1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 #include "target/arm/cpregs.h" 24 25 /* 26 * Special case return value from hppvi_index(); must be larger than 27 * the architecturally maximum possible list register index (which is 15) 28 */ 29 #define HPPVI_INDEX_VLPI 16 30 31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 32 { 33 return env->gicv3state; 34 } 35 36 static bool gicv3_use_ns_bank(CPUARMState *env) 37 { 38 /* Return true if we should use the NonSecure bank for a banked GIC 39 * CPU interface register. Note that this differs from the 40 * access_secure_reg() function because GICv3 banked registers are 41 * banked even for AArch64, unlike the other CPU system registers. 42 */ 43 return !arm_is_secure_below_el3(env); 44 } 45 46 /* The minimum BPR for the virtual interface is a configurable property */ 47 static inline int icv_min_vbpr(GICv3CPUState *cs) 48 { 49 return 7 - cs->vprebits; 50 } 51 52 static inline int ich_num_aprs(GICv3CPUState *cs) 53 { 54 /* Return the number of virtual APR registers (1, 2, or 4) */ 55 int aprmax = 1 << (cs->vprebits - 5); 56 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 57 return aprmax; 58 } 59 60 /* Simple accessor functions for LR fields */ 61 static uint32_t ich_lr_vintid(uint64_t lr) 62 { 63 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 64 } 65 66 static uint32_t ich_lr_pintid(uint64_t lr) 67 { 68 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 69 } 70 71 static uint32_t ich_lr_prio(uint64_t lr) 72 { 73 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 74 } 75 76 static int ich_lr_state(uint64_t lr) 77 { 78 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 79 } 80 81 static bool icv_access(CPUARMState *env, int hcr_flags) 82 { 83 /* Return true if this ICC_ register access should really be 84 * directed to an ICV_ access. hcr_flags is a mask of 85 * HCR_EL2 bits to check: we treat this as an ICV_ access 86 * if we are in NS EL1 and at least one of the specified 87 * HCR_EL2 bits is set. 88 * 89 * ICV registers fall into four categories: 90 * * access if NS EL1 and HCR_EL2.FMO == 1: 91 * all ICV regs with '0' in their name 92 * * access if NS EL1 and HCR_EL2.IMO == 1: 93 * all ICV regs with '1' in their name 94 * * access if NS EL1 and either IMO or FMO == 1: 95 * CTLR, DIR, PMR, RPR 96 */ 97 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 98 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 99 100 return flagmatch && arm_current_el(env) == 1 101 && !arm_is_secure_below_el3(env); 102 } 103 104 static int read_vbpr(GICv3CPUState *cs, int grp) 105 { 106 /* Read VBPR value out of the VMCR field (caller must handle 107 * VCBPR effects if required) 108 */ 109 if (grp == GICV3_G0) { 110 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 111 ICH_VMCR_EL2_VBPR0_LENGTH); 112 } else { 113 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 114 ICH_VMCR_EL2_VBPR1_LENGTH); 115 } 116 } 117 118 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 119 { 120 /* Write new VBPR1 value, handling the "writing a value less than 121 * the minimum sets it to the minimum" semantics. 122 */ 123 int min = icv_min_vbpr(cs); 124 125 if (grp != GICV3_G0) { 126 min++; 127 } 128 129 value = MAX(value, min); 130 131 if (grp == GICV3_G0) { 132 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 133 ICH_VMCR_EL2_VBPR0_LENGTH, value); 134 } else { 135 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 136 ICH_VMCR_EL2_VBPR1_LENGTH, value); 137 } 138 } 139 140 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 141 { 142 /* Return a mask word which clears the unimplemented priority bits 143 * from a priority value for a virtual interrupt. (Not to be confused 144 * with the group priority, whose mask depends on the value of VBPR 145 * for the interrupt group.) 146 */ 147 return ~0U << (8 - cs->vpribits); 148 } 149 150 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 151 { 152 /* Calculate the current running priority based on the set bits 153 * in the ICH Active Priority Registers. 154 */ 155 int i; 156 int aprmax = ich_num_aprs(cs); 157 158 for (i = 0; i < aprmax; i++) { 159 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 160 cs->ich_apr[GICV3_G1NS][i]; 161 162 if (!apr) { 163 continue; 164 } 165 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 166 } 167 /* No current active interrupts: return idle priority */ 168 return 0xff; 169 } 170 171 static int hppvi_index(GICv3CPUState *cs) 172 { 173 /* 174 * Return the list register index of the highest priority pending 175 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 176 * pseudocode. If no pending virtual interrupts, return -1. 177 * If the highest priority pending virtual interrupt is a vLPI, 178 * return HPPVI_INDEX_VLPI. 179 * (The pseudocode handles checking whether the vLPI is higher 180 * priority than the highest priority list register at every 181 * callsite of HighestPriorityVirtualInterrupt; we check it here.) 182 */ 183 ARMCPU *cpu = ARM_CPU(cs->cpu); 184 CPUARMState *env = &cpu->env; 185 int idx = -1; 186 int i; 187 /* Note that a list register entry with a priority of 0xff will 188 * never be reported by this function; this is the architecturally 189 * correct behaviour. 190 */ 191 int prio = 0xff; 192 193 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 194 /* Both groups disabled, definitely nothing to do */ 195 return idx; 196 } 197 198 for (i = 0; i < cs->num_list_regs; i++) { 199 uint64_t lr = cs->ich_lr_el2[i]; 200 int thisprio; 201 202 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 203 /* Not Pending */ 204 continue; 205 } 206 207 /* Ignore interrupts if relevant group enable not set */ 208 if (lr & ICH_LR_EL2_GROUP) { 209 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 210 continue; 211 } 212 } else { 213 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 214 continue; 215 } 216 } 217 218 thisprio = ich_lr_prio(lr); 219 220 if (thisprio < prio) { 221 prio = thisprio; 222 idx = i; 223 } 224 } 225 226 /* 227 * "no pending vLPI" is indicated with prio = 0xff, which always 228 * fails the priority check here. vLPIs are only considered 229 * when we are in Non-Secure state. 230 */ 231 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { 232 if (cs->hppvlpi.grp == GICV3_G0) { 233 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { 234 return HPPVI_INDEX_VLPI; 235 } 236 } else { 237 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { 238 return HPPVI_INDEX_VLPI; 239 } 240 } 241 } 242 243 return idx; 244 } 245 246 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 247 { 248 /* Return a mask word which clears the subpriority bits from 249 * a priority value for a virtual interrupt in the specified group. 250 * This depends on the VBPR value. 251 * If using VBPR0 then: 252 * a BPR of 0 means the group priority bits are [7:1]; 253 * a BPR of 1 means they are [7:2], and so on down to 254 * a BPR of 7 meaning no group priority bits at all. 255 * If using VBPR1 then: 256 * a BPR of 0 is impossible (the minimum value is 1) 257 * a BPR of 1 means the group priority bits are [7:1]; 258 * a BPR of 2 means they are [7:2], and so on down to 259 * a BPR of 7 meaning the group priority is [7]. 260 * 261 * Which BPR to use depends on the group of the interrupt and 262 * the current ICH_VMCR_EL2.VCBPR settings. 263 * 264 * This corresponds to the VGroupBits() pseudocode. 265 */ 266 int bpr; 267 268 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 269 group = GICV3_G0; 270 } 271 272 bpr = read_vbpr(cs, group); 273 if (group == GICV3_G1NS) { 274 assert(bpr > 0); 275 bpr--; 276 } 277 278 return ~0U << (bpr + 1); 279 } 280 281 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 282 { 283 /* Return true if we can signal this virtual interrupt defined by 284 * the given list register value; see the pseudocode functions 285 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 286 * Compare also icc_hppi_can_preempt() which is the non-virtual 287 * equivalent of these checks. 288 */ 289 int grp; 290 uint32_t mask, prio, rprio, vpmr; 291 292 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 293 /* Virtual interface disabled */ 294 return false; 295 } 296 297 /* We don't need to check that this LR is in Pending state because 298 * that has already been done in hppvi_index(). 299 */ 300 301 prio = ich_lr_prio(lr); 302 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 303 ICH_VMCR_EL2_VPMR_LENGTH); 304 305 if (prio >= vpmr) { 306 /* Priority mask masks this interrupt */ 307 return false; 308 } 309 310 rprio = ich_highest_active_virt_prio(cs); 311 if (rprio == 0xff) { 312 /* No running interrupt so we can preempt */ 313 return true; 314 } 315 316 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 317 318 mask = icv_gprio_mask(cs, grp); 319 320 /* We only preempt a running interrupt if the pending interrupt's 321 * group priority is sufficient (the subpriorities are not considered). 322 */ 323 if ((prio & mask) < (rprio & mask)) { 324 return true; 325 } 326 327 return false; 328 } 329 330 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) 331 { 332 /* 333 * Return true if we can signal the highest priority pending vLPI. 334 * We can assume we're Non-secure because hppvi_index() already 335 * tested for that. 336 */ 337 uint32_t mask, rprio, vpmr; 338 339 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 340 /* Virtual interface disabled */ 341 return false; 342 } 343 344 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 345 ICH_VMCR_EL2_VPMR_LENGTH); 346 347 if (cs->hppvlpi.prio >= vpmr) { 348 /* Priority mask masks this interrupt */ 349 return false; 350 } 351 352 rprio = ich_highest_active_virt_prio(cs); 353 if (rprio == 0xff) { 354 /* No running interrupt so we can preempt */ 355 return true; 356 } 357 358 mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 359 360 /* 361 * We only preempt a running interrupt if the pending interrupt's 362 * group priority is sufficient (the subpriorities are not considered). 363 */ 364 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { 365 return true; 366 } 367 368 return false; 369 } 370 371 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 372 uint32_t *misr) 373 { 374 /* Return a set of bits indicating the EOI maintenance interrupt status 375 * for each list register. The EOI maintenance interrupt status is 376 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 377 * (see the GICv3 spec for the ICH_EISR_EL2 register). 378 * If misr is not NULL then we should also collect the information 379 * about the MISR.EOI, MISR.NP and MISR.U bits. 380 */ 381 uint32_t value = 0; 382 int validcount = 0; 383 bool seenpending = false; 384 int i; 385 386 for (i = 0; i < cs->num_list_regs; i++) { 387 uint64_t lr = cs->ich_lr_el2[i]; 388 389 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 390 == ICH_LR_EL2_EOI) { 391 value |= (1 << i); 392 } 393 if ((lr & ICH_LR_EL2_STATE_MASK)) { 394 validcount++; 395 } 396 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 397 seenpending = true; 398 } 399 } 400 401 if (misr) { 402 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 403 *misr |= ICH_MISR_EL2_U; 404 } 405 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 406 *misr |= ICH_MISR_EL2_NP; 407 } 408 if (value) { 409 *misr |= ICH_MISR_EL2_EOI; 410 } 411 } 412 return value; 413 } 414 415 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 416 { 417 /* Return a set of bits indicating the maintenance interrupt status 418 * (as seen in the ICH_MISR_EL2 register). 419 */ 420 uint32_t value = 0; 421 422 /* Scan list registers and fill in the U, NP and EOI bits */ 423 eoi_maintenance_interrupt_state(cs, &value); 424 425 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 426 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 427 value |= ICH_MISR_EL2_LRENP; 428 } 429 430 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 431 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 432 value |= ICH_MISR_EL2_VGRP0E; 433 } 434 435 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 436 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 437 value |= ICH_MISR_EL2_VGRP0D; 438 } 439 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 440 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 441 value |= ICH_MISR_EL2_VGRP1E; 442 } 443 444 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 445 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 446 value |= ICH_MISR_EL2_VGRP1D; 447 } 448 449 return value; 450 } 451 452 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) 453 { 454 /* 455 * Tell the CPU about any pending virtual interrupts. 456 * This should only be called for changes that affect the 457 * vIRQ and vFIQ status and do not change the maintenance 458 * interrupt status. This means that unlike gicv3_cpuif_virt_update() 459 * this function won't recursively call back into the GIC code. 460 * The main use of this is when the redistributor has changed the 461 * highest priority pending virtual LPI. 462 */ 463 int idx; 464 int irqlevel = 0; 465 int fiqlevel = 0; 466 467 idx = hppvi_index(cs); 468 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, 469 cs->hppvlpi.irq, cs->hppvlpi.grp, 470 cs->hppvlpi.prio); 471 if (idx == HPPVI_INDEX_VLPI) { 472 if (icv_hppvlpi_can_preempt(cs)) { 473 if (cs->hppvlpi.grp == GICV3_G0) { 474 fiqlevel = 1; 475 } else { 476 irqlevel = 1; 477 } 478 } 479 } else if (idx >= 0) { 480 uint64_t lr = cs->ich_lr_el2[idx]; 481 482 if (icv_hppi_can_preempt(cs, lr)) { 483 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 484 if (lr & ICH_LR_EL2_GROUP) { 485 irqlevel = 1; 486 } else { 487 fiqlevel = 1; 488 } 489 } 490 } 491 492 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 493 qemu_set_irq(cs->parent_vfiq, fiqlevel); 494 qemu_set_irq(cs->parent_virq, irqlevel); 495 } 496 497 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 498 { 499 /* 500 * Tell the CPU about any pending virtual interrupts or 501 * maintenance interrupts, following a change to the state 502 * of the CPU interface relevant to virtual interrupts. 503 * 504 * CAUTION: this function will call qemu_set_irq() on the 505 * CPU maintenance IRQ line, which is typically wired up 506 * to the GIC as a per-CPU interrupt. This means that it 507 * will recursively call back into the GIC code via 508 * gicv3_redist_set_irq() and thus into the CPU interface code's 509 * gicv3_cpuif_update(). It is therefore important that this 510 * function is only called as the final action of a CPU interface 511 * register write implementation, after all the GIC state 512 * fields have been updated. gicv3_cpuif_update() also must 513 * not cause this function to be called, but that happens 514 * naturally as a result of there being no architectural 515 * linkage between the physical and virtual GIC logic. 516 */ 517 ARMCPU *cpu = ARM_CPU(cs->cpu); 518 int maintlevel = 0; 519 520 gicv3_cpuif_virt_irq_fiq_update(cs); 521 522 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 523 maintenance_interrupt_state(cs) != 0) { 524 maintlevel = 1; 525 } 526 527 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); 528 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 529 } 530 531 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 532 { 533 GICv3CPUState *cs = icc_cs_from_env(env); 534 int regno = ri->opc2 & 3; 535 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 536 uint64_t value = cs->ich_apr[grp][regno]; 537 538 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 539 return value; 540 } 541 542 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 GICv3CPUState *cs = icc_cs_from_env(env); 546 int regno = ri->opc2 & 3; 547 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 548 549 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 550 551 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 552 553 gicv3_cpuif_virt_irq_fiq_update(cs); 554 return; 555 } 556 557 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 558 { 559 GICv3CPUState *cs = icc_cs_from_env(env); 560 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 561 uint64_t bpr; 562 bool satinc = false; 563 564 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 565 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 566 grp = GICV3_G0; 567 satinc = true; 568 } 569 570 bpr = read_vbpr(cs, grp); 571 572 if (satinc) { 573 bpr++; 574 bpr = MIN(bpr, 7); 575 } 576 577 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 578 579 return bpr; 580 } 581 582 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 GICv3CPUState *cs = icc_cs_from_env(env); 586 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 587 588 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 589 gicv3_redist_affid(cs), value); 590 591 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 592 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 593 return; 594 } 595 596 write_vbpr(cs, grp, value); 597 598 gicv3_cpuif_virt_irq_fiq_update(cs); 599 } 600 601 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 602 { 603 GICv3CPUState *cs = icc_cs_from_env(env); 604 uint64_t value; 605 606 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 607 ICH_VMCR_EL2_VPMR_LENGTH); 608 609 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 610 return value; 611 } 612 613 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 GICv3CPUState *cs = icc_cs_from_env(env); 617 618 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 619 620 value &= icv_fullprio_mask(cs); 621 622 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 623 ICH_VMCR_EL2_VPMR_LENGTH, value); 624 625 gicv3_cpuif_virt_irq_fiq_update(cs); 626 } 627 628 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 629 { 630 GICv3CPUState *cs = icc_cs_from_env(env); 631 int enbit; 632 uint64_t value; 633 634 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 635 value = extract64(cs->ich_vmcr_el2, enbit, 1); 636 637 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 638 gicv3_redist_affid(cs), value); 639 return value; 640 } 641 642 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 643 uint64_t value) 644 { 645 GICv3CPUState *cs = icc_cs_from_env(env); 646 int enbit; 647 648 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 649 gicv3_redist_affid(cs), value); 650 651 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 652 653 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 654 gicv3_cpuif_virt_update(cs); 655 } 656 657 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 658 { 659 GICv3CPUState *cs = icc_cs_from_env(env); 660 uint64_t value; 661 662 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 663 * should match the ones reported in ich_vtr_read(). 664 */ 665 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 666 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 667 668 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 669 value |= ICC_CTLR_EL1_EOIMODE; 670 } 671 672 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 673 value |= ICC_CTLR_EL1_CBPR; 674 } 675 676 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 677 return value; 678 } 679 680 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 GICv3CPUState *cs = icc_cs_from_env(env); 684 685 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 686 687 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 688 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 689 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 690 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 691 692 gicv3_cpuif_virt_irq_fiq_update(cs); 693 } 694 695 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 696 { 697 GICv3CPUState *cs = icc_cs_from_env(env); 698 int prio = ich_highest_active_virt_prio(cs); 699 700 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 701 return prio; 702 } 703 704 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 705 { 706 GICv3CPUState *cs = icc_cs_from_env(env); 707 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 708 int idx = hppvi_index(cs); 709 uint64_t value = INTID_SPURIOUS; 710 711 if (idx == HPPVI_INDEX_VLPI) { 712 if (cs->hppvlpi.grp == grp) { 713 value = cs->hppvlpi.irq; 714 } 715 } else if (idx >= 0) { 716 uint64_t lr = cs->ich_lr_el2[idx]; 717 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 718 719 if (grp == thisgrp) { 720 value = ich_lr_vintid(lr); 721 } 722 } 723 724 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, 725 gicv3_redist_affid(cs), value); 726 return value; 727 } 728 729 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 730 { 731 /* Activate the interrupt in the specified list register 732 * by moving it from Pending to Active state, and update the 733 * Active Priority Registers. 734 */ 735 uint32_t mask = icv_gprio_mask(cs, grp); 736 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 737 int aprbit = prio >> (8 - cs->vprebits); 738 int regno = aprbit / 32; 739 int regbit = aprbit % 32; 740 741 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 742 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 743 cs->ich_apr[grp][regno] |= (1 << regbit); 744 } 745 746 static void icv_activate_vlpi(GICv3CPUState *cs) 747 { 748 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 749 int prio = cs->hppvlpi.prio & mask; 750 int aprbit = prio >> (8 - cs->vprebits); 751 int regno = aprbit / 32; 752 int regbit = aprbit % 32; 753 754 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); 755 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); 756 } 757 758 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 759 { 760 GICv3CPUState *cs = icc_cs_from_env(env); 761 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 762 int idx = hppvi_index(cs); 763 uint64_t intid = INTID_SPURIOUS; 764 765 if (idx == HPPVI_INDEX_VLPI) { 766 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { 767 intid = cs->hppvlpi.irq; 768 icv_activate_vlpi(cs); 769 } 770 } else if (idx >= 0) { 771 uint64_t lr = cs->ich_lr_el2[idx]; 772 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 773 774 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 775 intid = ich_lr_vintid(lr); 776 if (!gicv3_intid_is_special(intid)) { 777 icv_activate_irq(cs, idx, grp); 778 } else { 779 /* Interrupt goes from Pending to Invalid */ 780 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 781 /* We will now return the (bogus) ID from the list register, 782 * as per the pseudocode. 783 */ 784 } 785 } 786 } 787 788 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 789 gicv3_redist_affid(cs), intid); 790 791 gicv3_cpuif_virt_update(cs); 792 793 return intid; 794 } 795 796 static uint32_t icc_fullprio_mask(GICv3CPUState *cs) 797 { 798 /* 799 * Return a mask word which clears the unimplemented priority bits 800 * from a priority value for a physical interrupt. (Not to be confused 801 * with the group priority, whose mask depends on the value of BPR 802 * for the interrupt group.) 803 */ 804 return ~0U << (8 - cs->pribits); 805 } 806 807 static inline int icc_min_bpr(GICv3CPUState *cs) 808 { 809 /* The minimum BPR for the physical interface. */ 810 return 7 - cs->prebits; 811 } 812 813 static inline int icc_min_bpr_ns(GICv3CPUState *cs) 814 { 815 return icc_min_bpr(cs) + 1; 816 } 817 818 static inline int icc_num_aprs(GICv3CPUState *cs) 819 { 820 /* Return the number of APR registers (1, 2, or 4) */ 821 int aprmax = 1 << MAX(cs->prebits - 5, 0); 822 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); 823 return aprmax; 824 } 825 826 static int icc_highest_active_prio(GICv3CPUState *cs) 827 { 828 /* Calculate the current running priority based on the set bits 829 * in the Active Priority Registers. 830 */ 831 int i; 832 833 for (i = 0; i < icc_num_aprs(cs); i++) { 834 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 835 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 836 837 if (!apr) { 838 continue; 839 } 840 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); 841 } 842 /* No current active interrupts: return idle priority */ 843 return 0xff; 844 } 845 846 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 847 { 848 /* Return a mask word which clears the subpriority bits from 849 * a priority value for an interrupt in the specified group. 850 * This depends on the BPR value. For CBPR0 (S or NS): 851 * a BPR of 0 means the group priority bits are [7:1]; 852 * a BPR of 1 means they are [7:2], and so on down to 853 * a BPR of 7 meaning no group priority bits at all. 854 * For CBPR1 NS: 855 * a BPR of 0 is impossible (the minimum value is 1) 856 * a BPR of 1 means the group priority bits are [7:1]; 857 * a BPR of 2 means they are [7:2], and so on down to 858 * a BPR of 7 meaning the group priority is [7]. 859 * 860 * Which BPR to use depends on the group of the interrupt and 861 * the current ICC_CTLR.CBPR settings. 862 * 863 * This corresponds to the GroupBits() pseudocode. 864 */ 865 int bpr; 866 867 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 868 (group == GICV3_G1NS && 869 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 870 group = GICV3_G0; 871 } 872 873 bpr = cs->icc_bpr[group] & 7; 874 875 if (group == GICV3_G1NS) { 876 assert(bpr > 0); 877 bpr--; 878 } 879 880 return ~0U << (bpr + 1); 881 } 882 883 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 884 { 885 /* Return true if there is no pending interrupt, or the 886 * highest priority pending interrupt is in a group which has been 887 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 888 */ 889 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 890 } 891 892 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 893 { 894 /* Return true if we have a pending interrupt of sufficient 895 * priority to preempt. 896 */ 897 int rprio; 898 uint32_t mask; 899 900 if (icc_no_enabled_hppi(cs)) { 901 return false; 902 } 903 904 if (cs->hppi.prio >= cs->icc_pmr_el1) { 905 /* Priority mask masks this interrupt */ 906 return false; 907 } 908 909 rprio = icc_highest_active_prio(cs); 910 if (rprio == 0xff) { 911 /* No currently running interrupt so we can preempt */ 912 return true; 913 } 914 915 mask = icc_gprio_mask(cs, cs->hppi.grp); 916 917 /* We only preempt a running interrupt if the pending interrupt's 918 * group priority is sufficient (the subpriorities are not considered). 919 */ 920 if ((cs->hppi.prio & mask) < (rprio & mask)) { 921 return true; 922 } 923 924 return false; 925 } 926 927 void gicv3_cpuif_update(GICv3CPUState *cs) 928 { 929 /* Tell the CPU about its highest priority pending interrupt */ 930 int irqlevel = 0; 931 int fiqlevel = 0; 932 ARMCPU *cpu = ARM_CPU(cs->cpu); 933 CPUARMState *env = &cpu->env; 934 935 g_assert(qemu_mutex_iothread_locked()); 936 937 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 938 cs->hppi.grp, cs->hppi.prio); 939 940 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 941 /* If a Security-enabled GIC sends a G1S interrupt to a 942 * Security-disabled CPU, we must treat it as if it were G0. 943 */ 944 cs->hppi.grp = GICV3_G0; 945 } 946 947 if (icc_hppi_can_preempt(cs)) { 948 /* We have an interrupt: should we signal it as IRQ or FIQ? 949 * This is described in the GICv3 spec section 4.6.2. 950 */ 951 bool isfiq; 952 953 switch (cs->hppi.grp) { 954 case GICV3_G0: 955 isfiq = true; 956 break; 957 case GICV3_G1: 958 isfiq = (!arm_is_secure(env) || 959 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 960 break; 961 case GICV3_G1NS: 962 isfiq = arm_is_secure(env); 963 break; 964 default: 965 g_assert_not_reached(); 966 } 967 968 if (isfiq) { 969 fiqlevel = 1; 970 } else { 971 irqlevel = 1; 972 } 973 } 974 975 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 976 977 qemu_set_irq(cs->parent_fiq, fiqlevel); 978 qemu_set_irq(cs->parent_irq, irqlevel); 979 } 980 981 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 982 { 983 GICv3CPUState *cs = icc_cs_from_env(env); 984 uint32_t value = cs->icc_pmr_el1; 985 986 if (icv_access(env, HCR_FMO | HCR_IMO)) { 987 return icv_pmr_read(env, ri); 988 } 989 990 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 991 (env->cp15.scr_el3 & SCR_FIQ)) { 992 /* NS access and Group 0 is inaccessible to NS: return the 993 * NS view of the current priority 994 */ 995 if ((value & 0x80) == 0) { 996 /* Secure priorities not visible to NS */ 997 value = 0; 998 } else if (value != 0xff) { 999 value = (value << 1) & 0xff; 1000 } 1001 } 1002 1003 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 1004 1005 return value; 1006 } 1007 1008 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1009 uint64_t value) 1010 { 1011 GICv3CPUState *cs = icc_cs_from_env(env); 1012 1013 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1014 return icv_pmr_write(env, ri, value); 1015 } 1016 1017 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 1018 1019 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1020 (env->cp15.scr_el3 & SCR_FIQ)) { 1021 /* NS access and Group 0 is inaccessible to NS: return the 1022 * NS view of the current priority 1023 */ 1024 if (!(cs->icc_pmr_el1 & 0x80)) { 1025 /* Current PMR in the secure range, don't allow NS to change it */ 1026 return; 1027 } 1028 value = (value >> 1) | 0x80; 1029 } 1030 value &= icc_fullprio_mask(cs); 1031 cs->icc_pmr_el1 = value; 1032 gicv3_cpuif_update(cs); 1033 } 1034 1035 static void icc_activate_irq(GICv3CPUState *cs, int irq) 1036 { 1037 /* Move the interrupt from the Pending state to Active, and update 1038 * the Active Priority Registers 1039 */ 1040 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 1041 int prio = cs->hppi.prio & mask; 1042 int aprbit = prio >> (8 - cs->prebits); 1043 int regno = aprbit / 32; 1044 int regbit = aprbit % 32; 1045 1046 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 1047 1048 if (irq < GIC_INTERNAL) { 1049 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 1050 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 1051 gicv3_redist_update(cs); 1052 } else if (irq < GICV3_LPI_INTID_START) { 1053 gicv3_gicd_active_set(cs->gic, irq); 1054 gicv3_gicd_pending_clear(cs->gic, irq); 1055 gicv3_update(cs->gic, irq, 1); 1056 } else { 1057 gicv3_redist_lpi_pending(cs, irq, 0); 1058 } 1059 } 1060 1061 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 1062 { 1063 /* Return the highest priority pending interrupt register value 1064 * for group 0. 1065 */ 1066 bool irq_is_secure; 1067 1068 if (cs->hppi.prio == 0xff) { 1069 return INTID_SPURIOUS; 1070 } 1071 1072 /* Check whether we can return the interrupt or if we should return 1073 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 1074 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1075 * is always zero.) 1076 */ 1077 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1078 (cs->hppi.grp != GICV3_G1NS)); 1079 1080 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 1081 return INTID_SPURIOUS; 1082 } 1083 if (irq_is_secure && !arm_is_secure(env)) { 1084 /* Secure interrupts not visible to Nonsecure */ 1085 return INTID_SPURIOUS; 1086 } 1087 1088 if (cs->hppi.grp != GICV3_G0) { 1089 /* Indicate to EL3 that there's a Group 1 interrupt for the other 1090 * state pending. 1091 */ 1092 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 1093 } 1094 1095 return cs->hppi.irq; 1096 } 1097 1098 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 1099 { 1100 /* Return the highest priority pending interrupt register value 1101 * for group 1. 1102 */ 1103 bool irq_is_secure; 1104 1105 if (cs->hppi.prio == 0xff) { 1106 return INTID_SPURIOUS; 1107 } 1108 1109 /* Check whether we can return the interrupt or if we should return 1110 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 1111 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1112 * is always zero.) 1113 */ 1114 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1115 (cs->hppi.grp != GICV3_G1NS)); 1116 1117 if (cs->hppi.grp == GICV3_G0) { 1118 /* Group 0 interrupts not visible via HPPIR1 */ 1119 return INTID_SPURIOUS; 1120 } 1121 if (irq_is_secure) { 1122 if (!arm_is_secure(env)) { 1123 /* Secure interrupts not visible in Non-secure */ 1124 return INTID_SPURIOUS; 1125 } 1126 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1127 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 1128 return INTID_SPURIOUS; 1129 } 1130 1131 return cs->hppi.irq; 1132 } 1133 1134 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1135 { 1136 GICv3CPUState *cs = icc_cs_from_env(env); 1137 uint64_t intid; 1138 1139 if (icv_access(env, HCR_FMO)) { 1140 return icv_iar_read(env, ri); 1141 } 1142 1143 if (!icc_hppi_can_preempt(cs)) { 1144 intid = INTID_SPURIOUS; 1145 } else { 1146 intid = icc_hppir0_value(cs, env); 1147 } 1148 1149 if (!gicv3_intid_is_special(intid)) { 1150 icc_activate_irq(cs, intid); 1151 } 1152 1153 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1154 return intid; 1155 } 1156 1157 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1158 { 1159 GICv3CPUState *cs = icc_cs_from_env(env); 1160 uint64_t intid; 1161 1162 if (icv_access(env, HCR_IMO)) { 1163 return icv_iar_read(env, ri); 1164 } 1165 1166 if (!icc_hppi_can_preempt(cs)) { 1167 intid = INTID_SPURIOUS; 1168 } else { 1169 intid = icc_hppir1_value(cs, env); 1170 } 1171 1172 if (!gicv3_intid_is_special(intid)) { 1173 icc_activate_irq(cs, intid); 1174 } 1175 1176 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1177 return intid; 1178 } 1179 1180 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1181 { 1182 /* Drop the priority of the currently active interrupt in 1183 * the specified group. 1184 * 1185 * Note that we can guarantee (because of the requirement to nest 1186 * ICC_IAR reads [which activate an interrupt and raise priority] 1187 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1188 * that the interrupt we're being called for is the highest priority 1189 * active interrupt, meaning that it has the lowest set bit in the 1190 * APR registers. 1191 * 1192 * If the guest does not honour the ordering constraints then the 1193 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1194 * the values of the APR registers might become incorrect and the 1195 * running priority will be wrong, so interrupts that should preempt 1196 * might not do so, and interrupts that should not preempt might do so. 1197 */ 1198 int i; 1199 1200 for (i = 0; i < icc_num_aprs(cs); i++) { 1201 uint64_t *papr = &cs->icc_apr[grp][i]; 1202 1203 if (!*papr) { 1204 continue; 1205 } 1206 /* Clear the lowest set bit */ 1207 *papr &= *papr - 1; 1208 break; 1209 } 1210 1211 /* running priority change means we need an update for this cpu i/f */ 1212 gicv3_cpuif_update(cs); 1213 } 1214 1215 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1216 { 1217 /* Return true if we should split priority drop and interrupt 1218 * deactivation, ie whether the relevant EOIMode bit is set. 1219 */ 1220 if (arm_is_el3_or_mon(env)) { 1221 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1222 } 1223 if (arm_is_secure_below_el3(env)) { 1224 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1225 } else { 1226 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1227 } 1228 } 1229 1230 static int icc_highest_active_group(GICv3CPUState *cs) 1231 { 1232 /* Return the group with the highest priority active interrupt. 1233 * We can do this by just comparing the APRs to see which one 1234 * has the lowest set bit. 1235 * (If more than one group is active at the same priority then 1236 * we're in UNPREDICTABLE territory.) 1237 */ 1238 int i; 1239 1240 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1241 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1242 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1243 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1244 1245 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1246 return GICV3_G1NS; 1247 } 1248 if (g1ctz < g0ctz) { 1249 return GICV3_G1; 1250 } 1251 if (g0ctz < 32) { 1252 return GICV3_G0; 1253 } 1254 } 1255 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1256 * ignores the spurious EOI attempt. 1257 */ 1258 return -1; 1259 } 1260 1261 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1262 { 1263 if (irq < GIC_INTERNAL) { 1264 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1265 gicv3_redist_update(cs); 1266 } else { 1267 gicv3_gicd_active_clear(cs->gic, irq); 1268 gicv3_update(cs->gic, irq, 1); 1269 } 1270 } 1271 1272 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1273 { 1274 /* Return true if we should split priority drop and interrupt 1275 * deactivation, ie whether the virtual EOIMode bit is set. 1276 */ 1277 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1278 } 1279 1280 static int icv_find_active(GICv3CPUState *cs, int irq) 1281 { 1282 /* Given an interrupt number for an active interrupt, return the index 1283 * of the corresponding list register, or -1 if there is no match. 1284 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1285 */ 1286 int i; 1287 1288 for (i = 0; i < cs->num_list_regs; i++) { 1289 uint64_t lr = cs->ich_lr_el2[i]; 1290 1291 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1292 return i; 1293 } 1294 } 1295 1296 return -1; 1297 } 1298 1299 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1300 { 1301 /* Deactivate the interrupt in the specified list register index */ 1302 uint64_t lr = cs->ich_lr_el2[idx]; 1303 1304 if (lr & ICH_LR_EL2_HW) { 1305 /* Deactivate the associated physical interrupt */ 1306 int pirq = ich_lr_pintid(lr); 1307 1308 if (pirq < INTID_SECURE) { 1309 icc_deactivate_irq(cs, pirq); 1310 } 1311 } 1312 1313 /* Clear the 'active' part of the state, so ActivePending->Pending 1314 * and Active->Invalid. 1315 */ 1316 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1317 cs->ich_lr_el2[idx] = lr; 1318 } 1319 1320 static void icv_increment_eoicount(GICv3CPUState *cs) 1321 { 1322 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1323 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1324 ICH_HCR_EL2_EOICOUNT_LENGTH); 1325 1326 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1327 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1328 } 1329 1330 static int icv_drop_prio(GICv3CPUState *cs) 1331 { 1332 /* Drop the priority of the currently active virtual interrupt 1333 * (favouring group 0 if there is a set active bit at 1334 * the same priority for both group 0 and group 1). 1335 * Return the priority value for the bit we just cleared, 1336 * or 0xff if no bits were set in the AP registers at all. 1337 * Note that though the ich_apr[] are uint64_t only the low 1338 * 32 bits are actually relevant. 1339 */ 1340 int i; 1341 int aprmax = ich_num_aprs(cs); 1342 1343 for (i = 0; i < aprmax; i++) { 1344 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1345 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1346 int apr0count, apr1count; 1347 1348 if (!*papr0 && !*papr1) { 1349 continue; 1350 } 1351 1352 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1353 * because we need to return the bit number we cleared so 1354 * it can be compared against the list register's priority field. 1355 */ 1356 apr0count = ctz32(*papr0); 1357 apr1count = ctz32(*papr1); 1358 1359 if (apr0count <= apr1count) { 1360 *papr0 &= *papr0 - 1; 1361 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1362 } else { 1363 *papr1 &= *papr1 - 1; 1364 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1365 } 1366 } 1367 return 0xff; 1368 } 1369 1370 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1371 uint64_t value) 1372 { 1373 /* Deactivate interrupt */ 1374 GICv3CPUState *cs = icc_cs_from_env(env); 1375 int idx; 1376 int irq = value & 0xffffff; 1377 1378 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1379 1380 if (irq >= GICV3_MAXIRQ) { 1381 /* Also catches special interrupt numbers and LPIs */ 1382 return; 1383 } 1384 1385 if (!icv_eoi_split(env, cs)) { 1386 return; 1387 } 1388 1389 idx = icv_find_active(cs, irq); 1390 1391 if (idx < 0) { 1392 /* No list register matching this, so increment the EOI count 1393 * (might trigger a maintenance interrupt) 1394 */ 1395 icv_increment_eoicount(cs); 1396 } else { 1397 icv_deactivate_irq(cs, idx); 1398 } 1399 1400 gicv3_cpuif_virt_update(cs); 1401 } 1402 1403 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1404 uint64_t value) 1405 { 1406 /* End of Interrupt */ 1407 GICv3CPUState *cs = icc_cs_from_env(env); 1408 int irq = value & 0xffffff; 1409 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1410 int idx, dropprio; 1411 1412 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1413 gicv3_redist_affid(cs), value); 1414 1415 if (gicv3_intid_is_special(irq)) { 1416 return; 1417 } 1418 1419 /* We implement the IMPDEF choice of "drop priority before doing 1420 * error checks" (because that lets us avoid scanning the AP 1421 * registers twice). 1422 */ 1423 dropprio = icv_drop_prio(cs); 1424 if (dropprio == 0xff) { 1425 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1426 * whether the list registers are checked in this 1427 * situation; we choose not to. 1428 */ 1429 return; 1430 } 1431 1432 idx = icv_find_active(cs, irq); 1433 1434 if (idx < 0) { 1435 /* No valid list register corresponding to EOI ID */ 1436 icv_increment_eoicount(cs); 1437 } else { 1438 uint64_t lr = cs->ich_lr_el2[idx]; 1439 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1440 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1441 1442 if (thisgrp == grp && lr_gprio == dropprio) { 1443 if (!icv_eoi_split(env, cs)) { 1444 /* Priority drop and deactivate not split: deactivate irq now */ 1445 icv_deactivate_irq(cs, idx); 1446 } 1447 } 1448 } 1449 1450 gicv3_cpuif_virt_update(cs); 1451 } 1452 1453 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1454 uint64_t value) 1455 { 1456 /* End of Interrupt */ 1457 GICv3CPUState *cs = icc_cs_from_env(env); 1458 int irq = value & 0xffffff; 1459 int grp; 1460 bool is_eoir0 = ri->crm == 8; 1461 1462 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1463 icv_eoir_write(env, ri, value); 1464 return; 1465 } 1466 1467 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1468 gicv3_redist_affid(cs), value); 1469 1470 if ((irq >= cs->gic->num_irq) && 1471 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1472 /* This handles two cases: 1473 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1474 * to the GICC_EOIR, the GIC ignores that write. 1475 * 2. If software writes the number of a non-existent interrupt 1476 * this must be a subcase of "value written does not match the last 1477 * valid interrupt value read from the Interrupt Acknowledge 1478 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1479 */ 1480 return; 1481 } 1482 1483 grp = icc_highest_active_group(cs); 1484 switch (grp) { 1485 case GICV3_G0: 1486 if (!is_eoir0) { 1487 return; 1488 } 1489 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1490 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1491 return; 1492 } 1493 break; 1494 case GICV3_G1: 1495 if (is_eoir0) { 1496 return; 1497 } 1498 if (!arm_is_secure(env)) { 1499 return; 1500 } 1501 break; 1502 case GICV3_G1NS: 1503 if (is_eoir0) { 1504 return; 1505 } 1506 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1507 return; 1508 } 1509 break; 1510 default: 1511 qemu_log_mask(LOG_GUEST_ERROR, 1512 "%s: IRQ %d isn't active\n", __func__, irq); 1513 return; 1514 } 1515 1516 icc_drop_prio(cs, grp); 1517 1518 if (!icc_eoi_split(env, cs)) { 1519 /* Priority drop and deactivate not split: deactivate irq now */ 1520 icc_deactivate_irq(cs, irq); 1521 } 1522 } 1523 1524 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1525 { 1526 GICv3CPUState *cs = icc_cs_from_env(env); 1527 uint64_t value; 1528 1529 if (icv_access(env, HCR_FMO)) { 1530 return icv_hppir_read(env, ri); 1531 } 1532 1533 value = icc_hppir0_value(cs, env); 1534 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1535 return value; 1536 } 1537 1538 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1539 { 1540 GICv3CPUState *cs = icc_cs_from_env(env); 1541 uint64_t value; 1542 1543 if (icv_access(env, HCR_IMO)) { 1544 return icv_hppir_read(env, ri); 1545 } 1546 1547 value = icc_hppir1_value(cs, env); 1548 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1549 return value; 1550 } 1551 1552 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1553 { 1554 GICv3CPUState *cs = icc_cs_from_env(env); 1555 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1556 bool satinc = false; 1557 uint64_t bpr; 1558 1559 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1560 return icv_bpr_read(env, ri); 1561 } 1562 1563 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1564 grp = GICV3_G1NS; 1565 } 1566 1567 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1568 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1569 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1570 * modify BPR0 1571 */ 1572 grp = GICV3_G0; 1573 } 1574 1575 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1576 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1577 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1578 grp = GICV3_G0; 1579 satinc = true; 1580 } 1581 1582 bpr = cs->icc_bpr[grp]; 1583 if (satinc) { 1584 bpr++; 1585 bpr = MIN(bpr, 7); 1586 } 1587 1588 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1589 1590 return bpr; 1591 } 1592 1593 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1594 uint64_t value) 1595 { 1596 GICv3CPUState *cs = icc_cs_from_env(env); 1597 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1598 uint64_t minval; 1599 1600 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1601 icv_bpr_write(env, ri, value); 1602 return; 1603 } 1604 1605 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1606 gicv3_redist_affid(cs), value); 1607 1608 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1609 grp = GICV3_G1NS; 1610 } 1611 1612 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1613 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1614 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1615 * modify BPR0 1616 */ 1617 grp = GICV3_G0; 1618 } 1619 1620 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1621 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1622 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1623 return; 1624 } 1625 1626 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); 1627 if (value < minval) { 1628 value = minval; 1629 } 1630 1631 cs->icc_bpr[grp] = value & 7; 1632 gicv3_cpuif_update(cs); 1633 } 1634 1635 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1636 { 1637 GICv3CPUState *cs = icc_cs_from_env(env); 1638 uint64_t value; 1639 1640 int regno = ri->opc2 & 3; 1641 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1642 1643 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1644 return icv_ap_read(env, ri); 1645 } 1646 1647 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1648 grp = GICV3_G1NS; 1649 } 1650 1651 value = cs->icc_apr[grp][regno]; 1652 1653 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1654 return value; 1655 } 1656 1657 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1658 uint64_t value) 1659 { 1660 GICv3CPUState *cs = icc_cs_from_env(env); 1661 1662 int regno = ri->opc2 & 3; 1663 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1664 1665 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1666 icv_ap_write(env, ri, value); 1667 return; 1668 } 1669 1670 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1671 1672 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1673 grp = GICV3_G1NS; 1674 } 1675 1676 /* It's not possible to claim that a Non-secure interrupt is active 1677 * at a priority outside the Non-secure range (128..255), since this 1678 * would otherwise allow malicious NS code to block delivery of S interrupts 1679 * by writing a bad value to these registers. 1680 */ 1681 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1682 return; 1683 } 1684 1685 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1686 gicv3_cpuif_update(cs); 1687 } 1688 1689 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1690 uint64_t value) 1691 { 1692 /* Deactivate interrupt */ 1693 GICv3CPUState *cs = icc_cs_from_env(env); 1694 int irq = value & 0xffffff; 1695 bool irq_is_secure, single_sec_state, irq_is_grp0; 1696 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1697 1698 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1699 icv_dir_write(env, ri, value); 1700 return; 1701 } 1702 1703 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1704 1705 if (irq >= cs->gic->num_irq) { 1706 /* Also catches special interrupt numbers and LPIs */ 1707 return; 1708 } 1709 1710 if (!icc_eoi_split(env, cs)) { 1711 return; 1712 } 1713 1714 int grp = gicv3_irq_group(cs->gic, cs, irq); 1715 1716 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1717 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1718 irq_is_grp0 = grp == GICV3_G0; 1719 1720 /* Check whether we're allowed to deactivate this interrupt based 1721 * on its group and the current CPU state. 1722 * These checks are laid out to correspond to the spec's pseudocode. 1723 */ 1724 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1725 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1726 /* No need to include !IsSecure in route_*_to_el2 as it's only 1727 * tested in cases where we know !IsSecure is true. 1728 */ 1729 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1730 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1731 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1732 1733 switch (arm_current_el(env)) { 1734 case 3: 1735 break; 1736 case 2: 1737 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1738 break; 1739 } 1740 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1741 break; 1742 } 1743 return; 1744 case 1: 1745 if (!arm_is_secure_below_el3(env)) { 1746 if (single_sec_state && irq_is_grp0 && 1747 !route_fiq_to_el3 && !route_fiq_to_el2) { 1748 break; 1749 } 1750 if (!irq_is_secure && !irq_is_grp0 && 1751 !route_irq_to_el3 && !route_irq_to_el2) { 1752 break; 1753 } 1754 } else { 1755 if (irq_is_grp0 && !route_fiq_to_el3) { 1756 break; 1757 } 1758 if (!irq_is_grp0 && 1759 (!irq_is_secure || !single_sec_state) && 1760 !route_irq_to_el3) { 1761 break; 1762 } 1763 } 1764 return; 1765 default: 1766 g_assert_not_reached(); 1767 } 1768 1769 icc_deactivate_irq(cs, irq); 1770 } 1771 1772 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1773 { 1774 GICv3CPUState *cs = icc_cs_from_env(env); 1775 int prio; 1776 1777 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1778 return icv_rpr_read(env, ri); 1779 } 1780 1781 prio = icc_highest_active_prio(cs); 1782 1783 if (arm_feature(env, ARM_FEATURE_EL3) && 1784 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1785 /* NS GIC access and Group 0 is inaccessible to NS */ 1786 if ((prio & 0x80) == 0) { 1787 /* NS mustn't see priorities in the Secure half of the range */ 1788 prio = 0; 1789 } else if (prio != 0xff) { 1790 /* Non-idle priority: show the Non-secure view of it */ 1791 prio = (prio << 1) & 0xff; 1792 } 1793 } 1794 1795 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1796 return prio; 1797 } 1798 1799 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1800 uint64_t value, int grp, bool ns) 1801 { 1802 GICv3State *s = cs->gic; 1803 1804 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1805 uint64_t aff = extract64(value, 48, 8) << 16 | 1806 extract64(value, 32, 8) << 8 | 1807 extract64(value, 16, 8); 1808 uint32_t targetlist = extract64(value, 0, 16); 1809 uint32_t irq = extract64(value, 24, 4); 1810 bool irm = extract64(value, 40, 1); 1811 int i; 1812 1813 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1814 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1815 * interrupts as Group 0 interrupts and must send Secure Group 0 1816 * interrupts to the target CPUs. 1817 */ 1818 grp = GICV3_G0; 1819 } 1820 1821 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1822 aff, targetlist); 1823 1824 for (i = 0; i < s->num_cpu; i++) { 1825 GICv3CPUState *ocs = &s->cpu[i]; 1826 1827 if (irm) { 1828 /* IRM == 1 : route to all CPUs except self */ 1829 if (cs == ocs) { 1830 continue; 1831 } 1832 } else { 1833 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1834 * where the corresponding bit is set in targetlist 1835 */ 1836 int aff0; 1837 1838 if (ocs->gicr_typer >> 40 != aff) { 1839 continue; 1840 } 1841 aff0 = extract64(ocs->gicr_typer, 32, 8); 1842 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1843 continue; 1844 } 1845 } 1846 1847 /* The redistributor will check against its own GICR_NSACR as needed */ 1848 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1849 } 1850 } 1851 1852 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1853 uint64_t value) 1854 { 1855 /* Generate Secure Group 0 SGI. */ 1856 GICv3CPUState *cs = icc_cs_from_env(env); 1857 bool ns = !arm_is_secure(env); 1858 1859 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1860 } 1861 1862 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1863 uint64_t value) 1864 { 1865 /* Generate Group 1 SGI for the current Security state */ 1866 GICv3CPUState *cs = icc_cs_from_env(env); 1867 int grp; 1868 bool ns = !arm_is_secure(env); 1869 1870 grp = ns ? GICV3_G1NS : GICV3_G1; 1871 icc_generate_sgi(env, cs, value, grp, ns); 1872 } 1873 1874 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1875 uint64_t value) 1876 { 1877 /* Generate Group 1 SGI for the Security state that is not 1878 * the current state 1879 */ 1880 GICv3CPUState *cs = icc_cs_from_env(env); 1881 int grp; 1882 bool ns = !arm_is_secure(env); 1883 1884 grp = ns ? GICV3_G1 : GICV3_G1NS; 1885 icc_generate_sgi(env, cs, value, grp, ns); 1886 } 1887 1888 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1889 { 1890 GICv3CPUState *cs = icc_cs_from_env(env); 1891 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1892 uint64_t value; 1893 1894 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1895 return icv_igrpen_read(env, ri); 1896 } 1897 1898 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1899 grp = GICV3_G1NS; 1900 } 1901 1902 value = cs->icc_igrpen[grp]; 1903 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1904 gicv3_redist_affid(cs), value); 1905 return value; 1906 } 1907 1908 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1909 uint64_t value) 1910 { 1911 GICv3CPUState *cs = icc_cs_from_env(env); 1912 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1913 1914 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1915 icv_igrpen_write(env, ri, value); 1916 return; 1917 } 1918 1919 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1920 gicv3_redist_affid(cs), value); 1921 1922 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1923 grp = GICV3_G1NS; 1924 } 1925 1926 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1927 gicv3_cpuif_update(cs); 1928 } 1929 1930 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1931 { 1932 GICv3CPUState *cs = icc_cs_from_env(env); 1933 uint64_t value; 1934 1935 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1936 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1937 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1938 return value; 1939 } 1940 1941 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1942 uint64_t value) 1943 { 1944 GICv3CPUState *cs = icc_cs_from_env(env); 1945 1946 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1947 1948 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1949 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1950 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1951 gicv3_cpuif_update(cs); 1952 } 1953 1954 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1955 { 1956 GICv3CPUState *cs = icc_cs_from_env(env); 1957 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1958 uint64_t value; 1959 1960 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1961 return icv_ctlr_read(env, ri); 1962 } 1963 1964 value = cs->icc_ctlr_el1[bank]; 1965 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1966 return value; 1967 } 1968 1969 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1970 uint64_t value) 1971 { 1972 GICv3CPUState *cs = icc_cs_from_env(env); 1973 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1974 uint64_t mask; 1975 1976 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1977 icv_ctlr_write(env, ri, value); 1978 return; 1979 } 1980 1981 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1982 1983 /* Only CBPR and EOIMODE can be RW; 1984 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1985 * the asseciated priority-based routing of them); 1986 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1987 */ 1988 if (arm_feature(env, ARM_FEATURE_EL3) && 1989 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1990 mask = ICC_CTLR_EL1_EOIMODE; 1991 } else { 1992 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1993 } 1994 1995 cs->icc_ctlr_el1[bank] &= ~mask; 1996 cs->icc_ctlr_el1[bank] |= (value & mask); 1997 gicv3_cpuif_update(cs); 1998 } 1999 2000 2001 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2002 { 2003 GICv3CPUState *cs = icc_cs_from_env(env); 2004 uint64_t value; 2005 2006 value = cs->icc_ctlr_el3; 2007 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2008 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 2009 } 2010 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2011 value |= ICC_CTLR_EL3_CBPR_EL1NS; 2012 } 2013 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2014 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 2015 } 2016 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2017 value |= ICC_CTLR_EL3_CBPR_EL1S; 2018 } 2019 2020 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 2021 return value; 2022 } 2023 2024 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2025 uint64_t value) 2026 { 2027 GICv3CPUState *cs = icc_cs_from_env(env); 2028 uint64_t mask; 2029 2030 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 2031 2032 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 2033 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2034 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 2035 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 2036 } 2037 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 2038 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 2039 } 2040 2041 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2042 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 2043 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 2044 } 2045 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 2046 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 2047 } 2048 2049 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ 2050 mask = ICC_CTLR_EL3_EOIMODE_EL3; 2051 2052 cs->icc_ctlr_el3 &= ~mask; 2053 cs->icc_ctlr_el3 |= (value & mask); 2054 gicv3_cpuif_update(cs); 2055 } 2056 2057 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 2058 const ARMCPRegInfo *ri, bool isread) 2059 { 2060 CPAccessResult r = CP_ACCESS_OK; 2061 GICv3CPUState *cs = icc_cs_from_env(env); 2062 int el = arm_current_el(env); 2063 2064 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 2065 el == 1 && !arm_is_secure_below_el3(env)) { 2066 /* Takes priority over a possible EL3 trap */ 2067 return CP_ACCESS_TRAP_EL2; 2068 } 2069 2070 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 2071 switch (el) { 2072 case 1: 2073 /* Note that arm_hcr_el2_eff takes secure state into account. */ 2074 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 2075 r = CP_ACCESS_TRAP_EL3; 2076 } 2077 break; 2078 case 2: 2079 r = CP_ACCESS_TRAP_EL3; 2080 break; 2081 case 3: 2082 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2083 r = CP_ACCESS_TRAP_EL3; 2084 } 2085 break; 2086 default: 2087 g_assert_not_reached(); 2088 } 2089 } 2090 2091 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2092 r = CP_ACCESS_TRAP; 2093 } 2094 return r; 2095 } 2096 2097 static CPAccessResult gicv3_dir_access(CPUARMState *env, 2098 const ARMCPRegInfo *ri, bool isread) 2099 { 2100 GICv3CPUState *cs = icc_cs_from_env(env); 2101 2102 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 2103 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 2104 /* Takes priority over a possible EL3 trap */ 2105 return CP_ACCESS_TRAP_EL2; 2106 } 2107 2108 return gicv3_irqfiq_access(env, ri, isread); 2109 } 2110 2111 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 2112 const ARMCPRegInfo *ri, bool isread) 2113 { 2114 if (arm_current_el(env) == 1 && 2115 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 2116 /* Takes priority over a possible EL3 trap */ 2117 return CP_ACCESS_TRAP_EL2; 2118 } 2119 2120 return gicv3_irqfiq_access(env, ri, isread); 2121 } 2122 2123 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 2124 const ARMCPRegInfo *ri, bool isread) 2125 { 2126 CPAccessResult r = CP_ACCESS_OK; 2127 GICv3CPUState *cs = icc_cs_from_env(env); 2128 int el = arm_current_el(env); 2129 2130 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 2131 el == 1 && !arm_is_secure_below_el3(env)) { 2132 /* Takes priority over a possible EL3 trap */ 2133 return CP_ACCESS_TRAP_EL2; 2134 } 2135 2136 if (env->cp15.scr_el3 & SCR_FIQ) { 2137 switch (el) { 2138 case 1: 2139 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 2140 r = CP_ACCESS_TRAP_EL3; 2141 } 2142 break; 2143 case 2: 2144 r = CP_ACCESS_TRAP_EL3; 2145 break; 2146 case 3: 2147 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2148 r = CP_ACCESS_TRAP_EL3; 2149 } 2150 break; 2151 default: 2152 g_assert_not_reached(); 2153 } 2154 } 2155 2156 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2157 r = CP_ACCESS_TRAP; 2158 } 2159 return r; 2160 } 2161 2162 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2163 const ARMCPRegInfo *ri, bool isread) 2164 { 2165 CPAccessResult r = CP_ACCESS_OK; 2166 GICv3CPUState *cs = icc_cs_from_env(env); 2167 int el = arm_current_el(env); 2168 2169 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2170 el == 1 && !arm_is_secure_below_el3(env)) { 2171 /* Takes priority over a possible EL3 trap */ 2172 return CP_ACCESS_TRAP_EL2; 2173 } 2174 2175 if (env->cp15.scr_el3 & SCR_IRQ) { 2176 switch (el) { 2177 case 1: 2178 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2179 r = CP_ACCESS_TRAP_EL3; 2180 } 2181 break; 2182 case 2: 2183 r = CP_ACCESS_TRAP_EL3; 2184 break; 2185 case 3: 2186 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2187 r = CP_ACCESS_TRAP_EL3; 2188 } 2189 break; 2190 default: 2191 g_assert_not_reached(); 2192 } 2193 } 2194 2195 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2196 r = CP_ACCESS_TRAP; 2197 } 2198 return r; 2199 } 2200 2201 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2202 { 2203 GICv3CPUState *cs = icc_cs_from_env(env); 2204 2205 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2206 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2207 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2208 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2209 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2210 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2211 cs->icc_pmr_el1 = 0; 2212 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); 2213 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); 2214 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); 2215 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2216 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2217 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2218 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2219 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); 2220 2221 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2222 cs->ich_hcr_el2 = 0; 2223 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2224 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2225 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2226 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2227 } 2228 2229 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2230 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2231 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2232 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2233 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2234 .readfn = icc_pmr_read, 2235 .writefn = icc_pmr_write, 2236 /* We hang the whole cpu interface reset routine off here 2237 * rather than parcelling it out into one little function 2238 * per register 2239 */ 2240 .resetfn = icc_reset, 2241 }, 2242 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2243 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2244 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2245 .access = PL1_R, .accessfn = gicv3_fiq_access, 2246 .readfn = icc_iar0_read, 2247 }, 2248 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2250 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2251 .access = PL1_W, .accessfn = gicv3_fiq_access, 2252 .writefn = icc_eoir_write, 2253 }, 2254 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2255 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2256 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2257 .access = PL1_R, .accessfn = gicv3_fiq_access, 2258 .readfn = icc_hppir0_read, 2259 }, 2260 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2261 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2262 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2263 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2264 .readfn = icc_bpr_read, 2265 .writefn = icc_bpr_write, 2266 }, 2267 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2268 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2269 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2270 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2271 .readfn = icc_ap_read, 2272 .writefn = icc_ap_write, 2273 }, 2274 /* All the ICC_AP1R*_EL1 registers are banked */ 2275 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2276 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2277 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2278 .access = PL1_RW, .accessfn = gicv3_irq_access, 2279 .readfn = icc_ap_read, 2280 .writefn = icc_ap_write, 2281 }, 2282 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2284 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2285 .access = PL1_W, .accessfn = gicv3_dir_access, 2286 .writefn = icc_dir_write, 2287 }, 2288 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2289 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2290 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2291 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2292 .readfn = icc_rpr_read, 2293 }, 2294 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2295 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2296 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2297 .access = PL1_W, .accessfn = gicv3_sgi_access, 2298 .writefn = icc_sgi1r_write, 2299 }, 2300 { .name = "ICC_SGI1R", 2301 .cp = 15, .opc1 = 0, .crm = 12, 2302 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2303 .access = PL1_W, .accessfn = gicv3_sgi_access, 2304 .writefn = icc_sgi1r_write, 2305 }, 2306 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2307 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2308 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2309 .access = PL1_W, .accessfn = gicv3_sgi_access, 2310 .writefn = icc_asgi1r_write, 2311 }, 2312 { .name = "ICC_ASGI1R", 2313 .cp = 15, .opc1 = 1, .crm = 12, 2314 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2315 .access = PL1_W, .accessfn = gicv3_sgi_access, 2316 .writefn = icc_asgi1r_write, 2317 }, 2318 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2319 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2320 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2321 .access = PL1_W, .accessfn = gicv3_sgi_access, 2322 .writefn = icc_sgi0r_write, 2323 }, 2324 { .name = "ICC_SGI0R", 2325 .cp = 15, .opc1 = 2, .crm = 12, 2326 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2327 .access = PL1_W, .accessfn = gicv3_sgi_access, 2328 .writefn = icc_sgi0r_write, 2329 }, 2330 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2331 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2332 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2333 .access = PL1_R, .accessfn = gicv3_irq_access, 2334 .readfn = icc_iar1_read, 2335 }, 2336 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2337 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2338 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2339 .access = PL1_W, .accessfn = gicv3_irq_access, 2340 .writefn = icc_eoir_write, 2341 }, 2342 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2343 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2344 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2345 .access = PL1_R, .accessfn = gicv3_irq_access, 2346 .readfn = icc_hppir1_read, 2347 }, 2348 /* This register is banked */ 2349 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2350 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2351 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2352 .access = PL1_RW, .accessfn = gicv3_irq_access, 2353 .readfn = icc_bpr_read, 2354 .writefn = icc_bpr_write, 2355 }, 2356 /* This register is banked */ 2357 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2358 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2359 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2360 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2361 .readfn = icc_ctlr_el1_read, 2362 .writefn = icc_ctlr_el1_write, 2363 }, 2364 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2365 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2366 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2367 .access = PL1_RW, 2368 /* We don't support IRQ/FIQ bypass and system registers are 2369 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2370 * This register is banked but since it's constant we don't 2371 * need to do anything special. 2372 */ 2373 .resetvalue = 0x7, 2374 }, 2375 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2376 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2377 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2378 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2379 .readfn = icc_igrpen_read, 2380 .writefn = icc_igrpen_write, 2381 }, 2382 /* This register is banked */ 2383 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2384 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2385 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2386 .access = PL1_RW, .accessfn = gicv3_irq_access, 2387 .readfn = icc_igrpen_read, 2388 .writefn = icc_igrpen_write, 2389 }, 2390 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2391 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2392 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2393 .access = PL2_RW, 2394 /* We don't support IRQ/FIQ bypass and system registers are 2395 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2396 */ 2397 .resetvalue = 0xf, 2398 }, 2399 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2400 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2401 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2402 .access = PL3_RW, 2403 .readfn = icc_ctlr_el3_read, 2404 .writefn = icc_ctlr_el3_write, 2405 }, 2406 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2407 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2408 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2409 .access = PL3_RW, 2410 /* We don't support IRQ/FIQ bypass and system registers are 2411 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2412 */ 2413 .resetvalue = 0xf, 2414 }, 2415 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2416 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2417 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2418 .access = PL3_RW, 2419 .readfn = icc_igrpen1_el3_read, 2420 .writefn = icc_igrpen1_el3_write, 2421 }, 2422 }; 2423 2424 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { 2425 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2426 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2427 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2428 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2429 .readfn = icc_ap_read, 2430 .writefn = icc_ap_write, 2431 }, 2432 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2433 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2434 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2435 .access = PL1_RW, .accessfn = gicv3_irq_access, 2436 .readfn = icc_ap_read, 2437 .writefn = icc_ap_write, 2438 }, 2439 }; 2440 2441 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { 2442 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2443 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2444 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2445 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2446 .readfn = icc_ap_read, 2447 .writefn = icc_ap_write, 2448 }, 2449 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2450 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2451 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2452 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2453 .readfn = icc_ap_read, 2454 .writefn = icc_ap_write, 2455 }, 2456 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2457 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2458 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2459 .access = PL1_RW, .accessfn = gicv3_irq_access, 2460 .readfn = icc_ap_read, 2461 .writefn = icc_ap_write, 2462 }, 2463 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2464 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2465 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2466 .access = PL1_RW, .accessfn = gicv3_irq_access, 2467 .readfn = icc_ap_read, 2468 .writefn = icc_ap_write, 2469 }, 2470 }; 2471 2472 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2473 { 2474 GICv3CPUState *cs = icc_cs_from_env(env); 2475 int regno = ri->opc2 & 3; 2476 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2477 uint64_t value; 2478 2479 value = cs->ich_apr[grp][regno]; 2480 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2481 return value; 2482 } 2483 2484 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2485 uint64_t value) 2486 { 2487 GICv3CPUState *cs = icc_cs_from_env(env); 2488 int regno = ri->opc2 & 3; 2489 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2490 2491 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2492 2493 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2494 gicv3_cpuif_virt_irq_fiq_update(cs); 2495 } 2496 2497 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2498 { 2499 GICv3CPUState *cs = icc_cs_from_env(env); 2500 uint64_t value = cs->ich_hcr_el2; 2501 2502 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2503 return value; 2504 } 2505 2506 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2507 uint64_t value) 2508 { 2509 GICv3CPUState *cs = icc_cs_from_env(env); 2510 2511 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2512 2513 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2514 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2515 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2516 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2517 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2518 2519 cs->ich_hcr_el2 = value; 2520 gicv3_cpuif_virt_update(cs); 2521 } 2522 2523 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2524 { 2525 GICv3CPUState *cs = icc_cs_from_env(env); 2526 uint64_t value = cs->ich_vmcr_el2; 2527 2528 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2529 return value; 2530 } 2531 2532 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2533 uint64_t value) 2534 { 2535 GICv3CPUState *cs = icc_cs_from_env(env); 2536 2537 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2538 2539 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2540 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2541 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2542 value |= ICH_VMCR_EL2_VFIQEN; 2543 2544 cs->ich_vmcr_el2 = value; 2545 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2546 * by reading and writing back the fields. 2547 */ 2548 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2549 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2550 2551 gicv3_cpuif_virt_update(cs); 2552 } 2553 2554 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2555 { 2556 GICv3CPUState *cs = icc_cs_from_env(env); 2557 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2558 uint64_t value; 2559 2560 /* This read function handles all of: 2561 * 64-bit reads of the whole LR 2562 * 32-bit reads of the low half of the LR 2563 * 32-bit reads of the high half of the LR 2564 */ 2565 if (ri->state == ARM_CP_STATE_AA32) { 2566 if (ri->crm >= 14) { 2567 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2568 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2569 } else { 2570 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2571 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2572 } 2573 } else { 2574 value = cs->ich_lr_el2[regno]; 2575 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2576 } 2577 2578 return value; 2579 } 2580 2581 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2582 uint64_t value) 2583 { 2584 GICv3CPUState *cs = icc_cs_from_env(env); 2585 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2586 2587 /* This write function handles all of: 2588 * 64-bit writes to the whole LR 2589 * 32-bit writes to the low half of the LR 2590 * 32-bit writes to the high half of the LR 2591 */ 2592 if (ri->state == ARM_CP_STATE_AA32) { 2593 if (ri->crm >= 14) { 2594 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2595 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2596 } else { 2597 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2598 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2599 } 2600 } else { 2601 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2602 } 2603 2604 /* Enforce RES0 bits in priority field */ 2605 if (cs->vpribits < 8) { 2606 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2607 8 - cs->vpribits, 0); 2608 } 2609 2610 cs->ich_lr_el2[regno] = value; 2611 gicv3_cpuif_virt_update(cs); 2612 } 2613 2614 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2615 { 2616 GICv3CPUState *cs = icc_cs_from_env(env); 2617 uint64_t value; 2618 2619 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2620 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V 2621 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2622 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2623 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2624 2625 if (cs->gic->revision < 4) { 2626 value |= ICH_VTR_EL2_NV4; 2627 } 2628 2629 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2630 return value; 2631 } 2632 2633 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2634 { 2635 GICv3CPUState *cs = icc_cs_from_env(env); 2636 uint64_t value = maintenance_interrupt_state(cs); 2637 2638 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2639 return value; 2640 } 2641 2642 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2643 { 2644 GICv3CPUState *cs = icc_cs_from_env(env); 2645 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2646 2647 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2648 return value; 2649 } 2650 2651 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2652 { 2653 GICv3CPUState *cs = icc_cs_from_env(env); 2654 uint64_t value = 0; 2655 int i; 2656 2657 for (i = 0; i < cs->num_list_regs; i++) { 2658 uint64_t lr = cs->ich_lr_el2[i]; 2659 2660 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2661 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2662 value |= (1 << i); 2663 } 2664 } 2665 2666 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2667 return value; 2668 } 2669 2670 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2671 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2672 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2673 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2674 .access = PL2_RW, 2675 .readfn = ich_ap_read, 2676 .writefn = ich_ap_write, 2677 }, 2678 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2679 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2680 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2681 .access = PL2_RW, 2682 .readfn = ich_ap_read, 2683 .writefn = ich_ap_write, 2684 }, 2685 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2686 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2687 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2688 .access = PL2_RW, 2689 .readfn = ich_hcr_read, 2690 .writefn = ich_hcr_write, 2691 }, 2692 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2693 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2694 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2695 .access = PL2_R, 2696 .readfn = ich_vtr_read, 2697 }, 2698 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2699 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2700 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2701 .access = PL2_R, 2702 .readfn = ich_misr_read, 2703 }, 2704 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2705 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2706 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2707 .access = PL2_R, 2708 .readfn = ich_eisr_read, 2709 }, 2710 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2711 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2712 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2713 .access = PL2_R, 2714 .readfn = ich_elrsr_read, 2715 }, 2716 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2717 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2718 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2719 .access = PL2_RW, 2720 .readfn = ich_vmcr_read, 2721 .writefn = ich_vmcr_write, 2722 }, 2723 }; 2724 2725 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2726 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2727 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2728 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2729 .access = PL2_RW, 2730 .readfn = ich_ap_read, 2731 .writefn = ich_ap_write, 2732 }, 2733 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2734 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2735 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2736 .access = PL2_RW, 2737 .readfn = ich_ap_read, 2738 .writefn = ich_ap_write, 2739 }, 2740 }; 2741 2742 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2743 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2744 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2745 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2746 .access = PL2_RW, 2747 .readfn = ich_ap_read, 2748 .writefn = ich_ap_write, 2749 }, 2750 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2751 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2752 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2753 .access = PL2_RW, 2754 .readfn = ich_ap_read, 2755 .writefn = ich_ap_write, 2756 }, 2757 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2758 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2759 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2760 .access = PL2_RW, 2761 .readfn = ich_ap_read, 2762 .writefn = ich_ap_write, 2763 }, 2764 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2765 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2766 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2767 .access = PL2_RW, 2768 .readfn = ich_ap_read, 2769 .writefn = ich_ap_write, 2770 }, 2771 }; 2772 2773 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2774 { 2775 GICv3CPUState *cs = opaque; 2776 2777 gicv3_cpuif_update(cs); 2778 /* 2779 * Because vLPIs are only pending in NonSecure state, 2780 * an EL change can change the VIRQ/VFIQ status (but 2781 * cannot affect the maintenance interrupt state) 2782 */ 2783 gicv3_cpuif_virt_irq_fiq_update(cs); 2784 } 2785 2786 void gicv3_init_cpuif(GICv3State *s) 2787 { 2788 /* Called from the GICv3 realize function; register our system 2789 * registers with the CPU 2790 */ 2791 int i; 2792 2793 for (i = 0; i < s->num_cpu; i++) { 2794 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2795 GICv3CPUState *cs = &s->cpu[i]; 2796 2797 /* 2798 * If the CPU doesn't define a GICv3 configuration, probably because 2799 * in real hardware it doesn't have one, then we use default values 2800 * matching the one used by most Arm CPUs. This applies to: 2801 * cpu->gic_num_lrs 2802 * cpu->gic_vpribits 2803 * cpu->gic_vprebits 2804 * cpu->gic_pribits 2805 */ 2806 2807 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2808 * in define_arm_cp_regs_with_opaque(), because when we're called back 2809 * it might be with code translated by CPU 0 but run by CPU 1, in 2810 * which case we'd get the wrong value. 2811 * So instead we define the regs with no ri->opaque info, and 2812 * get back to the GICv3CPUState from the CPUARMState. 2813 */ 2814 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2815 2816 /* 2817 * The CPU implementation specifies the number of supported 2818 * bits of physical priority. For backwards compatibility 2819 * of migration, we have a compat property that forces use 2820 * of 8 priority bits regardless of what the CPU really has. 2821 */ 2822 if (s->force_8bit_prio) { 2823 cs->pribits = 8; 2824 } else { 2825 cs->pribits = cpu->gic_pribits ?: 5; 2826 } 2827 2828 /* 2829 * The GICv3 has separate ID register fields for virtual priority 2830 * and preemption bit values, but only a single ID register field 2831 * for the physical priority bits. The preemption bit count is 2832 * always the same as the priority bit count, except that 8 bits 2833 * of priority means 7 preemption bits. We precalculate the 2834 * preemption bits because it simplifies the code and makes the 2835 * parallels between the virtual and physical bits of the GIC 2836 * a bit clearer. 2837 */ 2838 cs->prebits = cs->pribits; 2839 if (cs->prebits == 8) { 2840 cs->prebits--; 2841 } 2842 /* 2843 * Check that CPU code defining pribits didn't violate 2844 * architectural constraints our implementation relies on. 2845 */ 2846 g_assert(cs->pribits >= 4 && cs->pribits <= 8); 2847 2848 /* 2849 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions 2850 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. 2851 */ 2852 if (cs->prebits >= 6) { 2853 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); 2854 } 2855 if (cs->prebits == 7) { 2856 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); 2857 } 2858 2859 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 2860 int j; 2861 2862 cs->num_list_regs = cpu->gic_num_lrs ?: 4; 2863 cs->vpribits = cpu->gic_vpribits ?: 5; 2864 cs->vprebits = cpu->gic_vprebits ?: 5; 2865 2866 /* Check against architectural constraints: getting these 2867 * wrong would be a bug in the CPU code defining these, 2868 * and the implementation relies on them holding. 2869 */ 2870 g_assert(cs->vprebits <= cs->vpribits); 2871 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2872 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2873 2874 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2875 2876 for (j = 0; j < cs->num_list_regs; j++) { 2877 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2878 * are split into two cp15 regs, LR (the low part, with the 2879 * same encoding as the AArch64 LR) and LRC (the high part). 2880 */ 2881 ARMCPRegInfo lr_regset[] = { 2882 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2883 .opc0 = 3, .opc1 = 4, .crn = 12, 2884 .crm = 12 + (j >> 3), .opc2 = j & 7, 2885 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2886 .access = PL2_RW, 2887 .readfn = ich_lr_read, 2888 .writefn = ich_lr_write, 2889 }, 2890 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2891 .cp = 15, .opc1 = 4, .crn = 12, 2892 .crm = 14 + (j >> 3), .opc2 = j & 7, 2893 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2894 .access = PL2_RW, 2895 .readfn = ich_lr_read, 2896 .writefn = ich_lr_write, 2897 }, 2898 }; 2899 define_arm_cp_regs(cpu, lr_regset); 2900 } 2901 if (cs->vprebits >= 6) { 2902 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2903 } 2904 if (cs->vprebits == 7) { 2905 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2906 } 2907 } 2908 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2909 } 2910 } 2911