xref: /openbmc/qemu/hw/intc/arm_gicv3_dist.c (revision 6f5fd837)
1 /*
2  * ARM GICv3 emulation: Distributor
3  *
4  * Copyright (c) 2015 Huawei.
5  * Copyright (c) 2016 Linaro Limited.
6  * Written by Shlomo Pongratz, Peter Maydell
7  *
8  * This code is licensed under the GPL, version 2 or (at your option)
9  * any later version.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "qemu/log.h"
14 #include "trace.h"
15 #include "gicv3_internal.h"
16 
17 /* The GICD_NSACR registers contain a two bit field for each interrupt which
18  * allows the guest to give NonSecure code access to registers controlling
19  * Secure interrupts:
20  *  0b00: no access (NS accesses to bits for Secure interrupts will RAZ/WI)
21  *  0b01: NS r/w accesses permitted to ISPENDR, SETSPI_NSR, SGIR
22  *  0b10: as 0b01, and also r/w to ICPENDR, r/o to ISACTIVER/ICACTIVER,
23  *        and w/o to CLRSPI_NSR
24  *  0b11: as 0b10, and also r/w to IROUTER and ITARGETSR
25  *
26  * Given a (multiple-of-32) interrupt number, these mask functions return
27  * a mask word where each bit is 1 if the NSACR settings permit access
28  * to the interrupt. The mask returned can then be ORed with the GICD_GROUP
29  * word for this set of interrupts to give an overall mask.
30  */
31 
32 typedef uint32_t maskfn(GICv3State *s, int irq);
33 
34 static uint32_t mask_nsacr_ge1(GICv3State *s, int irq)
35 {
36     /* Return a mask where each bit is set if the NSACR field is >= 1 */
37     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
38 
39     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
40     raw_nsacr = (raw_nsacr >> 1) | raw_nsacr;
41     return half_unshuffle64(raw_nsacr);
42 }
43 
44 static uint32_t mask_nsacr_ge2(GICv3State *s, int irq)
45 {
46     /* Return a mask where each bit is set if the NSACR field is >= 2 */
47     uint64_t raw_nsacr = s->gicd_nsacr[irq / 16 + 1];
48 
49     raw_nsacr = raw_nsacr << 32 | s->gicd_nsacr[irq / 16];
50     raw_nsacr = raw_nsacr >> 1;
51     return half_unshuffle64(raw_nsacr);
52 }
53 
54 /* We don't need a mask_nsacr_ge3() because IROUTER<n> isn't a bitmap register,
55  * but it would be implemented using:
56  *  raw_nsacr = (raw_nsacr >> 1) & raw_nsacr;
57  */
58 
59 static uint32_t mask_group_and_nsacr(GICv3State *s, MemTxAttrs attrs,
60                                      maskfn *maskfn, int irq)
61 {
62     /* Return a 32-bit mask which should be applied for this set of 32
63      * interrupts; each bit is 1 if access is permitted by the
64      * combination of attrs.secure, GICD_GROUPR and GICD_NSACR.
65      */
66     uint32_t mask;
67 
68     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
69         /* bits for Group 0 or Secure Group 1 interrupts are RAZ/WI
70          * unless the NSACR bits permit access.
71          */
72         mask = *gic_bmp_ptr32(s->group, irq);
73         if (maskfn) {
74             mask |= maskfn(s, irq);
75         }
76         return mask;
77     }
78     return 0xFFFFFFFFU;
79 }
80 
81 static int gicd_ns_access(GICv3State *s, int irq)
82 {
83     /* Return the 2 bit NS_access<x> field from GICD_NSACR<n> for the
84      * specified interrupt.
85      */
86     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
87         return 0;
88     }
89     return extract32(s->gicd_nsacr[irq / 16], (irq % 16) * 2, 2);
90 }
91 
92 static void gicd_write_set_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
93                                       uint32_t *bmp,
94                                       maskfn *maskfn,
95                                       int offset, uint32_t val)
96 {
97     /* Helper routine to implement writing to a "set-bitmap" register
98      * (GICD_ISENABLER, GICD_ISPENDR, etc).
99      * Semantics implemented here:
100      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
101      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
102      * Writing 1 means "set bit in bitmap"; writing 0 is ignored.
103      * offset should be the offset in bytes of the register from the start
104      * of its group.
105      */
106     int irq = offset * 8;
107 
108     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
109         return;
110     }
111     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
112     *gic_bmp_ptr32(bmp, irq) |= val;
113     gicv3_update(s, irq, 32);
114 }
115 
116 static void gicd_write_clear_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
117                                         uint32_t *bmp,
118                                         maskfn *maskfn,
119                                         int offset, uint32_t val)
120 {
121     /* Helper routine to implement writing to a "clear-bitmap" register
122      * (GICD_ICENABLER, GICD_ICPENDR, etc).
123      * Semantics implemented here:
124      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
125      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
126      * Writing 1 means "clear bit in bitmap"; writing 0 is ignored.
127      * offset should be the offset in bytes of the register from the start
128      * of its group.
129      */
130     int irq = offset * 8;
131 
132     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
133         return;
134     }
135     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
136     *gic_bmp_ptr32(bmp, irq) &= ~val;
137     gicv3_update(s, irq, 32);
138 }
139 
140 static uint32_t gicd_read_bitmap_reg(GICv3State *s, MemTxAttrs attrs,
141                                      uint32_t *bmp,
142                                      maskfn *maskfn,
143                                      int offset)
144 {
145     /* Helper routine to implement reading a "set/clear-bitmap" register
146      * (GICD_ICENABLER, GICD_ISENABLER, GICD_ICPENDR, etc).
147      * Semantics implemented here:
148      * RAZ/WI for SGIs, PPIs, unimplemented IRQs
149      * Bits corresponding to Group 0 or Secure Group 1 interrupts RAZ/WI.
150      * offset should be the offset in bytes of the register from the start
151      * of its group.
152      */
153     int irq = offset * 8;
154     uint32_t val;
155 
156     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
157         return 0;
158     }
159     val = *gic_bmp_ptr32(bmp, irq);
160     if (bmp == s->pending) {
161         /* The PENDING register is a special case -- for level triggered
162          * interrupts, the PENDING state is the logical OR of the state of
163          * the PENDING latch with the input line level.
164          */
165         uint32_t edge = *gic_bmp_ptr32(s->edge_trigger, irq);
166         uint32_t level = *gic_bmp_ptr32(s->level, irq);
167         val |= (~edge & level);
168     }
169     val &= mask_group_and_nsacr(s, attrs, maskfn, irq);
170     return val;
171 }
172 
173 static uint8_t gicd_read_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq)
174 {
175     /* Read the value of GICD_IPRIORITYR<n> for the specified interrupt,
176      * honouring security state (these are RAZ/WI for Group 0 or Secure
177      * Group 1 interrupts).
178      */
179     uint32_t prio;
180 
181     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
182         return 0;
183     }
184 
185     prio = s->gicd_ipriority[irq];
186 
187     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
188         if (!gicv3_gicd_group_test(s, irq)) {
189             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
190             return 0;
191         }
192         /* NS view of the interrupt priority */
193         prio = (prio << 1) & 0xff;
194     }
195     return prio;
196 }
197 
198 static void gicd_write_ipriorityr(GICv3State *s, MemTxAttrs attrs, int irq,
199                                   uint8_t value)
200 {
201     /* Write the value of GICD_IPRIORITYR<n> for the specified interrupt,
202      * honouring security state (these are RAZ/WI for Group 0 or Secure
203      * Group 1 interrupts).
204      */
205     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
206         return;
207     }
208 
209     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
210         if (!gicv3_gicd_group_test(s, irq)) {
211             /* Fields for Group 0 or Secure Group 1 interrupts are RAZ/WI */
212             return;
213         }
214         /* NS view of the interrupt priority */
215         value = 0x80 | (value >> 1);
216     }
217     s->gicd_ipriority[irq] = value;
218 }
219 
220 static uint64_t gicd_read_irouter(GICv3State *s, MemTxAttrs attrs, int irq)
221 {
222     /* Read the value of GICD_IROUTER<n> for the specified interrupt,
223      * honouring security state.
224      */
225     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
226         return 0;
227     }
228 
229     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
230         /* RAZ/WI for NS accesses to secure interrupts */
231         if (!gicv3_gicd_group_test(s, irq)) {
232             if (gicd_ns_access(s, irq) != 3) {
233                 return 0;
234             }
235         }
236     }
237 
238     return s->gicd_irouter[irq];
239 }
240 
241 static void gicd_write_irouter(GICv3State *s, MemTxAttrs attrs, int irq,
242                                uint64_t val)
243 {
244     /* Write the value of GICD_IROUTER<n> for the specified interrupt,
245      * honouring security state.
246      */
247     if (irq < GIC_INTERNAL || irq >= s->num_irq) {
248         return;
249     }
250 
251     if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
252         /* RAZ/WI for NS accesses to secure interrupts */
253         if (!gicv3_gicd_group_test(s, irq)) {
254             if (gicd_ns_access(s, irq) != 3) {
255                 return;
256             }
257         }
258     }
259 
260     s->gicd_irouter[irq] = val;
261     gicv3_cache_target_cpustate(s, irq);
262     gicv3_update(s, irq, 1);
263 }
264 
265 static MemTxResult gicd_readb(GICv3State *s, hwaddr offset,
266                               uint64_t *data, MemTxAttrs attrs)
267 {
268     /* Most GICv3 distributor registers do not support byte accesses. */
269     switch (offset) {
270     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
271     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
272     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
273         /* This GIC implementation always has affinity routing enabled,
274          * so these registers are all RAZ/WI.
275          */
276         return MEMTX_OK;
277     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
278         *data = gicd_read_ipriorityr(s, attrs, offset - GICD_IPRIORITYR);
279         return MEMTX_OK;
280     default:
281         return MEMTX_ERROR;
282     }
283 }
284 
285 static MemTxResult gicd_writeb(GICv3State *s, hwaddr offset,
286                                uint64_t value, MemTxAttrs attrs)
287 {
288     /* Most GICv3 distributor registers do not support byte accesses. */
289     switch (offset) {
290     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
291     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
292     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
293         /* This GIC implementation always has affinity routing enabled,
294          * so these registers are all RAZ/WI.
295          */
296         return MEMTX_OK;
297     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
298     {
299         int irq = offset - GICD_IPRIORITYR;
300 
301         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
302             return MEMTX_OK;
303         }
304         gicd_write_ipriorityr(s, attrs, irq, value);
305         gicv3_update(s, irq, 1);
306         return MEMTX_OK;
307     }
308     default:
309         return MEMTX_ERROR;
310     }
311 }
312 
313 static MemTxResult gicd_readw(GICv3State *s, hwaddr offset,
314                               uint64_t *data, MemTxAttrs attrs)
315 {
316     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
317      * support 16 bit accesses, and those registers are all part of the
318      * optional message-based SPI feature which this GIC does not currently
319      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
320      * reserved.
321      */
322     return MEMTX_ERROR;
323 }
324 
325 static MemTxResult gicd_writew(GICv3State *s, hwaddr offset,
326                                uint64_t value, MemTxAttrs attrs)
327 {
328     /* Only GICD_SETSPI_NSR, GICD_CLRSPI_NSR, GICD_SETSPI_SR and GICD_SETSPI_NSR
329      * support 16 bit accesses, and those registers are all part of the
330      * optional message-based SPI feature which this GIC does not currently
331      * implement (ie for us GICD_TYPER.MBIS == 0), so for us they are
332      * reserved.
333      */
334     return MEMTX_ERROR;
335 }
336 
337 static MemTxResult gicd_readl(GICv3State *s, hwaddr offset,
338                               uint64_t *data, MemTxAttrs attrs)
339 {
340     /* Almost all GICv3 distributor registers are 32-bit.
341      * Note that WO registers must return an UNKNOWN value on reads,
342      * not an abort.
343      */
344 
345     switch (offset) {
346     case GICD_CTLR:
347         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
348             /* The NS view of the GICD_CTLR sees only certain bits:
349              * + bit [31] (RWP) is an alias of the Secure bit [31]
350              * + bit [4] (ARE_NS) is an alias of Secure bit [5]
351              * + bit [1] (EnableGrp1A) is an alias of Secure bit [1] if
352              *   NS affinity routing is enabled, otherwise RES0
353              * + bit [0] (EnableGrp1) is an alias of Secure bit [1] if
354              *   NS affinity routing is not enabled, otherwise RES0
355              * Since for QEMU affinity routing is always enabled
356              * for both S and NS this means that bits [4] and [5] are
357              * both always 1, and we can simply make the NS view
358              * be bits 31, 4 and 1 of the S view.
359              */
360             *data = s->gicd_ctlr & (GICD_CTLR_ARE_S |
361                                     GICD_CTLR_EN_GRP1NS |
362                                     GICD_CTLR_RWP);
363         } else {
364             *data = s->gicd_ctlr;
365         }
366         return MEMTX_OK;
367     case GICD_TYPER:
368     {
369         /* For this implementation:
370          * No1N == 1 (1-of-N SPI interrupts not supported)
371          * A3V == 1 (non-zero values of Affinity level 3 supported)
372          * IDbits == 0xf (we support 16-bit interrupt identifiers)
373          * DVIS == 0 (Direct virtual LPI injection not supported)
374          * LPIS == 0 (LPIs not supported)
375          * MBIS == 0 (message-based SPIs not supported)
376          * SecurityExtn == 1 if security extns supported
377          * CPUNumber == 0 since for us ARE is always 1
378          * ITLinesNumber == (num external irqs / 32) - 1
379          */
380         int itlinesnumber = ((s->num_irq - GIC_INTERNAL) / 32) - 1;
381         /*
382          * SecurityExtn must be RAZ if GICD_CTLR.DS == 1, and
383          * "security extensions not supported" always implies DS == 1,
384          * so we only need to check the DS bit.
385          */
386         bool sec_extn = !(s->gicd_ctlr & GICD_CTLR_DS);
387 
388         *data = (1 << 25) | (1 << 24) | (sec_extn << 10) |
389             (0xf << 19) | itlinesnumber;
390         return MEMTX_OK;
391     }
392     case GICD_IIDR:
393         /* We claim to be an ARM r0p0 with a zero ProductID.
394          * This is the same as an r0p0 GIC-500.
395          */
396         *data = gicv3_iidr();
397         return MEMTX_OK;
398     case GICD_STATUSR:
399         /* RAZ/WI for us (this is an optional register and our implementation
400          * does not track RO/WO/reserved violations to report them to the guest)
401          */
402         *data = 0;
403         return MEMTX_OK;
404     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
405     {
406         int irq;
407 
408         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
409             *data = 0;
410             return MEMTX_OK;
411         }
412         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
413         irq = (offset - GICD_IGROUPR) * 8;
414         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
415             *data = 0;
416             return MEMTX_OK;
417         }
418         *data = *gic_bmp_ptr32(s->group, irq);
419         return MEMTX_OK;
420     }
421     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
422         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
423                                      offset - GICD_ISENABLER);
424         return MEMTX_OK;
425     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
426         *data = gicd_read_bitmap_reg(s, attrs, s->enabled, NULL,
427                                      offset - GICD_ICENABLER);
428         return MEMTX_OK;
429     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
430         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
431                                      offset - GICD_ISPENDR);
432         return MEMTX_OK;
433     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
434         *data = gicd_read_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
435                                      offset - GICD_ICPENDR);
436         return MEMTX_OK;
437     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
438         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
439                                      offset - GICD_ISACTIVER);
440         return MEMTX_OK;
441     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
442         *data = gicd_read_bitmap_reg(s, attrs, s->active, mask_nsacr_ge2,
443                                      offset - GICD_ICACTIVER);
444         return MEMTX_OK;
445     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
446     {
447         int i, irq = offset - GICD_IPRIORITYR;
448         uint32_t value = 0;
449 
450         for (i = irq + 3; i >= irq; i--) {
451             value <<= 8;
452             value |= gicd_read_ipriorityr(s, attrs, i);
453         }
454         *data = value;
455         return MEMTX_OK;
456     }
457     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
458         /* RAZ/WI since affinity routing is always enabled */
459         *data = 0;
460         return MEMTX_OK;
461     case GICD_ICFGR ... GICD_ICFGR + 0xff:
462     {
463         /* Here only the even bits are used; odd bits are RES0 */
464         int irq = (offset - GICD_ICFGR) * 4;
465         uint32_t value = 0;
466 
467         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
468             *data = 0;
469             return MEMTX_OK;
470         }
471 
472         /* Since our edge_trigger bitmap is one bit per irq, we only need
473          * half of the 32-bit word, which we can then spread out
474          * into the odd bits.
475          */
476         value = *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f);
477         value &= mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
478         value = extract32(value, (irq & 0x1f) ? 16 : 0, 16);
479         value = half_shuffle32(value) << 1;
480         *data = value;
481         return MEMTX_OK;
482     }
483     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
484     {
485         int irq;
486 
487         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
488             /* RAZ/WI if security disabled, or if
489              * security enabled and this is an NS access
490              */
491             *data = 0;
492             return MEMTX_OK;
493         }
494         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
495         irq = (offset - GICD_IGRPMODR) * 8;
496         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
497             *data = 0;
498             return MEMTX_OK;
499         }
500         *data = *gic_bmp_ptr32(s->grpmod, irq);
501         return MEMTX_OK;
502     }
503     case GICD_NSACR ... GICD_NSACR + 0xff:
504     {
505         /* Two bits per interrupt */
506         int irq = (offset - GICD_NSACR) * 4;
507 
508         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
509             *data = 0;
510             return MEMTX_OK;
511         }
512 
513         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
514             /* RAZ/WI if security disabled, or if
515              * security enabled and this is an NS access
516              */
517             *data = 0;
518             return MEMTX_OK;
519         }
520 
521         *data = s->gicd_nsacr[irq / 16];
522         return MEMTX_OK;
523     }
524     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
525     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
526         /* RAZ/WI since affinity routing is always enabled */
527         *data = 0;
528         return MEMTX_OK;
529     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
530     {
531         uint64_t r;
532         int irq = (offset - GICD_IROUTER) / 8;
533 
534         r = gicd_read_irouter(s, attrs, irq);
535         if (offset & 7) {
536             *data = r >> 32;
537         } else {
538             *data = (uint32_t)r;
539         }
540         return MEMTX_OK;
541     }
542     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
543         /* ID registers */
544         *data = gicv3_idreg(offset - GICD_IDREGS);
545         return MEMTX_OK;
546     case GICD_SGIR:
547         /* WO registers, return unknown value */
548         qemu_log_mask(LOG_GUEST_ERROR,
549                       "%s: invalid guest read from WO register at offset "
550                       TARGET_FMT_plx "\n", __func__, offset);
551         *data = 0;
552         return MEMTX_OK;
553     default:
554         return MEMTX_ERROR;
555     }
556 }
557 
558 static MemTxResult gicd_writel(GICv3State *s, hwaddr offset,
559                                uint64_t value, MemTxAttrs attrs)
560 {
561     /* Almost all GICv3 distributor registers are 32-bit. Note that
562      * RO registers must ignore writes, not abort.
563      */
564 
565     switch (offset) {
566     case GICD_CTLR:
567     {
568         uint32_t mask;
569         /* GICv3 5.3.20 */
570         if (s->gicd_ctlr & GICD_CTLR_DS) {
571             /* With only one security state, E1NWF is RAZ/WI, DS is RAO/WI,
572              * ARE is RAO/WI (affinity routing always on), and only
573              * bits 0 and 1 (group enables) are writable.
574              */
575             mask = GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1NS;
576         } else {
577             if (attrs.secure) {
578                 /* for secure access:
579                  * ARE_NS and ARE_S are RAO/WI (affinity routing always on)
580                  * E1NWF is RAZ/WI (we don't support enable-1-of-n-wakeup)
581                  *
582                  * We can only modify bits[2:0] (the group enables).
583                  */
584                 mask = GICD_CTLR_DS | GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1_ALL;
585             } else {
586                 /* For non secure access ARE_NS is RAO/WI and EnableGrp1
587                  * is RES0. The only writable bit is [1] (EnableGrp1A), which
588                  * is an alias of the Secure bit [1].
589                  */
590                 mask = GICD_CTLR_EN_GRP1NS;
591             }
592         }
593         s->gicd_ctlr = (s->gicd_ctlr & ~mask) | (value & mask);
594         if (value & mask & GICD_CTLR_DS) {
595             /* We just set DS, so the ARE_NS and EnG1S bits are now RES0.
596              * Note that this is a one-way transition because if DS is set
597              * then it's not writeable, so it can only go back to 0 with a
598              * hardware reset.
599              */
600             s->gicd_ctlr &= ~(GICD_CTLR_EN_GRP1S | GICD_CTLR_ARE_NS);
601         }
602         gicv3_full_update(s);
603         return MEMTX_OK;
604     }
605     case GICD_STATUSR:
606         /* RAZ/WI for our implementation */
607         return MEMTX_OK;
608     case GICD_IGROUPR ... GICD_IGROUPR + 0x7f:
609     {
610         int irq;
611 
612         if (!attrs.secure && !(s->gicd_ctlr & GICD_CTLR_DS)) {
613             return MEMTX_OK;
614         }
615         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
616         irq = (offset - GICD_IGROUPR) * 8;
617         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
618             return MEMTX_OK;
619         }
620         *gic_bmp_ptr32(s->group, irq) = value;
621         gicv3_update(s, irq, 32);
622         return MEMTX_OK;
623     }
624     case GICD_ISENABLER ... GICD_ISENABLER + 0x7f:
625         gicd_write_set_bitmap_reg(s, attrs, s->enabled, NULL,
626                                   offset - GICD_ISENABLER, value);
627         return MEMTX_OK;
628     case GICD_ICENABLER ... GICD_ICENABLER + 0x7f:
629         gicd_write_clear_bitmap_reg(s, attrs, s->enabled, NULL,
630                                     offset - GICD_ICENABLER, value);
631         return MEMTX_OK;
632     case GICD_ISPENDR ... GICD_ISPENDR + 0x7f:
633         gicd_write_set_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge1,
634                                   offset - GICD_ISPENDR, value);
635         return MEMTX_OK;
636     case GICD_ICPENDR ... GICD_ICPENDR + 0x7f:
637         gicd_write_clear_bitmap_reg(s, attrs, s->pending, mask_nsacr_ge2,
638                                     offset - GICD_ICPENDR, value);
639         return MEMTX_OK;
640     case GICD_ISACTIVER ... GICD_ISACTIVER + 0x7f:
641         gicd_write_set_bitmap_reg(s, attrs, s->active, NULL,
642                                   offset - GICD_ISACTIVER, value);
643         return MEMTX_OK;
644     case GICD_ICACTIVER ... GICD_ICACTIVER + 0x7f:
645         gicd_write_clear_bitmap_reg(s, attrs, s->active, NULL,
646                                     offset - GICD_ICACTIVER, value);
647         return MEMTX_OK;
648     case GICD_IPRIORITYR ... GICD_IPRIORITYR + 0x3ff:
649     {
650         int i, irq = offset - GICD_IPRIORITYR;
651 
652         if (irq < GIC_INTERNAL || irq + 3 >= s->num_irq) {
653             return MEMTX_OK;
654         }
655 
656         for (i = irq; i < irq + 4; i++, value >>= 8) {
657             gicd_write_ipriorityr(s, attrs, i, value);
658         }
659         gicv3_update(s, irq, 4);
660         return MEMTX_OK;
661     }
662     case GICD_ITARGETSR ... GICD_ITARGETSR + 0x3ff:
663         /* RAZ/WI since affinity routing is always enabled */
664         return MEMTX_OK;
665     case GICD_ICFGR ... GICD_ICFGR + 0xff:
666     {
667         /* Here only the odd bits are used; even bits are RES0 */
668         int irq = (offset - GICD_ICFGR) * 4;
669         uint32_t mask, oldval;
670 
671         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
672             return MEMTX_OK;
673         }
674 
675         /* Since our edge_trigger bitmap is one bit per irq, our input
676          * 32-bits will compress down into 16 bits which we need
677          * to write into the bitmap.
678          */
679         value = half_unshuffle32(value >> 1);
680         mask = mask_group_and_nsacr(s, attrs, NULL, irq & ~0x1f);
681         if (irq & 0x1f) {
682             value <<= 16;
683             mask &= 0xffff0000U;
684         } else {
685             mask &= 0xffff;
686         }
687         oldval = *gic_bmp_ptr32(s->edge_trigger, (irq & ~0x1f));
688         value = (oldval & ~mask) | (value & mask);
689         *gic_bmp_ptr32(s->edge_trigger, irq & ~0x1f) = value;
690         return MEMTX_OK;
691     }
692     case GICD_IGRPMODR ... GICD_IGRPMODR + 0xff:
693     {
694         int irq;
695 
696         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
697             /* RAZ/WI if security disabled, or if
698              * security enabled and this is an NS access
699              */
700             return MEMTX_OK;
701         }
702         /* RAZ/WI for SGIs, PPIs, unimplemented irqs */
703         irq = (offset - GICD_IGRPMODR) * 8;
704         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
705             return MEMTX_OK;
706         }
707         *gic_bmp_ptr32(s->grpmod, irq) = value;
708         gicv3_update(s, irq, 32);
709         return MEMTX_OK;
710     }
711     case GICD_NSACR ... GICD_NSACR + 0xff:
712     {
713         /* Two bits per interrupt */
714         int irq = (offset - GICD_NSACR) * 4;
715 
716         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
717             return MEMTX_OK;
718         }
719 
720         if ((s->gicd_ctlr & GICD_CTLR_DS) || !attrs.secure) {
721             /* RAZ/WI if security disabled, or if
722              * security enabled and this is an NS access
723              */
724             return MEMTX_OK;
725         }
726 
727         s->gicd_nsacr[irq / 16] = value;
728         /* No update required as this only affects access permission checks */
729         return MEMTX_OK;
730     }
731     case GICD_SGIR:
732         /* RES0 if affinity routing is enabled */
733         return MEMTX_OK;
734     case GICD_CPENDSGIR ... GICD_CPENDSGIR + 0xf:
735     case GICD_SPENDSGIR ... GICD_SPENDSGIR + 0xf:
736         /* RAZ/WI since affinity routing is always enabled */
737         return MEMTX_OK;
738     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
739     {
740         uint64_t r;
741         int irq = (offset - GICD_IROUTER) / 8;
742 
743         if (irq < GIC_INTERNAL || irq >= s->num_irq) {
744             return MEMTX_OK;
745         }
746 
747         /* Write half of the 64-bit register */
748         r = gicd_read_irouter(s, attrs, irq);
749         r = deposit64(r, (offset & 7) ? 32 : 0, 32, value);
750         gicd_write_irouter(s, attrs, irq, r);
751         return MEMTX_OK;
752     }
753     case GICD_IDREGS ... GICD_IDREGS + 0x2f:
754     case GICD_TYPER:
755     case GICD_IIDR:
756         /* RO registers, ignore the write */
757         qemu_log_mask(LOG_GUEST_ERROR,
758                       "%s: invalid guest write to RO register at offset "
759                       TARGET_FMT_plx "\n", __func__, offset);
760         return MEMTX_OK;
761     default:
762         return MEMTX_ERROR;
763     }
764 }
765 
766 static MemTxResult gicd_writell(GICv3State *s, hwaddr offset,
767                                 uint64_t value, MemTxAttrs attrs)
768 {
769     /* Our only 64-bit registers are GICD_IROUTER<n> */
770     int irq;
771 
772     switch (offset) {
773     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
774         irq = (offset - GICD_IROUTER) / 8;
775         gicd_write_irouter(s, attrs, irq, value);
776         return MEMTX_OK;
777     default:
778         return MEMTX_ERROR;
779     }
780 }
781 
782 static MemTxResult gicd_readll(GICv3State *s, hwaddr offset,
783                                uint64_t *data, MemTxAttrs attrs)
784 {
785     /* Our only 64-bit registers are GICD_IROUTER<n> */
786     int irq;
787 
788     switch (offset) {
789     case GICD_IROUTER ... GICD_IROUTER + 0x1fdf:
790         irq = (offset - GICD_IROUTER) / 8;
791         *data = gicd_read_irouter(s, attrs, irq);
792         return MEMTX_OK;
793     default:
794         return MEMTX_ERROR;
795     }
796 }
797 
798 MemTxResult gicv3_dist_read(void *opaque, hwaddr offset, uint64_t *data,
799                             unsigned size, MemTxAttrs attrs)
800 {
801     GICv3State *s = (GICv3State *)opaque;
802     MemTxResult r;
803 
804     switch (size) {
805     case 1:
806         r = gicd_readb(s, offset, data, attrs);
807         break;
808     case 2:
809         r = gicd_readw(s, offset, data, attrs);
810         break;
811     case 4:
812         r = gicd_readl(s, offset, data, attrs);
813         break;
814     case 8:
815         r = gicd_readll(s, offset, data, attrs);
816         break;
817     default:
818         r = MEMTX_ERROR;
819         break;
820     }
821 
822     if (r == MEMTX_ERROR) {
823         qemu_log_mask(LOG_GUEST_ERROR,
824                       "%s: invalid guest read at offset " TARGET_FMT_plx
825                       "size %u\n", __func__, offset, size);
826         trace_gicv3_dist_badread(offset, size, attrs.secure);
827         /* The spec requires that reserved registers are RAZ/WI;
828          * so use MEMTX_ERROR returns from leaf functions as a way to
829          * trigger the guest-error logging but don't return it to
830          * the caller, or we'll cause a spurious guest data abort.
831          */
832         r = MEMTX_OK;
833         *data = 0;
834     } else {
835         trace_gicv3_dist_read(offset, *data, size, attrs.secure);
836     }
837     return r;
838 }
839 
840 MemTxResult gicv3_dist_write(void *opaque, hwaddr offset, uint64_t data,
841                              unsigned size, MemTxAttrs attrs)
842 {
843     GICv3State *s = (GICv3State *)opaque;
844     MemTxResult r;
845 
846     switch (size) {
847     case 1:
848         r = gicd_writeb(s, offset, data, attrs);
849         break;
850     case 2:
851         r = gicd_writew(s, offset, data, attrs);
852         break;
853     case 4:
854         r = gicd_writel(s, offset, data, attrs);
855         break;
856     case 8:
857         r = gicd_writell(s, offset, data, attrs);
858         break;
859     default:
860         r = MEMTX_ERROR;
861         break;
862     }
863 
864     if (r == MEMTX_ERROR) {
865         qemu_log_mask(LOG_GUEST_ERROR,
866                       "%s: invalid guest write at offset " TARGET_FMT_plx
867                       "size %u\n", __func__, offset, size);
868         trace_gicv3_dist_badwrite(offset, data, size, attrs.secure);
869         /* The spec requires that reserved registers are RAZ/WI;
870          * so use MEMTX_ERROR returns from leaf functions as a way to
871          * trigger the guest-error logging but don't return it to
872          * the caller, or we'll cause a spurious guest data abort.
873          */
874         r = MEMTX_OK;
875     } else {
876         trace_gicv3_dist_write(offset, data, size, attrs.secure);
877     }
878     return r;
879 }
880 
881 void gicv3_dist_set_irq(GICv3State *s, int irq, int level)
882 {
883     /* Update distributor state for a change in an external SPI input line */
884     if (level == gicv3_gicd_level_test(s, irq)) {
885         return;
886     }
887 
888     trace_gicv3_dist_set_irq(irq, level);
889 
890     gicv3_gicd_level_replace(s, irq, level);
891 
892     if (level) {
893         /* 0->1 edges latch the pending bit for edge-triggered interrupts */
894         if (gicv3_gicd_edge_trigger_test(s, irq)) {
895             gicv3_gicd_pending_set(s, irq);
896         }
897     }
898 
899     gicv3_update(s, irq, 1);
900 }
901