1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 #include "target/arm/cpregs.h" 24 25 /* 26 * Special case return value from hppvi_index(); must be larger than 27 * the architecturally maximum possible list register index (which is 15) 28 */ 29 #define HPPVI_INDEX_VLPI 16 30 31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 32 { 33 return env->gicv3state; 34 } 35 36 static bool gicv3_use_ns_bank(CPUARMState *env) 37 { 38 /* Return true if we should use the NonSecure bank for a banked GIC 39 * CPU interface register. Note that this differs from the 40 * access_secure_reg() function because GICv3 banked registers are 41 * banked even for AArch64, unlike the other CPU system registers. 42 */ 43 return !arm_is_secure_below_el3(env); 44 } 45 46 /* The minimum BPR for the virtual interface is a configurable property */ 47 static inline int icv_min_vbpr(GICv3CPUState *cs) 48 { 49 return 7 - cs->vprebits; 50 } 51 52 static inline int ich_num_aprs(GICv3CPUState *cs) 53 { 54 /* Return the number of virtual APR registers (1, 2, or 4) */ 55 int aprmax = 1 << (cs->vprebits - 5); 56 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 57 return aprmax; 58 } 59 60 /* Simple accessor functions for LR fields */ 61 static uint32_t ich_lr_vintid(uint64_t lr) 62 { 63 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 64 } 65 66 static uint32_t ich_lr_pintid(uint64_t lr) 67 { 68 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 69 } 70 71 static uint32_t ich_lr_prio(uint64_t lr) 72 { 73 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 74 } 75 76 static int ich_lr_state(uint64_t lr) 77 { 78 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 79 } 80 81 static bool icv_access(CPUARMState *env, int hcr_flags) 82 { 83 /* Return true if this ICC_ register access should really be 84 * directed to an ICV_ access. hcr_flags is a mask of 85 * HCR_EL2 bits to check: we treat this as an ICV_ access 86 * if we are in NS EL1 and at least one of the specified 87 * HCR_EL2 bits is set. 88 * 89 * ICV registers fall into four categories: 90 * * access if NS EL1 and HCR_EL2.FMO == 1: 91 * all ICV regs with '0' in their name 92 * * access if NS EL1 and HCR_EL2.IMO == 1: 93 * all ICV regs with '1' in their name 94 * * access if NS EL1 and either IMO or FMO == 1: 95 * CTLR, DIR, PMR, RPR 96 */ 97 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 98 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 99 100 return flagmatch && arm_current_el(env) == 1 101 && !arm_is_secure_below_el3(env); 102 } 103 104 static int read_vbpr(GICv3CPUState *cs, int grp) 105 { 106 /* Read VBPR value out of the VMCR field (caller must handle 107 * VCBPR effects if required) 108 */ 109 if (grp == GICV3_G0) { 110 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 111 ICH_VMCR_EL2_VBPR0_LENGTH); 112 } else { 113 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 114 ICH_VMCR_EL2_VBPR1_LENGTH); 115 } 116 } 117 118 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 119 { 120 /* Write new VBPR1 value, handling the "writing a value less than 121 * the minimum sets it to the minimum" semantics. 122 */ 123 int min = icv_min_vbpr(cs); 124 125 if (grp != GICV3_G0) { 126 min++; 127 } 128 129 value = MAX(value, min); 130 131 if (grp == GICV3_G0) { 132 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 133 ICH_VMCR_EL2_VBPR0_LENGTH, value); 134 } else { 135 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 136 ICH_VMCR_EL2_VBPR1_LENGTH, value); 137 } 138 } 139 140 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 141 { 142 /* Return a mask word which clears the unimplemented priority bits 143 * from a priority value for a virtual interrupt. (Not to be confused 144 * with the group priority, whose mask depends on the value of VBPR 145 * for the interrupt group.) 146 */ 147 return ~0U << (8 - cs->vpribits); 148 } 149 150 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 151 { 152 /* Calculate the current running priority based on the set bits 153 * in the ICH Active Priority Registers. 154 */ 155 int i; 156 int aprmax = ich_num_aprs(cs); 157 158 for (i = 0; i < aprmax; i++) { 159 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 160 cs->ich_apr[GICV3_G1NS][i]; 161 162 if (!apr) { 163 continue; 164 } 165 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 166 } 167 /* No current active interrupts: return idle priority */ 168 return 0xff; 169 } 170 171 static int hppvi_index(GICv3CPUState *cs) 172 { 173 /* 174 * Return the list register index of the highest priority pending 175 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 176 * pseudocode. If no pending virtual interrupts, return -1. 177 * If the highest priority pending virtual interrupt is a vLPI, 178 * return HPPVI_INDEX_VLPI. 179 * (The pseudocode handles checking whether the vLPI is higher 180 * priority than the highest priority list register at every 181 * callsite of HighestPriorityVirtualInterrupt; we check it here.) 182 */ 183 ARMCPU *cpu = ARM_CPU(cs->cpu); 184 CPUARMState *env = &cpu->env; 185 int idx = -1; 186 int i; 187 /* Note that a list register entry with a priority of 0xff will 188 * never be reported by this function; this is the architecturally 189 * correct behaviour. 190 */ 191 int prio = 0xff; 192 193 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 194 /* Both groups disabled, definitely nothing to do */ 195 return idx; 196 } 197 198 for (i = 0; i < cs->num_list_regs; i++) { 199 uint64_t lr = cs->ich_lr_el2[i]; 200 int thisprio; 201 202 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 203 /* Not Pending */ 204 continue; 205 } 206 207 /* Ignore interrupts if relevant group enable not set */ 208 if (lr & ICH_LR_EL2_GROUP) { 209 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 210 continue; 211 } 212 } else { 213 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 214 continue; 215 } 216 } 217 218 thisprio = ich_lr_prio(lr); 219 220 if (thisprio < prio) { 221 prio = thisprio; 222 idx = i; 223 } 224 } 225 226 /* 227 * "no pending vLPI" is indicated with prio = 0xff, which always 228 * fails the priority check here. vLPIs are only considered 229 * when we are in Non-Secure state. 230 */ 231 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { 232 if (cs->hppvlpi.grp == GICV3_G0) { 233 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { 234 return HPPVI_INDEX_VLPI; 235 } 236 } else { 237 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { 238 return HPPVI_INDEX_VLPI; 239 } 240 } 241 } 242 243 return idx; 244 } 245 246 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 247 { 248 /* Return a mask word which clears the subpriority bits from 249 * a priority value for a virtual interrupt in the specified group. 250 * This depends on the VBPR value. 251 * If using VBPR0 then: 252 * a BPR of 0 means the group priority bits are [7:1]; 253 * a BPR of 1 means they are [7:2], and so on down to 254 * a BPR of 7 meaning no group priority bits at all. 255 * If using VBPR1 then: 256 * a BPR of 0 is impossible (the minimum value is 1) 257 * a BPR of 1 means the group priority bits are [7:1]; 258 * a BPR of 2 means they are [7:2], and so on down to 259 * a BPR of 7 meaning the group priority is [7]. 260 * 261 * Which BPR to use depends on the group of the interrupt and 262 * the current ICH_VMCR_EL2.VCBPR settings. 263 * 264 * This corresponds to the VGroupBits() pseudocode. 265 */ 266 int bpr; 267 268 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 269 group = GICV3_G0; 270 } 271 272 bpr = read_vbpr(cs, group); 273 if (group == GICV3_G1NS) { 274 assert(bpr > 0); 275 bpr--; 276 } 277 278 return ~0U << (bpr + 1); 279 } 280 281 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 282 { 283 /* Return true if we can signal this virtual interrupt defined by 284 * the given list register value; see the pseudocode functions 285 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 286 * Compare also icc_hppi_can_preempt() which is the non-virtual 287 * equivalent of these checks. 288 */ 289 int grp; 290 uint32_t mask, prio, rprio, vpmr; 291 292 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 293 /* Virtual interface disabled */ 294 return false; 295 } 296 297 /* We don't need to check that this LR is in Pending state because 298 * that has already been done in hppvi_index(). 299 */ 300 301 prio = ich_lr_prio(lr); 302 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 303 ICH_VMCR_EL2_VPMR_LENGTH); 304 305 if (prio >= vpmr) { 306 /* Priority mask masks this interrupt */ 307 return false; 308 } 309 310 rprio = ich_highest_active_virt_prio(cs); 311 if (rprio == 0xff) { 312 /* No running interrupt so we can preempt */ 313 return true; 314 } 315 316 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 317 318 mask = icv_gprio_mask(cs, grp); 319 320 /* We only preempt a running interrupt if the pending interrupt's 321 * group priority is sufficient (the subpriorities are not considered). 322 */ 323 if ((prio & mask) < (rprio & mask)) { 324 return true; 325 } 326 327 return false; 328 } 329 330 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) 331 { 332 /* 333 * Return true if we can signal the highest priority pending vLPI. 334 * We can assume we're Non-secure because hppvi_index() already 335 * tested for that. 336 */ 337 uint32_t mask, rprio, vpmr; 338 339 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 340 /* Virtual interface disabled */ 341 return false; 342 } 343 344 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 345 ICH_VMCR_EL2_VPMR_LENGTH); 346 347 if (cs->hppvlpi.prio >= vpmr) { 348 /* Priority mask masks this interrupt */ 349 return false; 350 } 351 352 rprio = ich_highest_active_virt_prio(cs); 353 if (rprio == 0xff) { 354 /* No running interrupt so we can preempt */ 355 return true; 356 } 357 358 mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 359 360 /* 361 * We only preempt a running interrupt if the pending interrupt's 362 * group priority is sufficient (the subpriorities are not considered). 363 */ 364 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { 365 return true; 366 } 367 368 return false; 369 } 370 371 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 372 uint32_t *misr) 373 { 374 /* Return a set of bits indicating the EOI maintenance interrupt status 375 * for each list register. The EOI maintenance interrupt status is 376 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 377 * (see the GICv3 spec for the ICH_EISR_EL2 register). 378 * If misr is not NULL then we should also collect the information 379 * about the MISR.EOI, MISR.NP and MISR.U bits. 380 */ 381 uint32_t value = 0; 382 int validcount = 0; 383 bool seenpending = false; 384 int i; 385 386 for (i = 0; i < cs->num_list_regs; i++) { 387 uint64_t lr = cs->ich_lr_el2[i]; 388 389 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 390 == ICH_LR_EL2_EOI) { 391 value |= (1 << i); 392 } 393 if ((lr & ICH_LR_EL2_STATE_MASK)) { 394 validcount++; 395 } 396 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 397 seenpending = true; 398 } 399 } 400 401 if (misr) { 402 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 403 *misr |= ICH_MISR_EL2_U; 404 } 405 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 406 *misr |= ICH_MISR_EL2_NP; 407 } 408 if (value) { 409 *misr |= ICH_MISR_EL2_EOI; 410 } 411 } 412 return value; 413 } 414 415 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 416 { 417 /* Return a set of bits indicating the maintenance interrupt status 418 * (as seen in the ICH_MISR_EL2 register). 419 */ 420 uint32_t value = 0; 421 422 /* Scan list registers and fill in the U, NP and EOI bits */ 423 eoi_maintenance_interrupt_state(cs, &value); 424 425 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 426 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 427 value |= ICH_MISR_EL2_LRENP; 428 } 429 430 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 431 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 432 value |= ICH_MISR_EL2_VGRP0E; 433 } 434 435 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 436 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 437 value |= ICH_MISR_EL2_VGRP0D; 438 } 439 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 440 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 441 value |= ICH_MISR_EL2_VGRP1E; 442 } 443 444 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 445 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 446 value |= ICH_MISR_EL2_VGRP1D; 447 } 448 449 return value; 450 } 451 452 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) 453 { 454 /* 455 * Tell the CPU about any pending virtual interrupts. 456 * This should only be called for changes that affect the 457 * vIRQ and vFIQ status and do not change the maintenance 458 * interrupt status. This means that unlike gicv3_cpuif_virt_update() 459 * this function won't recursively call back into the GIC code. 460 * The main use of this is when the redistributor has changed the 461 * highest priority pending virtual LPI. 462 */ 463 int idx; 464 int irqlevel = 0; 465 int fiqlevel = 0; 466 467 idx = hppvi_index(cs); 468 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, 469 cs->hppvlpi.irq, cs->hppvlpi.grp, 470 cs->hppvlpi.prio); 471 if (idx == HPPVI_INDEX_VLPI) { 472 if (icv_hppvlpi_can_preempt(cs)) { 473 if (cs->hppvlpi.grp == GICV3_G0) { 474 fiqlevel = 1; 475 } else { 476 irqlevel = 1; 477 } 478 } 479 } else if (idx >= 0) { 480 uint64_t lr = cs->ich_lr_el2[idx]; 481 482 if (icv_hppi_can_preempt(cs, lr)) { 483 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 484 if (lr & ICH_LR_EL2_GROUP) { 485 irqlevel = 1; 486 } else { 487 fiqlevel = 1; 488 } 489 } 490 } 491 492 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 493 qemu_set_irq(cs->parent_vfiq, fiqlevel); 494 qemu_set_irq(cs->parent_virq, irqlevel); 495 } 496 497 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 498 { 499 /* 500 * Tell the CPU about any pending virtual interrupts or 501 * maintenance interrupts, following a change to the state 502 * of the CPU interface relevant to virtual interrupts. 503 * 504 * CAUTION: this function will call qemu_set_irq() on the 505 * CPU maintenance IRQ line, which is typically wired up 506 * to the GIC as a per-CPU interrupt. This means that it 507 * will recursively call back into the GIC code via 508 * gicv3_redist_set_irq() and thus into the CPU interface code's 509 * gicv3_cpuif_update(). It is therefore important that this 510 * function is only called as the final action of a CPU interface 511 * register write implementation, after all the GIC state 512 * fields have been updated. gicv3_cpuif_update() also must 513 * not cause this function to be called, but that happens 514 * naturally as a result of there being no architectural 515 * linkage between the physical and virtual GIC logic. 516 */ 517 ARMCPU *cpu = ARM_CPU(cs->cpu); 518 int maintlevel = 0; 519 520 gicv3_cpuif_virt_irq_fiq_update(cs); 521 522 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 523 maintenance_interrupt_state(cs) != 0) { 524 maintlevel = 1; 525 } 526 527 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); 528 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 529 } 530 531 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 532 { 533 GICv3CPUState *cs = icc_cs_from_env(env); 534 int regno = ri->opc2 & 3; 535 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 536 uint64_t value = cs->ich_apr[grp][regno]; 537 538 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 539 return value; 540 } 541 542 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 GICv3CPUState *cs = icc_cs_from_env(env); 546 int regno = ri->opc2 & 3; 547 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 548 549 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 550 551 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 552 553 gicv3_cpuif_virt_irq_fiq_update(cs); 554 return; 555 } 556 557 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 558 { 559 GICv3CPUState *cs = icc_cs_from_env(env); 560 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 561 uint64_t bpr; 562 bool satinc = false; 563 564 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 565 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 566 grp = GICV3_G0; 567 satinc = true; 568 } 569 570 bpr = read_vbpr(cs, grp); 571 572 if (satinc) { 573 bpr++; 574 bpr = MIN(bpr, 7); 575 } 576 577 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 578 579 return bpr; 580 } 581 582 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 583 uint64_t value) 584 { 585 GICv3CPUState *cs = icc_cs_from_env(env); 586 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 587 588 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 589 gicv3_redist_affid(cs), value); 590 591 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 592 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 593 return; 594 } 595 596 write_vbpr(cs, grp, value); 597 598 gicv3_cpuif_virt_irq_fiq_update(cs); 599 } 600 601 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 602 { 603 GICv3CPUState *cs = icc_cs_from_env(env); 604 uint64_t value; 605 606 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 607 ICH_VMCR_EL2_VPMR_LENGTH); 608 609 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 610 return value; 611 } 612 613 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 614 uint64_t value) 615 { 616 GICv3CPUState *cs = icc_cs_from_env(env); 617 618 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 619 620 value &= icv_fullprio_mask(cs); 621 622 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 623 ICH_VMCR_EL2_VPMR_LENGTH, value); 624 625 gicv3_cpuif_virt_irq_fiq_update(cs); 626 } 627 628 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 629 { 630 GICv3CPUState *cs = icc_cs_from_env(env); 631 int enbit; 632 uint64_t value; 633 634 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 635 value = extract64(cs->ich_vmcr_el2, enbit, 1); 636 637 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 638 gicv3_redist_affid(cs), value); 639 return value; 640 } 641 642 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 643 uint64_t value) 644 { 645 GICv3CPUState *cs = icc_cs_from_env(env); 646 int enbit; 647 648 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 649 gicv3_redist_affid(cs), value); 650 651 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 652 653 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 654 gicv3_cpuif_virt_update(cs); 655 } 656 657 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 658 { 659 GICv3CPUState *cs = icc_cs_from_env(env); 660 uint64_t value; 661 662 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 663 * should match the ones reported in ich_vtr_read(). 664 */ 665 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 666 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 667 668 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 669 value |= ICC_CTLR_EL1_EOIMODE; 670 } 671 672 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 673 value |= ICC_CTLR_EL1_CBPR; 674 } 675 676 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 677 return value; 678 } 679 680 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 681 uint64_t value) 682 { 683 GICv3CPUState *cs = icc_cs_from_env(env); 684 685 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 686 687 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 688 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 689 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 690 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 691 692 gicv3_cpuif_virt_irq_fiq_update(cs); 693 } 694 695 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 696 { 697 GICv3CPUState *cs = icc_cs_from_env(env); 698 int prio = ich_highest_active_virt_prio(cs); 699 700 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 701 return prio; 702 } 703 704 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 705 { 706 GICv3CPUState *cs = icc_cs_from_env(env); 707 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 708 int idx = hppvi_index(cs); 709 uint64_t value = INTID_SPURIOUS; 710 711 if (idx == HPPVI_INDEX_VLPI) { 712 if (cs->hppvlpi.grp == grp) { 713 value = cs->hppvlpi.irq; 714 } 715 } else if (idx >= 0) { 716 uint64_t lr = cs->ich_lr_el2[idx]; 717 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 718 719 if (grp == thisgrp) { 720 value = ich_lr_vintid(lr); 721 } 722 } 723 724 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, 725 gicv3_redist_affid(cs), value); 726 return value; 727 } 728 729 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 730 { 731 /* Activate the interrupt in the specified list register 732 * by moving it from Pending to Active state, and update the 733 * Active Priority Registers. 734 */ 735 uint32_t mask = icv_gprio_mask(cs, grp); 736 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 737 int aprbit = prio >> (8 - cs->vprebits); 738 int regno = aprbit / 32; 739 int regbit = aprbit % 32; 740 741 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 742 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 743 cs->ich_apr[grp][regno] |= (1 << regbit); 744 } 745 746 static void icv_activate_vlpi(GICv3CPUState *cs) 747 { 748 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 749 int prio = cs->hppvlpi.prio & mask; 750 int aprbit = prio >> (8 - cs->vprebits); 751 int regno = aprbit / 32; 752 int regbit = aprbit % 32; 753 754 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); 755 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); 756 } 757 758 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 759 { 760 GICv3CPUState *cs = icc_cs_from_env(env); 761 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 762 int idx = hppvi_index(cs); 763 uint64_t intid = INTID_SPURIOUS; 764 765 if (idx == HPPVI_INDEX_VLPI) { 766 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { 767 intid = cs->hppvlpi.irq; 768 icv_activate_vlpi(cs); 769 } 770 } else if (idx >= 0) { 771 uint64_t lr = cs->ich_lr_el2[idx]; 772 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 773 774 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 775 intid = ich_lr_vintid(lr); 776 if (!gicv3_intid_is_special(intid)) { 777 icv_activate_irq(cs, idx, grp); 778 } else { 779 /* Interrupt goes from Pending to Invalid */ 780 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 781 /* We will now return the (bogus) ID from the list register, 782 * as per the pseudocode. 783 */ 784 } 785 } 786 } 787 788 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 789 gicv3_redist_affid(cs), intid); 790 791 gicv3_cpuif_virt_update(cs); 792 793 return intid; 794 } 795 796 static uint32_t icc_fullprio_mask(GICv3CPUState *cs) 797 { 798 /* 799 * Return a mask word which clears the unimplemented priority bits 800 * from a priority value for a physical interrupt. (Not to be confused 801 * with the group priority, whose mask depends on the value of BPR 802 * for the interrupt group.) 803 */ 804 return ~0U << (8 - cs->pribits); 805 } 806 807 static inline int icc_min_bpr(GICv3CPUState *cs) 808 { 809 /* The minimum BPR for the physical interface. */ 810 return 7 - cs->prebits; 811 } 812 813 static inline int icc_min_bpr_ns(GICv3CPUState *cs) 814 { 815 return icc_min_bpr(cs) + 1; 816 } 817 818 static inline int icc_num_aprs(GICv3CPUState *cs) 819 { 820 /* Return the number of APR registers (1, 2, or 4) */ 821 int aprmax = 1 << MAX(cs->prebits - 5, 0); 822 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); 823 return aprmax; 824 } 825 826 static int icc_highest_active_prio(GICv3CPUState *cs) 827 { 828 /* Calculate the current running priority based on the set bits 829 * in the Active Priority Registers. 830 */ 831 int i; 832 833 for (i = 0; i < icc_num_aprs(cs); i++) { 834 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 835 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 836 837 if (!apr) { 838 continue; 839 } 840 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); 841 } 842 /* No current active interrupts: return idle priority */ 843 return 0xff; 844 } 845 846 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 847 { 848 /* Return a mask word which clears the subpriority bits from 849 * a priority value for an interrupt in the specified group. 850 * This depends on the BPR value. For CBPR0 (S or NS): 851 * a BPR of 0 means the group priority bits are [7:1]; 852 * a BPR of 1 means they are [7:2], and so on down to 853 * a BPR of 7 meaning no group priority bits at all. 854 * For CBPR1 NS: 855 * a BPR of 0 is impossible (the minimum value is 1) 856 * a BPR of 1 means the group priority bits are [7:1]; 857 * a BPR of 2 means they are [7:2], and so on down to 858 * a BPR of 7 meaning the group priority is [7]. 859 * 860 * Which BPR to use depends on the group of the interrupt and 861 * the current ICC_CTLR.CBPR settings. 862 * 863 * This corresponds to the GroupBits() pseudocode. 864 */ 865 int bpr; 866 867 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 868 (group == GICV3_G1NS && 869 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 870 group = GICV3_G0; 871 } 872 873 bpr = cs->icc_bpr[group] & 7; 874 875 if (group == GICV3_G1NS) { 876 assert(bpr > 0); 877 bpr--; 878 } 879 880 return ~0U << (bpr + 1); 881 } 882 883 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 884 { 885 /* Return true if there is no pending interrupt, or the 886 * highest priority pending interrupt is in a group which has been 887 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 888 */ 889 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 890 } 891 892 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 893 { 894 /* Return true if we have a pending interrupt of sufficient 895 * priority to preempt. 896 */ 897 int rprio; 898 uint32_t mask; 899 900 if (icc_no_enabled_hppi(cs)) { 901 return false; 902 } 903 904 if (cs->hppi.prio >= cs->icc_pmr_el1) { 905 /* Priority mask masks this interrupt */ 906 return false; 907 } 908 909 rprio = icc_highest_active_prio(cs); 910 if (rprio == 0xff) { 911 /* No currently running interrupt so we can preempt */ 912 return true; 913 } 914 915 mask = icc_gprio_mask(cs, cs->hppi.grp); 916 917 /* We only preempt a running interrupt if the pending interrupt's 918 * group priority is sufficient (the subpriorities are not considered). 919 */ 920 if ((cs->hppi.prio & mask) < (rprio & mask)) { 921 return true; 922 } 923 924 return false; 925 } 926 927 void gicv3_cpuif_update(GICv3CPUState *cs) 928 { 929 /* Tell the CPU about its highest priority pending interrupt */ 930 int irqlevel = 0; 931 int fiqlevel = 0; 932 ARMCPU *cpu = ARM_CPU(cs->cpu); 933 CPUARMState *env = &cpu->env; 934 935 g_assert(qemu_mutex_iothread_locked()); 936 937 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 938 cs->hppi.grp, cs->hppi.prio); 939 940 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 941 /* If a Security-enabled GIC sends a G1S interrupt to a 942 * Security-disabled CPU, we must treat it as if it were G0. 943 */ 944 cs->hppi.grp = GICV3_G0; 945 } 946 947 if (icc_hppi_can_preempt(cs)) { 948 /* We have an interrupt: should we signal it as IRQ or FIQ? 949 * This is described in the GICv3 spec section 4.6.2. 950 */ 951 bool isfiq; 952 953 switch (cs->hppi.grp) { 954 case GICV3_G0: 955 isfiq = true; 956 break; 957 case GICV3_G1: 958 isfiq = (!arm_is_secure(env) || 959 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 960 break; 961 case GICV3_G1NS: 962 isfiq = arm_is_secure(env); 963 break; 964 default: 965 g_assert_not_reached(); 966 } 967 968 if (isfiq) { 969 fiqlevel = 1; 970 } else { 971 irqlevel = 1; 972 } 973 } 974 975 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 976 977 qemu_set_irq(cs->parent_fiq, fiqlevel); 978 qemu_set_irq(cs->parent_irq, irqlevel); 979 } 980 981 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 982 { 983 GICv3CPUState *cs = icc_cs_from_env(env); 984 uint32_t value = cs->icc_pmr_el1; 985 986 if (icv_access(env, HCR_FMO | HCR_IMO)) { 987 return icv_pmr_read(env, ri); 988 } 989 990 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 991 (env->cp15.scr_el3 & SCR_FIQ)) { 992 /* NS access and Group 0 is inaccessible to NS: return the 993 * NS view of the current priority 994 */ 995 if ((value & 0x80) == 0) { 996 /* Secure priorities not visible to NS */ 997 value = 0; 998 } else if (value != 0xff) { 999 value = (value << 1) & 0xff; 1000 } 1001 } 1002 1003 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 1004 1005 return value; 1006 } 1007 1008 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1009 uint64_t value) 1010 { 1011 GICv3CPUState *cs = icc_cs_from_env(env); 1012 1013 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1014 return icv_pmr_write(env, ri, value); 1015 } 1016 1017 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 1018 1019 value &= icc_fullprio_mask(cs); 1020 1021 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1022 (env->cp15.scr_el3 & SCR_FIQ)) { 1023 /* NS access and Group 0 is inaccessible to NS: return the 1024 * NS view of the current priority 1025 */ 1026 if (!(cs->icc_pmr_el1 & 0x80)) { 1027 /* Current PMR in the secure range, don't allow NS to change it */ 1028 return; 1029 } 1030 value = (value >> 1) | 0x80; 1031 } 1032 cs->icc_pmr_el1 = value; 1033 gicv3_cpuif_update(cs); 1034 } 1035 1036 static void icc_activate_irq(GICv3CPUState *cs, int irq) 1037 { 1038 /* Move the interrupt from the Pending state to Active, and update 1039 * the Active Priority Registers 1040 */ 1041 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 1042 int prio = cs->hppi.prio & mask; 1043 int aprbit = prio >> (8 - cs->prebits); 1044 int regno = aprbit / 32; 1045 int regbit = aprbit % 32; 1046 1047 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 1048 1049 if (irq < GIC_INTERNAL) { 1050 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 1051 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 1052 gicv3_redist_update(cs); 1053 } else if (irq < GICV3_LPI_INTID_START) { 1054 gicv3_gicd_active_set(cs->gic, irq); 1055 gicv3_gicd_pending_clear(cs->gic, irq); 1056 gicv3_update(cs->gic, irq, 1); 1057 } else { 1058 gicv3_redist_lpi_pending(cs, irq, 0); 1059 } 1060 } 1061 1062 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 1063 { 1064 /* Return the highest priority pending interrupt register value 1065 * for group 0. 1066 */ 1067 bool irq_is_secure; 1068 1069 if (cs->hppi.prio == 0xff) { 1070 return INTID_SPURIOUS; 1071 } 1072 1073 /* Check whether we can return the interrupt or if we should return 1074 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 1075 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1076 * is always zero.) 1077 */ 1078 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1079 (cs->hppi.grp != GICV3_G1NS)); 1080 1081 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 1082 return INTID_SPURIOUS; 1083 } 1084 if (irq_is_secure && !arm_is_secure(env)) { 1085 /* Secure interrupts not visible to Nonsecure */ 1086 return INTID_SPURIOUS; 1087 } 1088 1089 if (cs->hppi.grp != GICV3_G0) { 1090 /* Indicate to EL3 that there's a Group 1 interrupt for the other 1091 * state pending. 1092 */ 1093 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 1094 } 1095 1096 return cs->hppi.irq; 1097 } 1098 1099 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 1100 { 1101 /* Return the highest priority pending interrupt register value 1102 * for group 1. 1103 */ 1104 bool irq_is_secure; 1105 1106 if (cs->hppi.prio == 0xff) { 1107 return INTID_SPURIOUS; 1108 } 1109 1110 /* Check whether we can return the interrupt or if we should return 1111 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 1112 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1113 * is always zero.) 1114 */ 1115 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1116 (cs->hppi.grp != GICV3_G1NS)); 1117 1118 if (cs->hppi.grp == GICV3_G0) { 1119 /* Group 0 interrupts not visible via HPPIR1 */ 1120 return INTID_SPURIOUS; 1121 } 1122 if (irq_is_secure) { 1123 if (!arm_is_secure(env)) { 1124 /* Secure interrupts not visible in Non-secure */ 1125 return INTID_SPURIOUS; 1126 } 1127 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1128 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 1129 return INTID_SPURIOUS; 1130 } 1131 1132 return cs->hppi.irq; 1133 } 1134 1135 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1136 { 1137 GICv3CPUState *cs = icc_cs_from_env(env); 1138 uint64_t intid; 1139 1140 if (icv_access(env, HCR_FMO)) { 1141 return icv_iar_read(env, ri); 1142 } 1143 1144 if (!icc_hppi_can_preempt(cs)) { 1145 intid = INTID_SPURIOUS; 1146 } else { 1147 intid = icc_hppir0_value(cs, env); 1148 } 1149 1150 if (!gicv3_intid_is_special(intid)) { 1151 icc_activate_irq(cs, intid); 1152 } 1153 1154 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1155 return intid; 1156 } 1157 1158 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1159 { 1160 GICv3CPUState *cs = icc_cs_from_env(env); 1161 uint64_t intid; 1162 1163 if (icv_access(env, HCR_IMO)) { 1164 return icv_iar_read(env, ri); 1165 } 1166 1167 if (!icc_hppi_can_preempt(cs)) { 1168 intid = INTID_SPURIOUS; 1169 } else { 1170 intid = icc_hppir1_value(cs, env); 1171 } 1172 1173 if (!gicv3_intid_is_special(intid)) { 1174 icc_activate_irq(cs, intid); 1175 } 1176 1177 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1178 return intid; 1179 } 1180 1181 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1182 { 1183 /* Drop the priority of the currently active interrupt in 1184 * the specified group. 1185 * 1186 * Note that we can guarantee (because of the requirement to nest 1187 * ICC_IAR reads [which activate an interrupt and raise priority] 1188 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1189 * that the interrupt we're being called for is the highest priority 1190 * active interrupt, meaning that it has the lowest set bit in the 1191 * APR registers. 1192 * 1193 * If the guest does not honour the ordering constraints then the 1194 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1195 * the values of the APR registers might become incorrect and the 1196 * running priority will be wrong, so interrupts that should preempt 1197 * might not do so, and interrupts that should not preempt might do so. 1198 */ 1199 int i; 1200 1201 for (i = 0; i < icc_num_aprs(cs); i++) { 1202 uint64_t *papr = &cs->icc_apr[grp][i]; 1203 1204 if (!*papr) { 1205 continue; 1206 } 1207 /* Clear the lowest set bit */ 1208 *papr &= *papr - 1; 1209 break; 1210 } 1211 1212 /* running priority change means we need an update for this cpu i/f */ 1213 gicv3_cpuif_update(cs); 1214 } 1215 1216 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1217 { 1218 /* Return true if we should split priority drop and interrupt 1219 * deactivation, ie whether the relevant EOIMode bit is set. 1220 */ 1221 if (arm_is_el3_or_mon(env)) { 1222 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1223 } 1224 if (arm_is_secure_below_el3(env)) { 1225 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1226 } else { 1227 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1228 } 1229 } 1230 1231 static int icc_highest_active_group(GICv3CPUState *cs) 1232 { 1233 /* Return the group with the highest priority active interrupt. 1234 * We can do this by just comparing the APRs to see which one 1235 * has the lowest set bit. 1236 * (If more than one group is active at the same priority then 1237 * we're in UNPREDICTABLE territory.) 1238 */ 1239 int i; 1240 1241 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1242 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1243 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1244 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1245 1246 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1247 return GICV3_G1NS; 1248 } 1249 if (g1ctz < g0ctz) { 1250 return GICV3_G1; 1251 } 1252 if (g0ctz < 32) { 1253 return GICV3_G0; 1254 } 1255 } 1256 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1257 * ignores the spurious EOI attempt. 1258 */ 1259 return -1; 1260 } 1261 1262 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1263 { 1264 if (irq < GIC_INTERNAL) { 1265 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1266 gicv3_redist_update(cs); 1267 } else { 1268 gicv3_gicd_active_clear(cs->gic, irq); 1269 gicv3_update(cs->gic, irq, 1); 1270 } 1271 } 1272 1273 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1274 { 1275 /* Return true if we should split priority drop and interrupt 1276 * deactivation, ie whether the virtual EOIMode bit is set. 1277 */ 1278 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1279 } 1280 1281 static int icv_find_active(GICv3CPUState *cs, int irq) 1282 { 1283 /* Given an interrupt number for an active interrupt, return the index 1284 * of the corresponding list register, or -1 if there is no match. 1285 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1286 */ 1287 int i; 1288 1289 for (i = 0; i < cs->num_list_regs; i++) { 1290 uint64_t lr = cs->ich_lr_el2[i]; 1291 1292 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1293 return i; 1294 } 1295 } 1296 1297 return -1; 1298 } 1299 1300 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1301 { 1302 /* Deactivate the interrupt in the specified list register index */ 1303 uint64_t lr = cs->ich_lr_el2[idx]; 1304 1305 if (lr & ICH_LR_EL2_HW) { 1306 /* Deactivate the associated physical interrupt */ 1307 int pirq = ich_lr_pintid(lr); 1308 1309 if (pirq < INTID_SECURE) { 1310 icc_deactivate_irq(cs, pirq); 1311 } 1312 } 1313 1314 /* Clear the 'active' part of the state, so ActivePending->Pending 1315 * and Active->Invalid. 1316 */ 1317 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1318 cs->ich_lr_el2[idx] = lr; 1319 } 1320 1321 static void icv_increment_eoicount(GICv3CPUState *cs) 1322 { 1323 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1324 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1325 ICH_HCR_EL2_EOICOUNT_LENGTH); 1326 1327 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1328 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1329 } 1330 1331 static int icv_drop_prio(GICv3CPUState *cs) 1332 { 1333 /* Drop the priority of the currently active virtual interrupt 1334 * (favouring group 0 if there is a set active bit at 1335 * the same priority for both group 0 and group 1). 1336 * Return the priority value for the bit we just cleared, 1337 * or 0xff if no bits were set in the AP registers at all. 1338 * Note that though the ich_apr[] are uint64_t only the low 1339 * 32 bits are actually relevant. 1340 */ 1341 int i; 1342 int aprmax = ich_num_aprs(cs); 1343 1344 for (i = 0; i < aprmax; i++) { 1345 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1346 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1347 int apr0count, apr1count; 1348 1349 if (!*papr0 && !*papr1) { 1350 continue; 1351 } 1352 1353 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1354 * because we need to return the bit number we cleared so 1355 * it can be compared against the list register's priority field. 1356 */ 1357 apr0count = ctz32(*papr0); 1358 apr1count = ctz32(*papr1); 1359 1360 if (apr0count <= apr1count) { 1361 *papr0 &= *papr0 - 1; 1362 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1363 } else { 1364 *papr1 &= *papr1 - 1; 1365 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1366 } 1367 } 1368 return 0xff; 1369 } 1370 1371 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1372 uint64_t value) 1373 { 1374 /* Deactivate interrupt */ 1375 GICv3CPUState *cs = icc_cs_from_env(env); 1376 int idx; 1377 int irq = value & 0xffffff; 1378 1379 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1380 1381 if (irq >= GICV3_MAXIRQ) { 1382 /* Also catches special interrupt numbers and LPIs */ 1383 return; 1384 } 1385 1386 if (!icv_eoi_split(env, cs)) { 1387 return; 1388 } 1389 1390 idx = icv_find_active(cs, irq); 1391 1392 if (idx < 0) { 1393 /* No list register matching this, so increment the EOI count 1394 * (might trigger a maintenance interrupt) 1395 */ 1396 icv_increment_eoicount(cs); 1397 } else { 1398 icv_deactivate_irq(cs, idx); 1399 } 1400 1401 gicv3_cpuif_virt_update(cs); 1402 } 1403 1404 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1405 uint64_t value) 1406 { 1407 /* End of Interrupt */ 1408 GICv3CPUState *cs = icc_cs_from_env(env); 1409 int irq = value & 0xffffff; 1410 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1411 int idx, dropprio; 1412 1413 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1414 gicv3_redist_affid(cs), value); 1415 1416 if (gicv3_intid_is_special(irq)) { 1417 return; 1418 } 1419 1420 /* We implement the IMPDEF choice of "drop priority before doing 1421 * error checks" (because that lets us avoid scanning the AP 1422 * registers twice). 1423 */ 1424 dropprio = icv_drop_prio(cs); 1425 if (dropprio == 0xff) { 1426 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1427 * whether the list registers are checked in this 1428 * situation; we choose not to. 1429 */ 1430 return; 1431 } 1432 1433 idx = icv_find_active(cs, irq); 1434 1435 if (idx < 0) { 1436 /* No valid list register corresponding to EOI ID */ 1437 icv_increment_eoicount(cs); 1438 } else { 1439 uint64_t lr = cs->ich_lr_el2[idx]; 1440 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1441 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1442 1443 if (thisgrp == grp && lr_gprio == dropprio) { 1444 if (!icv_eoi_split(env, cs)) { 1445 /* Priority drop and deactivate not split: deactivate irq now */ 1446 icv_deactivate_irq(cs, idx); 1447 } 1448 } 1449 } 1450 1451 gicv3_cpuif_virt_update(cs); 1452 } 1453 1454 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1455 uint64_t value) 1456 { 1457 /* End of Interrupt */ 1458 GICv3CPUState *cs = icc_cs_from_env(env); 1459 int irq = value & 0xffffff; 1460 int grp; 1461 bool is_eoir0 = ri->crm == 8; 1462 1463 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1464 icv_eoir_write(env, ri, value); 1465 return; 1466 } 1467 1468 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1469 gicv3_redist_affid(cs), value); 1470 1471 if ((irq >= cs->gic->num_irq) && 1472 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1473 /* This handles two cases: 1474 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1475 * to the GICC_EOIR, the GIC ignores that write. 1476 * 2. If software writes the number of a non-existent interrupt 1477 * this must be a subcase of "value written does not match the last 1478 * valid interrupt value read from the Interrupt Acknowledge 1479 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1480 */ 1481 return; 1482 } 1483 1484 grp = icc_highest_active_group(cs); 1485 switch (grp) { 1486 case GICV3_G0: 1487 if (!is_eoir0) { 1488 return; 1489 } 1490 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1491 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1492 return; 1493 } 1494 break; 1495 case GICV3_G1: 1496 if (is_eoir0) { 1497 return; 1498 } 1499 if (!arm_is_secure(env)) { 1500 return; 1501 } 1502 break; 1503 case GICV3_G1NS: 1504 if (is_eoir0) { 1505 return; 1506 } 1507 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1508 return; 1509 } 1510 break; 1511 default: 1512 qemu_log_mask(LOG_GUEST_ERROR, 1513 "%s: IRQ %d isn't active\n", __func__, irq); 1514 return; 1515 } 1516 1517 icc_drop_prio(cs, grp); 1518 1519 if (!icc_eoi_split(env, cs)) { 1520 /* Priority drop and deactivate not split: deactivate irq now */ 1521 icc_deactivate_irq(cs, irq); 1522 } 1523 } 1524 1525 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1526 { 1527 GICv3CPUState *cs = icc_cs_from_env(env); 1528 uint64_t value; 1529 1530 if (icv_access(env, HCR_FMO)) { 1531 return icv_hppir_read(env, ri); 1532 } 1533 1534 value = icc_hppir0_value(cs, env); 1535 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1536 return value; 1537 } 1538 1539 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1540 { 1541 GICv3CPUState *cs = icc_cs_from_env(env); 1542 uint64_t value; 1543 1544 if (icv_access(env, HCR_IMO)) { 1545 return icv_hppir_read(env, ri); 1546 } 1547 1548 value = icc_hppir1_value(cs, env); 1549 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1550 return value; 1551 } 1552 1553 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1554 { 1555 GICv3CPUState *cs = icc_cs_from_env(env); 1556 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1557 bool satinc = false; 1558 uint64_t bpr; 1559 1560 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1561 return icv_bpr_read(env, ri); 1562 } 1563 1564 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1565 grp = GICV3_G1NS; 1566 } 1567 1568 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1569 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1570 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1571 * modify BPR0 1572 */ 1573 grp = GICV3_G0; 1574 } 1575 1576 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1577 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1578 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1579 grp = GICV3_G0; 1580 satinc = true; 1581 } 1582 1583 bpr = cs->icc_bpr[grp]; 1584 if (satinc) { 1585 bpr++; 1586 bpr = MIN(bpr, 7); 1587 } 1588 1589 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1590 1591 return bpr; 1592 } 1593 1594 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1595 uint64_t value) 1596 { 1597 GICv3CPUState *cs = icc_cs_from_env(env); 1598 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1599 uint64_t minval; 1600 1601 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1602 icv_bpr_write(env, ri, value); 1603 return; 1604 } 1605 1606 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1607 gicv3_redist_affid(cs), value); 1608 1609 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1610 grp = GICV3_G1NS; 1611 } 1612 1613 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1614 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1615 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1616 * modify BPR0 1617 */ 1618 grp = GICV3_G0; 1619 } 1620 1621 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1622 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1623 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1624 return; 1625 } 1626 1627 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); 1628 if (value < minval) { 1629 value = minval; 1630 } 1631 1632 cs->icc_bpr[grp] = value & 7; 1633 gicv3_cpuif_update(cs); 1634 } 1635 1636 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1637 { 1638 GICv3CPUState *cs = icc_cs_from_env(env); 1639 uint64_t value; 1640 1641 int regno = ri->opc2 & 3; 1642 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1643 1644 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1645 return icv_ap_read(env, ri); 1646 } 1647 1648 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1649 grp = GICV3_G1NS; 1650 } 1651 1652 value = cs->icc_apr[grp][regno]; 1653 1654 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1655 return value; 1656 } 1657 1658 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1659 uint64_t value) 1660 { 1661 GICv3CPUState *cs = icc_cs_from_env(env); 1662 1663 int regno = ri->opc2 & 3; 1664 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1665 1666 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1667 icv_ap_write(env, ri, value); 1668 return; 1669 } 1670 1671 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1672 1673 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1674 grp = GICV3_G1NS; 1675 } 1676 1677 /* It's not possible to claim that a Non-secure interrupt is active 1678 * at a priority outside the Non-secure range (128..255), since this 1679 * would otherwise allow malicious NS code to block delivery of S interrupts 1680 * by writing a bad value to these registers. 1681 */ 1682 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1683 return; 1684 } 1685 1686 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1687 gicv3_cpuif_update(cs); 1688 } 1689 1690 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1691 uint64_t value) 1692 { 1693 /* Deactivate interrupt */ 1694 GICv3CPUState *cs = icc_cs_from_env(env); 1695 int irq = value & 0xffffff; 1696 bool irq_is_secure, single_sec_state, irq_is_grp0; 1697 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1698 1699 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1700 icv_dir_write(env, ri, value); 1701 return; 1702 } 1703 1704 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1705 1706 if (irq >= cs->gic->num_irq) { 1707 /* Also catches special interrupt numbers and LPIs */ 1708 return; 1709 } 1710 1711 if (!icc_eoi_split(env, cs)) { 1712 return; 1713 } 1714 1715 int grp = gicv3_irq_group(cs->gic, cs, irq); 1716 1717 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1718 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1719 irq_is_grp0 = grp == GICV3_G0; 1720 1721 /* Check whether we're allowed to deactivate this interrupt based 1722 * on its group and the current CPU state. 1723 * These checks are laid out to correspond to the spec's pseudocode. 1724 */ 1725 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1726 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1727 /* No need to include !IsSecure in route_*_to_el2 as it's only 1728 * tested in cases where we know !IsSecure is true. 1729 */ 1730 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1731 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1732 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1733 1734 switch (arm_current_el(env)) { 1735 case 3: 1736 break; 1737 case 2: 1738 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1739 break; 1740 } 1741 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1742 break; 1743 } 1744 return; 1745 case 1: 1746 if (!arm_is_secure_below_el3(env)) { 1747 if (single_sec_state && irq_is_grp0 && 1748 !route_fiq_to_el3 && !route_fiq_to_el2) { 1749 break; 1750 } 1751 if (!irq_is_secure && !irq_is_grp0 && 1752 !route_irq_to_el3 && !route_irq_to_el2) { 1753 break; 1754 } 1755 } else { 1756 if (irq_is_grp0 && !route_fiq_to_el3) { 1757 break; 1758 } 1759 if (!irq_is_grp0 && 1760 (!irq_is_secure || !single_sec_state) && 1761 !route_irq_to_el3) { 1762 break; 1763 } 1764 } 1765 return; 1766 default: 1767 g_assert_not_reached(); 1768 } 1769 1770 icc_deactivate_irq(cs, irq); 1771 } 1772 1773 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1774 { 1775 GICv3CPUState *cs = icc_cs_from_env(env); 1776 int prio; 1777 1778 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1779 return icv_rpr_read(env, ri); 1780 } 1781 1782 prio = icc_highest_active_prio(cs); 1783 1784 if (arm_feature(env, ARM_FEATURE_EL3) && 1785 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1786 /* NS GIC access and Group 0 is inaccessible to NS */ 1787 if ((prio & 0x80) == 0) { 1788 /* NS mustn't see priorities in the Secure half of the range */ 1789 prio = 0; 1790 } else if (prio != 0xff) { 1791 /* Non-idle priority: show the Non-secure view of it */ 1792 prio = (prio << 1) & 0xff; 1793 } 1794 } 1795 1796 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1797 return prio; 1798 } 1799 1800 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1801 uint64_t value, int grp, bool ns) 1802 { 1803 GICv3State *s = cs->gic; 1804 1805 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1806 uint64_t aff = extract64(value, 48, 8) << 16 | 1807 extract64(value, 32, 8) << 8 | 1808 extract64(value, 16, 8); 1809 uint32_t targetlist = extract64(value, 0, 16); 1810 uint32_t irq = extract64(value, 24, 4); 1811 bool irm = extract64(value, 40, 1); 1812 int i; 1813 1814 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1815 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1816 * interrupts as Group 0 interrupts and must send Secure Group 0 1817 * interrupts to the target CPUs. 1818 */ 1819 grp = GICV3_G0; 1820 } 1821 1822 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1823 aff, targetlist); 1824 1825 for (i = 0; i < s->num_cpu; i++) { 1826 GICv3CPUState *ocs = &s->cpu[i]; 1827 1828 if (irm) { 1829 /* IRM == 1 : route to all CPUs except self */ 1830 if (cs == ocs) { 1831 continue; 1832 } 1833 } else { 1834 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1835 * where the corresponding bit is set in targetlist 1836 */ 1837 int aff0; 1838 1839 if (ocs->gicr_typer >> 40 != aff) { 1840 continue; 1841 } 1842 aff0 = extract64(ocs->gicr_typer, 32, 8); 1843 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1844 continue; 1845 } 1846 } 1847 1848 /* The redistributor will check against its own GICR_NSACR as needed */ 1849 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1850 } 1851 } 1852 1853 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1854 uint64_t value) 1855 { 1856 /* Generate Secure Group 0 SGI. */ 1857 GICv3CPUState *cs = icc_cs_from_env(env); 1858 bool ns = !arm_is_secure(env); 1859 1860 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1861 } 1862 1863 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1864 uint64_t value) 1865 { 1866 /* Generate Group 1 SGI for the current Security state */ 1867 GICv3CPUState *cs = icc_cs_from_env(env); 1868 int grp; 1869 bool ns = !arm_is_secure(env); 1870 1871 grp = ns ? GICV3_G1NS : GICV3_G1; 1872 icc_generate_sgi(env, cs, value, grp, ns); 1873 } 1874 1875 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1876 uint64_t value) 1877 { 1878 /* Generate Group 1 SGI for the Security state that is not 1879 * the current state 1880 */ 1881 GICv3CPUState *cs = icc_cs_from_env(env); 1882 int grp; 1883 bool ns = !arm_is_secure(env); 1884 1885 grp = ns ? GICV3_G1 : GICV3_G1NS; 1886 icc_generate_sgi(env, cs, value, grp, ns); 1887 } 1888 1889 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1890 { 1891 GICv3CPUState *cs = icc_cs_from_env(env); 1892 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1893 uint64_t value; 1894 1895 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1896 return icv_igrpen_read(env, ri); 1897 } 1898 1899 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1900 grp = GICV3_G1NS; 1901 } 1902 1903 value = cs->icc_igrpen[grp]; 1904 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1905 gicv3_redist_affid(cs), value); 1906 return value; 1907 } 1908 1909 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1910 uint64_t value) 1911 { 1912 GICv3CPUState *cs = icc_cs_from_env(env); 1913 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1914 1915 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1916 icv_igrpen_write(env, ri, value); 1917 return; 1918 } 1919 1920 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1921 gicv3_redist_affid(cs), value); 1922 1923 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1924 grp = GICV3_G1NS; 1925 } 1926 1927 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1928 gicv3_cpuif_update(cs); 1929 } 1930 1931 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1932 { 1933 GICv3CPUState *cs = icc_cs_from_env(env); 1934 uint64_t value; 1935 1936 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1937 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1938 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1939 return value; 1940 } 1941 1942 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1943 uint64_t value) 1944 { 1945 GICv3CPUState *cs = icc_cs_from_env(env); 1946 1947 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1948 1949 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1950 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1951 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1952 gicv3_cpuif_update(cs); 1953 } 1954 1955 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1956 { 1957 GICv3CPUState *cs = icc_cs_from_env(env); 1958 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1959 uint64_t value; 1960 1961 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1962 return icv_ctlr_read(env, ri); 1963 } 1964 1965 value = cs->icc_ctlr_el1[bank]; 1966 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1967 return value; 1968 } 1969 1970 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1971 uint64_t value) 1972 { 1973 GICv3CPUState *cs = icc_cs_from_env(env); 1974 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1975 uint64_t mask; 1976 1977 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1978 icv_ctlr_write(env, ri, value); 1979 return; 1980 } 1981 1982 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1983 1984 /* Only CBPR and EOIMODE can be RW; 1985 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1986 * the asseciated priority-based routing of them); 1987 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1988 */ 1989 if (arm_feature(env, ARM_FEATURE_EL3) && 1990 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1991 mask = ICC_CTLR_EL1_EOIMODE; 1992 } else { 1993 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1994 } 1995 1996 cs->icc_ctlr_el1[bank] &= ~mask; 1997 cs->icc_ctlr_el1[bank] |= (value & mask); 1998 gicv3_cpuif_update(cs); 1999 } 2000 2001 2002 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2003 { 2004 GICv3CPUState *cs = icc_cs_from_env(env); 2005 uint64_t value; 2006 2007 value = cs->icc_ctlr_el3; 2008 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2009 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 2010 } 2011 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2012 value |= ICC_CTLR_EL3_CBPR_EL1NS; 2013 } 2014 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2015 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 2016 } 2017 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2018 value |= ICC_CTLR_EL3_CBPR_EL1S; 2019 } 2020 2021 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 2022 return value; 2023 } 2024 2025 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2026 uint64_t value) 2027 { 2028 GICv3CPUState *cs = icc_cs_from_env(env); 2029 uint64_t mask; 2030 2031 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 2032 2033 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 2034 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2035 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 2036 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 2037 } 2038 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 2039 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 2040 } 2041 2042 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2043 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 2044 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 2045 } 2046 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 2047 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 2048 } 2049 2050 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 2051 mask = ICC_CTLR_EL3_EOIMODE_EL3; 2052 2053 cs->icc_ctlr_el3 &= ~mask; 2054 cs->icc_ctlr_el3 |= (value & mask); 2055 gicv3_cpuif_update(cs); 2056 } 2057 2058 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 2059 const ARMCPRegInfo *ri, bool isread) 2060 { 2061 CPAccessResult r = CP_ACCESS_OK; 2062 GICv3CPUState *cs = icc_cs_from_env(env); 2063 int el = arm_current_el(env); 2064 2065 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 2066 el == 1 && !arm_is_secure_below_el3(env)) { 2067 /* Takes priority over a possible EL3 trap */ 2068 return CP_ACCESS_TRAP_EL2; 2069 } 2070 2071 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 2072 switch (el) { 2073 case 1: 2074 /* Note that arm_hcr_el2_eff takes secure state into account. */ 2075 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 2076 r = CP_ACCESS_TRAP_EL3; 2077 } 2078 break; 2079 case 2: 2080 r = CP_ACCESS_TRAP_EL3; 2081 break; 2082 case 3: 2083 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2084 r = CP_ACCESS_TRAP_EL3; 2085 } 2086 break; 2087 default: 2088 g_assert_not_reached(); 2089 } 2090 } 2091 2092 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2093 r = CP_ACCESS_TRAP; 2094 } 2095 return r; 2096 } 2097 2098 static CPAccessResult gicv3_dir_access(CPUARMState *env, 2099 const ARMCPRegInfo *ri, bool isread) 2100 { 2101 GICv3CPUState *cs = icc_cs_from_env(env); 2102 2103 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 2104 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 2105 /* Takes priority over a possible EL3 trap */ 2106 return CP_ACCESS_TRAP_EL2; 2107 } 2108 2109 return gicv3_irqfiq_access(env, ri, isread); 2110 } 2111 2112 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 2113 const ARMCPRegInfo *ri, bool isread) 2114 { 2115 if (arm_current_el(env) == 1 && 2116 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 2117 /* Takes priority over a possible EL3 trap */ 2118 return CP_ACCESS_TRAP_EL2; 2119 } 2120 2121 return gicv3_irqfiq_access(env, ri, isread); 2122 } 2123 2124 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 2125 const ARMCPRegInfo *ri, bool isread) 2126 { 2127 CPAccessResult r = CP_ACCESS_OK; 2128 GICv3CPUState *cs = icc_cs_from_env(env); 2129 int el = arm_current_el(env); 2130 2131 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 2132 el == 1 && !arm_is_secure_below_el3(env)) { 2133 /* Takes priority over a possible EL3 trap */ 2134 return CP_ACCESS_TRAP_EL2; 2135 } 2136 2137 if (env->cp15.scr_el3 & SCR_FIQ) { 2138 switch (el) { 2139 case 1: 2140 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 2141 r = CP_ACCESS_TRAP_EL3; 2142 } 2143 break; 2144 case 2: 2145 r = CP_ACCESS_TRAP_EL3; 2146 break; 2147 case 3: 2148 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2149 r = CP_ACCESS_TRAP_EL3; 2150 } 2151 break; 2152 default: 2153 g_assert_not_reached(); 2154 } 2155 } 2156 2157 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2158 r = CP_ACCESS_TRAP; 2159 } 2160 return r; 2161 } 2162 2163 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2164 const ARMCPRegInfo *ri, bool isread) 2165 { 2166 CPAccessResult r = CP_ACCESS_OK; 2167 GICv3CPUState *cs = icc_cs_from_env(env); 2168 int el = arm_current_el(env); 2169 2170 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2171 el == 1 && !arm_is_secure_below_el3(env)) { 2172 /* Takes priority over a possible EL3 trap */ 2173 return CP_ACCESS_TRAP_EL2; 2174 } 2175 2176 if (env->cp15.scr_el3 & SCR_IRQ) { 2177 switch (el) { 2178 case 1: 2179 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2180 r = CP_ACCESS_TRAP_EL3; 2181 } 2182 break; 2183 case 2: 2184 r = CP_ACCESS_TRAP_EL3; 2185 break; 2186 case 3: 2187 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2188 r = CP_ACCESS_TRAP_EL3; 2189 } 2190 break; 2191 default: 2192 g_assert_not_reached(); 2193 } 2194 } 2195 2196 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2197 r = CP_ACCESS_TRAP; 2198 } 2199 return r; 2200 } 2201 2202 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2203 { 2204 GICv3CPUState *cs = icc_cs_from_env(env); 2205 2206 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2207 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2208 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2209 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2210 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2211 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2212 cs->icc_pmr_el1 = 0; 2213 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); 2214 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); 2215 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); 2216 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2217 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2218 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2219 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2220 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); 2221 2222 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2223 cs->ich_hcr_el2 = 0; 2224 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2225 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2226 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2227 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2228 } 2229 2230 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2231 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2232 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2233 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2234 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2235 .readfn = icc_pmr_read, 2236 .writefn = icc_pmr_write, 2237 /* We hang the whole cpu interface reset routine off here 2238 * rather than parcelling it out into one little function 2239 * per register 2240 */ 2241 .resetfn = icc_reset, 2242 }, 2243 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2244 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2245 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2246 .access = PL1_R, .accessfn = gicv3_fiq_access, 2247 .readfn = icc_iar0_read, 2248 }, 2249 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2250 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2251 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2252 .access = PL1_W, .accessfn = gicv3_fiq_access, 2253 .writefn = icc_eoir_write, 2254 }, 2255 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2256 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2257 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2258 .access = PL1_R, .accessfn = gicv3_fiq_access, 2259 .readfn = icc_hppir0_read, 2260 }, 2261 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2262 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2263 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2264 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2265 .readfn = icc_bpr_read, 2266 .writefn = icc_bpr_write, 2267 }, 2268 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2269 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2270 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2271 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2272 .readfn = icc_ap_read, 2273 .writefn = icc_ap_write, 2274 }, 2275 /* All the ICC_AP1R*_EL1 registers are banked */ 2276 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2277 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2278 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2279 .access = PL1_RW, .accessfn = gicv3_irq_access, 2280 .readfn = icc_ap_read, 2281 .writefn = icc_ap_write, 2282 }, 2283 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2284 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2285 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2286 .access = PL1_W, .accessfn = gicv3_dir_access, 2287 .writefn = icc_dir_write, 2288 }, 2289 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2290 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2291 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2292 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2293 .readfn = icc_rpr_read, 2294 }, 2295 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2296 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2297 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2298 .access = PL1_W, .accessfn = gicv3_sgi_access, 2299 .writefn = icc_sgi1r_write, 2300 }, 2301 { .name = "ICC_SGI1R", 2302 .cp = 15, .opc1 = 0, .crm = 12, 2303 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2304 .access = PL1_W, .accessfn = gicv3_sgi_access, 2305 .writefn = icc_sgi1r_write, 2306 }, 2307 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2308 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2309 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2310 .access = PL1_W, .accessfn = gicv3_sgi_access, 2311 .writefn = icc_asgi1r_write, 2312 }, 2313 { .name = "ICC_ASGI1R", 2314 .cp = 15, .opc1 = 1, .crm = 12, 2315 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2316 .access = PL1_W, .accessfn = gicv3_sgi_access, 2317 .writefn = icc_asgi1r_write, 2318 }, 2319 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2320 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2321 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2322 .access = PL1_W, .accessfn = gicv3_sgi_access, 2323 .writefn = icc_sgi0r_write, 2324 }, 2325 { .name = "ICC_SGI0R", 2326 .cp = 15, .opc1 = 2, .crm = 12, 2327 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2328 .access = PL1_W, .accessfn = gicv3_sgi_access, 2329 .writefn = icc_sgi0r_write, 2330 }, 2331 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2332 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2333 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2334 .access = PL1_R, .accessfn = gicv3_irq_access, 2335 .readfn = icc_iar1_read, 2336 }, 2337 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2338 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2339 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2340 .access = PL1_W, .accessfn = gicv3_irq_access, 2341 .writefn = icc_eoir_write, 2342 }, 2343 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2344 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2345 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2346 .access = PL1_R, .accessfn = gicv3_irq_access, 2347 .readfn = icc_hppir1_read, 2348 }, 2349 /* This register is banked */ 2350 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2351 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2352 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2353 .access = PL1_RW, .accessfn = gicv3_irq_access, 2354 .readfn = icc_bpr_read, 2355 .writefn = icc_bpr_write, 2356 }, 2357 /* This register is banked */ 2358 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2359 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2360 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2361 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2362 .readfn = icc_ctlr_el1_read, 2363 .writefn = icc_ctlr_el1_write, 2364 }, 2365 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2366 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2367 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2368 .access = PL1_RW, 2369 /* We don't support IRQ/FIQ bypass and system registers are 2370 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2371 * This register is banked but since it's constant we don't 2372 * need to do anything special. 2373 */ 2374 .resetvalue = 0x7, 2375 }, 2376 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2377 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2378 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2379 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2380 .readfn = icc_igrpen_read, 2381 .writefn = icc_igrpen_write, 2382 }, 2383 /* This register is banked */ 2384 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2385 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2386 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2387 .access = PL1_RW, .accessfn = gicv3_irq_access, 2388 .readfn = icc_igrpen_read, 2389 .writefn = icc_igrpen_write, 2390 }, 2391 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2392 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2393 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2394 .access = PL2_RW, 2395 /* We don't support IRQ/FIQ bypass and system registers are 2396 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2397 */ 2398 .resetvalue = 0xf, 2399 }, 2400 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2401 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2402 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2403 .access = PL3_RW, 2404 .readfn = icc_ctlr_el3_read, 2405 .writefn = icc_ctlr_el3_write, 2406 }, 2407 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2408 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2409 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2410 .access = PL3_RW, 2411 /* We don't support IRQ/FIQ bypass and system registers are 2412 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2413 */ 2414 .resetvalue = 0xf, 2415 }, 2416 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2417 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2418 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2419 .access = PL3_RW, 2420 .readfn = icc_igrpen1_el3_read, 2421 .writefn = icc_igrpen1_el3_write, 2422 }, 2423 }; 2424 2425 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { 2426 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2427 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2428 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2429 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2430 .readfn = icc_ap_read, 2431 .writefn = icc_ap_write, 2432 }, 2433 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2434 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2435 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2436 .access = PL1_RW, .accessfn = gicv3_irq_access, 2437 .readfn = icc_ap_read, 2438 .writefn = icc_ap_write, 2439 }, 2440 }; 2441 2442 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { 2443 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2444 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2445 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2446 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2447 .readfn = icc_ap_read, 2448 .writefn = icc_ap_write, 2449 }, 2450 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2451 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2452 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2453 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2454 .readfn = icc_ap_read, 2455 .writefn = icc_ap_write, 2456 }, 2457 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2458 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2459 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2460 .access = PL1_RW, .accessfn = gicv3_irq_access, 2461 .readfn = icc_ap_read, 2462 .writefn = icc_ap_write, 2463 }, 2464 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2465 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2466 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2467 .access = PL1_RW, .accessfn = gicv3_irq_access, 2468 .readfn = icc_ap_read, 2469 .writefn = icc_ap_write, 2470 }, 2471 }; 2472 2473 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2474 { 2475 GICv3CPUState *cs = icc_cs_from_env(env); 2476 int regno = ri->opc2 & 3; 2477 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2478 uint64_t value; 2479 2480 value = cs->ich_apr[grp][regno]; 2481 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2482 return value; 2483 } 2484 2485 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2486 uint64_t value) 2487 { 2488 GICv3CPUState *cs = icc_cs_from_env(env); 2489 int regno = ri->opc2 & 3; 2490 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2491 2492 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2493 2494 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2495 gicv3_cpuif_virt_irq_fiq_update(cs); 2496 } 2497 2498 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2499 { 2500 GICv3CPUState *cs = icc_cs_from_env(env); 2501 uint64_t value = cs->ich_hcr_el2; 2502 2503 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2504 return value; 2505 } 2506 2507 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2508 uint64_t value) 2509 { 2510 GICv3CPUState *cs = icc_cs_from_env(env); 2511 2512 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2513 2514 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2515 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2516 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2517 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2518 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2519 2520 cs->ich_hcr_el2 = value; 2521 gicv3_cpuif_virt_update(cs); 2522 } 2523 2524 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2525 { 2526 GICv3CPUState *cs = icc_cs_from_env(env); 2527 uint64_t value = cs->ich_vmcr_el2; 2528 2529 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2530 return value; 2531 } 2532 2533 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2534 uint64_t value) 2535 { 2536 GICv3CPUState *cs = icc_cs_from_env(env); 2537 2538 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2539 2540 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2541 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2542 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2543 value |= ICH_VMCR_EL2_VFIQEN; 2544 2545 cs->ich_vmcr_el2 = value; 2546 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2547 * by reading and writing back the fields. 2548 */ 2549 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2550 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2551 2552 gicv3_cpuif_virt_update(cs); 2553 } 2554 2555 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2556 { 2557 GICv3CPUState *cs = icc_cs_from_env(env); 2558 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2559 uint64_t value; 2560 2561 /* This read function handles all of: 2562 * 64-bit reads of the whole LR 2563 * 32-bit reads of the low half of the LR 2564 * 32-bit reads of the high half of the LR 2565 */ 2566 if (ri->state == ARM_CP_STATE_AA32) { 2567 if (ri->crm >= 14) { 2568 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2569 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2570 } else { 2571 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2572 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2573 } 2574 } else { 2575 value = cs->ich_lr_el2[regno]; 2576 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2577 } 2578 2579 return value; 2580 } 2581 2582 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2583 uint64_t value) 2584 { 2585 GICv3CPUState *cs = icc_cs_from_env(env); 2586 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2587 2588 /* This write function handles all of: 2589 * 64-bit writes to the whole LR 2590 * 32-bit writes to the low half of the LR 2591 * 32-bit writes to the high half of the LR 2592 */ 2593 if (ri->state == ARM_CP_STATE_AA32) { 2594 if (ri->crm >= 14) { 2595 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2596 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2597 } else { 2598 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2599 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2600 } 2601 } else { 2602 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2603 } 2604 2605 /* Enforce RES0 bits in priority field */ 2606 if (cs->vpribits < 8) { 2607 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2608 8 - cs->vpribits, 0); 2609 } 2610 2611 cs->ich_lr_el2[regno] = value; 2612 gicv3_cpuif_virt_update(cs); 2613 } 2614 2615 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2616 { 2617 GICv3CPUState *cs = icc_cs_from_env(env); 2618 uint64_t value; 2619 2620 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2621 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V 2622 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2623 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2624 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2625 2626 if (cs->gic->revision < 4) { 2627 value |= ICH_VTR_EL2_NV4; 2628 } 2629 2630 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2631 return value; 2632 } 2633 2634 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2635 { 2636 GICv3CPUState *cs = icc_cs_from_env(env); 2637 uint64_t value = maintenance_interrupt_state(cs); 2638 2639 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2640 return value; 2641 } 2642 2643 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2644 { 2645 GICv3CPUState *cs = icc_cs_from_env(env); 2646 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2647 2648 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2649 return value; 2650 } 2651 2652 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2653 { 2654 GICv3CPUState *cs = icc_cs_from_env(env); 2655 uint64_t value = 0; 2656 int i; 2657 2658 for (i = 0; i < cs->num_list_regs; i++) { 2659 uint64_t lr = cs->ich_lr_el2[i]; 2660 2661 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2662 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2663 value |= (1 << i); 2664 } 2665 } 2666 2667 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2668 return value; 2669 } 2670 2671 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2672 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2673 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2674 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2675 .access = PL2_RW, 2676 .readfn = ich_ap_read, 2677 .writefn = ich_ap_write, 2678 }, 2679 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2680 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2681 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2682 .access = PL2_RW, 2683 .readfn = ich_ap_read, 2684 .writefn = ich_ap_write, 2685 }, 2686 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2687 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2688 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2689 .access = PL2_RW, 2690 .readfn = ich_hcr_read, 2691 .writefn = ich_hcr_write, 2692 }, 2693 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2694 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2695 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2696 .access = PL2_R, 2697 .readfn = ich_vtr_read, 2698 }, 2699 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2700 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2701 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2702 .access = PL2_R, 2703 .readfn = ich_misr_read, 2704 }, 2705 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2706 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2707 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2708 .access = PL2_R, 2709 .readfn = ich_eisr_read, 2710 }, 2711 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2712 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2713 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2714 .access = PL2_R, 2715 .readfn = ich_elrsr_read, 2716 }, 2717 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2718 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2719 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2720 .access = PL2_RW, 2721 .readfn = ich_vmcr_read, 2722 .writefn = ich_vmcr_write, 2723 }, 2724 }; 2725 2726 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2727 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2728 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2729 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2730 .access = PL2_RW, 2731 .readfn = ich_ap_read, 2732 .writefn = ich_ap_write, 2733 }, 2734 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2735 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2736 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2737 .access = PL2_RW, 2738 .readfn = ich_ap_read, 2739 .writefn = ich_ap_write, 2740 }, 2741 }; 2742 2743 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2744 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2745 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2746 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2747 .access = PL2_RW, 2748 .readfn = ich_ap_read, 2749 .writefn = ich_ap_write, 2750 }, 2751 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2752 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2753 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2754 .access = PL2_RW, 2755 .readfn = ich_ap_read, 2756 .writefn = ich_ap_write, 2757 }, 2758 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2759 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2760 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2761 .access = PL2_RW, 2762 .readfn = ich_ap_read, 2763 .writefn = ich_ap_write, 2764 }, 2765 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2766 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2767 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2768 .access = PL2_RW, 2769 .readfn = ich_ap_read, 2770 .writefn = ich_ap_write, 2771 }, 2772 }; 2773 2774 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2775 { 2776 GICv3CPUState *cs = opaque; 2777 2778 gicv3_cpuif_update(cs); 2779 /* 2780 * Because vLPIs are only pending in NonSecure state, 2781 * an EL change can change the VIRQ/VFIQ status (but 2782 * cannot affect the maintenance interrupt state) 2783 */ 2784 gicv3_cpuif_virt_irq_fiq_update(cs); 2785 } 2786 2787 void gicv3_init_cpuif(GICv3State *s) 2788 { 2789 /* Called from the GICv3 realize function; register our system 2790 * registers with the CPU 2791 */ 2792 int i; 2793 2794 for (i = 0; i < s->num_cpu; i++) { 2795 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2796 GICv3CPUState *cs = &s->cpu[i]; 2797 2798 /* 2799 * If the CPU doesn't define a GICv3 configuration, probably because 2800 * in real hardware it doesn't have one, then we use default values 2801 * matching the one used by most Arm CPUs. This applies to: 2802 * cpu->gic_num_lrs 2803 * cpu->gic_vpribits 2804 * cpu->gic_vprebits 2805 * cpu->gic_pribits 2806 */ 2807 2808 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2809 * in define_arm_cp_regs_with_opaque(), because when we're called back 2810 * it might be with code translated by CPU 0 but run by CPU 1, in 2811 * which case we'd get the wrong value. 2812 * So instead we define the regs with no ri->opaque info, and 2813 * get back to the GICv3CPUState from the CPUARMState. 2814 */ 2815 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2816 2817 /* 2818 * The CPU implementation specifies the number of supported 2819 * bits of physical priority. For backwards compatibility 2820 * of migration, we have a compat property that forces use 2821 * of 8 priority bits regardless of what the CPU really has. 2822 */ 2823 if (s->force_8bit_prio) { 2824 cs->pribits = 8; 2825 } else { 2826 cs->pribits = cpu->gic_pribits ?: 5; 2827 } 2828 2829 /* 2830 * The GICv3 has separate ID register fields for virtual priority 2831 * and preemption bit values, but only a single ID register field 2832 * for the physical priority bits. The preemption bit count is 2833 * always the same as the priority bit count, except that 8 bits 2834 * of priority means 7 preemption bits. We precalculate the 2835 * preemption bits because it simplifies the code and makes the 2836 * parallels between the virtual and physical bits of the GIC 2837 * a bit clearer. 2838 */ 2839 cs->prebits = cs->pribits; 2840 if (cs->prebits == 8) { 2841 cs->prebits--; 2842 } 2843 /* 2844 * Check that CPU code defining pribits didn't violate 2845 * architectural constraints our implementation relies on. 2846 */ 2847 g_assert(cs->pribits >= 4 && cs->pribits <= 8); 2848 2849 /* 2850 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions 2851 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. 2852 */ 2853 if (cs->prebits >= 6) { 2854 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); 2855 } 2856 if (cs->prebits == 7) { 2857 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); 2858 } 2859 2860 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 2861 int j; 2862 2863 cs->num_list_regs = cpu->gic_num_lrs ?: 4; 2864 cs->vpribits = cpu->gic_vpribits ?: 5; 2865 cs->vprebits = cpu->gic_vprebits ?: 5; 2866 2867 /* Check against architectural constraints: getting these 2868 * wrong would be a bug in the CPU code defining these, 2869 * and the implementation relies on them holding. 2870 */ 2871 g_assert(cs->vprebits <= cs->vpribits); 2872 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2873 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2874 2875 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2876 2877 for (j = 0; j < cs->num_list_regs; j++) { 2878 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2879 * are split into two cp15 regs, LR (the low part, with the 2880 * same encoding as the AArch64 LR) and LRC (the high part). 2881 */ 2882 ARMCPRegInfo lr_regset[] = { 2883 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2884 .opc0 = 3, .opc1 = 4, .crn = 12, 2885 .crm = 12 + (j >> 3), .opc2 = j & 7, 2886 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2887 .access = PL2_RW, 2888 .readfn = ich_lr_read, 2889 .writefn = ich_lr_write, 2890 }, 2891 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2892 .cp = 15, .opc1 = 4, .crn = 12, 2893 .crm = 14 + (j >> 3), .opc2 = j & 7, 2894 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2895 .access = PL2_RW, 2896 .readfn = ich_lr_read, 2897 .writefn = ich_lr_write, 2898 }, 2899 }; 2900 define_arm_cp_regs(cpu, lr_regset); 2901 } 2902 if (cs->vprebits >= 6) { 2903 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2904 } 2905 if (cs->vprebits == 7) { 2906 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2907 } 2908 } 2909 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2910 } 2911 } 2912