1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 #include "target/arm/cpregs.h" 24 #include "target/arm/cpu-features.h" 25 #include "sysemu/tcg.h" 26 #include "sysemu/qtest.h" 27 28 /* 29 * Special case return value from hppvi_index(); must be larger than 30 * the architecturally maximum possible list register index (which is 15) 31 */ 32 #define HPPVI_INDEX_VLPI 16 33 34 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 35 { 36 return env->gicv3state; 37 } 38 39 static bool gicv3_use_ns_bank(CPUARMState *env) 40 { 41 /* Return true if we should use the NonSecure bank for a banked GIC 42 * CPU interface register. Note that this differs from the 43 * access_secure_reg() function because GICv3 banked registers are 44 * banked even for AArch64, unlike the other CPU system registers. 45 */ 46 return !arm_is_secure_below_el3(env); 47 } 48 49 /* The minimum BPR for the virtual interface is a configurable property */ 50 static inline int icv_min_vbpr(GICv3CPUState *cs) 51 { 52 return 7 - cs->vprebits; 53 } 54 55 static inline int ich_num_aprs(GICv3CPUState *cs) 56 { 57 /* Return the number of virtual APR registers (1, 2, or 4) */ 58 int aprmax = 1 << (cs->vprebits - 5); 59 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 60 return aprmax; 61 } 62 63 /* Simple accessor functions for LR fields */ 64 static uint32_t ich_lr_vintid(uint64_t lr) 65 { 66 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 67 } 68 69 static uint32_t ich_lr_pintid(uint64_t lr) 70 { 71 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 72 } 73 74 static uint32_t ich_lr_prio(uint64_t lr) 75 { 76 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 77 } 78 79 static int ich_lr_state(uint64_t lr) 80 { 81 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 82 } 83 84 static bool icv_access(CPUARMState *env, int hcr_flags) 85 { 86 /* Return true if this ICC_ register access should really be 87 * directed to an ICV_ access. hcr_flags is a mask of 88 * HCR_EL2 bits to check: we treat this as an ICV_ access 89 * if we are in NS EL1 and at least one of the specified 90 * HCR_EL2 bits is set. 91 * 92 * ICV registers fall into four categories: 93 * * access if NS EL1 and HCR_EL2.FMO == 1: 94 * all ICV regs with '0' in their name 95 * * access if NS EL1 and HCR_EL2.IMO == 1: 96 * all ICV regs with '1' in their name 97 * * access if NS EL1 and either IMO or FMO == 1: 98 * CTLR, DIR, PMR, RPR 99 */ 100 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 101 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 102 103 return flagmatch && arm_current_el(env) == 1 104 && !arm_is_secure_below_el3(env); 105 } 106 107 static int read_vbpr(GICv3CPUState *cs, int grp) 108 { 109 /* Read VBPR value out of the VMCR field (caller must handle 110 * VCBPR effects if required) 111 */ 112 if (grp == GICV3_G0) { 113 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 114 ICH_VMCR_EL2_VBPR0_LENGTH); 115 } else { 116 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 117 ICH_VMCR_EL2_VBPR1_LENGTH); 118 } 119 } 120 121 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 122 { 123 /* Write new VBPR1 value, handling the "writing a value less than 124 * the minimum sets it to the minimum" semantics. 125 */ 126 int min = icv_min_vbpr(cs); 127 128 if (grp != GICV3_G0) { 129 min++; 130 } 131 132 value = MAX(value, min); 133 134 if (grp == GICV3_G0) { 135 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 136 ICH_VMCR_EL2_VBPR0_LENGTH, value); 137 } else { 138 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 139 ICH_VMCR_EL2_VBPR1_LENGTH, value); 140 } 141 } 142 143 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 144 { 145 /* Return a mask word which clears the unimplemented priority bits 146 * from a priority value for a virtual interrupt. (Not to be confused 147 * with the group priority, whose mask depends on the value of VBPR 148 * for the interrupt group.) 149 */ 150 return (~0U << (8 - cs->vpribits)) & 0xff; 151 } 152 153 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 154 { 155 /* Calculate the current running priority based on the set bits 156 * in the ICH Active Priority Registers. 157 */ 158 int i; 159 int aprmax = ich_num_aprs(cs); 160 161 if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) { 162 return 0x0; 163 } 164 165 for (i = 0; i < aprmax; i++) { 166 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 167 cs->ich_apr[GICV3_G1NS][i]; 168 169 if (!apr) { 170 continue; 171 } 172 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 173 } 174 /* No current active interrupts: return idle priority */ 175 return 0xff; 176 } 177 178 static int hppvi_index(GICv3CPUState *cs) 179 { 180 /* 181 * Return the list register index of the highest priority pending 182 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 183 * pseudocode. If no pending virtual interrupts, return -1. 184 * If the highest priority pending virtual interrupt is a vLPI, 185 * return HPPVI_INDEX_VLPI. 186 * (The pseudocode handles checking whether the vLPI is higher 187 * priority than the highest priority list register at every 188 * callsite of HighestPriorityVirtualInterrupt; we check it here.) 189 */ 190 ARMCPU *cpu = ARM_CPU(cs->cpu); 191 CPUARMState *env = &cpu->env; 192 int idx = -1; 193 int i; 194 /* Note that a list register entry with a priority of 0xff will 195 * never be reported by this function; this is the architecturally 196 * correct behaviour. 197 */ 198 int prio = 0xff; 199 bool nmi = false; 200 201 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 202 /* Both groups disabled, definitely nothing to do */ 203 return idx; 204 } 205 206 for (i = 0; i < cs->num_list_regs; i++) { 207 uint64_t lr = cs->ich_lr_el2[i]; 208 bool thisnmi; 209 int thisprio; 210 211 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 212 /* Not Pending */ 213 continue; 214 } 215 216 /* Ignore interrupts if relevant group enable not set */ 217 if (lr & ICH_LR_EL2_GROUP) { 218 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 219 continue; 220 } 221 } else { 222 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 223 continue; 224 } 225 } 226 227 thisnmi = lr & ICH_LR_EL2_NMI; 228 thisprio = ich_lr_prio(lr); 229 230 if ((thisprio < prio) || ((thisprio == prio) && (thisnmi & (!nmi)))) { 231 prio = thisprio; 232 nmi = thisnmi; 233 idx = i; 234 } 235 } 236 237 /* 238 * "no pending vLPI" is indicated with prio = 0xff, which always 239 * fails the priority check here. vLPIs are only considered 240 * when we are in Non-Secure state. 241 */ 242 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { 243 if (cs->hppvlpi.grp == GICV3_G0) { 244 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { 245 return HPPVI_INDEX_VLPI; 246 } 247 } else { 248 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { 249 return HPPVI_INDEX_VLPI; 250 } 251 } 252 } 253 254 return idx; 255 } 256 257 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 258 { 259 /* Return a mask word which clears the subpriority bits from 260 * a priority value for a virtual interrupt in the specified group. 261 * This depends on the VBPR value. 262 * If using VBPR0 then: 263 * a BPR of 0 means the group priority bits are [7:1]; 264 * a BPR of 1 means they are [7:2], and so on down to 265 * a BPR of 7 meaning no group priority bits at all. 266 * If using VBPR1 then: 267 * a BPR of 0 is impossible (the minimum value is 1) 268 * a BPR of 1 means the group priority bits are [7:1]; 269 * a BPR of 2 means they are [7:2], and so on down to 270 * a BPR of 7 meaning the group priority is [7]. 271 * 272 * Which BPR to use depends on the group of the interrupt and 273 * the current ICH_VMCR_EL2.VCBPR settings. 274 * 275 * This corresponds to the VGroupBits() pseudocode. 276 */ 277 int bpr; 278 279 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 280 group = GICV3_G0; 281 } 282 283 bpr = read_vbpr(cs, group); 284 if (group == GICV3_G1NS) { 285 assert(bpr > 0); 286 bpr--; 287 } 288 289 return ~0U << (bpr + 1); 290 } 291 292 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 293 { 294 /* Return true if we can signal this virtual interrupt defined by 295 * the given list register value; see the pseudocode functions 296 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 297 * Compare also icc_hppi_can_preempt() which is the non-virtual 298 * equivalent of these checks. 299 */ 300 int grp; 301 bool is_nmi; 302 uint32_t mask, prio, rprio, vpmr; 303 304 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 305 /* Virtual interface disabled */ 306 return false; 307 } 308 309 /* We don't need to check that this LR is in Pending state because 310 * that has already been done in hppvi_index(). 311 */ 312 313 prio = ich_lr_prio(lr); 314 is_nmi = lr & ICH_LR_EL2_NMI; 315 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 316 ICH_VMCR_EL2_VPMR_LENGTH); 317 318 if (!is_nmi && prio >= vpmr) { 319 /* Priority mask masks this interrupt */ 320 return false; 321 } 322 323 rprio = ich_highest_active_virt_prio(cs); 324 if (rprio == 0xff) { 325 /* No running interrupt so we can preempt */ 326 return true; 327 } 328 329 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 330 331 mask = icv_gprio_mask(cs, grp); 332 333 /* We only preempt a running interrupt if the pending interrupt's 334 * group priority is sufficient (the subpriorities are not considered). 335 */ 336 if ((prio & mask) < (rprio & mask)) { 337 return true; 338 } 339 340 if ((prio & mask) == (rprio & mask) && is_nmi && 341 !(cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI)) { 342 return true; 343 } 344 345 return false; 346 } 347 348 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) 349 { 350 /* 351 * Return true if we can signal the highest priority pending vLPI. 352 * We can assume we're Non-secure because hppvi_index() already 353 * tested for that. 354 */ 355 uint32_t mask, rprio, vpmr; 356 357 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 358 /* Virtual interface disabled */ 359 return false; 360 } 361 362 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 363 ICH_VMCR_EL2_VPMR_LENGTH); 364 365 if (cs->hppvlpi.prio >= vpmr) { 366 /* Priority mask masks this interrupt */ 367 return false; 368 } 369 370 rprio = ich_highest_active_virt_prio(cs); 371 if (rprio == 0xff) { 372 /* No running interrupt so we can preempt */ 373 return true; 374 } 375 376 mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 377 378 /* 379 * We only preempt a running interrupt if the pending interrupt's 380 * group priority is sufficient (the subpriorities are not considered). 381 */ 382 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { 383 return true; 384 } 385 386 return false; 387 } 388 389 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 390 uint32_t *misr) 391 { 392 /* Return a set of bits indicating the EOI maintenance interrupt status 393 * for each list register. The EOI maintenance interrupt status is 394 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 395 * (see the GICv3 spec for the ICH_EISR_EL2 register). 396 * If misr is not NULL then we should also collect the information 397 * about the MISR.EOI, MISR.NP and MISR.U bits. 398 */ 399 uint32_t value = 0; 400 int validcount = 0; 401 bool seenpending = false; 402 int i; 403 404 for (i = 0; i < cs->num_list_regs; i++) { 405 uint64_t lr = cs->ich_lr_el2[i]; 406 407 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 408 == ICH_LR_EL2_EOI) { 409 value |= (1 << i); 410 } 411 if ((lr & ICH_LR_EL2_STATE_MASK)) { 412 validcount++; 413 } 414 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 415 seenpending = true; 416 } 417 } 418 419 if (misr) { 420 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 421 *misr |= ICH_MISR_EL2_U; 422 } 423 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 424 *misr |= ICH_MISR_EL2_NP; 425 } 426 if (value) { 427 *misr |= ICH_MISR_EL2_EOI; 428 } 429 } 430 return value; 431 } 432 433 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 434 { 435 /* Return a set of bits indicating the maintenance interrupt status 436 * (as seen in the ICH_MISR_EL2 register). 437 */ 438 uint32_t value = 0; 439 440 /* Scan list registers and fill in the U, NP and EOI bits */ 441 eoi_maintenance_interrupt_state(cs, &value); 442 443 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 444 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 445 value |= ICH_MISR_EL2_LRENP; 446 } 447 448 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 449 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 450 value |= ICH_MISR_EL2_VGRP0E; 451 } 452 453 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 454 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 455 value |= ICH_MISR_EL2_VGRP0D; 456 } 457 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 458 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 459 value |= ICH_MISR_EL2_VGRP1E; 460 } 461 462 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 463 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 464 value |= ICH_MISR_EL2_VGRP1D; 465 } 466 467 return value; 468 } 469 470 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) 471 { 472 /* 473 * Tell the CPU about any pending virtual interrupts. 474 * This should only be called for changes that affect the 475 * vIRQ and vFIQ status and do not change the maintenance 476 * interrupt status. This means that unlike gicv3_cpuif_virt_update() 477 * this function won't recursively call back into the GIC code. 478 * The main use of this is when the redistributor has changed the 479 * highest priority pending virtual LPI. 480 */ 481 int idx; 482 int irqlevel = 0; 483 int fiqlevel = 0; 484 485 idx = hppvi_index(cs); 486 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, 487 cs->hppvlpi.irq, cs->hppvlpi.grp, 488 cs->hppvlpi.prio); 489 if (idx == HPPVI_INDEX_VLPI) { 490 if (icv_hppvlpi_can_preempt(cs)) { 491 if (cs->hppvlpi.grp == GICV3_G0) { 492 fiqlevel = 1; 493 } else { 494 irqlevel = 1; 495 } 496 } 497 } else if (idx >= 0) { 498 uint64_t lr = cs->ich_lr_el2[idx]; 499 500 if (icv_hppi_can_preempt(cs, lr)) { 501 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 502 if (lr & ICH_LR_EL2_GROUP) { 503 irqlevel = 1; 504 } else { 505 fiqlevel = 1; 506 } 507 } 508 } 509 510 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 511 qemu_set_irq(cs->parent_vfiq, fiqlevel); 512 qemu_set_irq(cs->parent_virq, irqlevel); 513 } 514 515 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 516 { 517 /* 518 * Tell the CPU about any pending virtual interrupts or 519 * maintenance interrupts, following a change to the state 520 * of the CPU interface relevant to virtual interrupts. 521 * 522 * CAUTION: this function will call qemu_set_irq() on the 523 * CPU maintenance IRQ line, which is typically wired up 524 * to the GIC as a per-CPU interrupt. This means that it 525 * will recursively call back into the GIC code via 526 * gicv3_redist_set_irq() and thus into the CPU interface code's 527 * gicv3_cpuif_update(). It is therefore important that this 528 * function is only called as the final action of a CPU interface 529 * register write implementation, after all the GIC state 530 * fields have been updated. gicv3_cpuif_update() also must 531 * not cause this function to be called, but that happens 532 * naturally as a result of there being no architectural 533 * linkage between the physical and virtual GIC logic. 534 */ 535 ARMCPU *cpu = ARM_CPU(cs->cpu); 536 int maintlevel = 0; 537 538 gicv3_cpuif_virt_irq_fiq_update(cs); 539 540 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 541 maintenance_interrupt_state(cs) != 0) { 542 maintlevel = 1; 543 } 544 545 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); 546 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 547 } 548 549 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 550 { 551 GICv3CPUState *cs = icc_cs_from_env(env); 552 int regno = ri->opc2 & 3; 553 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 554 uint64_t value = cs->ich_apr[grp][regno]; 555 556 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 557 return value; 558 } 559 560 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 561 uint64_t value) 562 { 563 GICv3CPUState *cs = icc_cs_from_env(env); 564 int regno = ri->opc2 & 3; 565 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 566 567 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 568 569 if (cs->nmi_support) { 570 cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI); 571 } else { 572 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 573 } 574 575 gicv3_cpuif_virt_irq_fiq_update(cs); 576 return; 577 } 578 579 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 580 { 581 GICv3CPUState *cs = icc_cs_from_env(env); 582 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 583 uint64_t bpr; 584 bool satinc = false; 585 586 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 587 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 588 grp = GICV3_G0; 589 satinc = true; 590 } 591 592 bpr = read_vbpr(cs, grp); 593 594 if (satinc) { 595 bpr++; 596 bpr = MIN(bpr, 7); 597 } 598 599 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 600 601 return bpr; 602 } 603 604 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 GICv3CPUState *cs = icc_cs_from_env(env); 608 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 609 610 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 611 gicv3_redist_affid(cs), value); 612 613 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 614 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 615 return; 616 } 617 618 write_vbpr(cs, grp, value); 619 620 gicv3_cpuif_virt_irq_fiq_update(cs); 621 } 622 623 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 624 { 625 GICv3CPUState *cs = icc_cs_from_env(env); 626 uint64_t value; 627 628 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 629 ICH_VMCR_EL2_VPMR_LENGTH); 630 631 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 632 return value; 633 } 634 635 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 636 uint64_t value) 637 { 638 GICv3CPUState *cs = icc_cs_from_env(env); 639 640 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 641 642 value &= icv_fullprio_mask(cs); 643 644 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 645 ICH_VMCR_EL2_VPMR_LENGTH, value); 646 647 gicv3_cpuif_virt_irq_fiq_update(cs); 648 } 649 650 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 651 { 652 GICv3CPUState *cs = icc_cs_from_env(env); 653 int enbit; 654 uint64_t value; 655 656 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 657 value = extract64(cs->ich_vmcr_el2, enbit, 1); 658 659 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 660 gicv3_redist_affid(cs), value); 661 return value; 662 } 663 664 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 665 uint64_t value) 666 { 667 GICv3CPUState *cs = icc_cs_from_env(env); 668 int enbit; 669 670 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 671 gicv3_redist_affid(cs), value); 672 673 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 674 675 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 676 gicv3_cpuif_virt_update(cs); 677 } 678 679 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 680 { 681 GICv3CPUState *cs = icc_cs_from_env(env); 682 uint64_t value; 683 684 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 685 * should match the ones reported in ich_vtr_read(). 686 */ 687 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 688 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 689 690 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 691 value |= ICC_CTLR_EL1_EOIMODE; 692 } 693 694 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 695 value |= ICC_CTLR_EL1_CBPR; 696 } 697 698 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 699 return value; 700 } 701 702 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 703 uint64_t value) 704 { 705 GICv3CPUState *cs = icc_cs_from_env(env); 706 707 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 708 709 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 710 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 711 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 712 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 713 714 gicv3_cpuif_virt_irq_fiq_update(cs); 715 } 716 717 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 718 { 719 GICv3CPUState *cs = icc_cs_from_env(env); 720 uint64_t prio = ich_highest_active_virt_prio(cs); 721 722 if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) { 723 prio |= ICV_RPR_EL1_NMI; 724 } 725 726 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 727 return prio; 728 } 729 730 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 731 { 732 GICv3CPUState *cs = icc_cs_from_env(env); 733 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 734 int idx = hppvi_index(cs); 735 uint64_t value = INTID_SPURIOUS; 736 737 if (idx == HPPVI_INDEX_VLPI) { 738 if (cs->hppvlpi.grp == grp) { 739 value = cs->hppvlpi.irq; 740 } 741 } else if (idx >= 0) { 742 uint64_t lr = cs->ich_lr_el2[idx]; 743 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 744 745 if (grp == thisgrp) { 746 value = ich_lr_vintid(lr); 747 } 748 } 749 750 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, 751 gicv3_redist_affid(cs), value); 752 return value; 753 } 754 755 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 756 { 757 /* Activate the interrupt in the specified list register 758 * by moving it from Pending to Active state, and update the 759 * Active Priority Registers. 760 */ 761 uint32_t mask = icv_gprio_mask(cs, grp); 762 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 763 bool nmi = cs->ich_lr_el2[idx] & ICH_LR_EL2_NMI; 764 int aprbit = prio >> (8 - cs->vprebits); 765 int regno = aprbit / 32; 766 int regbit = aprbit % 32; 767 768 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 769 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 770 771 if (nmi) { 772 cs->ich_apr[grp][regno] |= ICV_AP1R_EL1_NMI; 773 } else { 774 cs->ich_apr[grp][regno] |= (1 << regbit); 775 } 776 } 777 778 static void icv_activate_vlpi(GICv3CPUState *cs) 779 { 780 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 781 int prio = cs->hppvlpi.prio & mask; 782 int aprbit = prio >> (8 - cs->vprebits); 783 int regno = aprbit / 32; 784 int regbit = aprbit % 32; 785 786 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); 787 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); 788 } 789 790 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 791 { 792 GICv3CPUState *cs = icc_cs_from_env(env); 793 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 794 int idx = hppvi_index(cs); 795 uint64_t intid = INTID_SPURIOUS; 796 int el = arm_current_el(env); 797 798 if (idx == HPPVI_INDEX_VLPI) { 799 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { 800 intid = cs->hppvlpi.irq; 801 icv_activate_vlpi(cs); 802 } 803 } else if (idx >= 0) { 804 uint64_t lr = cs->ich_lr_el2[idx]; 805 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 806 bool nmi = env->cp15.sctlr_el[el] & SCTLR_NMI && lr & ICH_LR_EL2_NMI; 807 808 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 809 intid = ich_lr_vintid(lr); 810 if (!gicv3_intid_is_special(intid)) { 811 if (!nmi) { 812 icv_activate_irq(cs, idx, grp); 813 } else { 814 intid = INTID_NMI; 815 } 816 } else { 817 /* Interrupt goes from Pending to Invalid */ 818 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 819 /* We will now return the (bogus) ID from the list register, 820 * as per the pseudocode. 821 */ 822 } 823 } 824 } 825 826 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 827 gicv3_redist_affid(cs), intid); 828 829 gicv3_cpuif_virt_update(cs); 830 831 return intid; 832 } 833 834 static uint64_t icv_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 835 { 836 GICv3CPUState *cs = icc_cs_from_env(env); 837 int idx = hppvi_index(cs); 838 uint64_t intid = INTID_SPURIOUS; 839 840 if (idx >= 0 && idx != HPPVI_INDEX_VLPI) { 841 uint64_t lr = cs->ich_lr_el2[idx]; 842 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 843 844 if ((thisgrp == GICV3_G1NS) && icv_hppi_can_preempt(cs, lr)) { 845 intid = ich_lr_vintid(lr); 846 if (!gicv3_intid_is_special(intid)) { 847 if (lr & ICH_LR_EL2_NMI) { 848 icv_activate_irq(cs, idx, GICV3_G1NS); 849 } else { 850 intid = INTID_SPURIOUS; 851 } 852 } else { 853 /* Interrupt goes from Pending to Invalid */ 854 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 855 /* 856 * We will now return the (bogus) ID from the list register, 857 * as per the pseudocode. 858 */ 859 } 860 } 861 } 862 863 trace_gicv3_icv_nmiar1_read(gicv3_redist_affid(cs), intid); 864 865 gicv3_cpuif_virt_update(cs); 866 867 return intid; 868 } 869 870 static uint32_t icc_fullprio_mask(GICv3CPUState *cs) 871 { 872 /* 873 * Return a mask word which clears the unimplemented priority bits 874 * from a priority value for a physical interrupt. (Not to be confused 875 * with the group priority, whose mask depends on the value of BPR 876 * for the interrupt group.) 877 */ 878 return (~0U << (8 - cs->pribits)) & 0xff; 879 } 880 881 static inline int icc_min_bpr(GICv3CPUState *cs) 882 { 883 /* The minimum BPR for the physical interface. */ 884 return 7 - cs->prebits; 885 } 886 887 static inline int icc_min_bpr_ns(GICv3CPUState *cs) 888 { 889 return icc_min_bpr(cs) + 1; 890 } 891 892 static inline int icc_num_aprs(GICv3CPUState *cs) 893 { 894 /* Return the number of APR registers (1, 2, or 4) */ 895 int aprmax = 1 << MAX(cs->prebits - 5, 0); 896 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); 897 return aprmax; 898 } 899 900 static int icc_highest_active_prio(GICv3CPUState *cs) 901 { 902 /* Calculate the current running priority based on the set bits 903 * in the Active Priority Registers. 904 */ 905 int i; 906 907 if (cs->nmi_support) { 908 /* 909 * If an NMI is active this takes precedence over anything else 910 * for priority purposes; the NMI bit is only in the AP1R0 bit. 911 * We return here the effective priority of the NMI, which is 912 * either 0x0 or 0x80. Callers will need to check NMI again for 913 * purposes of either setting the RPR register bits or for 914 * prioritization of NMI vs non-NMI. 915 */ 916 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { 917 return 0; 918 } 919 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 920 return (cs->gic->gicd_ctlr & GICD_CTLR_DS) ? 0 : 0x80; 921 } 922 } 923 924 for (i = 0; i < icc_num_aprs(cs); i++) { 925 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 926 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 927 928 if (!apr) { 929 continue; 930 } 931 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); 932 } 933 /* No current active interrupts: return idle priority */ 934 return 0xff; 935 } 936 937 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 938 { 939 /* Return a mask word which clears the subpriority bits from 940 * a priority value for an interrupt in the specified group. 941 * This depends on the BPR value. For CBPR0 (S or NS): 942 * a BPR of 0 means the group priority bits are [7:1]; 943 * a BPR of 1 means they are [7:2], and so on down to 944 * a BPR of 7 meaning no group priority bits at all. 945 * For CBPR1 NS: 946 * a BPR of 0 is impossible (the minimum value is 1) 947 * a BPR of 1 means the group priority bits are [7:1]; 948 * a BPR of 2 means they are [7:2], and so on down to 949 * a BPR of 7 meaning the group priority is [7]. 950 * 951 * Which BPR to use depends on the group of the interrupt and 952 * the current ICC_CTLR.CBPR settings. 953 * 954 * This corresponds to the GroupBits() pseudocode. 955 */ 956 int bpr; 957 958 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 959 (group == GICV3_G1NS && 960 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 961 group = GICV3_G0; 962 } 963 964 bpr = cs->icc_bpr[group] & 7; 965 966 if (group == GICV3_G1NS) { 967 assert(bpr > 0); 968 bpr--; 969 } 970 971 return ~0U << (bpr + 1); 972 } 973 974 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 975 { 976 /* Return true if there is no pending interrupt, or the 977 * highest priority pending interrupt is in a group which has been 978 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 979 */ 980 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 981 } 982 983 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 984 { 985 /* Return true if we have a pending interrupt of sufficient 986 * priority to preempt. 987 */ 988 int rprio; 989 uint32_t mask; 990 ARMCPU *cpu = ARM_CPU(cs->cpu); 991 CPUARMState *env = &cpu->env; 992 993 if (icc_no_enabled_hppi(cs)) { 994 return false; 995 } 996 997 if (cs->hppi.nmi) { 998 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 999 cs->hppi.grp == GICV3_G1NS) { 1000 if (cs->icc_pmr_el1 < 0x80) { 1001 return false; 1002 } 1003 if (arm_is_secure(env) && cs->icc_pmr_el1 == 0x80) { 1004 return false; 1005 } 1006 } 1007 } else if (cs->hppi.prio >= cs->icc_pmr_el1) { 1008 /* Priority mask masks this interrupt */ 1009 return false; 1010 } 1011 1012 rprio = icc_highest_active_prio(cs); 1013 if (rprio == 0xff) { 1014 /* No currently running interrupt so we can preempt */ 1015 return true; 1016 } 1017 1018 mask = icc_gprio_mask(cs, cs->hppi.grp); 1019 1020 /* We only preempt a running interrupt if the pending interrupt's 1021 * group priority is sufficient (the subpriorities are not considered). 1022 */ 1023 if ((cs->hppi.prio & mask) < (rprio & mask)) { 1024 return true; 1025 } 1026 1027 if (cs->hppi.nmi && (cs->hppi.prio & mask) == (rprio & mask)) { 1028 if (!(cs->icc_apr[cs->hppi.grp][0] & ICC_AP1R_EL1_NMI)) { 1029 return true; 1030 } 1031 } 1032 1033 return false; 1034 } 1035 1036 void gicv3_cpuif_update(GICv3CPUState *cs) 1037 { 1038 /* Tell the CPU about its highest priority pending interrupt */ 1039 int irqlevel = 0; 1040 int fiqlevel = 0; 1041 int nmilevel = 0; 1042 ARMCPU *cpu = ARM_CPU(cs->cpu); 1043 CPUARMState *env = &cpu->env; 1044 1045 g_assert(bql_locked()); 1046 1047 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 1048 cs->hppi.grp, cs->hppi.prio); 1049 1050 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 1051 /* If a Security-enabled GIC sends a G1S interrupt to a 1052 * Security-disabled CPU, we must treat it as if it were G0. 1053 */ 1054 cs->hppi.grp = GICV3_G0; 1055 } 1056 1057 if (icc_hppi_can_preempt(cs)) { 1058 /* We have an interrupt: should we signal it as IRQ or FIQ? 1059 * This is described in the GICv3 spec section 4.6.2. 1060 */ 1061 bool isfiq; 1062 1063 switch (cs->hppi.grp) { 1064 case GICV3_G0: 1065 isfiq = true; 1066 break; 1067 case GICV3_G1: 1068 isfiq = (!arm_is_secure(env) || 1069 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 1070 break; 1071 case GICV3_G1NS: 1072 isfiq = arm_is_secure(env); 1073 break; 1074 default: 1075 g_assert_not_reached(); 1076 } 1077 1078 if (isfiq) { 1079 fiqlevel = 1; 1080 } else if (cs->hppi.nmi) { 1081 nmilevel = 1; 1082 } else { 1083 irqlevel = 1; 1084 } 1085 } 1086 1087 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 1088 1089 qemu_set_irq(cs->parent_fiq, fiqlevel); 1090 qemu_set_irq(cs->parent_irq, irqlevel); 1091 qemu_set_irq(cs->parent_nmi, nmilevel); 1092 } 1093 1094 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1095 { 1096 GICv3CPUState *cs = icc_cs_from_env(env); 1097 uint32_t value = cs->icc_pmr_el1; 1098 1099 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1100 return icv_pmr_read(env, ri); 1101 } 1102 1103 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1104 (env->cp15.scr_el3 & SCR_FIQ)) { 1105 /* NS access and Group 0 is inaccessible to NS: return the 1106 * NS view of the current priority 1107 */ 1108 if ((value & 0x80) == 0) { 1109 /* Secure priorities not visible to NS */ 1110 value = 0; 1111 } else if (value != 0xff) { 1112 value = (value << 1) & 0xff; 1113 } 1114 } 1115 1116 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 1117 1118 return value; 1119 } 1120 1121 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1122 uint64_t value) 1123 { 1124 GICv3CPUState *cs = icc_cs_from_env(env); 1125 1126 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1127 return icv_pmr_write(env, ri, value); 1128 } 1129 1130 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 1131 1132 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1133 (env->cp15.scr_el3 & SCR_FIQ)) { 1134 /* NS access and Group 0 is inaccessible to NS: return the 1135 * NS view of the current priority 1136 */ 1137 if (!(cs->icc_pmr_el1 & 0x80)) { 1138 /* Current PMR in the secure range, don't allow NS to change it */ 1139 return; 1140 } 1141 value = (value >> 1) | 0x80; 1142 } 1143 value &= icc_fullprio_mask(cs); 1144 cs->icc_pmr_el1 = value; 1145 gicv3_cpuif_update(cs); 1146 } 1147 1148 static void icc_activate_irq(GICv3CPUState *cs, int irq) 1149 { 1150 /* Move the interrupt from the Pending state to Active, and update 1151 * the Active Priority Registers 1152 */ 1153 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 1154 int prio = cs->hppi.prio & mask; 1155 int aprbit = prio >> (8 - cs->prebits); 1156 int regno = aprbit / 32; 1157 int regbit = aprbit % 32; 1158 bool nmi = cs->hppi.nmi; 1159 1160 if (nmi) { 1161 cs->icc_apr[cs->hppi.grp][regno] |= ICC_AP1R_EL1_NMI; 1162 } else { 1163 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 1164 } 1165 1166 if (irq < GIC_INTERNAL) { 1167 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 1168 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 1169 gicv3_redist_update(cs); 1170 } else if (irq < GICV3_LPI_INTID_START) { 1171 gicv3_gicd_active_set(cs->gic, irq); 1172 gicv3_gicd_pending_clear(cs->gic, irq); 1173 gicv3_update(cs->gic, irq, 1); 1174 } else { 1175 gicv3_redist_lpi_pending(cs, irq, 0); 1176 } 1177 } 1178 1179 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 1180 { 1181 /* Return the highest priority pending interrupt register value 1182 * for group 0. 1183 */ 1184 bool irq_is_secure; 1185 1186 if (icc_no_enabled_hppi(cs)) { 1187 return INTID_SPURIOUS; 1188 } 1189 1190 /* Check whether we can return the interrupt or if we should return 1191 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 1192 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1193 * is always zero.) 1194 */ 1195 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1196 (cs->hppi.grp != GICV3_G1NS)); 1197 1198 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 1199 return INTID_SPURIOUS; 1200 } 1201 if (irq_is_secure && !arm_is_secure(env)) { 1202 /* Secure interrupts not visible to Nonsecure */ 1203 return INTID_SPURIOUS; 1204 } 1205 1206 if (cs->hppi.grp != GICV3_G0) { 1207 /* Indicate to EL3 that there's a Group 1 interrupt for the other 1208 * state pending. 1209 */ 1210 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 1211 } 1212 1213 return cs->hppi.irq; 1214 } 1215 1216 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 1217 { 1218 /* Return the highest priority pending interrupt register value 1219 * for group 1. 1220 */ 1221 bool irq_is_secure; 1222 1223 if (icc_no_enabled_hppi(cs)) { 1224 return INTID_SPURIOUS; 1225 } 1226 1227 /* Check whether we can return the interrupt or if we should return 1228 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 1229 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1230 * is always zero.) 1231 */ 1232 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1233 (cs->hppi.grp != GICV3_G1NS)); 1234 1235 if (cs->hppi.grp == GICV3_G0) { 1236 /* Group 0 interrupts not visible via HPPIR1 */ 1237 return INTID_SPURIOUS; 1238 } 1239 if (irq_is_secure) { 1240 if (!arm_is_secure(env)) { 1241 /* Secure interrupts not visible in Non-secure */ 1242 return INTID_SPURIOUS; 1243 } 1244 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1245 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 1246 return INTID_SPURIOUS; 1247 } 1248 1249 return cs->hppi.irq; 1250 } 1251 1252 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1253 { 1254 GICv3CPUState *cs = icc_cs_from_env(env); 1255 uint64_t intid; 1256 1257 if (icv_access(env, HCR_FMO)) { 1258 return icv_iar_read(env, ri); 1259 } 1260 1261 if (!icc_hppi_can_preempt(cs)) { 1262 intid = INTID_SPURIOUS; 1263 } else { 1264 intid = icc_hppir0_value(cs, env); 1265 } 1266 1267 if (!gicv3_intid_is_special(intid)) { 1268 icc_activate_irq(cs, intid); 1269 } 1270 1271 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1272 return intid; 1273 } 1274 1275 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1276 { 1277 GICv3CPUState *cs = icc_cs_from_env(env); 1278 int el = arm_current_el(env); 1279 uint64_t intid; 1280 1281 if (icv_access(env, HCR_IMO)) { 1282 return icv_iar_read(env, ri); 1283 } 1284 1285 if (!icc_hppi_can_preempt(cs)) { 1286 intid = INTID_SPURIOUS; 1287 } else { 1288 intid = icc_hppir1_value(cs, env); 1289 } 1290 1291 if (!gicv3_intid_is_special(intid)) { 1292 if (cs->hppi.nmi && env->cp15.sctlr_el[el] & SCTLR_NMI) { 1293 intid = INTID_NMI; 1294 } else { 1295 icc_activate_irq(cs, intid); 1296 } 1297 } 1298 1299 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1300 return intid; 1301 } 1302 1303 static uint64_t icc_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1304 { 1305 GICv3CPUState *cs = icc_cs_from_env(env); 1306 uint64_t intid; 1307 1308 if (icv_access(env, HCR_IMO)) { 1309 return icv_nmiar1_read(env, ri); 1310 } 1311 1312 if (!icc_hppi_can_preempt(cs)) { 1313 intid = INTID_SPURIOUS; 1314 } else { 1315 intid = icc_hppir1_value(cs, env); 1316 } 1317 1318 if (!gicv3_intid_is_special(intid)) { 1319 if (!cs->hppi.nmi) { 1320 intid = INTID_SPURIOUS; 1321 } else { 1322 icc_activate_irq(cs, intid); 1323 } 1324 } 1325 1326 trace_gicv3_icc_nmiar1_read(gicv3_redist_affid(cs), intid); 1327 return intid; 1328 } 1329 1330 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1331 { 1332 /* Drop the priority of the currently active interrupt in 1333 * the specified group. 1334 * 1335 * Note that we can guarantee (because of the requirement to nest 1336 * ICC_IAR reads [which activate an interrupt and raise priority] 1337 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1338 * that the interrupt we're being called for is the highest priority 1339 * active interrupt, meaning that it has the lowest set bit in the 1340 * APR registers. 1341 * 1342 * If the guest does not honour the ordering constraints then the 1343 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1344 * the values of the APR registers might become incorrect and the 1345 * running priority will be wrong, so interrupts that should preempt 1346 * might not do so, and interrupts that should not preempt might do so. 1347 */ 1348 int i; 1349 1350 for (i = 0; i < icc_num_aprs(cs); i++) { 1351 uint64_t *papr = &cs->icc_apr[grp][i]; 1352 1353 if (!*papr) { 1354 continue; 1355 } 1356 1357 if (i == 0 && cs->nmi_support && (*papr & ICC_AP1R_EL1_NMI)) { 1358 *papr &= (~ICC_AP1R_EL1_NMI); 1359 break; 1360 } 1361 1362 /* Clear the lowest set bit */ 1363 *papr &= *papr - 1; 1364 break; 1365 } 1366 1367 /* running priority change means we need an update for this cpu i/f */ 1368 gicv3_cpuif_update(cs); 1369 } 1370 1371 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1372 { 1373 /* Return true if we should split priority drop and interrupt 1374 * deactivation, ie whether the relevant EOIMode bit is set. 1375 */ 1376 if (arm_is_el3_or_mon(env)) { 1377 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1378 } 1379 if (arm_is_secure_below_el3(env)) { 1380 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1381 } else { 1382 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1383 } 1384 } 1385 1386 static int icc_highest_active_group(GICv3CPUState *cs) 1387 { 1388 /* Return the group with the highest priority active interrupt. 1389 * We can do this by just comparing the APRs to see which one 1390 * has the lowest set bit. 1391 * (If more than one group is active at the same priority then 1392 * we're in UNPREDICTABLE territory.) 1393 */ 1394 int i; 1395 1396 if (cs->nmi_support) { 1397 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { 1398 return GICV3_G1; 1399 } 1400 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 1401 return GICV3_G1NS; 1402 } 1403 } 1404 1405 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1406 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1407 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1408 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1409 1410 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1411 return GICV3_G1NS; 1412 } 1413 if (g1ctz < g0ctz) { 1414 return GICV3_G1; 1415 } 1416 if (g0ctz < 32) { 1417 return GICV3_G0; 1418 } 1419 } 1420 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1421 * ignores the spurious EOI attempt. 1422 */ 1423 return -1; 1424 } 1425 1426 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1427 { 1428 if (irq < GIC_INTERNAL) { 1429 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1430 gicv3_redist_update(cs); 1431 } else { 1432 gicv3_gicd_active_clear(cs->gic, irq); 1433 gicv3_update(cs->gic, irq, 1); 1434 } 1435 } 1436 1437 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1438 { 1439 /* Return true if we should split priority drop and interrupt 1440 * deactivation, ie whether the virtual EOIMode bit is set. 1441 */ 1442 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1443 } 1444 1445 static int icv_find_active(GICv3CPUState *cs, int irq) 1446 { 1447 /* Given an interrupt number for an active interrupt, return the index 1448 * of the corresponding list register, or -1 if there is no match. 1449 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1450 */ 1451 int i; 1452 1453 for (i = 0; i < cs->num_list_regs; i++) { 1454 uint64_t lr = cs->ich_lr_el2[i]; 1455 1456 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1457 return i; 1458 } 1459 } 1460 1461 return -1; 1462 } 1463 1464 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1465 { 1466 /* Deactivate the interrupt in the specified list register index */ 1467 uint64_t lr = cs->ich_lr_el2[idx]; 1468 1469 if (lr & ICH_LR_EL2_HW) { 1470 /* Deactivate the associated physical interrupt */ 1471 int pirq = ich_lr_pintid(lr); 1472 1473 if (pirq < INTID_SECURE) { 1474 icc_deactivate_irq(cs, pirq); 1475 } 1476 } 1477 1478 /* Clear the 'active' part of the state, so ActivePending->Pending 1479 * and Active->Invalid. 1480 */ 1481 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1482 cs->ich_lr_el2[idx] = lr; 1483 } 1484 1485 static void icv_increment_eoicount(GICv3CPUState *cs) 1486 { 1487 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1488 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1489 ICH_HCR_EL2_EOICOUNT_LENGTH); 1490 1491 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1492 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1493 } 1494 1495 static int icv_drop_prio(GICv3CPUState *cs, bool *nmi) 1496 { 1497 /* Drop the priority of the currently active virtual interrupt 1498 * (favouring group 0 if there is a set active bit at 1499 * the same priority for both group 0 and group 1). 1500 * Return the priority value for the bit we just cleared, 1501 * or 0xff if no bits were set in the AP registers at all. 1502 * Note that though the ich_apr[] are uint64_t only the low 1503 * 32 bits are actually relevant. 1504 */ 1505 int i; 1506 int aprmax = ich_num_aprs(cs); 1507 1508 for (i = 0; i < aprmax; i++) { 1509 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1510 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1511 int apr0count, apr1count; 1512 1513 if (!*papr0 && !*papr1) { 1514 continue; 1515 } 1516 1517 if (i == 0 && cs->nmi_support && (*papr1 & ICV_AP1R_EL1_NMI)) { 1518 *papr1 &= (~ICV_AP1R_EL1_NMI); 1519 *nmi = true; 1520 return 0xff; 1521 } 1522 1523 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1524 * because we need to return the bit number we cleared so 1525 * it can be compared against the list register's priority field. 1526 */ 1527 apr0count = ctz32(*papr0); 1528 apr1count = ctz32(*papr1); 1529 1530 if (apr0count <= apr1count) { 1531 *papr0 &= *papr0 - 1; 1532 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1533 } else { 1534 *papr1 &= *papr1 - 1; 1535 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1536 } 1537 } 1538 return 0xff; 1539 } 1540 1541 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1542 uint64_t value) 1543 { 1544 /* Deactivate interrupt */ 1545 GICv3CPUState *cs = icc_cs_from_env(env); 1546 int idx; 1547 int irq = value & 0xffffff; 1548 1549 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1550 1551 if (irq >= GICV3_MAXIRQ) { 1552 /* Also catches special interrupt numbers and LPIs */ 1553 return; 1554 } 1555 1556 if (!icv_eoi_split(env, cs)) { 1557 return; 1558 } 1559 1560 idx = icv_find_active(cs, irq); 1561 1562 if (idx < 0) { 1563 /* No list register matching this, so increment the EOI count 1564 * (might trigger a maintenance interrupt) 1565 */ 1566 icv_increment_eoicount(cs); 1567 } else { 1568 icv_deactivate_irq(cs, idx); 1569 } 1570 1571 gicv3_cpuif_virt_update(cs); 1572 } 1573 1574 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1575 uint64_t value) 1576 { 1577 /* End of Interrupt */ 1578 GICv3CPUState *cs = icc_cs_from_env(env); 1579 int irq = value & 0xffffff; 1580 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1581 int idx, dropprio; 1582 bool nmi = false; 1583 1584 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1585 gicv3_redist_affid(cs), value); 1586 1587 if (gicv3_intid_is_special(irq)) { 1588 return; 1589 } 1590 1591 /* We implement the IMPDEF choice of "drop priority before doing 1592 * error checks" (because that lets us avoid scanning the AP 1593 * registers twice). 1594 */ 1595 dropprio = icv_drop_prio(cs, &nmi); 1596 if (dropprio == 0xff && !nmi) { 1597 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1598 * whether the list registers are checked in this 1599 * situation; we choose not to. 1600 */ 1601 return; 1602 } 1603 1604 idx = icv_find_active(cs, irq); 1605 1606 if (idx < 0) { 1607 /* 1608 * No valid list register corresponding to EOI ID; if this is a vLPI 1609 * not in the list regs then do nothing; otherwise increment EOI count 1610 */ 1611 if (irq < GICV3_LPI_INTID_START) { 1612 icv_increment_eoicount(cs); 1613 } 1614 } else { 1615 uint64_t lr = cs->ich_lr_el2[idx]; 1616 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1617 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1618 bool thisnmi = lr & ICH_LR_EL2_NMI; 1619 1620 if (thisgrp == grp && (lr_gprio == dropprio || (thisnmi & nmi))) { 1621 if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) { 1622 /* 1623 * Priority drop and deactivate not split: deactivate irq now. 1624 * LPIs always get their active state cleared immediately 1625 * because no separate deactivate is expected. 1626 */ 1627 icv_deactivate_irq(cs, idx); 1628 } 1629 } 1630 } 1631 1632 gicv3_cpuif_virt_update(cs); 1633 } 1634 1635 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1636 uint64_t value) 1637 { 1638 /* End of Interrupt */ 1639 GICv3CPUState *cs = icc_cs_from_env(env); 1640 int irq = value & 0xffffff; 1641 int grp; 1642 bool is_eoir0 = ri->crm == 8; 1643 1644 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1645 icv_eoir_write(env, ri, value); 1646 return; 1647 } 1648 1649 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1650 gicv3_redist_affid(cs), value); 1651 1652 if ((irq >= cs->gic->num_irq) && 1653 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1654 /* This handles two cases: 1655 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1656 * to the GICC_EOIR, the GIC ignores that write. 1657 * 2. If software writes the number of a non-existent interrupt 1658 * this must be a subcase of "value written does not match the last 1659 * valid interrupt value read from the Interrupt Acknowledge 1660 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1661 */ 1662 return; 1663 } 1664 1665 grp = icc_highest_active_group(cs); 1666 switch (grp) { 1667 case GICV3_G0: 1668 if (!is_eoir0) { 1669 return; 1670 } 1671 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1672 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1673 return; 1674 } 1675 break; 1676 case GICV3_G1: 1677 if (is_eoir0) { 1678 return; 1679 } 1680 if (!arm_is_secure(env)) { 1681 return; 1682 } 1683 break; 1684 case GICV3_G1NS: 1685 if (is_eoir0) { 1686 return; 1687 } 1688 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1689 return; 1690 } 1691 break; 1692 default: 1693 qemu_log_mask(LOG_GUEST_ERROR, 1694 "%s: IRQ %d isn't active\n", __func__, irq); 1695 return; 1696 } 1697 1698 icc_drop_prio(cs, grp); 1699 1700 if (!icc_eoi_split(env, cs)) { 1701 /* Priority drop and deactivate not split: deactivate irq now */ 1702 icc_deactivate_irq(cs, irq); 1703 } 1704 } 1705 1706 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1707 { 1708 GICv3CPUState *cs = icc_cs_from_env(env); 1709 uint64_t value; 1710 1711 if (icv_access(env, HCR_FMO)) { 1712 return icv_hppir_read(env, ri); 1713 } 1714 1715 value = icc_hppir0_value(cs, env); 1716 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1717 return value; 1718 } 1719 1720 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1721 { 1722 GICv3CPUState *cs = icc_cs_from_env(env); 1723 uint64_t value; 1724 1725 if (icv_access(env, HCR_IMO)) { 1726 return icv_hppir_read(env, ri); 1727 } 1728 1729 value = icc_hppir1_value(cs, env); 1730 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1731 return value; 1732 } 1733 1734 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1735 { 1736 GICv3CPUState *cs = icc_cs_from_env(env); 1737 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1738 bool satinc = false; 1739 uint64_t bpr; 1740 1741 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1742 return icv_bpr_read(env, ri); 1743 } 1744 1745 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1746 grp = GICV3_G1NS; 1747 } 1748 1749 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1750 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1751 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1752 * modify BPR0 1753 */ 1754 grp = GICV3_G0; 1755 } 1756 1757 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1758 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1759 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1760 grp = GICV3_G0; 1761 satinc = true; 1762 } 1763 1764 bpr = cs->icc_bpr[grp]; 1765 if (satinc) { 1766 bpr++; 1767 bpr = MIN(bpr, 7); 1768 } 1769 1770 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1771 1772 return bpr; 1773 } 1774 1775 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1776 uint64_t value) 1777 { 1778 GICv3CPUState *cs = icc_cs_from_env(env); 1779 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1780 uint64_t minval; 1781 1782 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1783 icv_bpr_write(env, ri, value); 1784 return; 1785 } 1786 1787 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1788 gicv3_redist_affid(cs), value); 1789 1790 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1791 grp = GICV3_G1NS; 1792 } 1793 1794 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1795 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1796 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1797 * modify BPR0 1798 */ 1799 grp = GICV3_G0; 1800 } 1801 1802 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1803 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1804 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1805 return; 1806 } 1807 1808 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); 1809 if (value < minval) { 1810 value = minval; 1811 } 1812 1813 cs->icc_bpr[grp] = value & 7; 1814 gicv3_cpuif_update(cs); 1815 } 1816 1817 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1818 { 1819 GICv3CPUState *cs = icc_cs_from_env(env); 1820 uint64_t value; 1821 1822 int regno = ri->opc2 & 3; 1823 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1824 1825 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1826 return icv_ap_read(env, ri); 1827 } 1828 1829 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1830 grp = GICV3_G1NS; 1831 } 1832 1833 value = cs->icc_apr[grp][regno]; 1834 1835 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1836 return value; 1837 } 1838 1839 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1840 uint64_t value) 1841 { 1842 GICv3CPUState *cs = icc_cs_from_env(env); 1843 1844 int regno = ri->opc2 & 3; 1845 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1846 1847 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1848 icv_ap_write(env, ri, value); 1849 return; 1850 } 1851 1852 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1853 1854 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1855 grp = GICV3_G1NS; 1856 } 1857 1858 /* It's not possible to claim that a Non-secure interrupt is active 1859 * at a priority outside the Non-secure range (128..255), since this 1860 * would otherwise allow malicious NS code to block delivery of S interrupts 1861 * by writing a bad value to these registers. 1862 */ 1863 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1864 return; 1865 } 1866 1867 if (cs->nmi_support) { 1868 cs->icc_apr[grp][regno] = value & (0xFFFFFFFFU | ICC_AP1R_EL1_NMI); 1869 } else { 1870 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1871 } 1872 gicv3_cpuif_update(cs); 1873 } 1874 1875 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1876 uint64_t value) 1877 { 1878 /* Deactivate interrupt */ 1879 GICv3CPUState *cs = icc_cs_from_env(env); 1880 int irq = value & 0xffffff; 1881 bool irq_is_secure, single_sec_state, irq_is_grp0; 1882 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1883 1884 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1885 icv_dir_write(env, ri, value); 1886 return; 1887 } 1888 1889 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1890 1891 if (irq >= cs->gic->num_irq) { 1892 /* Also catches special interrupt numbers and LPIs */ 1893 return; 1894 } 1895 1896 if (!icc_eoi_split(env, cs)) { 1897 return; 1898 } 1899 1900 int grp = gicv3_irq_group(cs->gic, cs, irq); 1901 1902 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1903 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1904 irq_is_grp0 = grp == GICV3_G0; 1905 1906 /* Check whether we're allowed to deactivate this interrupt based 1907 * on its group and the current CPU state. 1908 * These checks are laid out to correspond to the spec's pseudocode. 1909 */ 1910 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1911 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1912 /* No need to include !IsSecure in route_*_to_el2 as it's only 1913 * tested in cases where we know !IsSecure is true. 1914 */ 1915 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1916 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1917 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1918 1919 switch (arm_current_el(env)) { 1920 case 3: 1921 break; 1922 case 2: 1923 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1924 break; 1925 } 1926 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1927 break; 1928 } 1929 return; 1930 case 1: 1931 if (!arm_is_secure_below_el3(env)) { 1932 if (single_sec_state && irq_is_grp0 && 1933 !route_fiq_to_el3 && !route_fiq_to_el2) { 1934 break; 1935 } 1936 if (!irq_is_secure && !irq_is_grp0 && 1937 !route_irq_to_el3 && !route_irq_to_el2) { 1938 break; 1939 } 1940 } else { 1941 if (irq_is_grp0 && !route_fiq_to_el3) { 1942 break; 1943 } 1944 if (!irq_is_grp0 && 1945 (!irq_is_secure || !single_sec_state) && 1946 !route_irq_to_el3) { 1947 break; 1948 } 1949 } 1950 return; 1951 default: 1952 g_assert_not_reached(); 1953 } 1954 1955 icc_deactivate_irq(cs, irq); 1956 } 1957 1958 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1959 { 1960 GICv3CPUState *cs = icc_cs_from_env(env); 1961 uint64_t prio; 1962 1963 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1964 return icv_rpr_read(env, ri); 1965 } 1966 1967 prio = icc_highest_active_prio(cs); 1968 1969 if (arm_feature(env, ARM_FEATURE_EL3) && 1970 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1971 /* NS GIC access and Group 0 is inaccessible to NS */ 1972 if ((prio & 0x80) == 0) { 1973 /* NS mustn't see priorities in the Secure half of the range */ 1974 prio = 0; 1975 } else if (prio != 0xff) { 1976 /* Non-idle priority: show the Non-secure view of it */ 1977 prio = (prio << 1) & 0xff; 1978 } 1979 } 1980 1981 if (cs->nmi_support) { 1982 /* NMI info is reported in the high bits of RPR */ 1983 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1984 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 1985 prio |= ICC_RPR_EL1_NMI; 1986 } 1987 } else { 1988 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 1989 prio |= ICC_RPR_EL1_NSNMI; 1990 } 1991 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { 1992 prio |= ICC_RPR_EL1_NMI; 1993 } 1994 } 1995 } 1996 1997 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1998 return prio; 1999 } 2000 2001 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 2002 uint64_t value, int grp, bool ns) 2003 { 2004 GICv3State *s = cs->gic; 2005 2006 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 2007 uint64_t aff = extract64(value, 48, 8) << 16 | 2008 extract64(value, 32, 8) << 8 | 2009 extract64(value, 16, 8); 2010 uint32_t targetlist = extract64(value, 0, 16); 2011 uint32_t irq = extract64(value, 24, 4); 2012 bool irm = extract64(value, 40, 1); 2013 int i; 2014 2015 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 2016 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 2017 * interrupts as Group 0 interrupts and must send Secure Group 0 2018 * interrupts to the target CPUs. 2019 */ 2020 grp = GICV3_G0; 2021 } 2022 2023 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 2024 aff, targetlist); 2025 2026 for (i = 0; i < s->num_cpu; i++) { 2027 GICv3CPUState *ocs = &s->cpu[i]; 2028 2029 if (irm) { 2030 /* IRM == 1 : route to all CPUs except self */ 2031 if (cs == ocs) { 2032 continue; 2033 } 2034 } else { 2035 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 2036 * where the corresponding bit is set in targetlist 2037 */ 2038 int aff0; 2039 2040 if (ocs->gicr_typer >> 40 != aff) { 2041 continue; 2042 } 2043 aff0 = extract64(ocs->gicr_typer, 32, 8); 2044 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 2045 continue; 2046 } 2047 } 2048 2049 /* The redistributor will check against its own GICR_NSACR as needed */ 2050 gicv3_redist_send_sgi(ocs, grp, irq, ns); 2051 } 2052 } 2053 2054 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 2055 uint64_t value) 2056 { 2057 /* Generate Secure Group 0 SGI. */ 2058 GICv3CPUState *cs = icc_cs_from_env(env); 2059 bool ns = !arm_is_secure(env); 2060 2061 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 2062 } 2063 2064 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 2065 uint64_t value) 2066 { 2067 /* Generate Group 1 SGI for the current Security state */ 2068 GICv3CPUState *cs = icc_cs_from_env(env); 2069 int grp; 2070 bool ns = !arm_is_secure(env); 2071 2072 grp = ns ? GICV3_G1NS : GICV3_G1; 2073 icc_generate_sgi(env, cs, value, grp, ns); 2074 } 2075 2076 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 2077 uint64_t value) 2078 { 2079 /* Generate Group 1 SGI for the Security state that is not 2080 * the current state 2081 */ 2082 GICv3CPUState *cs = icc_cs_from_env(env); 2083 int grp; 2084 bool ns = !arm_is_secure(env); 2085 2086 grp = ns ? GICV3_G1 : GICV3_G1NS; 2087 icc_generate_sgi(env, cs, value, grp, ns); 2088 } 2089 2090 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 2091 { 2092 GICv3CPUState *cs = icc_cs_from_env(env); 2093 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 2094 uint64_t value; 2095 2096 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 2097 return icv_igrpen_read(env, ri); 2098 } 2099 2100 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 2101 grp = GICV3_G1NS; 2102 } 2103 2104 value = cs->icc_igrpen[grp]; 2105 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 2106 gicv3_redist_affid(cs), value); 2107 return value; 2108 } 2109 2110 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 2111 uint64_t value) 2112 { 2113 GICv3CPUState *cs = icc_cs_from_env(env); 2114 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 2115 2116 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 2117 icv_igrpen_write(env, ri, value); 2118 return; 2119 } 2120 2121 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 2122 gicv3_redist_affid(cs), value); 2123 2124 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 2125 grp = GICV3_G1NS; 2126 } 2127 2128 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 2129 gicv3_cpuif_update(cs); 2130 } 2131 2132 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2133 { 2134 GICv3CPUState *cs = icc_cs_from_env(env); 2135 uint64_t value; 2136 2137 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 2138 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 2139 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 2140 return value; 2141 } 2142 2143 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2144 uint64_t value) 2145 { 2146 GICv3CPUState *cs = icc_cs_from_env(env); 2147 2148 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 2149 2150 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 2151 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 2152 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 2153 gicv3_cpuif_update(cs); 2154 } 2155 2156 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 2157 { 2158 GICv3CPUState *cs = icc_cs_from_env(env); 2159 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 2160 uint64_t value; 2161 2162 if (icv_access(env, HCR_FMO | HCR_IMO)) { 2163 return icv_ctlr_read(env, ri); 2164 } 2165 2166 value = cs->icc_ctlr_el1[bank]; 2167 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 2168 return value; 2169 } 2170 2171 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2172 uint64_t value) 2173 { 2174 GICv3CPUState *cs = icc_cs_from_env(env); 2175 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 2176 uint64_t mask; 2177 2178 if (icv_access(env, HCR_FMO | HCR_IMO)) { 2179 icv_ctlr_write(env, ri, value); 2180 return; 2181 } 2182 2183 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 2184 2185 /* Only CBPR and EOIMODE can be RW; 2186 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 2187 * the asseciated priority-based routing of them); 2188 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 2189 */ 2190 if (arm_feature(env, ARM_FEATURE_EL3) && 2191 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 2192 mask = ICC_CTLR_EL1_EOIMODE; 2193 } else { 2194 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 2195 } 2196 2197 cs->icc_ctlr_el1[bank] &= ~mask; 2198 cs->icc_ctlr_el1[bank] |= (value & mask); 2199 gicv3_cpuif_update(cs); 2200 } 2201 2202 2203 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2204 { 2205 GICv3CPUState *cs = icc_cs_from_env(env); 2206 uint64_t value; 2207 2208 value = cs->icc_ctlr_el3; 2209 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2210 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 2211 } 2212 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2213 value |= ICC_CTLR_EL3_CBPR_EL1NS; 2214 } 2215 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2216 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 2217 } 2218 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2219 value |= ICC_CTLR_EL3_CBPR_EL1S; 2220 } 2221 2222 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 2223 return value; 2224 } 2225 2226 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2227 uint64_t value) 2228 { 2229 GICv3CPUState *cs = icc_cs_from_env(env); 2230 uint64_t mask; 2231 2232 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 2233 2234 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 2235 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2236 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 2237 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 2238 } 2239 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 2240 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 2241 } 2242 2243 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2244 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 2245 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 2246 } 2247 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 2248 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 2249 } 2250 2251 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ 2252 mask = ICC_CTLR_EL3_EOIMODE_EL3; 2253 2254 cs->icc_ctlr_el3 &= ~mask; 2255 cs->icc_ctlr_el3 |= (value & mask); 2256 gicv3_cpuif_update(cs); 2257 } 2258 2259 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 2260 const ARMCPRegInfo *ri, bool isread) 2261 { 2262 CPAccessResult r = CP_ACCESS_OK; 2263 GICv3CPUState *cs = icc_cs_from_env(env); 2264 int el = arm_current_el(env); 2265 2266 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 2267 el == 1 && !arm_is_secure_below_el3(env)) { 2268 /* Takes priority over a possible EL3 trap */ 2269 return CP_ACCESS_TRAP_EL2; 2270 } 2271 2272 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 2273 switch (el) { 2274 case 1: 2275 /* Note that arm_hcr_el2_eff takes secure state into account. */ 2276 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 2277 r = CP_ACCESS_TRAP_EL3; 2278 } 2279 break; 2280 case 2: 2281 r = CP_ACCESS_TRAP_EL3; 2282 break; 2283 case 3: 2284 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2285 r = CP_ACCESS_TRAP_EL3; 2286 } 2287 break; 2288 default: 2289 g_assert_not_reached(); 2290 } 2291 } 2292 2293 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2294 r = CP_ACCESS_TRAP; 2295 } 2296 return r; 2297 } 2298 2299 static CPAccessResult gicv3_dir_access(CPUARMState *env, 2300 const ARMCPRegInfo *ri, bool isread) 2301 { 2302 GICv3CPUState *cs = icc_cs_from_env(env); 2303 2304 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 2305 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 2306 /* Takes priority over a possible EL3 trap */ 2307 return CP_ACCESS_TRAP_EL2; 2308 } 2309 2310 return gicv3_irqfiq_access(env, ri, isread); 2311 } 2312 2313 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 2314 const ARMCPRegInfo *ri, bool isread) 2315 { 2316 if (arm_current_el(env) == 1 && 2317 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 2318 /* Takes priority over a possible EL3 trap */ 2319 return CP_ACCESS_TRAP_EL2; 2320 } 2321 2322 return gicv3_irqfiq_access(env, ri, isread); 2323 } 2324 2325 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 2326 const ARMCPRegInfo *ri, bool isread) 2327 { 2328 CPAccessResult r = CP_ACCESS_OK; 2329 GICv3CPUState *cs = icc_cs_from_env(env); 2330 int el = arm_current_el(env); 2331 2332 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 2333 el == 1 && !arm_is_secure_below_el3(env)) { 2334 /* Takes priority over a possible EL3 trap */ 2335 return CP_ACCESS_TRAP_EL2; 2336 } 2337 2338 if (env->cp15.scr_el3 & SCR_FIQ) { 2339 switch (el) { 2340 case 1: 2341 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 2342 r = CP_ACCESS_TRAP_EL3; 2343 } 2344 break; 2345 case 2: 2346 r = CP_ACCESS_TRAP_EL3; 2347 break; 2348 case 3: 2349 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2350 r = CP_ACCESS_TRAP_EL3; 2351 } 2352 break; 2353 default: 2354 g_assert_not_reached(); 2355 } 2356 } 2357 2358 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2359 r = CP_ACCESS_TRAP; 2360 } 2361 return r; 2362 } 2363 2364 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2365 const ARMCPRegInfo *ri, bool isread) 2366 { 2367 CPAccessResult r = CP_ACCESS_OK; 2368 GICv3CPUState *cs = icc_cs_from_env(env); 2369 int el = arm_current_el(env); 2370 2371 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2372 el == 1 && !arm_is_secure_below_el3(env)) { 2373 /* Takes priority over a possible EL3 trap */ 2374 return CP_ACCESS_TRAP_EL2; 2375 } 2376 2377 if (env->cp15.scr_el3 & SCR_IRQ) { 2378 switch (el) { 2379 case 1: 2380 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2381 r = CP_ACCESS_TRAP_EL3; 2382 } 2383 break; 2384 case 2: 2385 r = CP_ACCESS_TRAP_EL3; 2386 break; 2387 case 3: 2388 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2389 r = CP_ACCESS_TRAP_EL3; 2390 } 2391 break; 2392 default: 2393 g_assert_not_reached(); 2394 } 2395 } 2396 2397 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2398 r = CP_ACCESS_TRAP; 2399 } 2400 return r; 2401 } 2402 2403 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2404 { 2405 GICv3CPUState *cs = icc_cs_from_env(env); 2406 2407 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2408 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2409 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2410 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2411 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2412 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2413 cs->icc_pmr_el1 = 0; 2414 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); 2415 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); 2416 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); 2417 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2418 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2419 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2420 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2421 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); 2422 2423 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2424 cs->ich_hcr_el2 = 0; 2425 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2426 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2427 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2428 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2429 } 2430 2431 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2432 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2433 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2434 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2435 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2436 .readfn = icc_pmr_read, 2437 .writefn = icc_pmr_write, 2438 /* We hang the whole cpu interface reset routine off here 2439 * rather than parcelling it out into one little function 2440 * per register 2441 */ 2442 .resetfn = icc_reset, 2443 }, 2444 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2445 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2446 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2447 .access = PL1_R, .accessfn = gicv3_fiq_access, 2448 .readfn = icc_iar0_read, 2449 }, 2450 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2451 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2452 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2453 .access = PL1_W, .accessfn = gicv3_fiq_access, 2454 .writefn = icc_eoir_write, 2455 }, 2456 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2457 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2458 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2459 .access = PL1_R, .accessfn = gicv3_fiq_access, 2460 .readfn = icc_hppir0_read, 2461 }, 2462 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2463 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2464 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2465 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2466 .readfn = icc_bpr_read, 2467 .writefn = icc_bpr_write, 2468 }, 2469 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2470 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2471 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2472 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2473 .readfn = icc_ap_read, 2474 .writefn = icc_ap_write, 2475 }, 2476 /* All the ICC_AP1R*_EL1 registers are banked */ 2477 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2478 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2479 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2480 .access = PL1_RW, .accessfn = gicv3_irq_access, 2481 .readfn = icc_ap_read, 2482 .writefn = icc_ap_write, 2483 }, 2484 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2485 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2486 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2487 .access = PL1_W, .accessfn = gicv3_dir_access, 2488 .writefn = icc_dir_write, 2489 }, 2490 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2491 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2492 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2493 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2494 .readfn = icc_rpr_read, 2495 }, 2496 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2497 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2498 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2499 .access = PL1_W, .accessfn = gicv3_sgi_access, 2500 .writefn = icc_sgi1r_write, 2501 }, 2502 { .name = "ICC_SGI1R", 2503 .cp = 15, .opc1 = 0, .crm = 12, 2504 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2505 .access = PL1_W, .accessfn = gicv3_sgi_access, 2506 .writefn = icc_sgi1r_write, 2507 }, 2508 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2509 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2510 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2511 .access = PL1_W, .accessfn = gicv3_sgi_access, 2512 .writefn = icc_asgi1r_write, 2513 }, 2514 { .name = "ICC_ASGI1R", 2515 .cp = 15, .opc1 = 1, .crm = 12, 2516 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2517 .access = PL1_W, .accessfn = gicv3_sgi_access, 2518 .writefn = icc_asgi1r_write, 2519 }, 2520 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2521 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2522 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2523 .access = PL1_W, .accessfn = gicv3_sgi_access, 2524 .writefn = icc_sgi0r_write, 2525 }, 2526 { .name = "ICC_SGI0R", 2527 .cp = 15, .opc1 = 2, .crm = 12, 2528 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2529 .access = PL1_W, .accessfn = gicv3_sgi_access, 2530 .writefn = icc_sgi0r_write, 2531 }, 2532 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2533 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2534 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2535 .access = PL1_R, .accessfn = gicv3_irq_access, 2536 .readfn = icc_iar1_read, 2537 }, 2538 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2539 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2540 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2541 .access = PL1_W, .accessfn = gicv3_irq_access, 2542 .writefn = icc_eoir_write, 2543 }, 2544 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2545 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2546 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2547 .access = PL1_R, .accessfn = gicv3_irq_access, 2548 .readfn = icc_hppir1_read, 2549 }, 2550 /* This register is banked */ 2551 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2552 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2553 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2554 .access = PL1_RW, .accessfn = gicv3_irq_access, 2555 .readfn = icc_bpr_read, 2556 .writefn = icc_bpr_write, 2557 }, 2558 /* This register is banked */ 2559 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2560 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2561 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2562 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2563 .readfn = icc_ctlr_el1_read, 2564 .writefn = icc_ctlr_el1_write, 2565 }, 2566 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2567 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2568 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2569 .access = PL1_RW, 2570 /* We don't support IRQ/FIQ bypass and system registers are 2571 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2572 * This register is banked but since it's constant we don't 2573 * need to do anything special. 2574 */ 2575 .resetvalue = 0x7, 2576 }, 2577 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2578 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2579 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2580 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2581 .fgt = FGT_ICC_IGRPENN_EL1, 2582 .readfn = icc_igrpen_read, 2583 .writefn = icc_igrpen_write, 2584 }, 2585 /* This register is banked */ 2586 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2587 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2588 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2589 .access = PL1_RW, .accessfn = gicv3_irq_access, 2590 .fgt = FGT_ICC_IGRPENN_EL1, 2591 .readfn = icc_igrpen_read, 2592 .writefn = icc_igrpen_write, 2593 }, 2594 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2595 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2596 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2597 .access = PL2_RW, 2598 /* We don't support IRQ/FIQ bypass and system registers are 2599 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2600 */ 2601 .resetvalue = 0xf, 2602 }, 2603 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2604 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2605 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2606 .access = PL3_RW, 2607 .readfn = icc_ctlr_el3_read, 2608 .writefn = icc_ctlr_el3_write, 2609 }, 2610 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2611 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2612 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2613 .access = PL3_RW, 2614 /* We don't support IRQ/FIQ bypass and system registers are 2615 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2616 */ 2617 .resetvalue = 0xf, 2618 }, 2619 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2620 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2621 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2622 .access = PL3_RW, 2623 .readfn = icc_igrpen1_el3_read, 2624 .writefn = icc_igrpen1_el3_write, 2625 }, 2626 }; 2627 2628 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { 2629 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2630 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2631 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2632 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2633 .readfn = icc_ap_read, 2634 .writefn = icc_ap_write, 2635 }, 2636 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2637 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2638 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2639 .access = PL1_RW, .accessfn = gicv3_irq_access, 2640 .readfn = icc_ap_read, 2641 .writefn = icc_ap_write, 2642 }, 2643 }; 2644 2645 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { 2646 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2647 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2648 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2649 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2650 .readfn = icc_ap_read, 2651 .writefn = icc_ap_write, 2652 }, 2653 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2654 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2655 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2656 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2657 .readfn = icc_ap_read, 2658 .writefn = icc_ap_write, 2659 }, 2660 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2661 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2662 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2663 .access = PL1_RW, .accessfn = gicv3_irq_access, 2664 .readfn = icc_ap_read, 2665 .writefn = icc_ap_write, 2666 }, 2667 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2668 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2669 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2670 .access = PL1_RW, .accessfn = gicv3_irq_access, 2671 .readfn = icc_ap_read, 2672 .writefn = icc_ap_write, 2673 }, 2674 }; 2675 2676 static const ARMCPRegInfo gicv3_cpuif_gicv3_nmi_reginfo[] = { 2677 { .name = "ICC_NMIAR1_EL1", .state = ARM_CP_STATE_BOTH, 2678 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 5, 2679 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2680 .access = PL1_R, .accessfn = gicv3_irq_access, 2681 .readfn = icc_nmiar1_read, 2682 }, 2683 }; 2684 2685 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2686 { 2687 GICv3CPUState *cs = icc_cs_from_env(env); 2688 int regno = ri->opc2 & 3; 2689 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2690 uint64_t value; 2691 2692 value = cs->ich_apr[grp][regno]; 2693 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2694 return value; 2695 } 2696 2697 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2698 uint64_t value) 2699 { 2700 GICv3CPUState *cs = icc_cs_from_env(env); 2701 int regno = ri->opc2 & 3; 2702 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2703 2704 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2705 2706 if (cs->nmi_support) { 2707 cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI); 2708 } else { 2709 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2710 } 2711 gicv3_cpuif_virt_irq_fiq_update(cs); 2712 } 2713 2714 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2715 { 2716 GICv3CPUState *cs = icc_cs_from_env(env); 2717 uint64_t value = cs->ich_hcr_el2; 2718 2719 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2720 return value; 2721 } 2722 2723 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2724 uint64_t value) 2725 { 2726 GICv3CPUState *cs = icc_cs_from_env(env); 2727 2728 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2729 2730 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2731 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2732 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2733 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2734 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2735 2736 cs->ich_hcr_el2 = value; 2737 gicv3_cpuif_virt_update(cs); 2738 } 2739 2740 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2741 { 2742 GICv3CPUState *cs = icc_cs_from_env(env); 2743 uint64_t value = cs->ich_vmcr_el2; 2744 2745 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2746 return value; 2747 } 2748 2749 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2750 uint64_t value) 2751 { 2752 GICv3CPUState *cs = icc_cs_from_env(env); 2753 2754 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2755 2756 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2757 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2758 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2759 value |= ICH_VMCR_EL2_VFIQEN; 2760 2761 cs->ich_vmcr_el2 = value; 2762 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2763 * by reading and writing back the fields. 2764 */ 2765 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2766 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2767 2768 gicv3_cpuif_virt_update(cs); 2769 } 2770 2771 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2772 { 2773 GICv3CPUState *cs = icc_cs_from_env(env); 2774 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2775 uint64_t value; 2776 2777 /* This read function handles all of: 2778 * 64-bit reads of the whole LR 2779 * 32-bit reads of the low half of the LR 2780 * 32-bit reads of the high half of the LR 2781 */ 2782 if (ri->state == ARM_CP_STATE_AA32) { 2783 if (ri->crm >= 14) { 2784 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2785 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2786 } else { 2787 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2788 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2789 } 2790 } else { 2791 value = cs->ich_lr_el2[regno]; 2792 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2793 } 2794 2795 return value; 2796 } 2797 2798 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2799 uint64_t value) 2800 { 2801 GICv3CPUState *cs = icc_cs_from_env(env); 2802 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2803 2804 /* This write function handles all of: 2805 * 64-bit writes to the whole LR 2806 * 32-bit writes to the low half of the LR 2807 * 32-bit writes to the high half of the LR 2808 */ 2809 if (ri->state == ARM_CP_STATE_AA32) { 2810 if (ri->crm >= 14) { 2811 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2812 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2813 } else { 2814 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2815 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2816 } 2817 } else { 2818 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2819 } 2820 2821 /* Enforce RES0 bits in priority field */ 2822 if (cs->vpribits < 8) { 2823 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2824 8 - cs->vpribits, 0); 2825 } 2826 2827 /* Enforce RES0 bit in NMI field when FEAT_GICv3_NMI is not implemented */ 2828 if (!cs->nmi_support) { 2829 value &= ~ICH_LR_EL2_NMI; 2830 } 2831 2832 cs->ich_lr_el2[regno] = value; 2833 gicv3_cpuif_virt_update(cs); 2834 } 2835 2836 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2837 { 2838 GICv3CPUState *cs = icc_cs_from_env(env); 2839 uint64_t value; 2840 2841 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2842 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V 2843 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2844 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2845 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2846 2847 if (cs->gic->revision < 4) { 2848 value |= ICH_VTR_EL2_NV4; 2849 } 2850 2851 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2852 return value; 2853 } 2854 2855 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2856 { 2857 GICv3CPUState *cs = icc_cs_from_env(env); 2858 uint64_t value = maintenance_interrupt_state(cs); 2859 2860 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2861 return value; 2862 } 2863 2864 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2865 { 2866 GICv3CPUState *cs = icc_cs_from_env(env); 2867 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2868 2869 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2870 return value; 2871 } 2872 2873 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2874 { 2875 GICv3CPUState *cs = icc_cs_from_env(env); 2876 uint64_t value = 0; 2877 int i; 2878 2879 for (i = 0; i < cs->num_list_regs; i++) { 2880 uint64_t lr = cs->ich_lr_el2[i]; 2881 2882 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2883 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2884 value |= (1 << i); 2885 } 2886 } 2887 2888 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2889 return value; 2890 } 2891 2892 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2893 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2894 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2895 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2896 .nv2_redirect_offset = 0x480, 2897 .access = PL2_RW, 2898 .readfn = ich_ap_read, 2899 .writefn = ich_ap_write, 2900 }, 2901 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2902 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2903 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2904 .nv2_redirect_offset = 0x4a0, 2905 .access = PL2_RW, 2906 .readfn = ich_ap_read, 2907 .writefn = ich_ap_write, 2908 }, 2909 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2910 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2911 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2912 .nv2_redirect_offset = 0x4c0, 2913 .access = PL2_RW, 2914 .readfn = ich_hcr_read, 2915 .writefn = ich_hcr_write, 2916 }, 2917 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2918 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2919 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2920 .access = PL2_R, 2921 .readfn = ich_vtr_read, 2922 }, 2923 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2924 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2925 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2926 .access = PL2_R, 2927 .readfn = ich_misr_read, 2928 }, 2929 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2930 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2931 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2932 .access = PL2_R, 2933 .readfn = ich_eisr_read, 2934 }, 2935 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2936 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2937 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2938 .access = PL2_R, 2939 .readfn = ich_elrsr_read, 2940 }, 2941 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2942 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2943 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2944 .nv2_redirect_offset = 0x4c8, 2945 .access = PL2_RW, 2946 .readfn = ich_vmcr_read, 2947 .writefn = ich_vmcr_write, 2948 }, 2949 }; 2950 2951 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2952 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2953 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2954 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2955 .nv2_redirect_offset = 0x488, 2956 .access = PL2_RW, 2957 .readfn = ich_ap_read, 2958 .writefn = ich_ap_write, 2959 }, 2960 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2961 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2962 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2963 .nv2_redirect_offset = 0x4a8, 2964 .access = PL2_RW, 2965 .readfn = ich_ap_read, 2966 .writefn = ich_ap_write, 2967 }, 2968 }; 2969 2970 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2971 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2972 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2973 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2974 .nv2_redirect_offset = 0x490, 2975 .access = PL2_RW, 2976 .readfn = ich_ap_read, 2977 .writefn = ich_ap_write, 2978 }, 2979 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2980 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2981 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2982 .nv2_redirect_offset = 0x498, 2983 .access = PL2_RW, 2984 .readfn = ich_ap_read, 2985 .writefn = ich_ap_write, 2986 }, 2987 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2988 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2989 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2990 .nv2_redirect_offset = 0x4b0, 2991 .access = PL2_RW, 2992 .readfn = ich_ap_read, 2993 .writefn = ich_ap_write, 2994 }, 2995 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2996 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2997 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2998 .nv2_redirect_offset = 0x4b8, 2999 .access = PL2_RW, 3000 .readfn = ich_ap_read, 3001 .writefn = ich_ap_write, 3002 }, 3003 }; 3004 3005 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 3006 { 3007 GICv3CPUState *cs = opaque; 3008 3009 gicv3_cpuif_update(cs); 3010 /* 3011 * Because vLPIs are only pending in NonSecure state, 3012 * an EL change can change the VIRQ/VFIQ status (but 3013 * cannot affect the maintenance interrupt state) 3014 */ 3015 gicv3_cpuif_virt_irq_fiq_update(cs); 3016 } 3017 3018 void gicv3_init_cpuif(GICv3State *s) 3019 { 3020 /* Called from the GICv3 realize function; register our system 3021 * registers with the CPU 3022 */ 3023 int i; 3024 3025 for (i = 0; i < s->num_cpu; i++) { 3026 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 3027 GICv3CPUState *cs = &s->cpu[i]; 3028 3029 /* 3030 * If the CPU doesn't define a GICv3 configuration, probably because 3031 * in real hardware it doesn't have one, then we use default values 3032 * matching the one used by most Arm CPUs. This applies to: 3033 * cpu->gic_num_lrs 3034 * cpu->gic_vpribits 3035 * cpu->gic_vprebits 3036 * cpu->gic_pribits 3037 */ 3038 3039 /* Note that we can't just use the GICv3CPUState as an opaque pointer 3040 * in define_arm_cp_regs_with_opaque(), because when we're called back 3041 * it might be with code translated by CPU 0 but run by CPU 1, in 3042 * which case we'd get the wrong value. 3043 * So instead we define the regs with no ri->opaque info, and 3044 * get back to the GICv3CPUState from the CPUARMState. 3045 * 3046 * These CP regs callbacks can be called from either TCG or HVF code. 3047 */ 3048 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 3049 3050 /* 3051 * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also 3052 * implement FEAT_GICv3_NMI, which is the CPU interface part 3053 * of NMI support. This is distinct from whether the GIC proper 3054 * (redistributors and distributor) have NMI support. In QEMU 3055 * that is a property of the GIC device in s->nmi_support; 3056 * cs->nmi_support indicates the CPU interface's support. 3057 */ 3058 if (cpu_isar_feature(aa64_nmi, cpu)) { 3059 cs->nmi_support = true; 3060 define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); 3061 } 3062 3063 /* 3064 * The CPU implementation specifies the number of supported 3065 * bits of physical priority. For backwards compatibility 3066 * of migration, we have a compat property that forces use 3067 * of 8 priority bits regardless of what the CPU really has. 3068 */ 3069 if (s->force_8bit_prio) { 3070 cs->pribits = 8; 3071 } else { 3072 cs->pribits = cpu->gic_pribits ?: 5; 3073 } 3074 3075 /* 3076 * The GICv3 has separate ID register fields for virtual priority 3077 * and preemption bit values, but only a single ID register field 3078 * for the physical priority bits. The preemption bit count is 3079 * always the same as the priority bit count, except that 8 bits 3080 * of priority means 7 preemption bits. We precalculate the 3081 * preemption bits because it simplifies the code and makes the 3082 * parallels between the virtual and physical bits of the GIC 3083 * a bit clearer. 3084 */ 3085 cs->prebits = cs->pribits; 3086 if (cs->prebits == 8) { 3087 cs->prebits--; 3088 } 3089 /* 3090 * Check that CPU code defining pribits didn't violate 3091 * architectural constraints our implementation relies on. 3092 */ 3093 g_assert(cs->pribits >= 4 && cs->pribits <= 8); 3094 3095 /* 3096 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions 3097 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. 3098 */ 3099 if (cs->prebits >= 6) { 3100 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); 3101 } 3102 if (cs->prebits == 7) { 3103 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); 3104 } 3105 3106 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 3107 int j; 3108 3109 cs->num_list_regs = cpu->gic_num_lrs ?: 4; 3110 cs->vpribits = cpu->gic_vpribits ?: 5; 3111 cs->vprebits = cpu->gic_vprebits ?: 5; 3112 3113 /* Check against architectural constraints: getting these 3114 * wrong would be a bug in the CPU code defining these, 3115 * and the implementation relies on them holding. 3116 */ 3117 g_assert(cs->vprebits <= cs->vpribits); 3118 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 3119 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 3120 3121 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 3122 3123 for (j = 0; j < cs->num_list_regs; j++) { 3124 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 3125 * are split into two cp15 regs, LR (the low part, with the 3126 * same encoding as the AArch64 LR) and LRC (the high part). 3127 */ 3128 ARMCPRegInfo lr_regset[] = { 3129 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 3130 .opc0 = 3, .opc1 = 4, .crn = 12, 3131 .crm = 12 + (j >> 3), .opc2 = j & 7, 3132 .type = ARM_CP_IO | ARM_CP_NO_RAW, 3133 .nv2_redirect_offset = 0x400 + 8 * j, 3134 .access = PL2_RW, 3135 .readfn = ich_lr_read, 3136 .writefn = ich_lr_write, 3137 }, 3138 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 3139 .cp = 15, .opc1 = 4, .crn = 12, 3140 .crm = 14 + (j >> 3), .opc2 = j & 7, 3141 .type = ARM_CP_IO | ARM_CP_NO_RAW, 3142 .access = PL2_RW, 3143 .readfn = ich_lr_read, 3144 .writefn = ich_lr_write, 3145 }, 3146 }; 3147 define_arm_cp_regs(cpu, lr_regset); 3148 } 3149 if (cs->vprebits >= 6) { 3150 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 3151 } 3152 if (cs->vprebits == 7) { 3153 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 3154 } 3155 } 3156 if (tcg_enabled() || qtest_enabled()) { 3157 /* 3158 * We can only trap EL changes with TCG. However the GIC interrupt 3159 * state only changes on EL changes involving EL2 or EL3, so for 3160 * the non-TCG case this is OK, as EL2 and EL3 can't exist. 3161 */ 3162 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 3163 } else { 3164 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); 3165 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); 3166 } 3167 } 3168 } 3169