xref: /openbmc/qemu/hw/intc/arm_gicv3_dist.c (revision cc37d98b)
1 /*
2  * ARM GICv3 emulation: Distributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 /* The GICD_NSACR registers contain a two bit field for each interrupt which
18  * allows the guest to give NonSecure code access to registers controlling
19  * Secure interrupts:
20  *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
21  *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
22  *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
23  *        and w/o to CLRSPI_NSR
24  *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
25  *
26  * Given a (multiple-of-32) interrupt number, these mask functions return
27  * a mask word where each bit is 1 if the NSACR settings permit access
28  * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
29  * word for this set of interrupts to give an overall mask.
30  */
31 
32 typedef uint32_t maskfn(GICv3State *s, int irq);
33 
34 static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
35 {
36     /* Return a mask where each bit is set if the NSACR field is >= 1 */
37     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
38 
39     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
40     raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
41     return half_unshuffle64(raw_nsacr);
42 }
43 
44 static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
45 {
46     /* Return a mask where each bit is set if the NSACR field is >= 2 */
47     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
48 
49     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
50     raw_nsacr = raw_nsacr >> 1;
51     return half_unshuffle64(raw_nsacr);
52 }
53 
54 /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
55  * but it would be implemented using:
56  *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
57  */
58 
59 static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
60                                      maskfn *maskfn, int irq)
61 {
62     /* Return a 32-bit mask which should be applied for this set of 32
63      * interrupts; each bit is 1 if access is permitted by the
64      * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
65      */
66     uint32_t mask;
67 
68     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
69         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
70          * unless the NSACR bits permit access.
71          */
72         mask = *gic_bmp_ptr32(s->group, irq);
73         if (maskfn) {
74             mask |= maskfn(s, irq);
75         }
76         return mask;
77     }
78     return 0xFFFFFFFFU;
79 }
80 
81 static int gicd_ns_access(GICv3State *s, int irq)
82 {
83     /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
84      * specified interrupt.
85      */
86     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
87         return 0;
88     }
89     return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
90 }
91 
92 static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
93                                       uint32_t *bmp,
94                                       maskfn *maskfn,
95                                       int offset, uint32_t val)
96 {
97     /* Helper routine to implement writing to a "set-bitmap" register
98      * (GICD_ISENABLER, GICD_ISPENDR, etc).
99      * Semantics implemented here:
100      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
101      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
102      * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
103      * offset should be the offset in bytes of the register from the start
104      * of its group.
105      */
106     int irq = offset * 8;
107 
108     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
109         return;
110     }
111     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
112     *gic_bmp_ptr32(bmp, irq) |= val;
113     gicv3_update(s, irq, 32);
114 }
115 
116 static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
117                                         uint32_t *bmp,
118                                         maskfn *maskfn,
119                                         int offset, uint32_t val)
120 {
121     /* Helper routine to implement writing to a "clear-bitmap" register
122      * (GICD_ICENABLER, GICD_ICPENDR, etc).
123      * Semantics implemented here:
124      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
125      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
126      * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
127      * offset should be the offset in bytes of the register from the start
128      * of its group.
129      */
130     int irq = offset * 8;
131 
132     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
133         return;
134     }
135     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
136     *gic_bmp_ptr32(bmp, irq) &= ~val;
137     gicv3_update(s, irq, 32);
138 }
139 
140 static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
141                                      uint32_t *bmp,
142                                      maskfn *maskfn,
143                                      int offset)
144 {
145     /* Helper routine to implement reading a "set/clear-bitmap" register
146      * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
147      * Semantics implemented here:
148      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
149      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
150      * offset should be the offset in bytes of the register from the start
151      * of its group.
152      */
153     int irq = offset * 8;
154     uint32_t val;
155 
156     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
157         return 0;
158     }
159     val = *gic_bmp_ptr32(bmp, irq);
160     if (bmp == s->pending) {
161         /* The PENDING register is a special case -- for level triggered
162          * interrupts, the PENDING state is the logical OR of the state of
163          * the PENDING latch with the input line level.
164          */
165         uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
166         uint32_t level = *gic_bmp_ptr32(s->level, irq);
167         val |= (~edge & level);
168     }
169     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
170     return val;
171 }
172 
173 static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
174 {
175     /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
176      * honouring security state (these are RAZ/WI for Group 0 or Secure
177      * Group 1 interrupts).
178      */
179     uint32_t prio;
180 
181     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
182         return 0;
183     }
184 
185     prio = s->gicd_ipriority[irq];
186 
187     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
188         if (!gicv3_gicd_group_test(s, irq)) {
189             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
190             return 0;
191         }
192         /* NS view of the interrupt priority */
193         prio = (prio << 1) & 0xff;
194     }
195     return prio;
196 }
197 
198 static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
199                                   uint8_t value)
200 {
201     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
202      * honouring security state (these are RAZ/WI for Group 0 or Secure
203      * Group 1 interrupts).
204      */
205     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
206         return;
207     }
208 
209     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
210         if (!gicv3_gicd_group_test(s, irq)) {
211             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
212             return;
213         }
214         /* NS view of the interrupt priority */
215         value = 0x80 | (value >> 1);
216     }
217     s->gicd_ipriority[irq] = value;
218 }
219 
220 static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
221 {
222     /* Read the value of GICD_IROUTER<n> for the specified interrupt,
223      * honouring security state.
224      */
225     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
226         return 0;
227     }
228 
229     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
230         /* RAZ/WI for NS accesses to secure interrupts */
231         if (!gicv3_gicd_group_test(s, irq)) {
232             if (gicd_ns_access(s, irq) != 3) {
233                 return 0;
234             }
235         }
236     }
237 
238     return s->gicd_irouter[irq];
239 }
240 
241 static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
242                                uint64_t val)
243 {
244     /* Write the value of GICD_IROUTER<n> for the specified interrupt,
245      * honouring security state.
246      */
247     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
248         return;
249     }
250 
251     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
252         /* RAZ/WI for NS accesses to secure interrupts */
253         if (!gicv3_gicd_group_test(s, irq)) {
254             if (gicd_ns_access(s, irq) != 3) {
255                 return;
256             }
257         }
258     }
259 
260     s->gicd_irouter[irq] = val;
261     gicv3_cache_target_cpustate(s, irq);
262     gicv3_update(s, irq, 1);
263 }
264 
265 /**
266  * gicd_readb
267  * gicd_readw
268  * gicd_readl
269  * gicd_readq
270  * gicd_writeb
271  * gicd_writew
272  * gicd_writel
273  * gicd_writeq
274  *
275  * Return %true if the operation succeeded, %false otherwise.
276  */
277 
278 static bool gicd_readb(GICv3State *s, hwaddr offset,
279                        uint64_t *data, MemTxAttrs attrs)
280 {
281     /* Most GICv3 distributor registers do not support byte accesses. */
282     switch (offset) {
283     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
284     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
285     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
286         /* This GIC implementation always has affinity routing enabled,
287          * so these registers are all RAZ/WI.
288          */
289         return true;
290     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
291         *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
292         return true;
293     default:
294         return false;
295     }
296 }
297 
298 static bool gicd_writeb(GICv3State *s, hwaddr offset,
299                         uint64_t value, MemTxAttrs attrs)
300 {
301     /* Most GICv3 distributor registers do not support byte accesses. */
302     switch (offset) {
303     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
304     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
305     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
306         /* This GIC implementation always has affinity routing enabled,
307          * so these registers are all RAZ/WI.
308          */
309         return true;
310     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
311     {
312         int irq = offset - GICD_IPRIORITYR;
313 
314         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
315             return true;
316         }
317         gicd_write_ipriorityr(s, attrs, irq, value);
318         gicv3_update(s, irq, 1);
319         return true;
320     }
321     default:
322         return false;
323     }
324 }
325 
326 static bool gicd_readw(GICv3State *s, hwaddr offset,
327                        uint64_t *data, MemTxAttrs attrs)
328 {
329     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
330      * support 16 bit accesses, and those registers are all part of the
331      * optional message-based SPI feature which this GIC does not currently
332      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
333      * reserved.
334      */
335     return false;
336 }
337 
338 static bool gicd_writew(GICv3State *s, hwaddr offset,
339                         uint64_t value, MemTxAttrs attrs)
340 {
341     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
342      * support 16 bit accesses, and those registers are all part of the
343      * optional message-based SPI feature which this GIC does not currently
344      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
345      * reserved.
346      */
347     return false;
348 }
349 
350 static bool gicd_readl(GICv3State *s, hwaddr offset,
351                        uint64_t *data, MemTxAttrs attrs)
352 {
353     /* Almost all GICv3 distributor registers are 32-bit.
354      * Note that WO registers must return an UNKNOWN value on reads,
355      * not an abort.
356      */
357 
358     switch (offset) {
359     case GICD_CTLR:
360         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
361             /* The NS view of the GICD_CTLR sees only certain bits:
362              * + bit [31] (RWP) is an alias of the Secure bit [31]
363              * + bit [4] (ARE_NS) is an alias of Secure bit [5]
364              * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
365              *   NS affinity routing is enabled, otherwise RES0
366              * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
367              *   NS affinity routing is not enabled, otherwise RES0
368              * Since for QEMU affinity routing is always enabled
369              * for both S and NS this means that bits [4] and [5] are
370              * both always 1, and we can simply make the NS view
371              * be bits 31, 4 and 1 of the S view.
372              */
373             *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
374                                     GICD_CTLR_EN_GRP1NS |
375                                     GICD_CTLR_RWP);
376         } else {
377             *data = s->gicd_ctlr;
378         }
379         return true;
380     case GICD_TYPER:
381     {
382         /* For this implementation:
383          * No1N == 1 (1-of-N SPI interrupts not supported)
384          * A3V == 1 (non-zero values of Affinity level 3 supported)
385          * IDbits == 0xf (we support 16-bit interrupt identifiers)
386          * DVIS == 1 (Direct virtual LPI injection supported) if GICv4
387          * LPIS == 1 (LPIs are supported if affinity routing is enabled)
388          * num_LPIs == 0b00000 (bits [15:11],Number of LPIs as indicated
389          *                      by GICD_TYPER.IDbits)
390          * MBIS == 0 (message-based SPIs not supported)
391          * SecurityExtn == 1 if security extns supported
392          * CPUNumber == 0 since for us ARE is always 1
393          * ITLinesNumber == (((max SPI IntID + 1) / 32) - 1)
394          */
395         int itlinesnumber = (s->num_irq / 32) - 1;
396         /*
397          * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
398          * "security extensions not supported" always implies DS == 1,
399          * so we only need to check the DS bit.
400          */
401         bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
402         bool dvis = s->revision >= 4;
403 
404         *data = (1 << 25) | (1 << 24) | (dvis << 18) | (sec_extn << 10) |
405             (s->lpi_enable << GICD_TYPER_LPIS_SHIFT) |
406             (0xf << 19) | itlinesnumber;
407         return true;
408     }
409     case GICD_IIDR:
410         /* We claim to be an ARM r0p0 with a zero ProductID.
411          * This is the same as an r0p0 GIC-500.
412          */
413         *data = gicv3_iidr();
414         return true;
415     case GICD_STATUSR:
416         /* RAZ/WI for us (this is an optional register and our implementation
417          * does not track RO/WO/reserved violations to report them to the guest)
418          */
419         *data = 0;
420         return true;
421     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
422     {
423         int irq;
424 
425         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
426             *data = 0;
427             return true;
428         }
429         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
430         irq = (offset - GICD_IGROUPR) * 8;
431         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
432             *data = 0;
433             return true;
434         }
435         *data = *gic_bmp_ptr32(s->group, irq);
436         return true;
437     }
438     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
439         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
440                                      offset - GICD_ISENABLER);
441         return true;
442     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
443         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
444                                      offset - GICD_ICENABLER);
445         return true;
446     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
447         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
448                                      offset - GICD_ISPENDR);
449         return true;
450     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
451         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
452                                      offset - GICD_ICPENDR);
453         return true;
454     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
455         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
456                                      offset - GICD_ISACTIVER);
457         return true;
458     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
459         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
460                                      offset - GICD_ICACTIVER);
461         return true;
462     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
463     {
464         int i, irq = offset - GICD_IPRIORITYR;
465         uint32_t value = 0;
466 
467         for (i = irq + 3; i >= irq; i--) {
468             value <<= 8;
469             value |= gicd_read_ipriorityr(s, attrs, i);
470         }
471         *data = value;
472         return true;
473     }
474     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
475         /* RAZ/WI since affinity routing is always enabled */
476         *data = 0;
477         return true;
478     case GICD_ICFGR ... GICD_ICFGR + 0xff:
479     {
480         /* Here only the even bits are used; odd bits are RES0 */
481         int irq = (offset - GICD_ICFGR) * 4;
482         uint32_t value = 0;
483 
484         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
485             *data = 0;
486             return true;
487         }
488 
489         /* Since our edge_trigger bitmap is one bit per irq, we only need
490          * half of the 32-bit word, which we can then spread out
491          * into the odd bits.
492          */
493         value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
494         value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
495         value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
496         value = half_shuffle32(value) << 1;
497         *data = value;
498         return true;
499     }
500     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
501     {
502         int irq;
503 
504         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
505             /* RAZ/WI if security disabled, or if
506              * security enabled and this is an NS access
507              */
508             *data = 0;
509             return true;
510         }
511         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
512         irq = (offset - GICD_IGRPMODR) * 8;
513         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
514             *data = 0;
515             return true;
516         }
517         *data = *gic_bmp_ptr32(s->grpmod, irq);
518         return true;
519     }
520     case GICD_NSACR ... GICD_NSACR + 0xff:
521     {
522         /* Two bits per interrupt */
523         int irq = (offset - GICD_NSACR) * 4;
524 
525         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
526             *data = 0;
527             return true;
528         }
529 
530         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
531             /* RAZ/WI if security disabled, or if
532              * security enabled and this is an NS access
533              */
534             *data = 0;
535             return true;
536         }
537 
538         *data = s->gicd_nsacr[irq / 16];
539         return true;
540     }
541     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
542     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
543         /* RAZ/WI since affinity routing is always enabled */
544         *data = 0;
545         return true;
546     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
547     {
548         uint64_t r;
549         int irq = (offset - GICD_IROUTER) / 8;
550 
551         r = gicd_read_irouter(s, attrs, irq);
552         if (offset & 7) {
553             *data = r >> 32;
554         } else {
555             *data = (uint32_t)r;
556         }
557         return true;
558     }
559     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
560         /* ID registers */
561         *data = gicv3_idreg(s, offset - GICD_IDREGS, GICV3_PIDR0_DIST);
562         return true;
563     case GICD_SGIR:
564         /* WO registers, return unknown value */
565         qemu_log_mask(LOG_GUEST_ERROR,
566                       "%s: invalid guest read from WO register at offset "
567                       HWADDR_FMT_plx "\n", __func__, offset);
568         *data = 0;
569         return true;
570     default:
571         return false;
572     }
573 }
574 
575 static bool gicd_writel(GICv3State *s, hwaddr offset,
576                         uint64_t value, MemTxAttrs attrs)
577 {
578     /* Almost all GICv3 distributor registers are 32-bit. Note that
579      * RO registers must ignore writes, not abort.
580      */
581 
582     switch (offset) {
583     case GICD_CTLR:
584     {
585         uint32_t mask;
586         /* GICv3 5.3.20 */
587         if (s->gicd_ctlr & GICD_CTLR_DS) {
588             /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
589              * ARE is RAO/WI (affinity routing always on), and only
590              * bits 0 and 1 (group enables) are writable.
591              */
592             mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
593         } else {
594             if (attrs.secure) {
595                 /* for secure access:
596                  * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
597                  * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
598                  *
599                  * We can only modify bits[2:0] (the group enables).
600                  */
601                 mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
602             } else {
603                 /* For non secure access ARE_NS is RAO/WI and EnableGrp1
604                  * is RES0. The only writable bit is [1] (EnableGrp1A), which
605                  * is an alias of the Secure bit [1].
606                  */
607                 mask = GICD_CTLR_EN_GRP1NS;
608             }
609         }
610         s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
611         if (value & mask & GICD_CTLR_DS) {
612             /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
613              * Note that this is a one-way transition because if DS is set
614              * then it's not writable, so it can only go back to 0 with a
615              * hardware reset.
616              */
617             s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
618         }
619         gicv3_full_update(s);
620         return true;
621     }
622     case GICD_STATUSR:
623         /* RAZ/WI for our implementation */
624         return true;
625     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
626     {
627         int irq;
628 
629         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
630             return true;
631         }
632         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
633         irq = (offset - GICD_IGROUPR) * 8;
634         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
635             return true;
636         }
637         *gic_bmp_ptr32(s->group, irq) = value;
638         gicv3_update(s, irq, 32);
639         return true;
640     }
641     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
642         gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
643                                   offset - GICD_ISENABLER, value);
644         return true;
645     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
646         gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
647                                     offset - GICD_ICENABLER, value);
648         return true;
649     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
650         gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
651                                   offset - GICD_ISPENDR, value);
652         return true;
653     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
654         gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
655                                     offset - GICD_ICPENDR, value);
656         return true;
657     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
658         gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
659                                   offset - GICD_ISACTIVER, value);
660         return true;
661     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
662         gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
663                                     offset - GICD_ICACTIVER, value);
664         return true;
665     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
666     {
667         int i, irq = offset - GICD_IPRIORITYR;
668 
669         if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
670             return true;
671         }
672 
673         for (i = irq; i < irq + 4; i++, value >>= 8) {
674             gicd_write_ipriorityr(s, attrs, i, value);
675         }
676         gicv3_update(s, irq, 4);
677         return true;
678     }
679     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
680         /* RAZ/WI since affinity routing is always enabled */
681         return true;
682     case GICD_ICFGR ... GICD_ICFGR + 0xff:
683     {
684         /* Here only the odd bits are used; even bits are RES0 */
685         int irq = (offset - GICD_ICFGR) * 4;
686         uint32_t mask, oldval;
687 
688         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
689             return true;
690         }
691 
692         /* Since our edge_trigger bitmap is one bit per irq, our input
693          * 32-bits will compress down into 16 bits which we need
694          * to write into the bitmap.
695          */
696         value = half_unshuffle32(value >> 1);
697         mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
698         if (irq & 0x1f) {
699             value <<= 16;
700             mask &= 0xffff0000U;
701         } else {
702             mask &= 0xffff;
703         }
704         oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
705         value = (oldval & ~mask) | (value & mask);
706         *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
707         return true;
708     }
709     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
710     {
711         int irq;
712 
713         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
714             /* RAZ/WI if security disabled, or if
715              * security enabled and this is an NS access
716              */
717             return true;
718         }
719         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
720         irq = (offset - GICD_IGRPMODR) * 8;
721         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
722             return true;
723         }
724         *gic_bmp_ptr32(s->grpmod, irq) = value;
725         gicv3_update(s, irq, 32);
726         return true;
727     }
728     case GICD_NSACR ... GICD_NSACR + 0xff:
729     {
730         /* Two bits per interrupt */
731         int irq = (offset - GICD_NSACR) * 4;
732 
733         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
734             return true;
735         }
736 
737         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
738             /* RAZ/WI if security disabled, or if
739              * security enabled and this is an NS access
740              */
741             return true;
742         }
743 
744         s->gicd_nsacr[irq / 16] = value;
745         /* No update required as this only affects access permission checks */
746         return true;
747     }
748     case GICD_SGIR:
749         /* RES0 if affinity routing is enabled */
750         return true;
751     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
752     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
753         /* RAZ/WI since affinity routing is always enabled */
754         return true;
755     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
756     {
757         uint64_t r;
758         int irq = (offset - GICD_IROUTER) / 8;
759 
760         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
761             return true;
762         }
763 
764         /* Write half of the 64-bit register */
765         r = gicd_read_irouter(s, attrs, irq);
766         r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
767         gicd_write_irouter(s, attrs, irq, r);
768         return true;
769     }
770     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
771     case GICD_TYPER:
772     case GICD_IIDR:
773         /* RO registers, ignore the write */
774         qemu_log_mask(LOG_GUEST_ERROR,
775                       "%s: invalid guest write to RO register at offset "
776                       HWADDR_FMT_plx "\n", __func__, offset);
777         return true;
778     default:
779         return false;
780     }
781 }
782 
783 static bool gicd_writeq(GICv3State *s, hwaddr offset,
784                         uint64_t value, MemTxAttrs attrs)
785 {
786     /* Our only 64-bit registers are GICD_IROUTER<n> */
787     int irq;
788 
789     switch (offset) {
790     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
791         irq = (offset - GICD_IROUTER) / 8;
792         gicd_write_irouter(s, attrs, irq, value);
793         return true;
794     default:
795         return false;
796     }
797 }
798 
799 static bool gicd_readq(GICv3State *s, hwaddr offset,
800                        uint64_t *data, MemTxAttrs attrs)
801 {
802     /* Our only 64-bit registers are GICD_IROUTER<n> */
803     int irq;
804 
805     switch (offset) {
806     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
807         irq = (offset - GICD_IROUTER) / 8;
808         *data = gicd_read_irouter(s, attrs, irq);
809         return true;
810     default:
811         return false;
812     }
813 }
814 
815 MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
816                             unsigned size, MemTxAttrs attrs)
817 {
818     GICv3State *s = (GICv3State *)opaque;
819     bool r;
820 
821     switch (size) {
822     case 1:
823         r = gicd_readb(s, offset, data, attrs);
824         break;
825     case 2:
826         r = gicd_readw(s, offset, data, attrs);
827         break;
828     case 4:
829         r = gicd_readl(s, offset, data, attrs);
830         break;
831     case 8:
832         r = gicd_readq(s, offset, data, attrs);
833         break;
834     default:
835         r = false;
836         break;
837     }
838 
839     if (!r) {
840         qemu_log_mask(LOG_GUEST_ERROR,
841                       "%s: invalid guest read at offset " HWADDR_FMT_plx
842                       " size %u\n", __func__, offset, size);
843         trace_gicv3_dist_badread(offset, size, attrs.secure);
844         /* The spec requires that reserved registers are RAZ/WI;
845          * so use MEMTX_ERROR returns from leaf functions as a way to
846          * trigger the guest-error logging but don't return it to
847          * the caller, or we'll cause a spurious guest data abort.
848          */
849         *data = 0;
850     } else {
851         trace_gicv3_dist_read(offset, *data, size, attrs.secure);
852     }
853     return MEMTX_OK;
854 }
855 
856 MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
857                              unsigned size, MemTxAttrs attrs)
858 {
859     GICv3State *s = (GICv3State *)opaque;
860     bool r;
861 
862     switch (size) {
863     case 1:
864         r = gicd_writeb(s, offset, data, attrs);
865         break;
866     case 2:
867         r = gicd_writew(s, offset, data, attrs);
868         break;
869     case 4:
870         r = gicd_writel(s, offset, data, attrs);
871         break;
872     case 8:
873         r = gicd_writeq(s, offset, data, attrs);
874         break;
875     default:
876         r = false;
877         break;
878     }
879 
880     if (!r) {
881         qemu_log_mask(LOG_GUEST_ERROR,
882                       "%s: invalid guest write at offset " HWADDR_FMT_plx
883                       " size %u\n", __func__, offset, size);
884         trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
885         /* The spec requires that reserved registers are RAZ/WI;
886          * so use MEMTX_ERROR returns from leaf functions as a way to
887          * trigger the guest-error logging but don't return it to
888          * the caller, or we'll cause a spurious guest data abort.
889          */
890     } else {
891         trace_gicv3_dist_write(offset, data, size, attrs.secure);
892     }
893     return MEMTX_OK;
894 }
895 
896 void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
897 {
898     /* Update distributor state for a change in an external SPI input line */
899     if (level == gicv3_gicd_level_test(s, irq)) {
900         return;
901     }
902 
903     trace_gicv3_dist_set_irq(irq, level);
904 
905     gicv3_gicd_level_replace(s, irq, level);
906 
907     if (level) {
908         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
909         if (gicv3_gicd_edge_trigger_test(s, irq)) {
910             gicv3_gicd_pending_set(s, irq);
911         }
912     }
913 
914     gicv3_update(s, irq, 1);
915 }
916