xref: /openbmc/qemu/hw/intc/arm_gicv3_dist.c (revision bac97d80)
1 /*
2  * ARM GICv3 emulation: Distributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 /* The GICD_NSACR registers contain a two bit field for each interrupt which
18  * allows the guest to give NonSecure code access to registers controlling
19  * Secure interrupts:
20  *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
21  *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
22  *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
23  *        and w/o to CLRSPI_NSR
24  *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
25  *
26  * Given a (multiple-of-32) interrupt number, these mask functions return
27  * a mask word where each bit is 1 if the NSACR settings permit access
28  * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
29  * word for this set of interrupts to give an overall mask.
30  */
31 
32 typedef uint32_t maskfn(GICv3State *s, int irq);
33 
34 static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
35 {
36     /* Return a mask where each bit is set if the NSACR field is >= 1 */
37     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
38 
39     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
40     raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
41     return half_unshuffle64(raw_nsacr);
42 }
43 
44 static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
45 {
46     /* Return a mask where each bit is set if the NSACR field is >= 2 */
47     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
48 
49     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
50     raw_nsacr = raw_nsacr >> 1;
51     return half_unshuffle64(raw_nsacr);
52 }
53 
54 /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
55  * but it would be implemented using:
56  *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
57  */
58 
59 static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
60                                      maskfn *maskfn, int irq)
61 {
62     /* Return a 32-bit mask which should be applied for this set of 32
63      * interrupts; each bit is 1 if access is permitted by the
64      * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
65      */
66     uint32_t mask;
67 
68     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
69         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
70          * unless the NSACR bits permit access.
71          */
72         mask = *gic_bmp_ptr32(s->group, irq);
73         if (maskfn) {
74             mask |= maskfn(s, irq);
75         }
76         return mask;
77     }
78     return 0xFFFFFFFFU;
79 }
80 
81 static int gicd_ns_access(GICv3State *s, int irq)
82 {
83     /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
84      * specified interrupt.
85      */
86     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
87         return 0;
88     }
89     return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
90 }
91 
92 static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
93                                       uint32_t *bmp,
94                                       maskfn *maskfn,
95                                       int offset, uint32_t val)
96 {
97     /* Helper routine to implement writing to a "set-bitmap" register
98      * (GICD_ISENABLER, GICD_ISPENDR, etc).
99      * Semantics implemented here:
100      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
101      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
102      * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
103      * offset should be the offset in bytes of the register from the start
104      * of its group.
105      */
106     int irq = offset * 8;
107 
108     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
109         return;
110     }
111     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
112     *gic_bmp_ptr32(bmp, irq) |= val;
113     gicv3_update(s, irq, 32);
114 }
115 
116 static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
117                                         uint32_t *bmp,
118                                         maskfn *maskfn,
119                                         int offset, uint32_t val)
120 {
121     /* Helper routine to implement writing to a "clear-bitmap" register
122      * (GICD_ICENABLER, GICD_ICPENDR, etc).
123      * Semantics implemented here:
124      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
125      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
126      * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
127      * offset should be the offset in bytes of the register from the start
128      * of its group.
129      */
130     int irq = offset * 8;
131 
132     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
133         return;
134     }
135     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
136     *gic_bmp_ptr32(bmp, irq) &= ~val;
137     gicv3_update(s, irq, 32);
138 }
139 
140 static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
141                                      uint32_t *bmp,
142                                      maskfn *maskfn,
143                                      int offset)
144 {
145     /* Helper routine to implement reading a "set/clear-bitmap" register
146      * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
147      * Semantics implemented here:
148      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
149      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
150      * offset should be the offset in bytes of the register from the start
151      * of its group.
152      */
153     int irq = offset * 8;
154     uint32_t val;
155 
156     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
157         return 0;
158     }
159     val = *gic_bmp_ptr32(bmp, irq);
160     if (bmp == s->pending) {
161         /* The PENDING register is a special case -- for level triggered
162          * interrupts, the PENDING state is the logical OR of the state of
163          * the PENDING latch with the input line level.
164          */
165         uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
166         uint32_t level = *gic_bmp_ptr32(s->level, irq);
167         val |= (~edge & level);
168     }
169     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
170     return val;
171 }
172 
173 static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
174 {
175     /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
176      * honouring security state (these are RAZ/WI for Group 0 or Secure
177      * Group 1 interrupts).
178      */
179     uint32_t prio;
180 
181     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
182         return 0;
183     }
184 
185     prio = s->gicd_ipriority[irq];
186 
187     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
188         if (!gicv3_gicd_group_test(s, irq)) {
189             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
190             return 0;
191         }
192         /* NS view of the interrupt priority */
193         prio = (prio << 1) & 0xff;
194     }
195     return prio;
196 }
197 
198 static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
199                                   uint8_t value)
200 {
201     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
202      * honouring security state (these are RAZ/WI for Group 0 or Secure
203      * Group 1 interrupts).
204      */
205     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
206         return;
207     }
208 
209     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
210         if (!gicv3_gicd_group_test(s, irq)) {
211             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
212             return;
213         }
214         /* NS view of the interrupt priority */
215         value = 0x80 | (value >> 1);
216     }
217     s->gicd_ipriority[irq] = value;
218 }
219 
220 static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
221 {
222     /* Read the value of GICD_IROUTER<n> for the specified interrupt,
223      * honouring security state.
224      */
225     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
226         return 0;
227     }
228 
229     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
230         /* RAZ/WI for NS accesses to secure interrupts */
231         if (!gicv3_gicd_group_test(s, irq)) {
232             if (gicd_ns_access(s, irq) != 3) {
233                 return 0;
234             }
235         }
236     }
237 
238     return s->gicd_irouter[irq];
239 }
240 
241 static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
242                                uint64_t val)
243 {
244     /* Write the value of GICD_IROUTER<n> for the specified interrupt,
245      * honouring security state.
246      */
247     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
248         return;
249     }
250 
251     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
252         /* RAZ/WI for NS accesses to secure interrupts */
253         if (!gicv3_gicd_group_test(s, irq)) {
254             if (gicd_ns_access(s, irq) != 3) {
255                 return;
256             }
257         }
258     }
259 
260     s->gicd_irouter[irq] = val;
261     gicv3_cache_target_cpustate(s, irq);
262     gicv3_update(s, irq, 1);
263 }
264 
265 /**
266  * gicd_readb
267  * gicd_readw
268  * gicd_readl
269  * gicd_readq
270  * gicd_writeb
271  * gicd_writew
272  * gicd_writel
273  * gicd_writeq
274  *
275  * Return %true if the operation succeeded, %false otherwise.
276  */
277 
278 static bool gicd_readb(GICv3State *s, hwaddr offset,
279                        uint64_t *data, MemTxAttrs attrs)
280 {
281     /* Most GICv3 distributor registers do not support byte accesses. */
282     switch (offset) {
283     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
284     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
285     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
286         /* This GIC implementation always has affinity routing enabled,
287          * so these registers are all RAZ/WI.
288          */
289         return true;
290     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
291         *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
292         return true;
293     default:
294         return false;
295     }
296 }
297 
298 static bool gicd_writeb(GICv3State *s, hwaddr offset,
299                         uint64_t value, MemTxAttrs attrs)
300 {
301     /* Most GICv3 distributor registers do not support byte accesses. */
302     switch (offset) {
303     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
304     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
305     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
306         /* This GIC implementation always has affinity routing enabled,
307          * so these registers are all RAZ/WI.
308          */
309         return true;
310     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
311     {
312         int irq = offset - GICD_IPRIORITYR;
313 
314         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
315             return true;
316         }
317         gicd_write_ipriorityr(s, attrs, irq, value);
318         gicv3_update(s, irq, 1);
319         return true;
320     }
321     default:
322         return false;
323     }
324 }
325 
326 static bool gicd_readw(GICv3State *s, hwaddr offset,
327                        uint64_t *data, MemTxAttrs attrs)
328 {
329     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
330      * support 16 bit accesses, and those registers are all part of the
331      * optional message-based SPI feature which this GIC does not currently
332      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
333      * reserved.
334      */
335     return false;
336 }
337 
338 static bool gicd_writew(GICv3State *s, hwaddr offset,
339                         uint64_t value, MemTxAttrs attrs)
340 {
341     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
342      * support 16 bit accesses, and those registers are all part of the
343      * optional message-based SPI feature which this GIC does not currently
344      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
345      * reserved.
346      */
347     return false;
348 }
349 
350 static bool gicd_readl(GICv3State *s, hwaddr offset,
351                        uint64_t *data, MemTxAttrs attrs)
352 {
353     /* Almost all GICv3 distributor registers are 32-bit.
354      * Note that WO registers must return an UNKNOWN value on reads,
355      * not an abort.
356      */
357 
358     switch (offset) {
359     case GICD_CTLR:
360         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
361             /* The NS view of the GICD_CTLR sees only certain bits:
362              * + bit [31] (RWP) is an alias of the Secure bit [31]
363              * + bit [4] (ARE_NS) is an alias of Secure bit [5]
364              * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
365              *   NS affinity routing is enabled, otherwise RES0
366              * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
367              *   NS affinity routing is not enabled, otherwise RES0
368              * Since for QEMU affinity routing is always enabled
369              * for both S and NS this means that bits [4] and [5] are
370              * both always 1, and we can simply make the NS view
371              * be bits 31, 4 and 1 of the S view.
372              */
373             *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
374                                     GICD_CTLR_EN_GRP1NS |
375                                     GICD_CTLR_RWP);
376         } else {
377             *data = s->gicd_ctlr;
378         }
379         return true;
380     case GICD_TYPER:
381     {
382         /* For this implementation:
383          * No1N == 1 (1-of-N SPI interrupts not supported)
384          * A3V == 1 (non-zero values of Affinity level 3 supported)
385          * IDbits == 0xf (we support 16-bit interrupt identifiers)
386          * DVIS == 0 (Direct virtual LPI injection not supported)
387          * LPIS == 0 (LPIs not supported)
388          * MBIS == 0 (message-based SPIs not supported)
389          * SecurityExtn == 1 if security extns supported
390          * CPUNumber == 0 since for us ARE is always 1
391          * ITLinesNumber == (num external irqs / 32) - 1
392          */
393         int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
394         /*
395          * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
396          * "security extensions not supported" always implies DS == 1,
397          * so we only need to check the DS bit.
398          */
399         bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
400 
401         *data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
402             (0xf << 19) | itlinesnumber;
403         return true;
404     }
405     case GICD_IIDR:
406         /* We claim to be an ARM r0p0 with a zero ProductID.
407          * This is the same as an r0p0 GIC-500.
408          */
409         *data = gicv3_iidr();
410         return true;
411     case GICD_STATUSR:
412         /* RAZ/WI for us (this is an optional register and our implementation
413          * does not track RO/WO/reserved violations to report them to the guest)
414          */
415         *data = 0;
416         return true;
417     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
418     {
419         int irq;
420 
421         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
422             *data = 0;
423             return true;
424         }
425         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
426         irq = (offset - GICD_IGROUPR) * 8;
427         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
428             *data = 0;
429             return true;
430         }
431         *data = *gic_bmp_ptr32(s->group, irq);
432         return true;
433     }
434     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
435         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
436                                      offset - GICD_ISENABLER);
437         return true;
438     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
439         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
440                                      offset - GICD_ICENABLER);
441         return true;
442     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
443         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
444                                      offset - GICD_ISPENDR);
445         return true;
446     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
447         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
448                                      offset - GICD_ICPENDR);
449         return true;
450     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
451         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
452                                      offset - GICD_ISACTIVER);
453         return true;
454     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
455         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
456                                      offset - GICD_ICACTIVER);
457         return true;
458     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
459     {
460         int i, irq = offset - GICD_IPRIORITYR;
461         uint32_t value = 0;
462 
463         for (i = irq + 3; i >= irq; i--) {
464             value <<= 8;
465             value |= gicd_read_ipriorityr(s, attrs, i);
466         }
467         *data = value;
468         return true;
469     }
470     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
471         /* RAZ/WI since affinity routing is always enabled */
472         *data = 0;
473         return true;
474     case GICD_ICFGR ... GICD_ICFGR + 0xff:
475     {
476         /* Here only the even bits are used; odd bits are RES0 */
477         int irq = (offset - GICD_ICFGR) * 4;
478         uint32_t value = 0;
479 
480         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
481             *data = 0;
482             return true;
483         }
484 
485         /* Since our edge_trigger bitmap is one bit per irq, we only need
486          * half of the 32-bit word, which we can then spread out
487          * into the odd bits.
488          */
489         value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
490         value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
491         value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
492         value = half_shuffle32(value) << 1;
493         *data = value;
494         return true;
495     }
496     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
497     {
498         int irq;
499 
500         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
501             /* RAZ/WI if security disabled, or if
502              * security enabled and this is an NS access
503              */
504             *data = 0;
505             return true;
506         }
507         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
508         irq = (offset - GICD_IGRPMODR) * 8;
509         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
510             *data = 0;
511             return true;
512         }
513         *data = *gic_bmp_ptr32(s->grpmod, irq);
514         return true;
515     }
516     case GICD_NSACR ... GICD_NSACR + 0xff:
517     {
518         /* Two bits per interrupt */
519         int irq = (offset - GICD_NSACR) * 4;
520 
521         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
522             *data = 0;
523             return true;
524         }
525 
526         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
527             /* RAZ/WI if security disabled, or if
528              * security enabled and this is an NS access
529              */
530             *data = 0;
531             return true;
532         }
533 
534         *data = s->gicd_nsacr[irq / 16];
535         return true;
536     }
537     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
538     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
539         /* RAZ/WI since affinity routing is always enabled */
540         *data = 0;
541         return true;
542     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
543     {
544         uint64_t r;
545         int irq = (offset - GICD_IROUTER) / 8;
546 
547         r = gicd_read_irouter(s, attrs, irq);
548         if (offset & 7) {
549             *data = r >> 32;
550         } else {
551             *data = (uint32_t)r;
552         }
553         return true;
554     }
555     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
556         /* ID registers */
557         *data = gicv3_idreg(offset - GICD_IDREGS);
558         return true;
559     case GICD_SGIR:
560         /* WO registers, return unknown value */
561         qemu_log_mask(LOG_GUEST_ERROR,
562                       "%s: invalid guest read from WO register at offset "
563                       TARGET_FMT_plx "\n", __func__, offset);
564         *data = 0;
565         return true;
566     default:
567         return false;
568     }
569 }
570 
571 static bool gicd_writel(GICv3State *s, hwaddr offset,
572                         uint64_t value, MemTxAttrs attrs)
573 {
574     /* Almost all GICv3 distributor registers are 32-bit. Note that
575      * RO registers must ignore writes, not abort.
576      */
577 
578     switch (offset) {
579     case GICD_CTLR:
580     {
581         uint32_t mask;
582         /* GICv3 5.3.20 */
583         if (s->gicd_ctlr & GICD_CTLR_DS) {
584             /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
585              * ARE is RAO/WI (affinity routing always on), and only
586              * bits 0 and 1 (group enables) are writable.
587              */
588             mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
589         } else {
590             if (attrs.secure) {
591                 /* for secure access:
592                  * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
593                  * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
594                  *
595                  * We can only modify bits[2:0] (the group enables).
596                  */
597                 mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
598             } else {
599                 /* For non secure access ARE_NS is RAO/WI and EnableGrp1
600                  * is RES0. The only writable bit is [1] (EnableGrp1A), which
601                  * is an alias of the Secure bit [1].
602                  */
603                 mask = GICD_CTLR_EN_GRP1NS;
604             }
605         }
606         s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
607         if (value & mask & GICD_CTLR_DS) {
608             /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
609              * Note that this is a one-way transition because if DS is set
610              * then it's not writeable, so it can only go back to 0 with a
611              * hardware reset.
612              */
613             s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
614         }
615         gicv3_full_update(s);
616         return true;
617     }
618     case GICD_STATUSR:
619         /* RAZ/WI for our implementation */
620         return true;
621     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
622     {
623         int irq;
624 
625         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
626             return true;
627         }
628         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
629         irq = (offset - GICD_IGROUPR) * 8;
630         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
631             return true;
632         }
633         *gic_bmp_ptr32(s->group, irq) = value;
634         gicv3_update(s, irq, 32);
635         return true;
636     }
637     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
638         gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
639                                   offset - GICD_ISENABLER, value);
640         return true;
641     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
642         gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
643                                     offset - GICD_ICENABLER, value);
644         return true;
645     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
646         gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
647                                   offset - GICD_ISPENDR, value);
648         return true;
649     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
650         gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
651                                     offset - GICD_ICPENDR, value);
652         return true;
653     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
654         gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
655                                   offset - GICD_ISACTIVER, value);
656         return true;
657     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
658         gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
659                                     offset - GICD_ICACTIVER, value);
660         return true;
661     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
662     {
663         int i, irq = offset - GICD_IPRIORITYR;
664 
665         if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
666             return true;
667         }
668 
669         for (i = irq; i < irq + 4; i++, value >>= 8) {
670             gicd_write_ipriorityr(s, attrs, i, value);
671         }
672         gicv3_update(s, irq, 4);
673         return true;
674     }
675     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
676         /* RAZ/WI since affinity routing is always enabled */
677         return true;
678     case GICD_ICFGR ... GICD_ICFGR + 0xff:
679     {
680         /* Here only the odd bits are used; even bits are RES0 */
681         int irq = (offset - GICD_ICFGR) * 4;
682         uint32_t mask, oldval;
683 
684         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
685             return true;
686         }
687 
688         /* Since our edge_trigger bitmap is one bit per irq, our input
689          * 32-bits will compress down into 16 bits which we need
690          * to write into the bitmap.
691          */
692         value = half_unshuffle32(value >> 1);
693         mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
694         if (irq & 0x1f) {
695             value <<= 16;
696             mask &= 0xffff0000U;
697         } else {
698             mask &= 0xffff;
699         }
700         oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
701         value = (oldval & ~mask) | (value & mask);
702         *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
703         return true;
704     }
705     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
706     {
707         int irq;
708 
709         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
710             /* RAZ/WI if security disabled, or if
711              * security enabled and this is an NS access
712              */
713             return true;
714         }
715         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
716         irq = (offset - GICD_IGRPMODR) * 8;
717         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
718             return true;
719         }
720         *gic_bmp_ptr32(s->grpmod, irq) = value;
721         gicv3_update(s, irq, 32);
722         return true;
723     }
724     case GICD_NSACR ... GICD_NSACR + 0xff:
725     {
726         /* Two bits per interrupt */
727         int irq = (offset - GICD_NSACR) * 4;
728 
729         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
730             return true;
731         }
732 
733         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
734             /* RAZ/WI if security disabled, or if
735              * security enabled and this is an NS access
736              */
737             return true;
738         }
739 
740         s->gicd_nsacr[irq / 16] = value;
741         /* No update required as this only affects access permission checks */
742         return true;
743     }
744     case GICD_SGIR:
745         /* RES0 if affinity routing is enabled */
746         return true;
747     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
748     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
749         /* RAZ/WI since affinity routing is always enabled */
750         return true;
751     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
752     {
753         uint64_t r;
754         int irq = (offset - GICD_IROUTER) / 8;
755 
756         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
757             return true;
758         }
759 
760         /* Write half of the 64-bit register */
761         r = gicd_read_irouter(s, attrs, irq);
762         r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
763         gicd_write_irouter(s, attrs, irq, r);
764         return true;
765     }
766     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
767     case GICD_TYPER:
768     case GICD_IIDR:
769         /* RO registers, ignore the write */
770         qemu_log_mask(LOG_GUEST_ERROR,
771                       "%s: invalid guest write to RO register at offset "
772                       TARGET_FMT_plx "\n", __func__, offset);
773         return true;
774     default:
775         return false;
776     }
777 }
778 
779 static bool gicd_writeq(GICv3State *s, hwaddr offset,
780                         uint64_t value, MemTxAttrs attrs)
781 {
782     /* Our only 64-bit registers are GICD_IROUTER<n> */
783     int irq;
784 
785     switch (offset) {
786     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
787         irq = (offset - GICD_IROUTER) / 8;
788         gicd_write_irouter(s, attrs, irq, value);
789         return true;
790     default:
791         return false;
792     }
793 }
794 
795 static bool gicd_readq(GICv3State *s, hwaddr offset,
796                        uint64_t *data, MemTxAttrs attrs)
797 {
798     /* Our only 64-bit registers are GICD_IROUTER<n> */
799     int irq;
800 
801     switch (offset) {
802     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
803         irq = (offset - GICD_IROUTER) / 8;
804         *data = gicd_read_irouter(s, attrs, irq);
805         return true;
806     default:
807         return false;
808     }
809 }
810 
811 MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
812                             unsigned size, MemTxAttrs attrs)
813 {
814     GICv3State *s = (GICv3State *)opaque;
815     bool r;
816 
817     switch (size) {
818     case 1:
819         r = gicd_readb(s, offset, data, attrs);
820         break;
821     case 2:
822         r = gicd_readw(s, offset, data, attrs);
823         break;
824     case 4:
825         r = gicd_readl(s, offset, data, attrs);
826         break;
827     case 8:
828         r = gicd_readq(s, offset, data, attrs);
829         break;
830     default:
831         r = false;
832         break;
833     }
834 
835     if (!r) {
836         qemu_log_mask(LOG_GUEST_ERROR,
837                       "%s: invalid guest read at offset " TARGET_FMT_plx
838                       "size %u\n", __func__, offset, size);
839         trace_gicv3_dist_badread(offset, size, attrs.secure);
840         /* The spec requires that reserved registers are RAZ/WI;
841          * so use MEMTX_ERROR returns from leaf functions as a way to
842          * trigger the guest-error logging but don't return it to
843          * the caller, or we'll cause a spurious guest data abort.
844          */
845         *data = 0;
846     } else {
847         trace_gicv3_dist_read(offset, *data, size, attrs.secure);
848     }
849     return MEMTX_OK;
850 }
851 
852 MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
853                              unsigned size, MemTxAttrs attrs)
854 {
855     GICv3State *s = (GICv3State *)opaque;
856     bool r;
857 
858     switch (size) {
859     case 1:
860         r = gicd_writeb(s, offset, data, attrs);
861         break;
862     case 2:
863         r = gicd_writew(s, offset, data, attrs);
864         break;
865     case 4:
866         r = gicd_writel(s, offset, data, attrs);
867         break;
868     case 8:
869         r = gicd_writeq(s, offset, data, attrs);
870         break;
871     default:
872         r = false;
873         break;
874     }
875 
876     if (!r) {
877         qemu_log_mask(LOG_GUEST_ERROR,
878                       "%s: invalid guest write at offset " TARGET_FMT_plx
879                       "size %u\n", __func__, offset, size);
880         trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
881         /* The spec requires that reserved registers are RAZ/WI;
882          * so use MEMTX_ERROR returns from leaf functions as a way to
883          * trigger the guest-error logging but don't return it to
884          * the caller, or we'll cause a spurious guest data abort.
885          */
886     } else {
887         trace_gicv3_dist_write(offset, data, size, attrs.secure);
888     }
889     return MEMTX_OK;
890 }
891 
892 void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
893 {
894     /* Update distributor state for a change in an external SPI input line */
895     if (level == gicv3_gicd_level_test(s, irq)) {
896         return;
897     }
898 
899     trace_gicv3_dist_set_irq(irq, level);
900 
901     gicv3_gicd_level_replace(s, irq, level);
902 
903     if (level) {
904         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
905         if (gicv3_gicd_edge_trigger_test(s, irq)) {
906             gicv3_gicd_pending_set(s, irq);
907         }
908     }
909 
910     gicv3_update(s, irq, 1);
911 }
912