xref: /openbmc/qemu/hw/intc/arm_gicv3_cpuif.c (revision fc8c745d)
1 /*
2  * ARM Generic Interrupt Controller v3
3  *
4  * Copyright (c) 2016 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This code is licensed under the GPL, version 2 or (at your option)
8  * any later version.
9  */
10 
11 /* This file contains the code for the system register interface
12  * portions of the GICv3.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 
24 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
25 {
26     ARMCPU *arm_cpu = ARM_CPU(cpu);
27     CPUARMState *env = &arm_cpu->env;
28 
29     env->gicv3state = (void *)s;
30 };
31 
32 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
33 {
34     return env->gicv3state;
35 }
36 
37 static bool gicv3_use_ns_bank(CPUARMState *env)
38 {
39     /* Return true if we should use the NonSecure bank for a banked GIC
40      * CPU interface register. Note that this differs from the
41      * access_secure_reg() function because GICv3 banked registers are
42      * banked even for AArch64, unlike the other CPU system registers.
43      */
44     return !arm_is_secure_below_el3(env);
45 }
46 
47 /* The minimum BPR for the virtual interface is a configurable property */
48 static inline int icv_min_vbpr(GICv3CPUState *cs)
49 {
50     return 7 - cs->vprebits;
51 }
52 
53 /* Simple accessor functions for LR fields */
54 static uint32_t ich_lr_vintid(uint64_t lr)
55 {
56     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
57 }
58 
59 static uint32_t ich_lr_pintid(uint64_t lr)
60 {
61     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
62 }
63 
64 static uint32_t ich_lr_prio(uint64_t lr)
65 {
66     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
67 }
68 
69 static int ich_lr_state(uint64_t lr)
70 {
71     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
72 }
73 
74 static bool icv_access(CPUARMState *env, int hcr_flags)
75 {
76     /* Return true if this ICC_ register access should really be
77      * directed to an ICV_ access. hcr_flags is a mask of
78      * HCR_EL2 bits to check: we treat this as an ICV_ access
79      * if we are in NS EL1 and at least one of the specified
80      * HCR_EL2 bits is set.
81      *
82      * ICV registers fall into four categories:
83      *  * access if NS EL1 and HCR_EL2.FMO == 1:
84      *    all ICV regs with '0' in their name
85      *  * access if NS EL1 and HCR_EL2.IMO == 1:
86      *    all ICV regs with '1' in their name
87      *  * access if NS EL1 and either IMO or FMO == 1:
88      *    CTLR, DIR, PMR, RPR
89      */
90     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
91     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
92 
93     return flagmatch && arm_current_el(env) == 1
94         && !arm_is_secure_below_el3(env);
95 }
96 
97 static int read_vbpr(GICv3CPUState *cs, int grp)
98 {
99     /* Read VBPR value out of the VMCR field (caller must handle
100      * VCBPR effects if required)
101      */
102     if (grp == GICV3_G0) {
103         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
104                      ICH_VMCR_EL2_VBPR0_LENGTH);
105     } else {
106         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
107                          ICH_VMCR_EL2_VBPR1_LENGTH);
108     }
109 }
110 
111 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
112 {
113     /* Write new VBPR1 value, handling the "writing a value less than
114      * the minimum sets it to the minimum" semantics.
115      */
116     int min = icv_min_vbpr(cs);
117 
118     if (grp != GICV3_G0) {
119         min++;
120     }
121 
122     value = MAX(value, min);
123 
124     if (grp == GICV3_G0) {
125         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
126                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
127     } else {
128         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
129                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
130     }
131 }
132 
133 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
134 {
135     /* Return a mask word which clears the unimplemented priority bits
136      * from a priority value for a virtual interrupt. (Not to be confused
137      * with the group priority, whose mask depends on the value of VBPR
138      * for the interrupt group.)
139      */
140     return ~0U << (8 - cs->vpribits);
141 }
142 
143 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
144 {
145     /* Calculate the current running priority based on the set bits
146      * in the ICH Active Priority Registers.
147      */
148     int i;
149     int aprmax = 1 << (cs->vprebits - 5);
150 
151     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
152 
153     for (i = 0; i < aprmax; i++) {
154         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
155             cs->ich_apr[GICV3_G1NS][i];
156 
157         if (!apr) {
158             continue;
159         }
160         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
161     }
162     /* No current active interrupts: return idle priority */
163     return 0xff;
164 }
165 
166 static int hppvi_index(GICv3CPUState *cs)
167 {
168     /* Return the list register index of the highest priority pending
169      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
170      * pseudocode. If no pending virtual interrupts, return -1.
171      */
172     int idx = -1;
173     int i;
174     /* Note that a list register entry with a priority of 0xff will
175      * never be reported by this function; this is the architecturally
176      * correct behaviour.
177      */
178     int prio = 0xff;
179 
180     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
181         /* Both groups disabled, definitely nothing to do */
182         return idx;
183     }
184 
185     for (i = 0; i < cs->num_list_regs; i++) {
186         uint64_t lr = cs->ich_lr_el2[i];
187         int thisprio;
188 
189         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
190             /* Not Pending */
191             continue;
192         }
193 
194         /* Ignore interrupts if relevant group enable not set */
195         if (lr & ICH_LR_EL2_GROUP) {
196             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
197                 continue;
198             }
199         } else {
200             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
201                 continue;
202             }
203         }
204 
205         thisprio = ich_lr_prio(lr);
206 
207         if (thisprio < prio) {
208             prio = thisprio;
209             idx = i;
210         }
211     }
212 
213     return idx;
214 }
215 
216 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
217 {
218     /* Return a mask word which clears the subpriority bits from
219      * a priority value for a virtual interrupt in the specified group.
220      * This depends on the VBPR value.
221      * If using VBPR0 then:
222      *  a BPR of 0 means the group priority bits are [7:1];
223      *  a BPR of 1 means they are [7:2], and so on down to
224      *  a BPR of 7 meaning no group priority bits at all.
225      * If using VBPR1 then:
226      *  a BPR of 0 is impossible (the minimum value is 1)
227      *  a BPR of 1 means the group priority bits are [7:1];
228      *  a BPR of 2 means they are [7:2], and so on down to
229      *  a BPR of 7 meaning the group priority is [7].
230      *
231      * Which BPR to use depends on the group of the interrupt and
232      * the current ICH_VMCR_EL2.VCBPR settings.
233      *
234      * This corresponds to the VGroupBits() pseudocode.
235      */
236     int bpr;
237 
238     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
239         group = GICV3_G0;
240     }
241 
242     bpr = read_vbpr(cs, group);
243     if (group == GICV3_G1NS) {
244         assert(bpr > 0);
245         bpr--;
246     }
247 
248     return ~0U << (bpr + 1);
249 }
250 
251 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
252 {
253     /* Return true if we can signal this virtual interrupt defined by
254      * the given list register value; see the pseudocode functions
255      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
256      * Compare also icc_hppi_can_preempt() which is the non-virtual
257      * equivalent of these checks.
258      */
259     int grp;
260     uint32_t mask, prio, rprio, vpmr;
261 
262     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
263         /* Virtual interface disabled */
264         return false;
265     }
266 
267     /* We don't need to check that this LR is in Pending state because
268      * that has already been done in hppvi_index().
269      */
270 
271     prio = ich_lr_prio(lr);
272     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
273                      ICH_VMCR_EL2_VPMR_LENGTH);
274 
275     if (prio >= vpmr) {
276         /* Priority mask masks this interrupt */
277         return false;
278     }
279 
280     rprio = ich_highest_active_virt_prio(cs);
281     if (rprio == 0xff) {
282         /* No running interrupt so we can preempt */
283         return true;
284     }
285 
286     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
287 
288     mask = icv_gprio_mask(cs, grp);
289 
290     /* We only preempt a running interrupt if the pending interrupt's
291      * group priority is sufficient (the subpriorities are not considered).
292      */
293     if ((prio & mask) < (rprio & mask)) {
294         return true;
295     }
296 
297     return false;
298 }
299 
300 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
301                                                 uint32_t *misr)
302 {
303     /* Return a set of bits indicating the EOI maintenance interrupt status
304      * for each list register. The EOI maintenance interrupt status is
305      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
306      * (see the GICv3 spec for the ICH_EISR_EL2 register).
307      * If misr is not NULL then we should also collect the information
308      * about the MISR.EOI, MISR.NP and MISR.U bits.
309      */
310     uint32_t value = 0;
311     int validcount = 0;
312     bool seenpending = false;
313     int i;
314 
315     for (i = 0; i < cs->num_list_regs; i++) {
316         uint64_t lr = cs->ich_lr_el2[i];
317 
318         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
319             == ICH_LR_EL2_EOI) {
320             value |= (1 << i);
321         }
322         if ((lr & ICH_LR_EL2_STATE_MASK)) {
323             validcount++;
324         }
325         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
326             seenpending = true;
327         }
328     }
329 
330     if (misr) {
331         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
332             *misr |= ICH_MISR_EL2_U;
333         }
334         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
335             *misr |= ICH_MISR_EL2_NP;
336         }
337         if (value) {
338             *misr |= ICH_MISR_EL2_EOI;
339         }
340     }
341     return value;
342 }
343 
344 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
345 {
346     /* Return a set of bits indicating the maintenance interrupt status
347      * (as seen in the ICH_MISR_EL2 register).
348      */
349     uint32_t value = 0;
350 
351     /* Scan list registers and fill in the U, NP and EOI bits */
352     eoi_maintenance_interrupt_state(cs, &value);
353 
354     if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
355         value |= ICH_MISR_EL2_LRENP;
356     }
357 
358     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
359         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
360         value |= ICH_MISR_EL2_VGRP0E;
361     }
362 
363     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
364         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
365         value |= ICH_MISR_EL2_VGRP0D;
366     }
367     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
368         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
369         value |= ICH_MISR_EL2_VGRP1E;
370     }
371 
372     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
373         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
374         value |= ICH_MISR_EL2_VGRP1D;
375     }
376 
377     return value;
378 }
379 
380 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
381 {
382     /* Tell the CPU about any pending virtual interrupts or
383      * maintenance interrupts, following a change to the state
384      * of the CPU interface relevant to virtual interrupts.
385      *
386      * CAUTION: this function will call qemu_set_irq() on the
387      * CPU maintenance IRQ line, which is typically wired up
388      * to the GIC as a per-CPU interrupt. This means that it
389      * will recursively call back into the GIC code via
390      * gicv3_redist_set_irq() and thus into the CPU interface code's
391      * gicv3_cpuif_update(). It is therefore important that this
392      * function is only called as the final action of a CPU interface
393      * register write implementation, after all the GIC state
394      * fields have been updated. gicv3_cpuif_update() also must
395      * not cause this function to be called, but that happens
396      * naturally as a result of there being no architectural
397      * linkage between the physical and virtual GIC logic.
398      */
399     int idx;
400     int irqlevel = 0;
401     int fiqlevel = 0;
402     int maintlevel = 0;
403     ARMCPU *cpu = ARM_CPU(cs->cpu);
404 
405     idx = hppvi_index(cs);
406     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
407     if (idx >= 0) {
408         uint64_t lr = cs->ich_lr_el2[idx];
409 
410         if (icv_hppi_can_preempt(cs, lr)) {
411             /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
412             if (lr & ICH_LR_EL2_GROUP) {
413                 irqlevel = 1;
414             } else {
415                 fiqlevel = 1;
416             }
417         }
418     }
419 
420     if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
421         maintlevel = maintenance_interrupt_state(cs);
422     }
423 
424     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
425                                     irqlevel, maintlevel);
426 
427     qemu_set_irq(cs->parent_vfiq, fiqlevel);
428     qemu_set_irq(cs->parent_virq, irqlevel);
429     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
430 }
431 
432 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
433 {
434     GICv3CPUState *cs = icc_cs_from_env(env);
435     int regno = ri->opc2 & 3;
436     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
437     uint64_t value = cs->ich_apr[grp][regno];
438 
439     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
440     return value;
441 }
442 
443 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
444                          uint64_t value)
445 {
446     GICv3CPUState *cs = icc_cs_from_env(env);
447     int regno = ri->opc2 & 3;
448     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
449 
450     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
451 
452     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
453 
454     gicv3_cpuif_virt_update(cs);
455     return;
456 }
457 
458 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
459 {
460     GICv3CPUState *cs = icc_cs_from_env(env);
461     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
462     uint64_t bpr;
463     bool satinc = false;
464 
465     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
466         /* reads return bpr0 + 1 saturated to 7, writes ignored */
467         grp = GICV3_G0;
468         satinc = true;
469     }
470 
471     bpr = read_vbpr(cs, grp);
472 
473     if (satinc) {
474         bpr++;
475         bpr = MIN(bpr, 7);
476     }
477 
478     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
479 
480     return bpr;
481 }
482 
483 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
484                           uint64_t value)
485 {
486     GICv3CPUState *cs = icc_cs_from_env(env);
487     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
488 
489     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
490                               gicv3_redist_affid(cs), value);
491 
492     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
493         /* reads return bpr0 + 1 saturated to 7, writes ignored */
494         return;
495     }
496 
497     write_vbpr(cs, grp, value);
498 
499     gicv3_cpuif_virt_update(cs);
500 }
501 
502 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
503 {
504     GICv3CPUState *cs = icc_cs_from_env(env);
505     uint64_t value;
506 
507     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
508                       ICH_VMCR_EL2_VPMR_LENGTH);
509 
510     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
511     return value;
512 }
513 
514 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
515                           uint64_t value)
516 {
517     GICv3CPUState *cs = icc_cs_from_env(env);
518 
519     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
520 
521     value &= icv_fullprio_mask(cs);
522 
523     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
524                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
525 
526     gicv3_cpuif_virt_update(cs);
527 }
528 
529 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
530 {
531     GICv3CPUState *cs = icc_cs_from_env(env);
532     int enbit;
533     uint64_t value;
534 
535     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
536     value = extract64(cs->ich_vmcr_el2, enbit, 1);
537 
538     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
539                                 gicv3_redist_affid(cs), value);
540     return value;
541 }
542 
543 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
544                              uint64_t value)
545 {
546     GICv3CPUState *cs = icc_cs_from_env(env);
547     int enbit;
548 
549     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
550                                  gicv3_redist_affid(cs), value);
551 
552     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
553 
554     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
555     gicv3_cpuif_virt_update(cs);
556 }
557 
558 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
559 {
560     GICv3CPUState *cs = icc_cs_from_env(env);
561     uint64_t value;
562 
563     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
564      * should match the ones reported in ich_vtr_read().
565      */
566     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
567         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
568 
569     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
570         value |= ICC_CTLR_EL1_EOIMODE;
571     }
572 
573     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
574         value |= ICC_CTLR_EL1_CBPR;
575     }
576 
577     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
578     return value;
579 }
580 
581 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
582                                uint64_t value)
583 {
584     GICv3CPUState *cs = icc_cs_from_env(env);
585 
586     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
587 
588     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
589                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
590     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
591                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
592 
593     gicv3_cpuif_virt_update(cs);
594 }
595 
596 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
597 {
598     GICv3CPUState *cs = icc_cs_from_env(env);
599     int prio = ich_highest_active_virt_prio(cs);
600 
601     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
602     return prio;
603 }
604 
605 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
606 {
607     GICv3CPUState *cs = icc_cs_from_env(env);
608     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
609     int idx = hppvi_index(cs);
610     uint64_t value = INTID_SPURIOUS;
611 
612     if (idx >= 0) {
613         uint64_t lr = cs->ich_lr_el2[idx];
614         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
615 
616         if (grp == thisgrp) {
617             value = ich_lr_vintid(lr);
618         }
619     }
620 
621     trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
622     return value;
623 }
624 
625 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
626 {
627     /* Activate the interrupt in the specified list register
628      * by moving it from Pending to Active state, and update the
629      * Active Priority Registers.
630      */
631     uint32_t mask = icv_gprio_mask(cs, grp);
632     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
633     int aprbit = prio >> (8 - cs->vprebits);
634     int regno = aprbit / 32;
635     int regbit = aprbit % 32;
636 
637     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
638     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
639     cs->ich_apr[grp][regno] |= (1 << regbit);
640 }
641 
642 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
643 {
644     GICv3CPUState *cs = icc_cs_from_env(env);
645     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
646     int idx = hppvi_index(cs);
647     uint64_t intid = INTID_SPURIOUS;
648 
649     if (idx >= 0) {
650         uint64_t lr = cs->ich_lr_el2[idx];
651         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
652 
653         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
654             intid = ich_lr_vintid(lr);
655             if (intid < INTID_SECURE) {
656                 icv_activate_irq(cs, idx, grp);
657             } else {
658                 /* Interrupt goes from Pending to Invalid */
659                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
660                 /* We will now return the (bogus) ID from the list register,
661                  * as per the pseudocode.
662                  */
663             }
664         }
665     }
666 
667     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
668                              gicv3_redist_affid(cs), intid);
669 
670     gicv3_cpuif_virt_update(cs);
671 
672     return intid;
673 }
674 
675 static int icc_highest_active_prio(GICv3CPUState *cs)
676 {
677     /* Calculate the current running priority based on the set bits
678      * in the Active Priority Registers.
679      */
680     int i;
681 
682     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
683         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
684             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
685 
686         if (!apr) {
687             continue;
688         }
689         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
690     }
691     /* No current active interrupts: return idle priority */
692     return 0xff;
693 }
694 
695 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
696 {
697     /* Return a mask word which clears the subpriority bits from
698      * a priority value for an interrupt in the specified group.
699      * This depends on the BPR value. For CBPR0 (S or NS):
700      *  a BPR of 0 means the group priority bits are [7:1];
701      *  a BPR of 1 means they are [7:2], and so on down to
702      *  a BPR of 7 meaning no group priority bits at all.
703      * For CBPR1 NS:
704      *  a BPR of 0 is impossible (the minimum value is 1)
705      *  a BPR of 1 means the group priority bits are [7:1];
706      *  a BPR of 2 means they are [7:2], and so on down to
707      *  a BPR of 7 meaning the group priority is [7].
708      *
709      * Which BPR to use depends on the group of the interrupt and
710      * the current ICC_CTLR.CBPR settings.
711      *
712      * This corresponds to the GroupBits() pseudocode.
713      */
714     int bpr;
715 
716     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
717         (group == GICV3_G1NS &&
718          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
719         group = GICV3_G0;
720     }
721 
722     bpr = cs->icc_bpr[group] & 7;
723 
724     if (group == GICV3_G1NS) {
725         assert(bpr > 0);
726         bpr--;
727     }
728 
729     return ~0U << (bpr + 1);
730 }
731 
732 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
733 {
734     /* Return true if there is no pending interrupt, or the
735      * highest priority pending interrupt is in a group which has been
736      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
737      */
738     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
739 }
740 
741 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
742 {
743     /* Return true if we have a pending interrupt of sufficient
744      * priority to preempt.
745      */
746     int rprio;
747     uint32_t mask;
748 
749     if (icc_no_enabled_hppi(cs)) {
750         return false;
751     }
752 
753     if (cs->hppi.prio >= cs->icc_pmr_el1) {
754         /* Priority mask masks this interrupt */
755         return false;
756     }
757 
758     rprio = icc_highest_active_prio(cs);
759     if (rprio == 0xff) {
760         /* No currently running interrupt so we can preempt */
761         return true;
762     }
763 
764     mask = icc_gprio_mask(cs, cs->hppi.grp);
765 
766     /* We only preempt a running interrupt if the pending interrupt's
767      * group priority is sufficient (the subpriorities are not considered).
768      */
769     if ((cs->hppi.prio & mask) < (rprio & mask)) {
770         return true;
771     }
772 
773     return false;
774 }
775 
776 void gicv3_cpuif_update(GICv3CPUState *cs)
777 {
778     /* Tell the CPU about its highest priority pending interrupt */
779     int irqlevel = 0;
780     int fiqlevel = 0;
781     ARMCPU *cpu = ARM_CPU(cs->cpu);
782     CPUARMState *env = &cpu->env;
783 
784     g_assert(qemu_mutex_iothread_locked());
785 
786     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
787                              cs->hppi.grp, cs->hppi.prio);
788 
789     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
790         /* If a Security-enabled GIC sends a G1S interrupt to a
791          * Security-disabled CPU, we must treat it as if it were G0.
792          */
793         cs->hppi.grp = GICV3_G0;
794     }
795 
796     if (icc_hppi_can_preempt(cs)) {
797         /* We have an interrupt: should we signal it as IRQ or FIQ?
798          * This is described in the GICv3 spec section 4.6.2.
799          */
800         bool isfiq;
801 
802         switch (cs->hppi.grp) {
803         case GICV3_G0:
804             isfiq = true;
805             break;
806         case GICV3_G1:
807             isfiq = (!arm_is_secure(env) ||
808                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
809             break;
810         case GICV3_G1NS:
811             isfiq = arm_is_secure(env);
812             break;
813         default:
814             g_assert_not_reached();
815         }
816 
817         if (isfiq) {
818             fiqlevel = 1;
819         } else {
820             irqlevel = 1;
821         }
822     }
823 
824     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
825 
826     qemu_set_irq(cs->parent_fiq, fiqlevel);
827     qemu_set_irq(cs->parent_irq, irqlevel);
828 }
829 
830 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
831 {
832     GICv3CPUState *cs = icc_cs_from_env(env);
833     uint32_t value = cs->icc_pmr_el1;
834 
835     if (icv_access(env, HCR_FMO | HCR_IMO)) {
836         return icv_pmr_read(env, ri);
837     }
838 
839     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
840         (env->cp15.scr_el3 & SCR_FIQ)) {
841         /* NS access and Group 0 is inaccessible to NS: return the
842          * NS view of the current priority
843          */
844         if ((value & 0x80) == 0) {
845             /* Secure priorities not visible to NS */
846             value = 0;
847         } else if (value != 0xff) {
848             value = (value << 1) & 0xff;
849         }
850     }
851 
852     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
853 
854     return value;
855 }
856 
857 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
858                           uint64_t value)
859 {
860     GICv3CPUState *cs = icc_cs_from_env(env);
861 
862     if (icv_access(env, HCR_FMO | HCR_IMO)) {
863         return icv_pmr_write(env, ri, value);
864     }
865 
866     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
867 
868     value &= 0xff;
869 
870     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
871         (env->cp15.scr_el3 & SCR_FIQ)) {
872         /* NS access and Group 0 is inaccessible to NS: return the
873          * NS view of the current priority
874          */
875         if (!(cs->icc_pmr_el1 & 0x80)) {
876             /* Current PMR in the secure range, don't allow NS to change it */
877             return;
878         }
879         value = (value >> 1) | 0x80;
880     }
881     cs->icc_pmr_el1 = value;
882     gicv3_cpuif_update(cs);
883 }
884 
885 static void icc_activate_irq(GICv3CPUState *cs, int irq)
886 {
887     /* Move the interrupt from the Pending state to Active, and update
888      * the Active Priority Registers
889      */
890     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
891     int prio = cs->hppi.prio & mask;
892     int aprbit = prio >> 1;
893     int regno = aprbit / 32;
894     int regbit = aprbit % 32;
895 
896     cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
897 
898     if (irq < GIC_INTERNAL) {
899         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
900         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
901         gicv3_redist_update(cs);
902     } else {
903         gicv3_gicd_active_set(cs->gic, irq);
904         gicv3_gicd_pending_clear(cs->gic, irq);
905         gicv3_update(cs->gic, irq, 1);
906     }
907 }
908 
909 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
910 {
911     /* Return the highest priority pending interrupt register value
912      * for group 0.
913      */
914     bool irq_is_secure;
915 
916     if (cs->hppi.prio == 0xff) {
917         return INTID_SPURIOUS;
918     }
919 
920     /* Check whether we can return the interrupt or if we should return
921      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
922      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
923      * is always zero.)
924      */
925     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
926                      (cs->hppi.grp != GICV3_G1NS));
927 
928     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
929         return INTID_SPURIOUS;
930     }
931     if (irq_is_secure && !arm_is_secure(env)) {
932         /* Secure interrupts not visible to Nonsecure */
933         return INTID_SPURIOUS;
934     }
935 
936     if (cs->hppi.grp != GICV3_G0) {
937         /* Indicate to EL3 that there's a Group 1 interrupt for the other
938          * state pending.
939          */
940         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
941     }
942 
943     return cs->hppi.irq;
944 }
945 
946 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
947 {
948     /* Return the highest priority pending interrupt register value
949      * for group 1.
950      */
951     bool irq_is_secure;
952 
953     if (cs->hppi.prio == 0xff) {
954         return INTID_SPURIOUS;
955     }
956 
957     /* Check whether we can return the interrupt or if we should return
958      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
959      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
960      * is always zero.)
961      */
962     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
963                      (cs->hppi.grp != GICV3_G1NS));
964 
965     if (cs->hppi.grp == GICV3_G0) {
966         /* Group 0 interrupts not visible via HPPIR1 */
967         return INTID_SPURIOUS;
968     }
969     if (irq_is_secure) {
970         if (!arm_is_secure(env)) {
971             /* Secure interrupts not visible in Non-secure */
972             return INTID_SPURIOUS;
973         }
974     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
975         /* Group 1 non-secure interrupts not visible in Secure EL1 */
976         return INTID_SPURIOUS;
977     }
978 
979     return cs->hppi.irq;
980 }
981 
982 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
983 {
984     GICv3CPUState *cs = icc_cs_from_env(env);
985     uint64_t intid;
986 
987     if (icv_access(env, HCR_FMO)) {
988         return icv_iar_read(env, ri);
989     }
990 
991     if (!icc_hppi_can_preempt(cs)) {
992         intid = INTID_SPURIOUS;
993     } else {
994         intid = icc_hppir0_value(cs, env);
995     }
996 
997     if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
998         icc_activate_irq(cs, intid);
999     }
1000 
1001     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1002     return intid;
1003 }
1004 
1005 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1006 {
1007     GICv3CPUState *cs = icc_cs_from_env(env);
1008     uint64_t intid;
1009 
1010     if (icv_access(env, HCR_IMO)) {
1011         return icv_iar_read(env, ri);
1012     }
1013 
1014     if (!icc_hppi_can_preempt(cs)) {
1015         intid = INTID_SPURIOUS;
1016     } else {
1017         intid = icc_hppir1_value(cs, env);
1018     }
1019 
1020     if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1021         icc_activate_irq(cs, intid);
1022     }
1023 
1024     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1025     return intid;
1026 }
1027 
1028 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1029 {
1030     /* Drop the priority of the currently active interrupt in
1031      * the specified group.
1032      *
1033      * Note that we can guarantee (because of the requirement to nest
1034      * ICC_IAR reads [which activate an interrupt and raise priority]
1035      * with ICC_EOIR writes [which drop the priority for the interrupt])
1036      * that the interrupt we're being called for is the highest priority
1037      * active interrupt, meaning that it has the lowest set bit in the
1038      * APR registers.
1039      *
1040      * If the guest does not honour the ordering constraints then the
1041      * behaviour of the GIC is UNPREDICTABLE, which for us means that
1042      * the values of the APR registers might become incorrect and the
1043      * running priority will be wrong, so interrupts that should preempt
1044      * might not do so, and interrupts that should not preempt might do so.
1045      */
1046     int i;
1047 
1048     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1049         uint64_t *papr = &cs->icc_apr[grp][i];
1050 
1051         if (!*papr) {
1052             continue;
1053         }
1054         /* Clear the lowest set bit */
1055         *papr &= *papr - 1;
1056         break;
1057     }
1058 
1059     /* running priority change means we need an update for this cpu i/f */
1060     gicv3_cpuif_update(cs);
1061 }
1062 
1063 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1064 {
1065     /* Return true if we should split priority drop and interrupt
1066      * deactivation, ie whether the relevant EOIMode bit is set.
1067      */
1068     if (arm_is_el3_or_mon(env)) {
1069         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1070     }
1071     if (arm_is_secure_below_el3(env)) {
1072         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1073     } else {
1074         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1075     }
1076 }
1077 
1078 static int icc_highest_active_group(GICv3CPUState *cs)
1079 {
1080     /* Return the group with the highest priority active interrupt.
1081      * We can do this by just comparing the APRs to see which one
1082      * has the lowest set bit.
1083      * (If more than one group is active at the same priority then
1084      * we're in UNPREDICTABLE territory.)
1085      */
1086     int i;
1087 
1088     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1089         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1090         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1091         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1092 
1093         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1094             return GICV3_G1NS;
1095         }
1096         if (g1ctz < g0ctz) {
1097             return GICV3_G1;
1098         }
1099         if (g0ctz < 32) {
1100             return GICV3_G0;
1101         }
1102     }
1103     /* No set active bits? UNPREDICTABLE; return -1 so the caller
1104      * ignores the spurious EOI attempt.
1105      */
1106     return -1;
1107 }
1108 
1109 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1110 {
1111     if (irq < GIC_INTERNAL) {
1112         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1113         gicv3_redist_update(cs);
1114     } else {
1115         gicv3_gicd_active_clear(cs->gic, irq);
1116         gicv3_update(cs->gic, irq, 1);
1117     }
1118 }
1119 
1120 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1121 {
1122     /* Return true if we should split priority drop and interrupt
1123      * deactivation, ie whether the virtual EOIMode bit is set.
1124      */
1125     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1126 }
1127 
1128 static int icv_find_active(GICv3CPUState *cs, int irq)
1129 {
1130     /* Given an interrupt number for an active interrupt, return the index
1131      * of the corresponding list register, or -1 if there is no match.
1132      * Corresponds to FindActiveVirtualInterrupt pseudocode.
1133      */
1134     int i;
1135 
1136     for (i = 0; i < cs->num_list_regs; i++) {
1137         uint64_t lr = cs->ich_lr_el2[i];
1138 
1139         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1140             return i;
1141         }
1142     }
1143 
1144     return -1;
1145 }
1146 
1147 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1148 {
1149     /* Deactivate the interrupt in the specified list register index */
1150     uint64_t lr = cs->ich_lr_el2[idx];
1151 
1152     if (lr & ICH_LR_EL2_HW) {
1153         /* Deactivate the associated physical interrupt */
1154         int pirq = ich_lr_pintid(lr);
1155 
1156         if (pirq < INTID_SECURE) {
1157             icc_deactivate_irq(cs, pirq);
1158         }
1159     }
1160 
1161     /* Clear the 'active' part of the state, so ActivePending->Pending
1162      * and Active->Invalid.
1163      */
1164     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1165     cs->ich_lr_el2[idx] = lr;
1166 }
1167 
1168 static void icv_increment_eoicount(GICv3CPUState *cs)
1169 {
1170     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1171     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1172                              ICH_HCR_EL2_EOICOUNT_LENGTH);
1173 
1174     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1175                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1176 }
1177 
1178 static int icv_drop_prio(GICv3CPUState *cs)
1179 {
1180     /* Drop the priority of the currently active virtual interrupt
1181      * (favouring group 0 if there is a set active bit at
1182      * the same priority for both group 0 and group 1).
1183      * Return the priority value for the bit we just cleared,
1184      * or 0xff if no bits were set in the AP registers at all.
1185      * Note that though the ich_apr[] are uint64_t only the low
1186      * 32 bits are actually relevant.
1187      */
1188     int i;
1189     int aprmax = 1 << (cs->vprebits - 5);
1190 
1191     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1192 
1193     for (i = 0; i < aprmax; i++) {
1194         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1195         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1196         int apr0count, apr1count;
1197 
1198         if (!*papr0 && !*papr1) {
1199             continue;
1200         }
1201 
1202         /* We can't just use the bit-twiddling hack icc_drop_prio() does
1203          * because we need to return the bit number we cleared so
1204          * it can be compared against the list register's priority field.
1205          */
1206         apr0count = ctz32(*papr0);
1207         apr1count = ctz32(*papr1);
1208 
1209         if (apr0count <= apr1count) {
1210             *papr0 &= *papr0 - 1;
1211             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1212         } else {
1213             *papr1 &= *papr1 - 1;
1214             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1215         }
1216     }
1217     return 0xff;
1218 }
1219 
1220 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1221                           uint64_t value)
1222 {
1223     /* Deactivate interrupt */
1224     GICv3CPUState *cs = icc_cs_from_env(env);
1225     int idx;
1226     int irq = value & 0xffffff;
1227 
1228     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1229 
1230     if (irq >= cs->gic->num_irq) {
1231         /* Also catches special interrupt numbers and LPIs */
1232         return;
1233     }
1234 
1235     if (!icv_eoi_split(env, cs)) {
1236         return;
1237     }
1238 
1239     idx = icv_find_active(cs, irq);
1240 
1241     if (idx < 0) {
1242         /* No list register matching this, so increment the EOI count
1243          * (might trigger a maintenance interrupt)
1244          */
1245         icv_increment_eoicount(cs);
1246     } else {
1247         icv_deactivate_irq(cs, idx);
1248     }
1249 
1250     gicv3_cpuif_virt_update(cs);
1251 }
1252 
1253 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1254                            uint64_t value)
1255 {
1256     /* End of Interrupt */
1257     GICv3CPUState *cs = icc_cs_from_env(env);
1258     int irq = value & 0xffffff;
1259     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1260     int idx, dropprio;
1261 
1262     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1263                                gicv3_redist_affid(cs), value);
1264 
1265     if (irq >= cs->gic->num_irq) {
1266         /* Also catches special interrupt numbers and LPIs */
1267         return;
1268     }
1269 
1270     /* We implement the IMPDEF choice of "drop priority before doing
1271      * error checks" (because that lets us avoid scanning the AP
1272      * registers twice).
1273      */
1274     dropprio = icv_drop_prio(cs);
1275     if (dropprio == 0xff) {
1276         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1277          * whether the list registers are checked in this
1278          * situation; we choose not to.
1279          */
1280         return;
1281     }
1282 
1283     idx = icv_find_active(cs, irq);
1284 
1285     if (idx < 0) {
1286         /* No valid list register corresponding to EOI ID */
1287         icv_increment_eoicount(cs);
1288     } else {
1289         uint64_t lr = cs->ich_lr_el2[idx];
1290         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1291         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1292 
1293         if (thisgrp == grp && lr_gprio == dropprio) {
1294             if (!icv_eoi_split(env, cs)) {
1295                 /* Priority drop and deactivate not split: deactivate irq now */
1296                 icv_deactivate_irq(cs, idx);
1297             }
1298         }
1299     }
1300 
1301     gicv3_cpuif_virt_update(cs);
1302 }
1303 
1304 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1305                            uint64_t value)
1306 {
1307     /* End of Interrupt */
1308     GICv3CPUState *cs = icc_cs_from_env(env);
1309     int irq = value & 0xffffff;
1310     int grp;
1311     bool is_eoir0 = ri->crm == 8;
1312 
1313     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1314         icv_eoir_write(env, ri, value);
1315         return;
1316     }
1317 
1318     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1319                                gicv3_redist_affid(cs), value);
1320 
1321     if (irq >= cs->gic->num_irq) {
1322         /* This handles two cases:
1323          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1324          * to the GICC_EOIR, the GIC ignores that write.
1325          * 2. If software writes the number of a non-existent interrupt
1326          * this must be a subcase of "value written does not match the last
1327          * valid interrupt value read from the Interrupt Acknowledge
1328          * register" and so this is UNPREDICTABLE. We choose to ignore it.
1329          */
1330         return;
1331     }
1332 
1333     grp = icc_highest_active_group(cs);
1334     switch (grp) {
1335     case GICV3_G0:
1336         if (!is_eoir0) {
1337             return;
1338         }
1339         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1340             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1341             return;
1342         }
1343         break;
1344     case GICV3_G1:
1345         if (is_eoir0) {
1346             return;
1347         }
1348         if (!arm_is_secure(env)) {
1349             return;
1350         }
1351         break;
1352     case GICV3_G1NS:
1353         if (is_eoir0) {
1354             return;
1355         }
1356         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1357             return;
1358         }
1359         break;
1360     default:
1361         qemu_log_mask(LOG_GUEST_ERROR,
1362                       "%s: IRQ %d isn't active\n", __func__, irq);
1363         return;
1364     }
1365 
1366     icc_drop_prio(cs, grp);
1367 
1368     if (!icc_eoi_split(env, cs)) {
1369         /* Priority drop and deactivate not split: deactivate irq now */
1370         icc_deactivate_irq(cs, irq);
1371     }
1372 }
1373 
1374 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1375 {
1376     GICv3CPUState *cs = icc_cs_from_env(env);
1377     uint64_t value;
1378 
1379     if (icv_access(env, HCR_FMO)) {
1380         return icv_hppir_read(env, ri);
1381     }
1382 
1383     value = icc_hppir0_value(cs, env);
1384     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1385     return value;
1386 }
1387 
1388 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1389 {
1390     GICv3CPUState *cs = icc_cs_from_env(env);
1391     uint64_t value;
1392 
1393     if (icv_access(env, HCR_IMO)) {
1394         return icv_hppir_read(env, ri);
1395     }
1396 
1397     value = icc_hppir1_value(cs, env);
1398     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1399     return value;
1400 }
1401 
1402 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1403 {
1404     GICv3CPUState *cs = icc_cs_from_env(env);
1405     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1406     bool satinc = false;
1407     uint64_t bpr;
1408 
1409     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1410         return icv_bpr_read(env, ri);
1411     }
1412 
1413     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1414         grp = GICV3_G1NS;
1415     }
1416 
1417     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1418         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1419         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1420          * modify BPR0
1421          */
1422         grp = GICV3_G0;
1423     }
1424 
1425     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1426         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1427         /* reads return bpr0 + 1 sat to 7, writes ignored */
1428         grp = GICV3_G0;
1429         satinc = true;
1430     }
1431 
1432     bpr = cs->icc_bpr[grp];
1433     if (satinc) {
1434         bpr++;
1435         bpr = MIN(bpr, 7);
1436     }
1437 
1438     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1439 
1440     return bpr;
1441 }
1442 
1443 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1444                           uint64_t value)
1445 {
1446     GICv3CPUState *cs = icc_cs_from_env(env);
1447     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1448     uint64_t minval;
1449 
1450     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1451         icv_bpr_write(env, ri, value);
1452         return;
1453     }
1454 
1455     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1456                               gicv3_redist_affid(cs), value);
1457 
1458     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1459         grp = GICV3_G1NS;
1460     }
1461 
1462     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1463         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1464         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1465          * modify BPR0
1466          */
1467         grp = GICV3_G0;
1468     }
1469 
1470     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1471         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1472         /* reads return bpr0 + 1 sat to 7, writes ignored */
1473         return;
1474     }
1475 
1476     minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1477     if (value < minval) {
1478         value = minval;
1479     }
1480 
1481     cs->icc_bpr[grp] = value & 7;
1482     gicv3_cpuif_update(cs);
1483 }
1484 
1485 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1486 {
1487     GICv3CPUState *cs = icc_cs_from_env(env);
1488     uint64_t value;
1489 
1490     int regno = ri->opc2 & 3;
1491     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1492 
1493     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1494         return icv_ap_read(env, ri);
1495     }
1496 
1497     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1498         grp = GICV3_G1NS;
1499     }
1500 
1501     value = cs->icc_apr[grp][regno];
1502 
1503     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1504     return value;
1505 }
1506 
1507 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1508                          uint64_t value)
1509 {
1510     GICv3CPUState *cs = icc_cs_from_env(env);
1511 
1512     int regno = ri->opc2 & 3;
1513     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1514 
1515     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1516         icv_ap_write(env, ri, value);
1517         return;
1518     }
1519 
1520     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1521 
1522     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1523         grp = GICV3_G1NS;
1524     }
1525 
1526     /* It's not possible to claim that a Non-secure interrupt is active
1527      * at a priority outside the Non-secure range (128..255), since this
1528      * would otherwise allow malicious NS code to block delivery of S interrupts
1529      * by writing a bad value to these registers.
1530      */
1531     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1532         return;
1533     }
1534 
1535     cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1536     gicv3_cpuif_update(cs);
1537 }
1538 
1539 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1540                           uint64_t value)
1541 {
1542     /* Deactivate interrupt */
1543     GICv3CPUState *cs = icc_cs_from_env(env);
1544     int irq = value & 0xffffff;
1545     bool irq_is_secure, single_sec_state, irq_is_grp0;
1546     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1547 
1548     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1549         icv_dir_write(env, ri, value);
1550         return;
1551     }
1552 
1553     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1554 
1555     if (irq >= cs->gic->num_irq) {
1556         /* Also catches special interrupt numbers and LPIs */
1557         return;
1558     }
1559 
1560     if (!icc_eoi_split(env, cs)) {
1561         return;
1562     }
1563 
1564     int grp = gicv3_irq_group(cs->gic, cs, irq);
1565 
1566     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1567     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1568     irq_is_grp0 = grp == GICV3_G0;
1569 
1570     /* Check whether we're allowed to deactivate this interrupt based
1571      * on its group and the current CPU state.
1572      * These checks are laid out to correspond to the spec's pseudocode.
1573      */
1574     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1575     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1576     /* No need to include !IsSecure in route_*_to_el2 as it's only
1577      * tested in cases where we know !IsSecure is true.
1578      */
1579     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1580     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1581     route_irq_to_el2 = hcr_el2 & HCR_IMO;
1582 
1583     switch (arm_current_el(env)) {
1584     case 3:
1585         break;
1586     case 2:
1587         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1588             break;
1589         }
1590         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1591             break;
1592         }
1593         return;
1594     case 1:
1595         if (!arm_is_secure_below_el3(env)) {
1596             if (single_sec_state && irq_is_grp0 &&
1597                 !route_fiq_to_el3 && !route_fiq_to_el2) {
1598                 break;
1599             }
1600             if (!irq_is_secure && !irq_is_grp0 &&
1601                 !route_irq_to_el3 && !route_irq_to_el2) {
1602                 break;
1603             }
1604         } else {
1605             if (irq_is_grp0 && !route_fiq_to_el3) {
1606                 break;
1607             }
1608             if (!irq_is_grp0 &&
1609                 (!irq_is_secure || !single_sec_state) &&
1610                 !route_irq_to_el3) {
1611                 break;
1612             }
1613         }
1614         return;
1615     default:
1616         g_assert_not_reached();
1617     }
1618 
1619     icc_deactivate_irq(cs, irq);
1620 }
1621 
1622 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1623 {
1624     GICv3CPUState *cs = icc_cs_from_env(env);
1625     int prio;
1626 
1627     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1628         return icv_rpr_read(env, ri);
1629     }
1630 
1631     prio = icc_highest_active_prio(cs);
1632 
1633     if (arm_feature(env, ARM_FEATURE_EL3) &&
1634         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1635         /* NS GIC access and Group 0 is inaccessible to NS */
1636         if ((prio & 0x80) == 0) {
1637             /* NS mustn't see priorities in the Secure half of the range */
1638             prio = 0;
1639         } else if (prio != 0xff) {
1640             /* Non-idle priority: show the Non-secure view of it */
1641             prio = (prio << 1) & 0xff;
1642         }
1643     }
1644 
1645     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1646     return prio;
1647 }
1648 
1649 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1650                              uint64_t value, int grp, bool ns)
1651 {
1652     GICv3State *s = cs->gic;
1653 
1654     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1655     uint64_t aff = extract64(value, 48, 8) << 16 |
1656         extract64(value, 32, 8) << 8 |
1657         extract64(value, 16, 8);
1658     uint32_t targetlist = extract64(value, 0, 16);
1659     uint32_t irq = extract64(value, 24, 4);
1660     bool irm = extract64(value, 40, 1);
1661     int i;
1662 
1663     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1664         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1665          * interrupts as Group 0 interrupts and must send Secure Group 0
1666          * interrupts to the target CPUs.
1667          */
1668         grp = GICV3_G0;
1669     }
1670 
1671     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1672                                  aff, targetlist);
1673 
1674     for (i = 0; i < s->num_cpu; i++) {
1675         GICv3CPUState *ocs = &s->cpu[i];
1676 
1677         if (irm) {
1678             /* IRM == 1 : route to all CPUs except self */
1679             if (cs == ocs) {
1680                 continue;
1681             }
1682         } else {
1683             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1684              * where the corresponding bit is set in targetlist
1685              */
1686             int aff0;
1687 
1688             if (ocs->gicr_typer >> 40 != aff) {
1689                 continue;
1690             }
1691             aff0 = extract64(ocs->gicr_typer, 32, 8);
1692             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1693                 continue;
1694             }
1695         }
1696 
1697         /* The redistributor will check against its own GICR_NSACR as needed */
1698         gicv3_redist_send_sgi(ocs, grp, irq, ns);
1699     }
1700 }
1701 
1702 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1703                            uint64_t value)
1704 {
1705     /* Generate Secure Group 0 SGI. */
1706     GICv3CPUState *cs = icc_cs_from_env(env);
1707     bool ns = !arm_is_secure(env);
1708 
1709     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1710 }
1711 
1712 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1713                            uint64_t value)
1714 {
1715     /* Generate Group 1 SGI for the current Security state */
1716     GICv3CPUState *cs = icc_cs_from_env(env);
1717     int grp;
1718     bool ns = !arm_is_secure(env);
1719 
1720     grp = ns ? GICV3_G1NS : GICV3_G1;
1721     icc_generate_sgi(env, cs, value, grp, ns);
1722 }
1723 
1724 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1725                              uint64_t value)
1726 {
1727     /* Generate Group 1 SGI for the Security state that is not
1728      * the current state
1729      */
1730     GICv3CPUState *cs = icc_cs_from_env(env);
1731     int grp;
1732     bool ns = !arm_is_secure(env);
1733 
1734     grp = ns ? GICV3_G1 : GICV3_G1NS;
1735     icc_generate_sgi(env, cs, value, grp, ns);
1736 }
1737 
1738 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1739 {
1740     GICv3CPUState *cs = icc_cs_from_env(env);
1741     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1742     uint64_t value;
1743 
1744     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1745         return icv_igrpen_read(env, ri);
1746     }
1747 
1748     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749         grp = GICV3_G1NS;
1750     }
1751 
1752     value = cs->icc_igrpen[grp];
1753     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1754                                 gicv3_redist_affid(cs), value);
1755     return value;
1756 }
1757 
1758 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1759                              uint64_t value)
1760 {
1761     GICv3CPUState *cs = icc_cs_from_env(env);
1762     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1763 
1764     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1765         icv_igrpen_write(env, ri, value);
1766         return;
1767     }
1768 
1769     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1770                                  gicv3_redist_affid(cs), value);
1771 
1772     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1773         grp = GICV3_G1NS;
1774     }
1775 
1776     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1777     gicv3_cpuif_update(cs);
1778 }
1779 
1780 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781 {
1782     GICv3CPUState *cs = icc_cs_from_env(env);
1783     uint64_t value;
1784 
1785     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1786     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1787     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1788     return value;
1789 }
1790 
1791 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1792                                   uint64_t value)
1793 {
1794     GICv3CPUState *cs = icc_cs_from_env(env);
1795 
1796     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1797 
1798     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1799     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1800     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1801     gicv3_cpuif_update(cs);
1802 }
1803 
1804 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1805 {
1806     GICv3CPUState *cs = icc_cs_from_env(env);
1807     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1808     uint64_t value;
1809 
1810     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1811         return icv_ctlr_read(env, ri);
1812     }
1813 
1814     value = cs->icc_ctlr_el1[bank];
1815     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1816     return value;
1817 }
1818 
1819 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1820                                uint64_t value)
1821 {
1822     GICv3CPUState *cs = icc_cs_from_env(env);
1823     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1824     uint64_t mask;
1825 
1826     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1827         icv_ctlr_write(env, ri, value);
1828         return;
1829     }
1830 
1831     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1832 
1833     /* Only CBPR and EOIMODE can be RW;
1834      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1835      * the asseciated priority-based routing of them);
1836      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1837      */
1838     if (arm_feature(env, ARM_FEATURE_EL3) &&
1839         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1840         mask = ICC_CTLR_EL1_EOIMODE;
1841     } else {
1842         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1843     }
1844 
1845     cs->icc_ctlr_el1[bank] &= ~mask;
1846     cs->icc_ctlr_el1[bank] |= (value & mask);
1847     gicv3_cpuif_update(cs);
1848 }
1849 
1850 
1851 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1852 {
1853     GICv3CPUState *cs = icc_cs_from_env(env);
1854     uint64_t value;
1855 
1856     value = cs->icc_ctlr_el3;
1857     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1858         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1859     }
1860     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1861         value |= ICC_CTLR_EL3_CBPR_EL1NS;
1862     }
1863     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1864         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1865     }
1866     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1867         value |= ICC_CTLR_EL3_CBPR_EL1S;
1868     }
1869 
1870     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1871     return value;
1872 }
1873 
1874 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875                                uint64_t value)
1876 {
1877     GICv3CPUState *cs = icc_cs_from_env(env);
1878     uint64_t mask;
1879 
1880     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1881 
1882     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1883     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1884     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1885         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1886     }
1887     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1888         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1889     }
1890 
1891     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1892     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1893         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1894     }
1895     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1896         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1897     }
1898 
1899     /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1900     mask = ICC_CTLR_EL3_EOIMODE_EL3;
1901 
1902     cs->icc_ctlr_el3 &= ~mask;
1903     cs->icc_ctlr_el3 |= (value & mask);
1904     gicv3_cpuif_update(cs);
1905 }
1906 
1907 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1908                                           const ARMCPRegInfo *ri, bool isread)
1909 {
1910     CPAccessResult r = CP_ACCESS_OK;
1911     GICv3CPUState *cs = icc_cs_from_env(env);
1912     int el = arm_current_el(env);
1913 
1914     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1915         el == 1 && !arm_is_secure_below_el3(env)) {
1916         /* Takes priority over a possible EL3 trap */
1917         return CP_ACCESS_TRAP_EL2;
1918     }
1919 
1920     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1921         switch (el) {
1922         case 1:
1923             /* Note that arm_hcr_el2_eff takes secure state into account.  */
1924             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1925                 r = CP_ACCESS_TRAP_EL3;
1926             }
1927             break;
1928         case 2:
1929             r = CP_ACCESS_TRAP_EL3;
1930             break;
1931         case 3:
1932             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1933                 r = CP_ACCESS_TRAP_EL3;
1934             }
1935             break;
1936         default:
1937             g_assert_not_reached();
1938         }
1939     }
1940 
1941     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1942         r = CP_ACCESS_TRAP;
1943     }
1944     return r;
1945 }
1946 
1947 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1948                                        const ARMCPRegInfo *ri, bool isread)
1949 {
1950     GICv3CPUState *cs = icc_cs_from_env(env);
1951 
1952     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1953         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1954         /* Takes priority over a possible EL3 trap */
1955         return CP_ACCESS_TRAP_EL2;
1956     }
1957 
1958     return gicv3_irqfiq_access(env, ri, isread);
1959 }
1960 
1961 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1962                                        const ARMCPRegInfo *ri, bool isread)
1963 {
1964     if (arm_current_el(env) == 1 &&
1965         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1966         /* Takes priority over a possible EL3 trap */
1967         return CP_ACCESS_TRAP_EL2;
1968     }
1969 
1970     return gicv3_irqfiq_access(env, ri, isread);
1971 }
1972 
1973 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1974                                        const ARMCPRegInfo *ri, bool isread)
1975 {
1976     CPAccessResult r = CP_ACCESS_OK;
1977     GICv3CPUState *cs = icc_cs_from_env(env);
1978     int el = arm_current_el(env);
1979 
1980     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1981         el == 1 && !arm_is_secure_below_el3(env)) {
1982         /* Takes priority over a possible EL3 trap */
1983         return CP_ACCESS_TRAP_EL2;
1984     }
1985 
1986     if (env->cp15.scr_el3 & SCR_FIQ) {
1987         switch (el) {
1988         case 1:
1989             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1990                 r = CP_ACCESS_TRAP_EL3;
1991             }
1992             break;
1993         case 2:
1994             r = CP_ACCESS_TRAP_EL3;
1995             break;
1996         case 3:
1997             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1998                 r = CP_ACCESS_TRAP_EL3;
1999             }
2000             break;
2001         default:
2002             g_assert_not_reached();
2003         }
2004     }
2005 
2006     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2007         r = CP_ACCESS_TRAP;
2008     }
2009     return r;
2010 }
2011 
2012 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2013                                        const ARMCPRegInfo *ri, bool isread)
2014 {
2015     CPAccessResult r = CP_ACCESS_OK;
2016     GICv3CPUState *cs = icc_cs_from_env(env);
2017     int el = arm_current_el(env);
2018 
2019     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2020         el == 1 && !arm_is_secure_below_el3(env)) {
2021         /* Takes priority over a possible EL3 trap */
2022         return CP_ACCESS_TRAP_EL2;
2023     }
2024 
2025     if (env->cp15.scr_el3 & SCR_IRQ) {
2026         switch (el) {
2027         case 1:
2028             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2029                 r = CP_ACCESS_TRAP_EL3;
2030             }
2031             break;
2032         case 2:
2033             r = CP_ACCESS_TRAP_EL3;
2034             break;
2035         case 3:
2036             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2037                 r = CP_ACCESS_TRAP_EL3;
2038             }
2039             break;
2040         default:
2041             g_assert_not_reached();
2042         }
2043     }
2044 
2045     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2046         r = CP_ACCESS_TRAP;
2047     }
2048     return r;
2049 }
2050 
2051 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2052 {
2053     GICv3CPUState *cs = icc_cs_from_env(env);
2054 
2055     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2056         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2057         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2058     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2059         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2060         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2061     cs->icc_pmr_el1 = 0;
2062     cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2063     cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2064     cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2065     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2066     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2067     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2068         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2069         (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2070 
2071     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2072     cs->ich_hcr_el2 = 0;
2073     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2074     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2075         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2076         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2077 }
2078 
2079 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2080     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2081       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2082       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2084       .readfn = icc_pmr_read,
2085       .writefn = icc_pmr_write,
2086       /* We hang the whole cpu interface reset routine off here
2087        * rather than parcelling it out into one little function
2088        * per register
2089        */
2090       .resetfn = icc_reset,
2091     },
2092     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2093       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2094       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2095       .access = PL1_R, .accessfn = gicv3_fiq_access,
2096       .readfn = icc_iar0_read,
2097     },
2098     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2099       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2100       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2101       .access = PL1_W, .accessfn = gicv3_fiq_access,
2102       .writefn = icc_eoir_write,
2103     },
2104     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2105       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2106       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2107       .access = PL1_R, .accessfn = gicv3_fiq_access,
2108       .readfn = icc_hppir0_read,
2109     },
2110     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2111       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2112       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2113       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2114       .readfn = icc_bpr_read,
2115       .writefn = icc_bpr_write,
2116     },
2117     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2118       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2119       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2120       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2121       .readfn = icc_ap_read,
2122       .writefn = icc_ap_write,
2123     },
2124     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2125       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2126       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2127       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2128       .readfn = icc_ap_read,
2129       .writefn = icc_ap_write,
2130     },
2131     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2132       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2133       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2134       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2135       .readfn = icc_ap_read,
2136       .writefn = icc_ap_write,
2137     },
2138     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2139       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2140       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2141       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2142       .readfn = icc_ap_read,
2143       .writefn = icc_ap_write,
2144     },
2145     /* All the ICC_AP1R*_EL1 registers are banked */
2146     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2147       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2148       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2149       .access = PL1_RW, .accessfn = gicv3_irq_access,
2150       .readfn = icc_ap_read,
2151       .writefn = icc_ap_write,
2152     },
2153     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2154       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2155       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2156       .access = PL1_RW, .accessfn = gicv3_irq_access,
2157       .readfn = icc_ap_read,
2158       .writefn = icc_ap_write,
2159     },
2160     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2161       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2162       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2163       .access = PL1_RW, .accessfn = gicv3_irq_access,
2164       .readfn = icc_ap_read,
2165       .writefn = icc_ap_write,
2166     },
2167     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2168       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2169       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2170       .access = PL1_RW, .accessfn = gicv3_irq_access,
2171       .readfn = icc_ap_read,
2172       .writefn = icc_ap_write,
2173     },
2174     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2175       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2176       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2177       .access = PL1_W, .accessfn = gicv3_dir_access,
2178       .writefn = icc_dir_write,
2179     },
2180     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2181       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2182       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2183       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2184       .readfn = icc_rpr_read,
2185     },
2186     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2187       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2188       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2189       .access = PL1_W, .accessfn = gicv3_sgi_access,
2190       .writefn = icc_sgi1r_write,
2191     },
2192     { .name = "ICC_SGI1R",
2193       .cp = 15, .opc1 = 0, .crm = 12,
2194       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2195       .access = PL1_W, .accessfn = gicv3_sgi_access,
2196       .writefn = icc_sgi1r_write,
2197     },
2198     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2199       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2200       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2201       .access = PL1_W, .accessfn = gicv3_sgi_access,
2202       .writefn = icc_asgi1r_write,
2203     },
2204     { .name = "ICC_ASGI1R",
2205       .cp = 15, .opc1 = 1, .crm = 12,
2206       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2207       .access = PL1_W, .accessfn = gicv3_sgi_access,
2208       .writefn = icc_asgi1r_write,
2209     },
2210     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2211       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2212       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2213       .access = PL1_W, .accessfn = gicv3_sgi_access,
2214       .writefn = icc_sgi0r_write,
2215     },
2216     { .name = "ICC_SGI0R",
2217       .cp = 15, .opc1 = 2, .crm = 12,
2218       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2219       .access = PL1_W, .accessfn = gicv3_sgi_access,
2220       .writefn = icc_sgi0r_write,
2221     },
2222     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2223       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2224       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2225       .access = PL1_R, .accessfn = gicv3_irq_access,
2226       .readfn = icc_iar1_read,
2227     },
2228     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2229       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2230       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2231       .access = PL1_W, .accessfn = gicv3_irq_access,
2232       .writefn = icc_eoir_write,
2233     },
2234     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2235       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2236       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2237       .access = PL1_R, .accessfn = gicv3_irq_access,
2238       .readfn = icc_hppir1_read,
2239     },
2240     /* This register is banked */
2241     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2242       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2243       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2244       .access = PL1_RW, .accessfn = gicv3_irq_access,
2245       .readfn = icc_bpr_read,
2246       .writefn = icc_bpr_write,
2247     },
2248     /* This register is banked */
2249     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2250       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2251       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2252       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2253       .readfn = icc_ctlr_el1_read,
2254       .writefn = icc_ctlr_el1_write,
2255     },
2256     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2257       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2258       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2259       .access = PL1_RW,
2260       /* We don't support IRQ/FIQ bypass and system registers are
2261        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2262        * This register is banked but since it's constant we don't
2263        * need to do anything special.
2264        */
2265       .resetvalue = 0x7,
2266     },
2267     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2268       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2269       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2271       .readfn = icc_igrpen_read,
2272       .writefn = icc_igrpen_write,
2273     },
2274     /* This register is banked */
2275     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2276       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2277       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2278       .access = PL1_RW, .accessfn = gicv3_irq_access,
2279       .readfn = icc_igrpen_read,
2280       .writefn = icc_igrpen_write,
2281     },
2282     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2283       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2284       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2285       .access = PL2_RW,
2286       /* We don't support IRQ/FIQ bypass and system registers are
2287        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2288        */
2289       .resetvalue = 0xf,
2290     },
2291     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2292       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2293       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2294       .access = PL3_RW,
2295       .readfn = icc_ctlr_el3_read,
2296       .writefn = icc_ctlr_el3_write,
2297     },
2298     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2299       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2300       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2301       .access = PL3_RW,
2302       /* We don't support IRQ/FIQ bypass and system registers are
2303        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2304        */
2305       .resetvalue = 0xf,
2306     },
2307     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2308       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2309       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2310       .access = PL3_RW,
2311       .readfn = icc_igrpen1_el3_read,
2312       .writefn = icc_igrpen1_el3_write,
2313     },
2314     REGINFO_SENTINEL
2315 };
2316 
2317 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2318 {
2319     GICv3CPUState *cs = icc_cs_from_env(env);
2320     int regno = ri->opc2 & 3;
2321     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2322     uint64_t value;
2323 
2324     value = cs->ich_apr[grp][regno];
2325     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2326     return value;
2327 }
2328 
2329 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2330                          uint64_t value)
2331 {
2332     GICv3CPUState *cs = icc_cs_from_env(env);
2333     int regno = ri->opc2 & 3;
2334     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2335 
2336     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2337 
2338     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2339     gicv3_cpuif_virt_update(cs);
2340 }
2341 
2342 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2343 {
2344     GICv3CPUState *cs = icc_cs_from_env(env);
2345     uint64_t value = cs->ich_hcr_el2;
2346 
2347     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2348     return value;
2349 }
2350 
2351 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2352                           uint64_t value)
2353 {
2354     GICv3CPUState *cs = icc_cs_from_env(env);
2355 
2356     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2357 
2358     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2359         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2360         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2361         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2362         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2363 
2364     cs->ich_hcr_el2 = value;
2365     gicv3_cpuif_virt_update(cs);
2366 }
2367 
2368 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2369 {
2370     GICv3CPUState *cs = icc_cs_from_env(env);
2371     uint64_t value = cs->ich_vmcr_el2;
2372 
2373     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2374     return value;
2375 }
2376 
2377 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2378                          uint64_t value)
2379 {
2380     GICv3CPUState *cs = icc_cs_from_env(env);
2381 
2382     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2383 
2384     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2385         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2386         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2387     value |= ICH_VMCR_EL2_VFIQEN;
2388 
2389     cs->ich_vmcr_el2 = value;
2390     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2391      * by reading and writing back the fields.
2392      */
2393     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2394     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2395 
2396     gicv3_cpuif_virt_update(cs);
2397 }
2398 
2399 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2400 {
2401     GICv3CPUState *cs = icc_cs_from_env(env);
2402     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2403     uint64_t value;
2404 
2405     /* This read function handles all of:
2406      * 64-bit reads of the whole LR
2407      * 32-bit reads of the low half of the LR
2408      * 32-bit reads of the high half of the LR
2409      */
2410     if (ri->state == ARM_CP_STATE_AA32) {
2411         if (ri->crm >= 14) {
2412             value = extract64(cs->ich_lr_el2[regno], 32, 32);
2413             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2414         } else {
2415             value = extract64(cs->ich_lr_el2[regno], 0, 32);
2416             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2417         }
2418     } else {
2419         value = cs->ich_lr_el2[regno];
2420         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2421     }
2422 
2423     return value;
2424 }
2425 
2426 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2427                          uint64_t value)
2428 {
2429     GICv3CPUState *cs = icc_cs_from_env(env);
2430     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2431 
2432     /* This write function handles all of:
2433      * 64-bit writes to the whole LR
2434      * 32-bit writes to the low half of the LR
2435      * 32-bit writes to the high half of the LR
2436      */
2437     if (ri->state == ARM_CP_STATE_AA32) {
2438         if (ri->crm >= 14) {
2439             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2440             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2441         } else {
2442             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2443             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2444         }
2445     } else {
2446         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2447     }
2448 
2449     /* Enforce RES0 bits in priority field */
2450     if (cs->vpribits < 8) {
2451         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2452                           8 - cs->vpribits, 0);
2453     }
2454 
2455     cs->ich_lr_el2[regno] = value;
2456     gicv3_cpuif_virt_update(cs);
2457 }
2458 
2459 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2460 {
2461     GICv3CPUState *cs = icc_cs_from_env(env);
2462     uint64_t value;
2463 
2464     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2465         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2466         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2467         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2468         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2469 
2470     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2471     return value;
2472 }
2473 
2474 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2475 {
2476     GICv3CPUState *cs = icc_cs_from_env(env);
2477     uint64_t value = maintenance_interrupt_state(cs);
2478 
2479     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2480     return value;
2481 }
2482 
2483 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2484 {
2485     GICv3CPUState *cs = icc_cs_from_env(env);
2486     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2487 
2488     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2489     return value;
2490 }
2491 
2492 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2493 {
2494     GICv3CPUState *cs = icc_cs_from_env(env);
2495     uint64_t value = 0;
2496     int i;
2497 
2498     for (i = 0; i < cs->num_list_regs; i++) {
2499         uint64_t lr = cs->ich_lr_el2[i];
2500 
2501         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2502             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2503             value |= (1 << i);
2504         }
2505     }
2506 
2507     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2508     return value;
2509 }
2510 
2511 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2512     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2513       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2514       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2515       .access = PL2_RW,
2516       .readfn = ich_ap_read,
2517       .writefn = ich_ap_write,
2518     },
2519     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2520       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2521       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2522       .access = PL2_RW,
2523       .readfn = ich_ap_read,
2524       .writefn = ich_ap_write,
2525     },
2526     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2527       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2528       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2529       .access = PL2_RW,
2530       .readfn = ich_hcr_read,
2531       .writefn = ich_hcr_write,
2532     },
2533     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2534       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2535       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2536       .access = PL2_R,
2537       .readfn = ich_vtr_read,
2538     },
2539     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2540       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2541       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2542       .access = PL2_R,
2543       .readfn = ich_misr_read,
2544     },
2545     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2546       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2547       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2548       .access = PL2_R,
2549       .readfn = ich_eisr_read,
2550     },
2551     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2552       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2553       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2554       .access = PL2_R,
2555       .readfn = ich_elrsr_read,
2556     },
2557     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2558       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2559       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2560       .access = PL2_RW,
2561       .readfn = ich_vmcr_read,
2562       .writefn = ich_vmcr_write,
2563     },
2564     REGINFO_SENTINEL
2565 };
2566 
2567 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2568     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2569       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2570       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2571       .access = PL2_RW,
2572       .readfn = ich_ap_read,
2573       .writefn = ich_ap_write,
2574     },
2575     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2576       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2577       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2578       .access = PL2_RW,
2579       .readfn = ich_ap_read,
2580       .writefn = ich_ap_write,
2581     },
2582     REGINFO_SENTINEL
2583 };
2584 
2585 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2586     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2587       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2588       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2589       .access = PL2_RW,
2590       .readfn = ich_ap_read,
2591       .writefn = ich_ap_write,
2592     },
2593     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2594       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2595       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2596       .access = PL2_RW,
2597       .readfn = ich_ap_read,
2598       .writefn = ich_ap_write,
2599     },
2600     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2601       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2602       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2603       .access = PL2_RW,
2604       .readfn = ich_ap_read,
2605       .writefn = ich_ap_write,
2606     },
2607     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2608       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2609       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2610       .access = PL2_RW,
2611       .readfn = ich_ap_read,
2612       .writefn = ich_ap_write,
2613     },
2614     REGINFO_SENTINEL
2615 };
2616 
2617 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2618 {
2619     GICv3CPUState *cs = opaque;
2620 
2621     gicv3_cpuif_update(cs);
2622 }
2623 
2624 void gicv3_init_cpuif(GICv3State *s)
2625 {
2626     /* Called from the GICv3 realize function; register our system
2627      * registers with the CPU
2628      */
2629     int i;
2630 
2631     for (i = 0; i < s->num_cpu; i++) {
2632         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2633         GICv3CPUState *cs = &s->cpu[i];
2634 
2635         /* Note that we can't just use the GICv3CPUState as an opaque pointer
2636          * in define_arm_cp_regs_with_opaque(), because when we're called back
2637          * it might be with code translated by CPU 0 but run by CPU 1, in
2638          * which case we'd get the wrong value.
2639          * So instead we define the regs with no ri->opaque info, and
2640          * get back to the GICv3CPUState from the CPUARMState.
2641          */
2642         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2643         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2644             && cpu->gic_num_lrs) {
2645             int j;
2646 
2647             cs->num_list_regs = cpu->gic_num_lrs;
2648             cs->vpribits = cpu->gic_vpribits;
2649             cs->vprebits = cpu->gic_vprebits;
2650 
2651             /* Check against architectural constraints: getting these
2652              * wrong would be a bug in the CPU code defining these,
2653              * and the implementation relies on them holding.
2654              */
2655             g_assert(cs->vprebits <= cs->vpribits);
2656             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2657             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2658 
2659             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2660 
2661             for (j = 0; j < cs->num_list_regs; j++) {
2662                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2663                  * are split into two cp15 regs, LR (the low part, with the
2664                  * same encoding as the AArch64 LR) and LRC (the high part).
2665                  */
2666                 ARMCPRegInfo lr_regset[] = {
2667                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2668                       .opc0 = 3, .opc1 = 4, .crn = 12,
2669                       .crm = 12 + (j >> 3), .opc2 = j & 7,
2670                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2671                       .access = PL2_RW,
2672                       .readfn = ich_lr_read,
2673                       .writefn = ich_lr_write,
2674                     },
2675                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2676                       .cp = 15, .opc1 = 4, .crn = 12,
2677                       .crm = 14 + (j >> 3), .opc2 = j & 7,
2678                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2679                       .access = PL2_RW,
2680                       .readfn = ich_lr_read,
2681                       .writefn = ich_lr_write,
2682                     },
2683                     REGINFO_SENTINEL
2684                 };
2685                 define_arm_cp_regs(cpu, lr_regset);
2686             }
2687             if (cs->vprebits >= 6) {
2688                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2689             }
2690             if (cs->vprebits == 7) {
2691                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2692             }
2693         }
2694         arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2695     }
2696 }
2697