_arm_gicv3_get;
835     agcc->post_load = kvm_arm_gicv3_put;
836     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
837                                     &kgc->parent_realize);
838     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
839 }
840 
841 static const TypeInfo kvm_arm_gicv3_info = {
842     .name = TYPE_KVM_ARM_GICV3,
843     .parent = TYPE_ARM_GICV3_COMMON,
844     .instance_size = sizeof(GICv3State),
845     .class_init = kvm_arm_gicv3_class_init,
846     .class_size = sizeof(KVMARMGICv3Class),
847 };
848 
849 static void kvm_arm_gicv3_register_types(void)
850 {
851     type_register_static(&kvm_arm_gicv3_info);
852 }
853 
854 type_init(kvm_arm_gicv3_register_types)
855