1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 24 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 25 { 26 ARMCPU *arm_cpu = ARM_CPU(cpu); 27 CPUARMState *env = &arm_cpu->env; 28 29 env->gicv3state = (void *)s; 30 }; 31 32 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 33 { 34 return env->gicv3state; 35 } 36 37 static bool gicv3_use_ns_bank(CPUARMState *env) 38 { 39 /* Return true if we should use the NonSecure bank for a banked GIC 40 * CPU interface register. Note that this differs from the 41 * access_secure_reg() function because GICv3 banked registers are 42 * banked even for AArch64, unlike the other CPU system registers. 43 */ 44 return !arm_is_secure_below_el3(env); 45 } 46 47 /* The minimum BPR for the virtual interface is a configurable property */ 48 static inline int icv_min_vbpr(GICv3CPUState *cs) 49 { 50 return 7 - cs->vprebits; 51 } 52 53 /* Simple accessor functions for LR fields */ 54 static uint32_t ich_lr_vintid(uint64_t lr) 55 { 56 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 57 } 58 59 static uint32_t ich_lr_pintid(uint64_t lr) 60 { 61 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 62 } 63 64 static uint32_t ich_lr_prio(uint64_t lr) 65 { 66 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 67 } 68 69 static int ich_lr_state(uint64_t lr) 70 { 71 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 72 } 73 74 static bool icv_access(CPUARMState *env, int hcr_flags) 75 { 76 /* Return true if this ICC_ register access should really be 77 * directed to an ICV_ access. hcr_flags is a mask of 78 * HCR_EL2 bits to check: we treat this as an ICV_ access 79 * if we are in NS EL1 and at least one of the specified 80 * HCR_EL2 bits is set. 81 * 82 * ICV registers fall into four categories: 83 * * access if NS EL1 and HCR_EL2.FMO == 1: 84 * all ICV regs with '0' in their name 85 * * access if NS EL1 and HCR_EL2.IMO == 1: 86 * all ICV regs with '1' in their name 87 * * access if NS EL1 and either IMO or FMO == 1: 88 * CTLR, DIR, PMR, RPR 89 */ 90 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 91 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 92 93 return flagmatch && arm_current_el(env) == 1 94 && !arm_is_secure_below_el3(env); 95 } 96 97 static int read_vbpr(GICv3CPUState *cs, int grp) 98 { 99 /* Read VBPR value out of the VMCR field (caller must handle 100 * VCBPR effects if required) 101 */ 102 if (grp == GICV3_G0) { 103 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 104 ICH_VMCR_EL2_VBPR0_LENGTH); 105 } else { 106 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 107 ICH_VMCR_EL2_VBPR1_LENGTH); 108 } 109 } 110 111 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 112 { 113 /* Write new VBPR1 value, handling the "writing a value less than 114 * the minimum sets it to the minimum" semantics. 115 */ 116 int min = icv_min_vbpr(cs); 117 118 if (grp != GICV3_G0) { 119 min++; 120 } 121 122 value = MAX(value, min); 123 124 if (grp == GICV3_G0) { 125 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 126 ICH_VMCR_EL2_VBPR0_LENGTH, value); 127 } else { 128 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 129 ICH_VMCR_EL2_VBPR1_LENGTH, value); 130 } 131 } 132 133 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 134 { 135 /* Return a mask word which clears the unimplemented priority bits 136 * from a priority value for a virtual interrupt. (Not to be confused 137 * with the group priority, whose mask depends on the value of VBPR 138 * for the interrupt group.) 139 */ 140 return ~0U << (8 - cs->vpribits); 141 } 142 143 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 144 { 145 /* Calculate the current running priority based on the set bits 146 * in the ICH Active Priority Registers. 147 */ 148 int i; 149 int aprmax = 1 << (cs->vprebits - 5); 150 151 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 152 153 for (i = 0; i < aprmax; i++) { 154 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 155 cs->ich_apr[GICV3_G1NS][i]; 156 157 if (!apr) { 158 continue; 159 } 160 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 161 } 162 /* No current active interrupts: return idle priority */ 163 return 0xff; 164 } 165 166 static int hppvi_index(GICv3CPUState *cs) 167 { 168 /* Return the list register index of the highest priority pending 169 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 170 * pseudocode. If no pending virtual interrupts, return -1. 171 */ 172 int idx = -1; 173 int i; 174 /* Note that a list register entry with a priority of 0xff will 175 * never be reported by this function; this is the architecturally 176 * correct behaviour. 177 */ 178 int prio = 0xff; 179 180 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 181 /* Both groups disabled, definitely nothing to do */ 182 return idx; 183 } 184 185 for (i = 0; i < cs->num_list_regs; i++) { 186 uint64_t lr = cs->ich_lr_el2[i]; 187 int thisprio; 188 189 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 190 /* Not Pending */ 191 continue; 192 } 193 194 /* Ignore interrupts if relevant group enable not set */ 195 if (lr & ICH_LR_EL2_GROUP) { 196 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 197 continue; 198 } 199 } else { 200 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 201 continue; 202 } 203 } 204 205 thisprio = ich_lr_prio(lr); 206 207 if (thisprio < prio) { 208 prio = thisprio; 209 idx = i; 210 } 211 } 212 213 return idx; 214 } 215 216 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 217 { 218 /* Return a mask word which clears the subpriority bits from 219 * a priority value for a virtual interrupt in the specified group. 220 * This depends on the VBPR value. 221 * If using VBPR0 then: 222 * a BPR of 0 means the group priority bits are [7:1]; 223 * a BPR of 1 means they are [7:2], and so on down to 224 * a BPR of 7 meaning no group priority bits at all. 225 * If using VBPR1 then: 226 * a BPR of 0 is impossible (the minimum value is 1) 227 * a BPR of 1 means the group priority bits are [7:1]; 228 * a BPR of 2 means they are [7:2], and so on down to 229 * a BPR of 7 meaning the group priority is [7]. 230 * 231 * Which BPR to use depends on the group of the interrupt and 232 * the current ICH_VMCR_EL2.VCBPR settings. 233 * 234 * This corresponds to the VGroupBits() pseudocode. 235 */ 236 int bpr; 237 238 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 239 group = GICV3_G0; 240 } 241 242 bpr = read_vbpr(cs, group); 243 if (group == GICV3_G1NS) { 244 assert(bpr > 0); 245 bpr--; 246 } 247 248 return ~0U << (bpr + 1); 249 } 250 251 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 252 { 253 /* Return true if we can signal this virtual interrupt defined by 254 * the given list register value; see the pseudocode functions 255 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 256 * Compare also icc_hppi_can_preempt() which is the non-virtual 257 * equivalent of these checks. 258 */ 259 int grp; 260 uint32_t mask, prio, rprio, vpmr; 261 262 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 263 /* Virtual interface disabled */ 264 return false; 265 } 266 267 /* We don't need to check that this LR is in Pending state because 268 * that has already been done in hppvi_index(). 269 */ 270 271 prio = ich_lr_prio(lr); 272 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 273 ICH_VMCR_EL2_VPMR_LENGTH); 274 275 if (prio >= vpmr) { 276 /* Priority mask masks this interrupt */ 277 return false; 278 } 279 280 rprio = ich_highest_active_virt_prio(cs); 281 if (rprio == 0xff) { 282 /* No running interrupt so we can preempt */ 283 return true; 284 } 285 286 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 287 288 mask = icv_gprio_mask(cs, grp); 289 290 /* We only preempt a running interrupt if the pending interrupt's 291 * group priority is sufficient (the subpriorities are not considered). 292 */ 293 if ((prio & mask) < (rprio & mask)) { 294 return true; 295 } 296 297 return false; 298 } 299 300 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 301 uint32_t *misr) 302 { 303 /* Return a set of bits indicating the EOI maintenance interrupt status 304 * for each list register. The EOI maintenance interrupt status is 305 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 306 * (see the GICv3 spec for the ICH_EISR_EL2 register). 307 * If misr is not NULL then we should also collect the information 308 * about the MISR.EOI, MISR.NP and MISR.U bits. 309 */ 310 uint32_t value = 0; 311 int validcount = 0; 312 bool seenpending = false; 313 int i; 314 315 for (i = 0; i < cs->num_list_regs; i++) { 316 uint64_t lr = cs->ich_lr_el2[i]; 317 318 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 319 == ICH_LR_EL2_EOI) { 320 value |= (1 << i); 321 } 322 if ((lr & ICH_LR_EL2_STATE_MASK)) { 323 validcount++; 324 } 325 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 326 seenpending = true; 327 } 328 } 329 330 if (misr) { 331 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 332 *misr |= ICH_MISR_EL2_U; 333 } 334 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 335 *misr |= ICH_MISR_EL2_NP; 336 } 337 if (value) { 338 *misr |= ICH_MISR_EL2_EOI; 339 } 340 } 341 return value; 342 } 343 344 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 345 { 346 /* Return a set of bits indicating the maintenance interrupt status 347 * (as seen in the ICH_MISR_EL2 register). 348 */ 349 uint32_t value = 0; 350 351 /* Scan list registers and fill in the U, NP and EOI bits */ 352 eoi_maintenance_interrupt_state(cs, &value); 353 354 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 355 value |= ICH_MISR_EL2_LRENP; 356 } 357 358 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 359 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 360 value |= ICH_MISR_EL2_VGRP0E; 361 } 362 363 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 364 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 365 value |= ICH_MISR_EL2_VGRP0D; 366 } 367 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 368 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 369 value |= ICH_MISR_EL2_VGRP1E; 370 } 371 372 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 373 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 374 value |= ICH_MISR_EL2_VGRP1D; 375 } 376 377 return value; 378 } 379 380 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 381 { 382 /* Tell the CPU about any pending virtual interrupts or 383 * maintenance interrupts, following a change to the state 384 * of the CPU interface relevant to virtual interrupts. 385 * 386 * CAUTION: this function will call qemu_set_irq() on the 387 * CPU maintenance IRQ line, which is typically wired up 388 * to the GIC as a per-CPU interrupt. This means that it 389 * will recursively call back into the GIC code via 390 * gicv3_redist_set_irq() and thus into the CPU interface code's 391 * gicv3_cpuif_update(). It is therefore important that this 392 * function is only called as the final action of a CPU interface 393 * register write implementation, after all the GIC state 394 * fields have been updated. gicv3_cpuif_update() also must 395 * not cause this function to be called, but that happens 396 * naturally as a result of there being no architectural 397 * linkage between the physical and virtual GIC logic. 398 */ 399 int idx; 400 int irqlevel = 0; 401 int fiqlevel = 0; 402 int maintlevel = 0; 403 ARMCPU *cpu = ARM_CPU(cs->cpu); 404 405 idx = hppvi_index(cs); 406 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 407 if (idx >= 0) { 408 uint64_t lr = cs->ich_lr_el2[idx]; 409 410 if (icv_hppi_can_preempt(cs, lr)) { 411 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 412 if (lr & ICH_LR_EL2_GROUP) { 413 irqlevel = 1; 414 } else { 415 fiqlevel = 1; 416 } 417 } 418 } 419 420 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 421 maintlevel = maintenance_interrupt_state(cs); 422 } 423 424 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 425 irqlevel, maintlevel); 426 427 qemu_set_irq(cs->parent_vfiq, fiqlevel); 428 qemu_set_irq(cs->parent_virq, irqlevel); 429 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 430 } 431 432 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 433 { 434 GICv3CPUState *cs = icc_cs_from_env(env); 435 int regno = ri->opc2 & 3; 436 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 437 uint64_t value = cs->ich_apr[grp][regno]; 438 439 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 440 return value; 441 } 442 443 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 444 uint64_t value) 445 { 446 GICv3CPUState *cs = icc_cs_from_env(env); 447 int regno = ri->opc2 & 3; 448 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 449 450 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 451 452 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 453 454 gicv3_cpuif_virt_update(cs); 455 return; 456 } 457 458 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 459 { 460 GICv3CPUState *cs = icc_cs_from_env(env); 461 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 462 uint64_t bpr; 463 bool satinc = false; 464 465 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 466 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 467 grp = GICV3_G0; 468 satinc = true; 469 } 470 471 bpr = read_vbpr(cs, grp); 472 473 if (satinc) { 474 bpr++; 475 bpr = MIN(bpr, 7); 476 } 477 478 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 479 480 return bpr; 481 } 482 483 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 484 uint64_t value) 485 { 486 GICv3CPUState *cs = icc_cs_from_env(env); 487 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 488 489 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 490 gicv3_redist_affid(cs), value); 491 492 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 493 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 494 return; 495 } 496 497 write_vbpr(cs, grp, value); 498 499 gicv3_cpuif_virt_update(cs); 500 } 501 502 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 503 { 504 GICv3CPUState *cs = icc_cs_from_env(env); 505 uint64_t value; 506 507 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 508 ICH_VMCR_EL2_VPMR_LENGTH); 509 510 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 511 return value; 512 } 513 514 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 515 uint64_t value) 516 { 517 GICv3CPUState *cs = icc_cs_from_env(env); 518 519 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 520 521 value &= icv_fullprio_mask(cs); 522 523 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 524 ICH_VMCR_EL2_VPMR_LENGTH, value); 525 526 gicv3_cpuif_virt_update(cs); 527 } 528 529 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 530 { 531 GICv3CPUState *cs = icc_cs_from_env(env); 532 int enbit; 533 uint64_t value; 534 535 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 536 value = extract64(cs->ich_vmcr_el2, enbit, 1); 537 538 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 539 gicv3_redist_affid(cs), value); 540 return value; 541 } 542 543 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 544 uint64_t value) 545 { 546 GICv3CPUState *cs = icc_cs_from_env(env); 547 int enbit; 548 549 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 550 gicv3_redist_affid(cs), value); 551 552 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 553 554 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 555 gicv3_cpuif_virt_update(cs); 556 } 557 558 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 559 { 560 GICv3CPUState *cs = icc_cs_from_env(env); 561 uint64_t value; 562 563 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 564 * should match the ones reported in ich_vtr_read(). 565 */ 566 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 567 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 568 569 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 570 value |= ICC_CTLR_EL1_EOIMODE; 571 } 572 573 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 574 value |= ICC_CTLR_EL1_CBPR; 575 } 576 577 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 578 return value; 579 } 580 581 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 582 uint64_t value) 583 { 584 GICv3CPUState *cs = icc_cs_from_env(env); 585 586 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 587 588 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 589 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 590 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 591 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 592 593 gicv3_cpuif_virt_update(cs); 594 } 595 596 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 597 { 598 GICv3CPUState *cs = icc_cs_from_env(env); 599 int prio = ich_highest_active_virt_prio(cs); 600 601 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 602 return prio; 603 } 604 605 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 606 { 607 GICv3CPUState *cs = icc_cs_from_env(env); 608 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 609 int idx = hppvi_index(cs); 610 uint64_t value = INTID_SPURIOUS; 611 612 if (idx >= 0) { 613 uint64_t lr = cs->ich_lr_el2[idx]; 614 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 615 616 if (grp == thisgrp) { 617 value = ich_lr_vintid(lr); 618 } 619 } 620 621 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 622 return value; 623 } 624 625 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 626 { 627 /* Activate the interrupt in the specified list register 628 * by moving it from Pending to Active state, and update the 629 * Active Priority Registers. 630 */ 631 uint32_t mask = icv_gprio_mask(cs, grp); 632 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 633 int aprbit = prio >> (8 - cs->vprebits); 634 int regno = aprbit / 32; 635 int regbit = aprbit % 32; 636 637 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 638 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 639 cs->ich_apr[grp][regno] |= (1 << regbit); 640 } 641 642 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 643 { 644 GICv3CPUState *cs = icc_cs_from_env(env); 645 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 646 int idx = hppvi_index(cs); 647 uint64_t intid = INTID_SPURIOUS; 648 649 if (idx >= 0) { 650 uint64_t lr = cs->ich_lr_el2[idx]; 651 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 652 653 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 654 intid = ich_lr_vintid(lr); 655 if (intid < INTID_SECURE) { 656 icv_activate_irq(cs, idx, grp); 657 } else { 658 /* Interrupt goes from Pending to Invalid */ 659 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 660 /* We will now return the (bogus) ID from the list register, 661 * as per the pseudocode. 662 */ 663 } 664 } 665 } 666 667 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 668 gicv3_redist_affid(cs), intid); 669 670 gicv3_cpuif_virt_update(cs); 671 672 return intid; 673 } 674 675 static int icc_highest_active_prio(GICv3CPUState *cs) 676 { 677 /* Calculate the current running priority based on the set bits 678 * in the Active Priority Registers. 679 */ 680 int i; 681 682 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 683 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 684 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 685 686 if (!apr) { 687 continue; 688 } 689 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 690 } 691 /* No current active interrupts: return idle priority */ 692 return 0xff; 693 } 694 695 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 696 { 697 /* Return a mask word which clears the subpriority bits from 698 * a priority value for an interrupt in the specified group. 699 * This depends on the BPR value. For CBPR0 (S or NS): 700 * a BPR of 0 means the group priority bits are [7:1]; 701 * a BPR of 1 means they are [7:2], and so on down to 702 * a BPR of 7 meaning no group priority bits at all. 703 * For CBPR1 NS: 704 * a BPR of 0 is impossible (the minimum value is 1) 705 * a BPR of 1 means the group priority bits are [7:1]; 706 * a BPR of 2 means they are [7:2], and so on down to 707 * a BPR of 7 meaning the group priority is [7]. 708 * 709 * Which BPR to use depends on the group of the interrupt and 710 * the current ICC_CTLR.CBPR settings. 711 * 712 * This corresponds to the GroupBits() pseudocode. 713 */ 714 int bpr; 715 716 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 717 (group == GICV3_G1NS && 718 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 719 group = GICV3_G0; 720 } 721 722 bpr = cs->icc_bpr[group] & 7; 723 724 if (group == GICV3_G1NS) { 725 assert(bpr > 0); 726 bpr--; 727 } 728 729 return ~0U << (bpr + 1); 730 } 731 732 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 733 { 734 /* Return true if there is no pending interrupt, or the 735 * highest priority pending interrupt is in a group which has been 736 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 737 */ 738 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 739 } 740 741 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 742 { 743 /* Return true if we have a pending interrupt of sufficient 744 * priority to preempt. 745 */ 746 int rprio; 747 uint32_t mask; 748 749 if (icc_no_enabled_hppi(cs)) { 750 return false; 751 } 752 753 if (cs->hppi.prio >= cs->icc_pmr_el1) { 754 /* Priority mask masks this interrupt */ 755 return false; 756 } 757 758 rprio = icc_highest_active_prio(cs); 759 if (rprio == 0xff) { 760 /* No currently running interrupt so we can preempt */ 761 return true; 762 } 763 764 mask = icc_gprio_mask(cs, cs->hppi.grp); 765 766 /* We only preempt a running interrupt if the pending interrupt's 767 * group priority is sufficient (the subpriorities are not considered). 768 */ 769 if ((cs->hppi.prio & mask) < (rprio & mask)) { 770 return true; 771 } 772 773 return false; 774 } 775 776 void gicv3_cpuif_update(GICv3CPUState *cs) 777 { 778 /* Tell the CPU about its highest priority pending interrupt */ 779 int irqlevel = 0; 780 int fiqlevel = 0; 781 ARMCPU *cpu = ARM_CPU(cs->cpu); 782 CPUARMState *env = &cpu->env; 783 784 g_assert(qemu_mutex_iothread_locked()); 785 786 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 787 cs->hppi.grp, cs->hppi.prio); 788 789 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 790 /* If a Security-enabled GIC sends a G1S interrupt to a 791 * Security-disabled CPU, we must treat it as if it were G0. 792 */ 793 cs->hppi.grp = GICV3_G0; 794 } 795 796 if (icc_hppi_can_preempt(cs)) { 797 /* We have an interrupt: should we signal it as IRQ or FIQ? 798 * This is described in the GICv3 spec section 4.6.2. 799 */ 800 bool isfiq; 801 802 switch (cs->hppi.grp) { 803 case GICV3_G0: 804 isfiq = true; 805 break; 806 case GICV3_G1: 807 isfiq = (!arm_is_secure(env) || 808 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 809 break; 810 case GICV3_G1NS: 811 isfiq = arm_is_secure(env); 812 break; 813 default: 814 g_assert_not_reached(); 815 } 816 817 if (isfiq) { 818 fiqlevel = 1; 819 } else { 820 irqlevel = 1; 821 } 822 } 823 824 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 825 826 qemu_set_irq(cs->parent_fiq, fiqlevel); 827 qemu_set_irq(cs->parent_irq, irqlevel); 828 } 829 830 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 831 { 832 GICv3CPUState *cs = icc_cs_from_env(env); 833 uint32_t value = cs->icc_pmr_el1; 834 835 if (icv_access(env, HCR_FMO | HCR_IMO)) { 836 return icv_pmr_read(env, ri); 837 } 838 839 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 840 (env->cp15.scr_el3 & SCR_FIQ)) { 841 /* NS access and Group 0 is inaccessible to NS: return the 842 * NS view of the current priority 843 */ 844 if ((value & 0x80) == 0) { 845 /* Secure priorities not visible to NS */ 846 value = 0; 847 } else if (value != 0xff) { 848 value = (value << 1) & 0xff; 849 } 850 } 851 852 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 853 854 return value; 855 } 856 857 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 858 uint64_t value) 859 { 860 GICv3CPUState *cs = icc_cs_from_env(env); 861 862 if (icv_access(env, HCR_FMO | HCR_IMO)) { 863 return icv_pmr_write(env, ri, value); 864 } 865 866 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 867 868 value &= 0xff; 869 870 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 871 (env->cp15.scr_el3 & SCR_FIQ)) { 872 /* NS access and Group 0 is inaccessible to NS: return the 873 * NS view of the current priority 874 */ 875 if (!(cs->icc_pmr_el1 & 0x80)) { 876 /* Current PMR in the secure range, don't allow NS to change it */ 877 return; 878 } 879 value = (value >> 1) | 0x80; 880 } 881 cs->icc_pmr_el1 = value; 882 gicv3_cpuif_update(cs); 883 } 884 885 static void icc_activate_irq(GICv3CPUState *cs, int irq) 886 { 887 /* Move the interrupt from the Pending state to Active, and update 888 * the Active Priority Registers 889 */ 890 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 891 int prio = cs->hppi.prio & mask; 892 int aprbit = prio >> 1; 893 int regno = aprbit / 32; 894 int regbit = aprbit % 32; 895 896 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 897 898 if (irq < GIC_INTERNAL) { 899 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 900 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 901 gicv3_redist_update(cs); 902 } else { 903 gicv3_gicd_active_set(cs->gic, irq); 904 gicv3_gicd_pending_clear(cs->gic, irq); 905 gicv3_update(cs->gic, irq, 1); 906 } 907 } 908 909 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 910 { 911 /* Return the highest priority pending interrupt register value 912 * for group 0. 913 */ 914 bool irq_is_secure; 915 916 if (cs->hppi.prio == 0xff) { 917 return INTID_SPURIOUS; 918 } 919 920 /* Check whether we can return the interrupt or if we should return 921 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 922 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 923 * is always zero.) 924 */ 925 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 926 (cs->hppi.grp != GICV3_G1NS)); 927 928 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 929 return INTID_SPURIOUS; 930 } 931 if (irq_is_secure && !arm_is_secure(env)) { 932 /* Secure interrupts not visible to Nonsecure */ 933 return INTID_SPURIOUS; 934 } 935 936 if (cs->hppi.grp != GICV3_G0) { 937 /* Indicate to EL3 that there's a Group 1 interrupt for the other 938 * state pending. 939 */ 940 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 941 } 942 943 return cs->hppi.irq; 944 } 945 946 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 947 { 948 /* Return the highest priority pending interrupt register value 949 * for group 1. 950 */ 951 bool irq_is_secure; 952 953 if (cs->hppi.prio == 0xff) { 954 return INTID_SPURIOUS; 955 } 956 957 /* Check whether we can return the interrupt or if we should return 958 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 959 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 960 * is always zero.) 961 */ 962 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 963 (cs->hppi.grp != GICV3_G1NS)); 964 965 if (cs->hppi.grp == GICV3_G0) { 966 /* Group 0 interrupts not visible via HPPIR1 */ 967 return INTID_SPURIOUS; 968 } 969 if (irq_is_secure) { 970 if (!arm_is_secure(env)) { 971 /* Secure interrupts not visible in Non-secure */ 972 return INTID_SPURIOUS; 973 } 974 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 975 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 976 return INTID_SPURIOUS; 977 } 978 979 return cs->hppi.irq; 980 } 981 982 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 983 { 984 GICv3CPUState *cs = icc_cs_from_env(env); 985 uint64_t intid; 986 987 if (icv_access(env, HCR_FMO)) { 988 return icv_iar_read(env, ri); 989 } 990 991 if (!icc_hppi_can_preempt(cs)) { 992 intid = INTID_SPURIOUS; 993 } else { 994 intid = icc_hppir0_value(cs, env); 995 } 996 997 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 998 icc_activate_irq(cs, intid); 999 } 1000 1001 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1002 return intid; 1003 } 1004 1005 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1006 { 1007 GICv3CPUState *cs = icc_cs_from_env(env); 1008 uint64_t intid; 1009 1010 if (icv_access(env, HCR_IMO)) { 1011 return icv_iar_read(env, ri); 1012 } 1013 1014 if (!icc_hppi_can_preempt(cs)) { 1015 intid = INTID_SPURIOUS; 1016 } else { 1017 intid = icc_hppir1_value(cs, env); 1018 } 1019 1020 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 1021 icc_activate_irq(cs, intid); 1022 } 1023 1024 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1025 return intid; 1026 } 1027 1028 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1029 { 1030 /* Drop the priority of the currently active interrupt in 1031 * the specified group. 1032 * 1033 * Note that we can guarantee (because of the requirement to nest 1034 * ICC_IAR reads [which activate an interrupt and raise priority] 1035 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1036 * that the interrupt we're being called for is the highest priority 1037 * active interrupt, meaning that it has the lowest set bit in the 1038 * APR registers. 1039 * 1040 * If the guest does not honour the ordering constraints then the 1041 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1042 * the values of the APR registers might become incorrect and the 1043 * running priority will be wrong, so interrupts that should preempt 1044 * might not do so, and interrupts that should not preempt might do so. 1045 */ 1046 int i; 1047 1048 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1049 uint64_t *papr = &cs->icc_apr[grp][i]; 1050 1051 if (!*papr) { 1052 continue; 1053 } 1054 /* Clear the lowest set bit */ 1055 *papr &= *papr - 1; 1056 break; 1057 } 1058 1059 /* running priority change means we need an update for this cpu i/f */ 1060 gicv3_cpuif_update(cs); 1061 } 1062 1063 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1064 { 1065 /* Return true if we should split priority drop and interrupt 1066 * deactivation, ie whether the relevant EOIMode bit is set. 1067 */ 1068 if (arm_is_el3_or_mon(env)) { 1069 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1070 } 1071 if (arm_is_secure_below_el3(env)) { 1072 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1073 } else { 1074 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1075 } 1076 } 1077 1078 static int icc_highest_active_group(GICv3CPUState *cs) 1079 { 1080 /* Return the group with the highest priority active interrupt. 1081 * We can do this by just comparing the APRs to see which one 1082 * has the lowest set bit. 1083 * (If more than one group is active at the same priority then 1084 * we're in UNPREDICTABLE territory.) 1085 */ 1086 int i; 1087 1088 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1089 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1090 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1091 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1092 1093 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1094 return GICV3_G1NS; 1095 } 1096 if (g1ctz < g0ctz) { 1097 return GICV3_G1; 1098 } 1099 if (g0ctz < 32) { 1100 return GICV3_G0; 1101 } 1102 } 1103 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1104 * ignores the spurious EOI attempt. 1105 */ 1106 return -1; 1107 } 1108 1109 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1110 { 1111 if (irq < GIC_INTERNAL) { 1112 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1113 gicv3_redist_update(cs); 1114 } else { 1115 gicv3_gicd_active_clear(cs->gic, irq); 1116 gicv3_update(cs->gic, irq, 1); 1117 } 1118 } 1119 1120 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1121 { 1122 /* Return true if we should split priority drop and interrupt 1123 * deactivation, ie whether the virtual EOIMode bit is set. 1124 */ 1125 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1126 } 1127 1128 static int icv_find_active(GICv3CPUState *cs, int irq) 1129 { 1130 /* Given an interrupt number for an active interrupt, return the index 1131 * of the corresponding list register, or -1 if there is no match. 1132 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1133 */ 1134 int i; 1135 1136 for (i = 0; i < cs->num_list_regs; i++) { 1137 uint64_t lr = cs->ich_lr_el2[i]; 1138 1139 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1140 return i; 1141 } 1142 } 1143 1144 return -1; 1145 } 1146 1147 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1148 { 1149 /* Deactivate the interrupt in the specified list register index */ 1150 uint64_t lr = cs->ich_lr_el2[idx]; 1151 1152 if (lr & ICH_LR_EL2_HW) { 1153 /* Deactivate the associated physical interrupt */ 1154 int pirq = ich_lr_pintid(lr); 1155 1156 if (pirq < INTID_SECURE) { 1157 icc_deactivate_irq(cs, pirq); 1158 } 1159 } 1160 1161 /* Clear the 'active' part of the state, so ActivePending->Pending 1162 * and Active->Invalid. 1163 */ 1164 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1165 cs->ich_lr_el2[idx] = lr; 1166 } 1167 1168 static void icv_increment_eoicount(GICv3CPUState *cs) 1169 { 1170 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1171 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1172 ICH_HCR_EL2_EOICOUNT_LENGTH); 1173 1174 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1175 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1176 } 1177 1178 static int icv_drop_prio(GICv3CPUState *cs) 1179 { 1180 /* Drop the priority of the currently active virtual interrupt 1181 * (favouring group 0 if there is a set active bit at 1182 * the same priority for both group 0 and group 1). 1183 * Return the priority value for the bit we just cleared, 1184 * or 0xff if no bits were set in the AP registers at all. 1185 * Note that though the ich_apr[] are uint64_t only the low 1186 * 32 bits are actually relevant. 1187 */ 1188 int i; 1189 int aprmax = 1 << (cs->vprebits - 5); 1190 1191 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1192 1193 for (i = 0; i < aprmax; i++) { 1194 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1195 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1196 int apr0count, apr1count; 1197 1198 if (!*papr0 && !*papr1) { 1199 continue; 1200 } 1201 1202 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1203 * because we need to return the bit number we cleared so 1204 * it can be compared against the list register's priority field. 1205 */ 1206 apr0count = ctz32(*papr0); 1207 apr1count = ctz32(*papr1); 1208 1209 if (apr0count <= apr1count) { 1210 *papr0 &= *papr0 - 1; 1211 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1212 } else { 1213 *papr1 &= *papr1 - 1; 1214 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1215 } 1216 } 1217 return 0xff; 1218 } 1219 1220 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1221 uint64_t value) 1222 { 1223 /* Deactivate interrupt */ 1224 GICv3CPUState *cs = icc_cs_from_env(env); 1225 int idx; 1226 int irq = value & 0xffffff; 1227 1228 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1229 1230 if (irq >= cs->gic->num_irq) { 1231 /* Also catches special interrupt numbers and LPIs */ 1232 return; 1233 } 1234 1235 if (!icv_eoi_split(env, cs)) { 1236 return; 1237 } 1238 1239 idx = icv_find_active(cs, irq); 1240 1241 if (idx < 0) { 1242 /* No list register matching this, so increment the EOI count 1243 * (might trigger a maintenance interrupt) 1244 */ 1245 icv_increment_eoicount(cs); 1246 } else { 1247 icv_deactivate_irq(cs, idx); 1248 } 1249 1250 gicv3_cpuif_virt_update(cs); 1251 } 1252 1253 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1254 uint64_t value) 1255 { 1256 /* End of Interrupt */ 1257 GICv3CPUState *cs = icc_cs_from_env(env); 1258 int irq = value & 0xffffff; 1259 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1260 int idx, dropprio; 1261 1262 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1263 gicv3_redist_affid(cs), value); 1264 1265 if (irq >= cs->gic->num_irq) { 1266 /* Also catches special interrupt numbers and LPIs */ 1267 return; 1268 } 1269 1270 /* We implement the IMPDEF choice of "drop priority before doing 1271 * error checks" (because that lets us avoid scanning the AP 1272 * registers twice). 1273 */ 1274 dropprio = icv_drop_prio(cs); 1275 if (dropprio == 0xff) { 1276 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1277 * whether the list registers are checked in this 1278 * situation; we choose not to. 1279 */ 1280 return; 1281 } 1282 1283 idx = icv_find_active(cs, irq); 1284 1285 if (idx < 0) { 1286 /* No valid list register corresponding to EOI ID */ 1287 icv_increment_eoicount(cs); 1288 } else { 1289 uint64_t lr = cs->ich_lr_el2[idx]; 1290 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1291 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1292 1293 if (thisgrp == grp && lr_gprio == dropprio) { 1294 if (!icv_eoi_split(env, cs)) { 1295 /* Priority drop and deactivate not split: deactivate irq now */ 1296 icv_deactivate_irq(cs, idx); 1297 } 1298 } 1299 } 1300 1301 gicv3_cpuif_virt_update(cs); 1302 } 1303 1304 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1305 uint64_t value) 1306 { 1307 /* End of Interrupt */ 1308 GICv3CPUState *cs = icc_cs_from_env(env); 1309 int irq = value & 0xffffff; 1310 int grp; 1311 bool is_eoir0 = ri->crm == 8; 1312 1313 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1314 icv_eoir_write(env, ri, value); 1315 return; 1316 } 1317 1318 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1319 gicv3_redist_affid(cs), value); 1320 1321 if (irq >= cs->gic->num_irq) { 1322 /* This handles two cases: 1323 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1324 * to the GICC_EOIR, the GIC ignores that write. 1325 * 2. If software writes the number of a non-existent interrupt 1326 * this must be a subcase of "value written does not match the last 1327 * valid interrupt value read from the Interrupt Acknowledge 1328 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1329 */ 1330 return; 1331 } 1332 1333 grp = icc_highest_active_group(cs); 1334 switch (grp) { 1335 case GICV3_G0: 1336 if (!is_eoir0) { 1337 return; 1338 } 1339 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1340 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1341 return; 1342 } 1343 break; 1344 case GICV3_G1: 1345 if (is_eoir0) { 1346 return; 1347 } 1348 if (!arm_is_secure(env)) { 1349 return; 1350 } 1351 break; 1352 case GICV3_G1NS: 1353 if (is_eoir0) { 1354 return; 1355 } 1356 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1357 return; 1358 } 1359 break; 1360 default: 1361 qemu_log_mask(LOG_GUEST_ERROR, 1362 "%s: IRQ %d isn't active\n", __func__, irq); 1363 return; 1364 } 1365 1366 icc_drop_prio(cs, grp); 1367 1368 if (!icc_eoi_split(env, cs)) { 1369 /* Priority drop and deactivate not split: deactivate irq now */ 1370 icc_deactivate_irq(cs, irq); 1371 } 1372 } 1373 1374 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1375 { 1376 GICv3CPUState *cs = icc_cs_from_env(env); 1377 uint64_t value; 1378 1379 if (icv_access(env, HCR_FMO)) { 1380 return icv_hppir_read(env, ri); 1381 } 1382 1383 value = icc_hppir0_value(cs, env); 1384 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1385 return value; 1386 } 1387 1388 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1389 { 1390 GICv3CPUState *cs = icc_cs_from_env(env); 1391 uint64_t value; 1392 1393 if (icv_access(env, HCR_IMO)) { 1394 return icv_hppir_read(env, ri); 1395 } 1396 1397 value = icc_hppir1_value(cs, env); 1398 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1399 return value; 1400 } 1401 1402 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1403 { 1404 GICv3CPUState *cs = icc_cs_from_env(env); 1405 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1406 bool satinc = false; 1407 uint64_t bpr; 1408 1409 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1410 return icv_bpr_read(env, ri); 1411 } 1412 1413 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1414 grp = GICV3_G1NS; 1415 } 1416 1417 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1418 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1419 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1420 * modify BPR0 1421 */ 1422 grp = GICV3_G0; 1423 } 1424 1425 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1426 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1427 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1428 grp = GICV3_G0; 1429 satinc = true; 1430 } 1431 1432 bpr = cs->icc_bpr[grp]; 1433 if (satinc) { 1434 bpr++; 1435 bpr = MIN(bpr, 7); 1436 } 1437 1438 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1439 1440 return bpr; 1441 } 1442 1443 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1444 uint64_t value) 1445 { 1446 GICv3CPUState *cs = icc_cs_from_env(env); 1447 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1448 uint64_t minval; 1449 1450 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1451 icv_bpr_write(env, ri, value); 1452 return; 1453 } 1454 1455 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1456 gicv3_redist_affid(cs), value); 1457 1458 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1459 grp = GICV3_G1NS; 1460 } 1461 1462 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1463 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1464 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1465 * modify BPR0 1466 */ 1467 grp = GICV3_G0; 1468 } 1469 1470 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1471 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1472 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1473 return; 1474 } 1475 1476 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1477 if (value < minval) { 1478 value = minval; 1479 } 1480 1481 cs->icc_bpr[grp] = value & 7; 1482 gicv3_cpuif_update(cs); 1483 } 1484 1485 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1486 { 1487 GICv3CPUState *cs = icc_cs_from_env(env); 1488 uint64_t value; 1489 1490 int regno = ri->opc2 & 3; 1491 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1492 1493 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1494 return icv_ap_read(env, ri); 1495 } 1496 1497 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1498 grp = GICV3_G1NS; 1499 } 1500 1501 value = cs->icc_apr[grp][regno]; 1502 1503 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1504 return value; 1505 } 1506 1507 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1508 uint64_t value) 1509 { 1510 GICv3CPUState *cs = icc_cs_from_env(env); 1511 1512 int regno = ri->opc2 & 3; 1513 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1514 1515 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1516 icv_ap_write(env, ri, value); 1517 return; 1518 } 1519 1520 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1521 1522 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1523 grp = GICV3_G1NS; 1524 } 1525 1526 /* It's not possible to claim that a Non-secure interrupt is active 1527 * at a priority outside the Non-secure range (128..255), since this 1528 * would otherwise allow malicious NS code to block delivery of S interrupts 1529 * by writing a bad value to these registers. 1530 */ 1531 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1532 return; 1533 } 1534 1535 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1536 gicv3_cpuif_update(cs); 1537 } 1538 1539 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1540 uint64_t value) 1541 { 1542 /* Deactivate interrupt */ 1543 GICv3CPUState *cs = icc_cs_from_env(env); 1544 int irq = value & 0xffffff; 1545 bool irq_is_secure, single_sec_state, irq_is_grp0; 1546 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1547 1548 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1549 icv_dir_write(env, ri, value); 1550 return; 1551 } 1552 1553 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1554 1555 if (irq >= cs->gic->num_irq) { 1556 /* Also catches special interrupt numbers and LPIs */ 1557 return; 1558 } 1559 1560 if (!icc_eoi_split(env, cs)) { 1561 return; 1562 } 1563 1564 int grp = gicv3_irq_group(cs->gic, cs, irq); 1565 1566 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1567 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1568 irq_is_grp0 = grp == GICV3_G0; 1569 1570 /* Check whether we're allowed to deactivate this interrupt based 1571 * on its group and the current CPU state. 1572 * These checks are laid out to correspond to the spec's pseudocode. 1573 */ 1574 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1575 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1576 /* No need to include !IsSecure in route_*_to_el2 as it's only 1577 * tested in cases where we know !IsSecure is true. 1578 */ 1579 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1580 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1581 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1582 1583 switch (arm_current_el(env)) { 1584 case 3: 1585 break; 1586 case 2: 1587 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1588 break; 1589 } 1590 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1591 break; 1592 } 1593 return; 1594 case 1: 1595 if (!arm_is_secure_below_el3(env)) { 1596 if (single_sec_state && irq_is_grp0 && 1597 !route_fiq_to_el3 && !route_fiq_to_el2) { 1598 break; 1599 } 1600 if (!irq_is_secure && !irq_is_grp0 && 1601 !route_irq_to_el3 && !route_irq_to_el2) { 1602 break; 1603 } 1604 } else { 1605 if (irq_is_grp0 && !route_fiq_to_el3) { 1606 break; 1607 } 1608 if (!irq_is_grp0 && 1609 (!irq_is_secure || !single_sec_state) && 1610 !route_irq_to_el3) { 1611 break; 1612 } 1613 } 1614 return; 1615 default: 1616 g_assert_not_reached(); 1617 } 1618 1619 icc_deactivate_irq(cs, irq); 1620 } 1621 1622 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1623 { 1624 GICv3CPUState *cs = icc_cs_from_env(env); 1625 int prio; 1626 1627 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1628 return icv_rpr_read(env, ri); 1629 } 1630 1631 prio = icc_highest_active_prio(cs); 1632 1633 if (arm_feature(env, ARM_FEATURE_EL3) && 1634 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1635 /* NS GIC access and Group 0 is inaccessible to NS */ 1636 if ((prio & 0x80) == 0) { 1637 /* NS mustn't see priorities in the Secure half of the range */ 1638 prio = 0; 1639 } else if (prio != 0xff) { 1640 /* Non-idle priority: show the Non-secure view of it */ 1641 prio = (prio << 1) & 0xff; 1642 } 1643 } 1644 1645 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1646 return prio; 1647 } 1648 1649 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1650 uint64_t value, int grp, bool ns) 1651 { 1652 GICv3State *s = cs->gic; 1653 1654 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1655 uint64_t aff = extract64(value, 48, 8) << 16 | 1656 extract64(value, 32, 8) << 8 | 1657 extract64(value, 16, 8); 1658 uint32_t targetlist = extract64(value, 0, 16); 1659 uint32_t irq = extract64(value, 24, 4); 1660 bool irm = extract64(value, 40, 1); 1661 int i; 1662 1663 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1664 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1665 * interrupts as Group 0 interrupts and must send Secure Group 0 1666 * interrupts to the target CPUs. 1667 */ 1668 grp = GICV3_G0; 1669 } 1670 1671 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1672 aff, targetlist); 1673 1674 for (i = 0; i < s->num_cpu; i++) { 1675 GICv3CPUState *ocs = &s->cpu[i]; 1676 1677 if (irm) { 1678 /* IRM == 1 : route to all CPUs except self */ 1679 if (cs == ocs) { 1680 continue; 1681 } 1682 } else { 1683 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1684 * where the corresponding bit is set in targetlist 1685 */ 1686 int aff0; 1687 1688 if (ocs->gicr_typer >> 40 != aff) { 1689 continue; 1690 } 1691 aff0 = extract64(ocs->gicr_typer, 32, 8); 1692 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1693 continue; 1694 } 1695 } 1696 1697 /* The redistributor will check against its own GICR_NSACR as needed */ 1698 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1699 } 1700 } 1701 1702 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1703 uint64_t value) 1704 { 1705 /* Generate Secure Group 0 SGI. */ 1706 GICv3CPUState *cs = icc_cs_from_env(env); 1707 bool ns = !arm_is_secure(env); 1708 1709 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1710 } 1711 1712 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1713 uint64_t value) 1714 { 1715 /* Generate Group 1 SGI for the current Security state */ 1716 GICv3CPUState *cs = icc_cs_from_env(env); 1717 int grp; 1718 bool ns = !arm_is_secure(env); 1719 1720 grp = ns ? GICV3_G1NS : GICV3_G1; 1721 icc_generate_sgi(env, cs, value, grp, ns); 1722 } 1723 1724 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1725 uint64_t value) 1726 { 1727 /* Generate Group 1 SGI for the Security state that is not 1728 * the current state 1729 */ 1730 GICv3CPUState *cs = icc_cs_from_env(env); 1731 int grp; 1732 bool ns = !arm_is_secure(env); 1733 1734 grp = ns ? GICV3_G1 : GICV3_G1NS; 1735 icc_generate_sgi(env, cs, value, grp, ns); 1736 } 1737 1738 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1739 { 1740 GICv3CPUState *cs = icc_cs_from_env(env); 1741 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1742 uint64_t value; 1743 1744 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1745 return icv_igrpen_read(env, ri); 1746 } 1747 1748 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1749 grp = GICV3_G1NS; 1750 } 1751 1752 value = cs->icc_igrpen[grp]; 1753 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1754 gicv3_redist_affid(cs), value); 1755 return value; 1756 } 1757 1758 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1759 uint64_t value) 1760 { 1761 GICv3CPUState *cs = icc_cs_from_env(env); 1762 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1763 1764 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1765 icv_igrpen_write(env, ri, value); 1766 return; 1767 } 1768 1769 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1770 gicv3_redist_affid(cs), value); 1771 1772 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1773 grp = GICV3_G1NS; 1774 } 1775 1776 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1777 gicv3_cpuif_update(cs); 1778 } 1779 1780 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1781 { 1782 GICv3CPUState *cs = icc_cs_from_env(env); 1783 uint64_t value; 1784 1785 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1786 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1787 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1788 return value; 1789 } 1790 1791 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 GICv3CPUState *cs = icc_cs_from_env(env); 1795 1796 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1797 1798 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1799 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1800 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1801 gicv3_cpuif_update(cs); 1802 } 1803 1804 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1805 { 1806 GICv3CPUState *cs = icc_cs_from_env(env); 1807 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1808 uint64_t value; 1809 1810 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1811 return icv_ctlr_read(env, ri); 1812 } 1813 1814 value = cs->icc_ctlr_el1[bank]; 1815 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1816 return value; 1817 } 1818 1819 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1820 uint64_t value) 1821 { 1822 GICv3CPUState *cs = icc_cs_from_env(env); 1823 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1824 uint64_t mask; 1825 1826 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1827 icv_ctlr_write(env, ri, value); 1828 return; 1829 } 1830 1831 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1832 1833 /* Only CBPR and EOIMODE can be RW; 1834 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1835 * the asseciated priority-based routing of them); 1836 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1837 */ 1838 if (arm_feature(env, ARM_FEATURE_EL3) && 1839 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1840 mask = ICC_CTLR_EL1_EOIMODE; 1841 } else { 1842 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1843 } 1844 1845 cs->icc_ctlr_el1[bank] &= ~mask; 1846 cs->icc_ctlr_el1[bank] |= (value & mask); 1847 gicv3_cpuif_update(cs); 1848 } 1849 1850 1851 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1852 { 1853 GICv3CPUState *cs = icc_cs_from_env(env); 1854 uint64_t value; 1855 1856 value = cs->icc_ctlr_el3; 1857 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1858 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1859 } 1860 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1861 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1862 } 1863 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1864 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1865 } 1866 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1867 value |= ICC_CTLR_EL3_CBPR_EL1S; 1868 } 1869 1870 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1871 return value; 1872 } 1873 1874 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1875 uint64_t value) 1876 { 1877 GICv3CPUState *cs = icc_cs_from_env(env); 1878 uint64_t mask; 1879 1880 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1881 1882 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1883 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1884 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1885 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1886 } 1887 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1888 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1889 } 1890 1891 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1892 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1893 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1894 } 1895 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1896 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1897 } 1898 1899 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1900 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1901 1902 cs->icc_ctlr_el3 &= ~mask; 1903 cs->icc_ctlr_el3 |= (value & mask); 1904 gicv3_cpuif_update(cs); 1905 } 1906 1907 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1908 const ARMCPRegInfo *ri, bool isread) 1909 { 1910 CPAccessResult r = CP_ACCESS_OK; 1911 GICv3CPUState *cs = icc_cs_from_env(env); 1912 int el = arm_current_el(env); 1913 1914 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1915 el == 1 && !arm_is_secure_below_el3(env)) { 1916 /* Takes priority over a possible EL3 trap */ 1917 return CP_ACCESS_TRAP_EL2; 1918 } 1919 1920 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1921 switch (el) { 1922 case 1: 1923 /* Note that arm_hcr_el2_eff takes secure state into account. */ 1924 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 1925 r = CP_ACCESS_TRAP_EL3; 1926 } 1927 break; 1928 case 2: 1929 r = CP_ACCESS_TRAP_EL3; 1930 break; 1931 case 3: 1932 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1933 r = CP_ACCESS_TRAP_EL3; 1934 } 1935 break; 1936 default: 1937 g_assert_not_reached(); 1938 } 1939 } 1940 1941 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1942 r = CP_ACCESS_TRAP; 1943 } 1944 return r; 1945 } 1946 1947 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1948 const ARMCPRegInfo *ri, bool isread) 1949 { 1950 GICv3CPUState *cs = icc_cs_from_env(env); 1951 1952 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1953 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1954 /* Takes priority over a possible EL3 trap */ 1955 return CP_ACCESS_TRAP_EL2; 1956 } 1957 1958 return gicv3_irqfiq_access(env, ri, isread); 1959 } 1960 1961 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1962 const ARMCPRegInfo *ri, bool isread) 1963 { 1964 if (arm_current_el(env) == 1 && 1965 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 1966 /* Takes priority over a possible EL3 trap */ 1967 return CP_ACCESS_TRAP_EL2; 1968 } 1969 1970 return gicv3_irqfiq_access(env, ri, isread); 1971 } 1972 1973 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1974 const ARMCPRegInfo *ri, bool isread) 1975 { 1976 CPAccessResult r = CP_ACCESS_OK; 1977 GICv3CPUState *cs = icc_cs_from_env(env); 1978 int el = arm_current_el(env); 1979 1980 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1981 el == 1 && !arm_is_secure_below_el3(env)) { 1982 /* Takes priority over a possible EL3 trap */ 1983 return CP_ACCESS_TRAP_EL2; 1984 } 1985 1986 if (env->cp15.scr_el3 & SCR_FIQ) { 1987 switch (el) { 1988 case 1: 1989 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 1990 r = CP_ACCESS_TRAP_EL3; 1991 } 1992 break; 1993 case 2: 1994 r = CP_ACCESS_TRAP_EL3; 1995 break; 1996 case 3: 1997 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1998 r = CP_ACCESS_TRAP_EL3; 1999 } 2000 break; 2001 default: 2002 g_assert_not_reached(); 2003 } 2004 } 2005 2006 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2007 r = CP_ACCESS_TRAP; 2008 } 2009 return r; 2010 } 2011 2012 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2013 const ARMCPRegInfo *ri, bool isread) 2014 { 2015 CPAccessResult r = CP_ACCESS_OK; 2016 GICv3CPUState *cs = icc_cs_from_env(env); 2017 int el = arm_current_el(env); 2018 2019 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2020 el == 1 && !arm_is_secure_below_el3(env)) { 2021 /* Takes priority over a possible EL3 trap */ 2022 return CP_ACCESS_TRAP_EL2; 2023 } 2024 2025 if (env->cp15.scr_el3 & SCR_IRQ) { 2026 switch (el) { 2027 case 1: 2028 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2029 r = CP_ACCESS_TRAP_EL3; 2030 } 2031 break; 2032 case 2: 2033 r = CP_ACCESS_TRAP_EL3; 2034 break; 2035 case 3: 2036 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2037 r = CP_ACCESS_TRAP_EL3; 2038 } 2039 break; 2040 default: 2041 g_assert_not_reached(); 2042 } 2043 } 2044 2045 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2046 r = CP_ACCESS_TRAP; 2047 } 2048 return r; 2049 } 2050 2051 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2052 { 2053 GICv3CPUState *cs = icc_cs_from_env(env); 2054 2055 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2056 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2057 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2058 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2059 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2060 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2061 cs->icc_pmr_el1 = 0; 2062 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2063 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2064 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2065 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2066 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2067 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2068 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2069 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2070 2071 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2072 cs->ich_hcr_el2 = 0; 2073 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2074 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2075 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2076 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2077 } 2078 2079 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2080 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2081 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2082 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2083 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2084 .readfn = icc_pmr_read, 2085 .writefn = icc_pmr_write, 2086 /* We hang the whole cpu interface reset routine off here 2087 * rather than parcelling it out into one little function 2088 * per register 2089 */ 2090 .resetfn = icc_reset, 2091 }, 2092 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2094 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2095 .access = PL1_R, .accessfn = gicv3_fiq_access, 2096 .readfn = icc_iar0_read, 2097 }, 2098 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2100 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2101 .access = PL1_W, .accessfn = gicv3_fiq_access, 2102 .writefn = icc_eoir_write, 2103 }, 2104 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2105 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2106 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2107 .access = PL1_R, .accessfn = gicv3_fiq_access, 2108 .readfn = icc_hppir0_read, 2109 }, 2110 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2111 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2112 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2113 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2114 .readfn = icc_bpr_read, 2115 .writefn = icc_bpr_write, 2116 }, 2117 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2118 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2119 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2120 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2121 .readfn = icc_ap_read, 2122 .writefn = icc_ap_write, 2123 }, 2124 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2126 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2127 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2128 .readfn = icc_ap_read, 2129 .writefn = icc_ap_write, 2130 }, 2131 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2132 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2133 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2134 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2135 .readfn = icc_ap_read, 2136 .writefn = icc_ap_write, 2137 }, 2138 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2139 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2140 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2141 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2142 .readfn = icc_ap_read, 2143 .writefn = icc_ap_write, 2144 }, 2145 /* All the ICC_AP1R*_EL1 registers are banked */ 2146 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2147 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2148 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2149 .access = PL1_RW, .accessfn = gicv3_irq_access, 2150 .readfn = icc_ap_read, 2151 .writefn = icc_ap_write, 2152 }, 2153 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2154 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2155 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2156 .access = PL1_RW, .accessfn = gicv3_irq_access, 2157 .readfn = icc_ap_read, 2158 .writefn = icc_ap_write, 2159 }, 2160 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2162 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2163 .access = PL1_RW, .accessfn = gicv3_irq_access, 2164 .readfn = icc_ap_read, 2165 .writefn = icc_ap_write, 2166 }, 2167 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2168 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2169 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2170 .access = PL1_RW, .accessfn = gicv3_irq_access, 2171 .readfn = icc_ap_read, 2172 .writefn = icc_ap_write, 2173 }, 2174 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2175 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2176 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2177 .access = PL1_W, .accessfn = gicv3_dir_access, 2178 .writefn = icc_dir_write, 2179 }, 2180 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2182 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2183 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2184 .readfn = icc_rpr_read, 2185 }, 2186 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2187 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2188 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2189 .access = PL1_W, .accessfn = gicv3_sgi_access, 2190 .writefn = icc_sgi1r_write, 2191 }, 2192 { .name = "ICC_SGI1R", 2193 .cp = 15, .opc1 = 0, .crm = 12, 2194 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2195 .access = PL1_W, .accessfn = gicv3_sgi_access, 2196 .writefn = icc_sgi1r_write, 2197 }, 2198 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2200 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2201 .access = PL1_W, .accessfn = gicv3_sgi_access, 2202 .writefn = icc_asgi1r_write, 2203 }, 2204 { .name = "ICC_ASGI1R", 2205 .cp = 15, .opc1 = 1, .crm = 12, 2206 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2207 .access = PL1_W, .accessfn = gicv3_sgi_access, 2208 .writefn = icc_asgi1r_write, 2209 }, 2210 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2211 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2212 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2213 .access = PL1_W, .accessfn = gicv3_sgi_access, 2214 .writefn = icc_sgi0r_write, 2215 }, 2216 { .name = "ICC_SGI0R", 2217 .cp = 15, .opc1 = 2, .crm = 12, 2218 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2219 .access = PL1_W, .accessfn = gicv3_sgi_access, 2220 .writefn = icc_sgi0r_write, 2221 }, 2222 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2223 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2224 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2225 .access = PL1_R, .accessfn = gicv3_irq_access, 2226 .readfn = icc_iar1_read, 2227 }, 2228 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2229 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2230 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2231 .access = PL1_W, .accessfn = gicv3_irq_access, 2232 .writefn = icc_eoir_write, 2233 }, 2234 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2235 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2236 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2237 .access = PL1_R, .accessfn = gicv3_irq_access, 2238 .readfn = icc_hppir1_read, 2239 }, 2240 /* This register is banked */ 2241 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2242 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2243 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2244 .access = PL1_RW, .accessfn = gicv3_irq_access, 2245 .readfn = icc_bpr_read, 2246 .writefn = icc_bpr_write, 2247 }, 2248 /* This register is banked */ 2249 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2250 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2251 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2252 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2253 .readfn = icc_ctlr_el1_read, 2254 .writefn = icc_ctlr_el1_write, 2255 }, 2256 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2258 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2259 .access = PL1_RW, 2260 /* We don't support IRQ/FIQ bypass and system registers are 2261 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2262 * This register is banked but since it's constant we don't 2263 * need to do anything special. 2264 */ 2265 .resetvalue = 0x7, 2266 }, 2267 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2268 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2269 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2270 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2271 .readfn = icc_igrpen_read, 2272 .writefn = icc_igrpen_write, 2273 }, 2274 /* This register is banked */ 2275 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2276 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2277 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2278 .access = PL1_RW, .accessfn = gicv3_irq_access, 2279 .readfn = icc_igrpen_read, 2280 .writefn = icc_igrpen_write, 2281 }, 2282 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2284 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2285 .access = PL2_RW, 2286 /* We don't support IRQ/FIQ bypass and system registers are 2287 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2288 */ 2289 .resetvalue = 0xf, 2290 }, 2291 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2292 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2293 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2294 .access = PL3_RW, 2295 .readfn = icc_ctlr_el3_read, 2296 .writefn = icc_ctlr_el3_write, 2297 }, 2298 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2299 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2300 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2301 .access = PL3_RW, 2302 /* We don't support IRQ/FIQ bypass and system registers are 2303 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2304 */ 2305 .resetvalue = 0xf, 2306 }, 2307 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2308 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2309 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2310 .access = PL3_RW, 2311 .readfn = icc_igrpen1_el3_read, 2312 .writefn = icc_igrpen1_el3_write, 2313 }, 2314 REGINFO_SENTINEL 2315 }; 2316 2317 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2318 { 2319 GICv3CPUState *cs = icc_cs_from_env(env); 2320 int regno = ri->opc2 & 3; 2321 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2322 uint64_t value; 2323 2324 value = cs->ich_apr[grp][regno]; 2325 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2326 return value; 2327 } 2328 2329 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2330 uint64_t value) 2331 { 2332 GICv3CPUState *cs = icc_cs_from_env(env); 2333 int regno = ri->opc2 & 3; 2334 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2335 2336 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2337 2338 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2339 gicv3_cpuif_virt_update(cs); 2340 } 2341 2342 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2343 { 2344 GICv3CPUState *cs = icc_cs_from_env(env); 2345 uint64_t value = cs->ich_hcr_el2; 2346 2347 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2348 return value; 2349 } 2350 2351 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2352 uint64_t value) 2353 { 2354 GICv3CPUState *cs = icc_cs_from_env(env); 2355 2356 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2357 2358 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2359 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2360 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2361 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2362 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2363 2364 cs->ich_hcr_el2 = value; 2365 gicv3_cpuif_virt_update(cs); 2366 } 2367 2368 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2369 { 2370 GICv3CPUState *cs = icc_cs_from_env(env); 2371 uint64_t value = cs->ich_vmcr_el2; 2372 2373 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2374 return value; 2375 } 2376 2377 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2378 uint64_t value) 2379 { 2380 GICv3CPUState *cs = icc_cs_from_env(env); 2381 2382 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2383 2384 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2385 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2386 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2387 value |= ICH_VMCR_EL2_VFIQEN; 2388 2389 cs->ich_vmcr_el2 = value; 2390 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2391 * by reading and writing back the fields. 2392 */ 2393 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2394 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2395 2396 gicv3_cpuif_virt_update(cs); 2397 } 2398 2399 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2400 { 2401 GICv3CPUState *cs = icc_cs_from_env(env); 2402 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2403 uint64_t value; 2404 2405 /* This read function handles all of: 2406 * 64-bit reads of the whole LR 2407 * 32-bit reads of the low half of the LR 2408 * 32-bit reads of the high half of the LR 2409 */ 2410 if (ri->state == ARM_CP_STATE_AA32) { 2411 if (ri->crm >= 14) { 2412 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2413 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2414 } else { 2415 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2416 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2417 } 2418 } else { 2419 value = cs->ich_lr_el2[regno]; 2420 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2421 } 2422 2423 return value; 2424 } 2425 2426 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2427 uint64_t value) 2428 { 2429 GICv3CPUState *cs = icc_cs_from_env(env); 2430 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2431 2432 /* This write function handles all of: 2433 * 64-bit writes to the whole LR 2434 * 32-bit writes to the low half of the LR 2435 * 32-bit writes to the high half of the LR 2436 */ 2437 if (ri->state == ARM_CP_STATE_AA32) { 2438 if (ri->crm >= 14) { 2439 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2440 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2441 } else { 2442 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2443 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2444 } 2445 } else { 2446 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2447 } 2448 2449 /* Enforce RES0 bits in priority field */ 2450 if (cs->vpribits < 8) { 2451 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2452 8 - cs->vpribits, 0); 2453 } 2454 2455 cs->ich_lr_el2[regno] = value; 2456 gicv3_cpuif_virt_update(cs); 2457 } 2458 2459 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2460 { 2461 GICv3CPUState *cs = icc_cs_from_env(env); 2462 uint64_t value; 2463 2464 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2465 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2466 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2467 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2468 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2469 2470 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2471 return value; 2472 } 2473 2474 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2475 { 2476 GICv3CPUState *cs = icc_cs_from_env(env); 2477 uint64_t value = maintenance_interrupt_state(cs); 2478 2479 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2480 return value; 2481 } 2482 2483 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2484 { 2485 GICv3CPUState *cs = icc_cs_from_env(env); 2486 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2487 2488 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2489 return value; 2490 } 2491 2492 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2493 { 2494 GICv3CPUState *cs = icc_cs_from_env(env); 2495 uint64_t value = 0; 2496 int i; 2497 2498 for (i = 0; i < cs->num_list_regs; i++) { 2499 uint64_t lr = cs->ich_lr_el2[i]; 2500 2501 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2502 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2503 value |= (1 << i); 2504 } 2505 } 2506 2507 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2508 return value; 2509 } 2510 2511 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2512 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2513 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2514 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2515 .access = PL2_RW, 2516 .readfn = ich_ap_read, 2517 .writefn = ich_ap_write, 2518 }, 2519 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2521 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2522 .access = PL2_RW, 2523 .readfn = ich_ap_read, 2524 .writefn = ich_ap_write, 2525 }, 2526 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2527 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2528 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2529 .access = PL2_RW, 2530 .readfn = ich_hcr_read, 2531 .writefn = ich_hcr_write, 2532 }, 2533 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2534 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2535 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2536 .access = PL2_R, 2537 .readfn = ich_vtr_read, 2538 }, 2539 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2540 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2541 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2542 .access = PL2_R, 2543 .readfn = ich_misr_read, 2544 }, 2545 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2546 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2547 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2548 .access = PL2_R, 2549 .readfn = ich_eisr_read, 2550 }, 2551 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2552 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2553 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2554 .access = PL2_R, 2555 .readfn = ich_elrsr_read, 2556 }, 2557 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2558 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2559 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2560 .access = PL2_RW, 2561 .readfn = ich_vmcr_read, 2562 .writefn = ich_vmcr_write, 2563 }, 2564 REGINFO_SENTINEL 2565 }; 2566 2567 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2568 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2569 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2570 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2571 .access = PL2_RW, 2572 .readfn = ich_ap_read, 2573 .writefn = ich_ap_write, 2574 }, 2575 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2576 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2577 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2578 .access = PL2_RW, 2579 .readfn = ich_ap_read, 2580 .writefn = ich_ap_write, 2581 }, 2582 REGINFO_SENTINEL 2583 }; 2584 2585 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2586 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2587 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2588 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2589 .access = PL2_RW, 2590 .readfn = ich_ap_read, 2591 .writefn = ich_ap_write, 2592 }, 2593 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2594 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2595 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2596 .access = PL2_RW, 2597 .readfn = ich_ap_read, 2598 .writefn = ich_ap_write, 2599 }, 2600 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2601 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2602 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2603 .access = PL2_RW, 2604 .readfn = ich_ap_read, 2605 .writefn = ich_ap_write, 2606 }, 2607 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2608 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2609 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2610 .access = PL2_RW, 2611 .readfn = ich_ap_read, 2612 .writefn = ich_ap_write, 2613 }, 2614 REGINFO_SENTINEL 2615 }; 2616 2617 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2618 { 2619 GICv3CPUState *cs = opaque; 2620 2621 gicv3_cpuif_update(cs); 2622 } 2623 2624 void gicv3_init_cpuif(GICv3State *s) 2625 { 2626 /* Called from the GICv3 realize function; register our system 2627 * registers with the CPU 2628 */ 2629 int i; 2630 2631 for (i = 0; i < s->num_cpu; i++) { 2632 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2633 GICv3CPUState *cs = &s->cpu[i]; 2634 2635 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2636 * in define_arm_cp_regs_with_opaque(), because when we're called back 2637 * it might be with code translated by CPU 0 but run by CPU 1, in 2638 * which case we'd get the wrong value. 2639 * So instead we define the regs with no ri->opaque info, and 2640 * get back to the GICv3CPUState from the CPUARMState. 2641 */ 2642 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2643 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2644 && cpu->gic_num_lrs) { 2645 int j; 2646 2647 cs->num_list_regs = cpu->gic_num_lrs; 2648 cs->vpribits = cpu->gic_vpribits; 2649 cs->vprebits = cpu->gic_vprebits; 2650 2651 /* Check against architectural constraints: getting these 2652 * wrong would be a bug in the CPU code defining these, 2653 * and the implementation relies on them holding. 2654 */ 2655 g_assert(cs->vprebits <= cs->vpribits); 2656 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2657 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2658 2659 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2660 2661 for (j = 0; j < cs->num_list_regs; j++) { 2662 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2663 * are split into two cp15 regs, LR (the low part, with the 2664 * same encoding as the AArch64 LR) and LRC (the high part). 2665 */ 2666 ARMCPRegInfo lr_regset[] = { 2667 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2668 .opc0 = 3, .opc1 = 4, .crn = 12, 2669 .crm = 12 + (j >> 3), .opc2 = j & 7, 2670 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2671 .access = PL2_RW, 2672 .readfn = ich_lr_read, 2673 .writefn = ich_lr_write, 2674 }, 2675 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2676 .cp = 15, .opc1 = 4, .crn = 12, 2677 .crm = 14 + (j >> 3), .opc2 = j & 7, 2678 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2679 .access = PL2_RW, 2680 .readfn = ich_lr_read, 2681 .writefn = ich_lr_write, 2682 }, 2683 REGINFO_SENTINEL 2684 }; 2685 define_arm_cp_regs(cpu, lr_regset); 2686 } 2687 if (cs->vprebits >= 6) { 2688 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2689 } 2690 if (cs->vprebits == 7) { 2691 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2692 } 2693 } 2694 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2695 } 2696 } 2697