1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 #include "target/arm/cpregs.h" 24 #include "target/arm/cpu-features.h" 25 #include "sysemu/tcg.h" 26 #include "sysemu/qtest.h" 27 28 /* 29 * Special case return value from hppvi_index(); must be larger than 30 * the architecturally maximum possible list register index (which is 15) 31 */ 32 #define HPPVI_INDEX_VLPI 16 33 34 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 35 { 36 return env->gicv3state; 37 } 38 39 static bool gicv3_use_ns_bank(CPUARMState *env) 40 { 41 /* Return true if we should use the NonSecure bank for a banked GIC 42 * CPU interface register. Note that this differs from the 43 * access_secure_reg() function because GICv3 banked registers are 44 * banked even for AArch64, unlike the other CPU system registers. 45 */ 46 return !arm_is_secure_below_el3(env); 47 } 48 49 /* The minimum BPR for the virtual interface is a configurable property */ 50 static inline int icv_min_vbpr(GICv3CPUState *cs) 51 { 52 return 7 - cs->vprebits; 53 } 54 55 static inline int ich_num_aprs(GICv3CPUState *cs) 56 { 57 /* Return the number of virtual APR registers (1, 2, or 4) */ 58 int aprmax = 1 << (cs->vprebits - 5); 59 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 60 return aprmax; 61 } 62 63 /* Simple accessor functions for LR fields */ 64 static uint32_t ich_lr_vintid(uint64_t lr) 65 { 66 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 67 } 68 69 static uint32_t ich_lr_pintid(uint64_t lr) 70 { 71 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 72 } 73 74 static uint32_t ich_lr_prio(uint64_t lr) 75 { 76 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 77 } 78 79 static int ich_lr_state(uint64_t lr) 80 { 81 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 82 } 83 84 static bool icv_access(CPUARMState *env, int hcr_flags) 85 { 86 /* Return true if this ICC_ register access should really be 87 * directed to an ICV_ access. hcr_flags is a mask of 88 * HCR_EL2 bits to check: we treat this as an ICV_ access 89 * if we are in NS EL1 and at least one of the specified 90 * HCR_EL2 bits is set. 91 * 92 * ICV registers fall into four categories: 93 * * access if NS EL1 and HCR_EL2.FMO == 1: 94 * all ICV regs with '0' in their name 95 * * access if NS EL1 and HCR_EL2.IMO == 1: 96 * all ICV regs with '1' in their name 97 * * access if NS EL1 and either IMO or FMO == 1: 98 * CTLR, DIR, PMR, RPR 99 */ 100 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 101 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 102 103 return flagmatch && arm_current_el(env) == 1 104 && !arm_is_secure_below_el3(env); 105 } 106 107 static int read_vbpr(GICv3CPUState *cs, int grp) 108 { 109 /* Read VBPR value out of the VMCR field (caller must handle 110 * VCBPR effects if required) 111 */ 112 if (grp == GICV3_G0) { 113 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 114 ICH_VMCR_EL2_VBPR0_LENGTH); 115 } else { 116 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 117 ICH_VMCR_EL2_VBPR1_LENGTH); 118 } 119 } 120 121 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 122 { 123 /* Write new VBPR1 value, handling the "writing a value less than 124 * the minimum sets it to the minimum" semantics. 125 */ 126 int min = icv_min_vbpr(cs); 127 128 if (grp != GICV3_G0) { 129 min++; 130 } 131 132 value = MAX(value, min); 133 134 if (grp == GICV3_G0) { 135 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 136 ICH_VMCR_EL2_VBPR0_LENGTH, value); 137 } else { 138 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 139 ICH_VMCR_EL2_VBPR1_LENGTH, value); 140 } 141 } 142 143 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 144 { 145 /* Return a mask word which clears the unimplemented priority bits 146 * from a priority value for a virtual interrupt. (Not to be confused 147 * with the group priority, whose mask depends on the value of VBPR 148 * for the interrupt group.) 149 */ 150 return (~0U << (8 - cs->vpribits)) & 0xff; 151 } 152 153 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 154 { 155 /* Calculate the current running priority based on the set bits 156 * in the ICH Active Priority Registers. 157 */ 158 int i; 159 int aprmax = ich_num_aprs(cs); 160 161 if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) { 162 return 0x0; 163 } 164 165 for (i = 0; i < aprmax; i++) { 166 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 167 cs->ich_apr[GICV3_G1NS][i]; 168 169 if (!apr) { 170 continue; 171 } 172 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 173 } 174 /* No current active interrupts: return idle priority */ 175 return 0xff; 176 } 177 178 static int hppvi_index(GICv3CPUState *cs) 179 { 180 /* 181 * Return the list register index of the highest priority pending 182 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 183 * pseudocode. If no pending virtual interrupts, return -1. 184 * If the highest priority pending virtual interrupt is a vLPI, 185 * return HPPVI_INDEX_VLPI. 186 * (The pseudocode handles checking whether the vLPI is higher 187 * priority than the highest priority list register at every 188 * callsite of HighestPriorityVirtualInterrupt; we check it here.) 189 */ 190 ARMCPU *cpu = ARM_CPU(cs->cpu); 191 CPUARMState *env = &cpu->env; 192 int idx = -1; 193 int i; 194 /* Note that a list register entry with a priority of 0xff will 195 * never be reported by this function; this is the architecturally 196 * correct behaviour. 197 */ 198 int prio = 0xff; 199 bool nmi = false; 200 201 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 202 /* Both groups disabled, definitely nothing to do */ 203 return idx; 204 } 205 206 for (i = 0; i < cs->num_list_regs; i++) { 207 uint64_t lr = cs->ich_lr_el2[i]; 208 bool thisnmi; 209 int thisprio; 210 211 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 212 /* Not Pending */ 213 continue; 214 } 215 216 /* Ignore interrupts if relevant group enable not set */ 217 if (lr & ICH_LR_EL2_GROUP) { 218 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 219 continue; 220 } 221 } else { 222 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 223 continue; 224 } 225 } 226 227 thisnmi = lr & ICH_LR_EL2_NMI; 228 thisprio = ich_lr_prio(lr); 229 230 if ((thisprio < prio) || ((thisprio == prio) && (thisnmi & (!nmi)))) { 231 prio = thisprio; 232 nmi = thisnmi; 233 idx = i; 234 } 235 } 236 237 /* 238 * "no pending vLPI" is indicated with prio = 0xff, which always 239 * fails the priority check here. vLPIs are only considered 240 * when we are in Non-Secure state. 241 */ 242 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { 243 if (cs->hppvlpi.grp == GICV3_G0) { 244 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { 245 return HPPVI_INDEX_VLPI; 246 } 247 } else { 248 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { 249 return HPPVI_INDEX_VLPI; 250 } 251 } 252 } 253 254 return idx; 255 } 256 257 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 258 { 259 /* Return a mask word which clears the subpriority bits from 260 * a priority value for a virtual interrupt in the specified group. 261 * This depends on the VBPR value. 262 * If using VBPR0 then: 263 * a BPR of 0 means the group priority bits are [7:1]; 264 * a BPR of 1 means they are [7:2], and so on down to 265 * a BPR of 7 meaning no group priority bits at all. 266 * If using VBPR1 then: 267 * a BPR of 0 is impossible (the minimum value is 1) 268 * a BPR of 1 means the group priority bits are [7:1]; 269 * a BPR of 2 means they are [7:2], and so on down to 270 * a BPR of 7 meaning the group priority is [7]. 271 * 272 * Which BPR to use depends on the group of the interrupt and 273 * the current ICH_VMCR_EL2.VCBPR settings. 274 * 275 * This corresponds to the VGroupBits() pseudocode. 276 */ 277 int bpr; 278 279 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 280 group = GICV3_G0; 281 } 282 283 bpr = read_vbpr(cs, group); 284 if (group == GICV3_G1NS) { 285 assert(bpr > 0); 286 bpr--; 287 } 288 289 return ~0U << (bpr + 1); 290 } 291 292 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 293 { 294 /* Return true if we can signal this virtual interrupt defined by 295 * the given list register value; see the pseudocode functions 296 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 297 * Compare also icc_hppi_can_preempt() which is the non-virtual 298 * equivalent of these checks. 299 */ 300 int grp; 301 bool is_nmi; 302 uint32_t mask, prio, rprio, vpmr; 303 304 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 305 /* Virtual interface disabled */ 306 return false; 307 } 308 309 /* We don't need to check that this LR is in Pending state because 310 * that has already been done in hppvi_index(). 311 */ 312 313 prio = ich_lr_prio(lr); 314 is_nmi = lr & ICH_LR_EL2_NMI; 315 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 316 ICH_VMCR_EL2_VPMR_LENGTH); 317 318 if (!is_nmi && prio >= vpmr) { 319 /* Priority mask masks this interrupt */ 320 return false; 321 } 322 323 rprio = ich_highest_active_virt_prio(cs); 324 if (rprio == 0xff) { 325 /* No running interrupt so we can preempt */ 326 return true; 327 } 328 329 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 330 331 mask = icv_gprio_mask(cs, grp); 332 333 /* We only preempt a running interrupt if the pending interrupt's 334 * group priority is sufficient (the subpriorities are not considered). 335 */ 336 if ((prio & mask) < (rprio & mask)) { 337 return true; 338 } 339 340 if ((prio & mask) == (rprio & mask) && is_nmi && 341 !(cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI)) { 342 return true; 343 } 344 345 return false; 346 } 347 348 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) 349 { 350 /* 351 * Return true if we can signal the highest priority pending vLPI. 352 * We can assume we're Non-secure because hppvi_index() already 353 * tested for that. 354 */ 355 uint32_t mask, rprio, vpmr; 356 357 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 358 /* Virtual interface disabled */ 359 return false; 360 } 361 362 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 363 ICH_VMCR_EL2_VPMR_LENGTH); 364 365 if (cs->hppvlpi.prio >= vpmr) { 366 /* Priority mask masks this interrupt */ 367 return false; 368 } 369 370 rprio = ich_highest_active_virt_prio(cs); 371 if (rprio == 0xff) { 372 /* No running interrupt so we can preempt */ 373 return true; 374 } 375 376 mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 377 378 /* 379 * We only preempt a running interrupt if the pending interrupt's 380 * group priority is sufficient (the subpriorities are not considered). 381 */ 382 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { 383 return true; 384 } 385 386 return false; 387 } 388 389 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 390 uint32_t *misr) 391 { 392 /* Return a set of bits indicating the EOI maintenance interrupt status 393 * for each list register. The EOI maintenance interrupt status is 394 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 395 * (see the GICv3 spec for the ICH_EISR_EL2 register). 396 * If misr is not NULL then we should also collect the information 397 * about the MISR.EOI, MISR.NP and MISR.U bits. 398 */ 399 uint32_t value = 0; 400 int validcount = 0; 401 bool seenpending = false; 402 int i; 403 404 for (i = 0; i < cs->num_list_regs; i++) { 405 uint64_t lr = cs->ich_lr_el2[i]; 406 407 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 408 == ICH_LR_EL2_EOI) { 409 value |= (1 << i); 410 } 411 if ((lr & ICH_LR_EL2_STATE_MASK)) { 412 validcount++; 413 } 414 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 415 seenpending = true; 416 } 417 } 418 419 if (misr) { 420 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 421 *misr |= ICH_MISR_EL2_U; 422 } 423 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 424 *misr |= ICH_MISR_EL2_NP; 425 } 426 if (value) { 427 *misr |= ICH_MISR_EL2_EOI; 428 } 429 } 430 return value; 431 } 432 433 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 434 { 435 /* Return a set of bits indicating the maintenance interrupt status 436 * (as seen in the ICH_MISR_EL2 register). 437 */ 438 uint32_t value = 0; 439 440 /* Scan list registers and fill in the U, NP and EOI bits */ 441 eoi_maintenance_interrupt_state(cs, &value); 442 443 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 444 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 445 value |= ICH_MISR_EL2_LRENP; 446 } 447 448 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 449 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 450 value |= ICH_MISR_EL2_VGRP0E; 451 } 452 453 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 454 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 455 value |= ICH_MISR_EL2_VGRP0D; 456 } 457 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 458 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 459 value |= ICH_MISR_EL2_VGRP1E; 460 } 461 462 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 463 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 464 value |= ICH_MISR_EL2_VGRP1D; 465 } 466 467 return value; 468 } 469 470 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) 471 { 472 /* 473 * Tell the CPU about any pending virtual interrupts. 474 * This should only be called for changes that affect the 475 * vIRQ and vFIQ status and do not change the maintenance 476 * interrupt status. This means that unlike gicv3_cpuif_virt_update() 477 * this function won't recursively call back into the GIC code. 478 * The main use of this is when the redistributor has changed the 479 * highest priority pending virtual LPI. 480 */ 481 int idx; 482 int irqlevel = 0; 483 int fiqlevel = 0; 484 485 idx = hppvi_index(cs); 486 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, 487 cs->hppvlpi.irq, cs->hppvlpi.grp, 488 cs->hppvlpi.prio); 489 if (idx == HPPVI_INDEX_VLPI) { 490 if (icv_hppvlpi_can_preempt(cs)) { 491 if (cs->hppvlpi.grp == GICV3_G0) { 492 fiqlevel = 1; 493 } else { 494 irqlevel = 1; 495 } 496 } 497 } else if (idx >= 0) { 498 uint64_t lr = cs->ich_lr_el2[idx]; 499 500 if (icv_hppi_can_preempt(cs, lr)) { 501 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 502 if (lr & ICH_LR_EL2_GROUP) { 503 irqlevel = 1; 504 } else { 505 fiqlevel = 1; 506 } 507 } 508 } 509 510 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 511 qemu_set_irq(cs->parent_vfiq, fiqlevel); 512 qemu_set_irq(cs->parent_virq, irqlevel); 513 } 514 515 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 516 { 517 /* 518 * Tell the CPU about any pending virtual interrupts or 519 * maintenance interrupts, following a change to the state 520 * of the CPU interface relevant to virtual interrupts. 521 * 522 * CAUTION: this function will call qemu_set_irq() on the 523 * CPU maintenance IRQ line, which is typically wired up 524 * to the GIC as a per-CPU interrupt. This means that it 525 * will recursively call back into the GIC code via 526 * gicv3_redist_set_irq() and thus into the CPU interface code's 527 * gicv3_cpuif_update(). It is therefore important that this 528 * function is only called as the final action of a CPU interface 529 * register write implementation, after all the GIC state 530 * fields have been updated. gicv3_cpuif_update() also must 531 * not cause this function to be called, but that happens 532 * naturally as a result of there being no architectural 533 * linkage between the physical and virtual GIC logic. 534 */ 535 ARMCPU *cpu = ARM_CPU(cs->cpu); 536 int maintlevel = 0; 537 538 gicv3_cpuif_virt_irq_fiq_update(cs); 539 540 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 541 maintenance_interrupt_state(cs) != 0) { 542 maintlevel = 1; 543 } 544 545 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); 546 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 547 } 548 549 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 550 { 551 GICv3CPUState *cs = icc_cs_from_env(env); 552 int regno = ri->opc2 & 3; 553 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 554 uint64_t value = cs->ich_apr[grp][regno]; 555 556 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 557 return value; 558 } 559 560 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 561 uint64_t value) 562 { 563 GICv3CPUState *cs = icc_cs_from_env(env); 564 int regno = ri->opc2 & 3; 565 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 566 567 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 568 569 if (cs->nmi_support) { 570 cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI); 571 } else { 572 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 573 } 574 575 gicv3_cpuif_virt_irq_fiq_update(cs); 576 return; 577 } 578 579 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 580 { 581 GICv3CPUState *cs = icc_cs_from_env(env); 582 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 583 uint64_t bpr; 584 bool satinc = false; 585 586 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 587 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 588 grp = GICV3_G0; 589 satinc = true; 590 } 591 592 bpr = read_vbpr(cs, grp); 593 594 if (satinc) { 595 bpr++; 596 bpr = MIN(bpr, 7); 597 } 598 599 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 600 601 return bpr; 602 } 603 604 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 605 uint64_t value) 606 { 607 GICv3CPUState *cs = icc_cs_from_env(env); 608 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 609 610 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 611 gicv3_redist_affid(cs), value); 612 613 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 614 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 615 return; 616 } 617 618 write_vbpr(cs, grp, value); 619 620 gicv3_cpuif_virt_irq_fiq_update(cs); 621 } 622 623 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 624 { 625 GICv3CPUState *cs = icc_cs_from_env(env); 626 uint64_t value; 627 628 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 629 ICH_VMCR_EL2_VPMR_LENGTH); 630 631 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 632 return value; 633 } 634 635 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 636 uint64_t value) 637 { 638 GICv3CPUState *cs = icc_cs_from_env(env); 639 640 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 641 642 value &= icv_fullprio_mask(cs); 643 644 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 645 ICH_VMCR_EL2_VPMR_LENGTH, value); 646 647 gicv3_cpuif_virt_irq_fiq_update(cs); 648 } 649 650 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 651 { 652 GICv3CPUState *cs = icc_cs_from_env(env); 653 int enbit; 654 uint64_t value; 655 656 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 657 value = extract64(cs->ich_vmcr_el2, enbit, 1); 658 659 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 660 gicv3_redist_affid(cs), value); 661 return value; 662 } 663 664 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 665 uint64_t value) 666 { 667 GICv3CPUState *cs = icc_cs_from_env(env); 668 int enbit; 669 670 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 671 gicv3_redist_affid(cs), value); 672 673 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 674 675 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 676 gicv3_cpuif_virt_update(cs); 677 } 678 679 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 680 { 681 GICv3CPUState *cs = icc_cs_from_env(env); 682 uint64_t value; 683 684 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 685 * should match the ones reported in ich_vtr_read(). 686 */ 687 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 688 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 689 690 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 691 value |= ICC_CTLR_EL1_EOIMODE; 692 } 693 694 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 695 value |= ICC_CTLR_EL1_CBPR; 696 } 697 698 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 699 return value; 700 } 701 702 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 703 uint64_t value) 704 { 705 GICv3CPUState *cs = icc_cs_from_env(env); 706 707 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 708 709 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 710 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 711 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 712 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 713 714 gicv3_cpuif_virt_irq_fiq_update(cs); 715 } 716 717 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 718 { 719 GICv3CPUState *cs = icc_cs_from_env(env); 720 uint64_t prio = ich_highest_active_virt_prio(cs); 721 722 if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) { 723 prio |= ICV_RPR_EL1_NMI; 724 } 725 726 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 727 return prio; 728 } 729 730 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 731 { 732 GICv3CPUState *cs = icc_cs_from_env(env); 733 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 734 int idx = hppvi_index(cs); 735 uint64_t value = INTID_SPURIOUS; 736 737 if (idx == HPPVI_INDEX_VLPI) { 738 if (cs->hppvlpi.grp == grp) { 739 value = cs->hppvlpi.irq; 740 } 741 } else if (idx >= 0) { 742 uint64_t lr = cs->ich_lr_el2[idx]; 743 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 744 745 if (grp == thisgrp) { 746 value = ich_lr_vintid(lr); 747 } 748 } 749 750 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, 751 gicv3_redist_affid(cs), value); 752 return value; 753 } 754 755 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 756 { 757 /* Activate the interrupt in the specified list register 758 * by moving it from Pending to Active state, and update the 759 * Active Priority Registers. 760 */ 761 uint32_t mask = icv_gprio_mask(cs, grp); 762 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 763 bool nmi = cs->ich_lr_el2[idx] & ICH_LR_EL2_NMI; 764 int aprbit = prio >> (8 - cs->vprebits); 765 int regno = aprbit / 32; 766 int regbit = aprbit % 32; 767 768 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 769 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 770 771 if (nmi) { 772 cs->ich_apr[grp][regno] |= ICV_AP1R_EL1_NMI; 773 } else { 774 cs->ich_apr[grp][regno] |= (1 << regbit); 775 } 776 } 777 778 static void icv_activate_vlpi(GICv3CPUState *cs) 779 { 780 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 781 int prio = cs->hppvlpi.prio & mask; 782 int aprbit = prio >> (8 - cs->vprebits); 783 int regno = aprbit / 32; 784 int regbit = aprbit % 32; 785 786 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); 787 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); 788 } 789 790 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 791 { 792 GICv3CPUState *cs = icc_cs_from_env(env); 793 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 794 int idx = hppvi_index(cs); 795 uint64_t intid = INTID_SPURIOUS; 796 int el = arm_current_el(env); 797 798 if (idx == HPPVI_INDEX_VLPI) { 799 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { 800 intid = cs->hppvlpi.irq; 801 icv_activate_vlpi(cs); 802 } 803 } else if (idx >= 0) { 804 uint64_t lr = cs->ich_lr_el2[idx]; 805 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 806 bool nmi = env->cp15.sctlr_el[el] & SCTLR_NMI && lr & ICH_LR_EL2_NMI; 807 808 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 809 intid = ich_lr_vintid(lr); 810 if (!gicv3_intid_is_special(intid)) { 811 if (!nmi) { 812 icv_activate_irq(cs, idx, grp); 813 } else { 814 intid = INTID_NMI; 815 } 816 } else { 817 /* Interrupt goes from Pending to Invalid */ 818 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 819 /* We will now return the (bogus) ID from the list register, 820 * as per the pseudocode. 821 */ 822 } 823 } 824 } 825 826 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 827 gicv3_redist_affid(cs), intid); 828 829 gicv3_cpuif_virt_update(cs); 830 831 return intid; 832 } 833 834 static uint64_t icv_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 835 { 836 GICv3CPUState *cs = icc_cs_from_env(env); 837 int idx = hppvi_index(cs); 838 uint64_t intid = INTID_SPURIOUS; 839 840 if (idx >= 0 && idx != HPPVI_INDEX_VLPI) { 841 uint64_t lr = cs->ich_lr_el2[idx]; 842 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 843 844 if ((thisgrp == GICV3_G1NS) && icv_hppi_can_preempt(cs, lr)) { 845 intid = ich_lr_vintid(lr); 846 if (!gicv3_intid_is_special(intid)) { 847 if (lr & ICH_LR_EL2_NMI) { 848 icv_activate_irq(cs, idx, GICV3_G1NS); 849 } else { 850 intid = INTID_SPURIOUS; 851 } 852 } else { 853 /* Interrupt goes from Pending to Invalid */ 854 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 855 /* 856 * We will now return the (bogus) ID from the list register, 857 * as per the pseudocode. 858 */ 859 } 860 } 861 } 862 863 trace_gicv3_icv_nmiar1_read(gicv3_redist_affid(cs), intid); 864 865 gicv3_cpuif_virt_update(cs); 866 867 return intid; 868 } 869 870 static uint32_t icc_fullprio_mask(GICv3CPUState *cs) 871 { 872 /* 873 * Return a mask word which clears the unimplemented priority bits 874 * from a priority value for a physical interrupt. (Not to be confused 875 * with the group priority, whose mask depends on the value of BPR 876 * for the interrupt group.) 877 */ 878 return (~0U << (8 - cs->pribits)) & 0xff; 879 } 880 881 static inline int icc_min_bpr(GICv3CPUState *cs) 882 { 883 /* The minimum BPR for the physical interface. */ 884 return 7 - cs->prebits; 885 } 886 887 static inline int icc_min_bpr_ns(GICv3CPUState *cs) 888 { 889 return icc_min_bpr(cs) + 1; 890 } 891 892 static inline int icc_num_aprs(GICv3CPUState *cs) 893 { 894 /* Return the number of APR registers (1, 2, or 4) */ 895 int aprmax = 1 << MAX(cs->prebits - 5, 0); 896 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); 897 return aprmax; 898 } 899 900 static int icc_highest_active_prio(GICv3CPUState *cs) 901 { 902 /* Calculate the current running priority based on the set bits 903 * in the Active Priority Registers. 904 */ 905 int i; 906 907 if (cs->nmi_support) { 908 /* 909 * If an NMI is active this takes precedence over anything else 910 * for priority purposes; the NMI bit is only in the AP1R0 bit. 911 * We return here the effective priority of the NMI, which is 912 * either 0x0 or 0x80. Callers will need to check NMI again for 913 * purposes of either setting the RPR register bits or for 914 * prioritization of NMI vs non-NMI. 915 */ 916 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { 917 return 0; 918 } 919 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 920 return (cs->gic->gicd_ctlr & GICD_CTLR_DS) ? 0 : 0x80; 921 } 922 } 923 924 for (i = 0; i < icc_num_aprs(cs); i++) { 925 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 926 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 927 928 if (!apr) { 929 continue; 930 } 931 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); 932 } 933 /* No current active interrupts: return idle priority */ 934 return 0xff; 935 } 936 937 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 938 { 939 /* Return a mask word which clears the subpriority bits from 940 * a priority value for an interrupt in the specified group. 941 * This depends on the BPR value. For CBPR0 (S or NS): 942 * a BPR of 0 means the group priority bits are [7:1]; 943 * a BPR of 1 means they are [7:2], and so on down to 944 * a BPR of 7 meaning no group priority bits at all. 945 * For CBPR1 NS: 946 * a BPR of 0 is impossible (the minimum value is 1) 947 * a BPR of 1 means the group priority bits are [7:1]; 948 * a BPR of 2 means they are [7:2], and so on down to 949 * a BPR of 7 meaning the group priority is [7]. 950 * 951 * Which BPR to use depends on the group of the interrupt and 952 * the current ICC_CTLR.CBPR settings. 953 * 954 * This corresponds to the GroupBits() pseudocode. 955 */ 956 int bpr; 957 958 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 959 (group == GICV3_G1NS && 960 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 961 group = GICV3_G0; 962 } 963 964 bpr = cs->icc_bpr[group] & 7; 965 966 if (group == GICV3_G1NS) { 967 assert(bpr > 0); 968 bpr--; 969 } 970 971 return ~0U << (bpr + 1); 972 } 973 974 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 975 { 976 /* Return true if there is no pending interrupt, or the 977 * highest priority pending interrupt is in a group which has been 978 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 979 */ 980 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 981 } 982 983 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 984 { 985 /* Return true if we have a pending interrupt of sufficient 986 * priority to preempt. 987 */ 988 int rprio; 989 uint32_t mask; 990 ARMCPU *cpu = ARM_CPU(cs->cpu); 991 CPUARMState *env = &cpu->env; 992 993 if (icc_no_enabled_hppi(cs)) { 994 return false; 995 } 996 997 if (cs->hppi.nmi) { 998 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 999 cs->hppi.grp == GICV3_G1NS) { 1000 if (cs->icc_pmr_el1 < 0x80) { 1001 return false; 1002 } 1003 if (arm_is_secure(env) && cs->icc_pmr_el1 == 0x80) { 1004 return false; 1005 } 1006 } 1007 } else if (cs->hppi.prio >= cs->icc_pmr_el1) { 1008 /* Priority mask masks this interrupt */ 1009 return false; 1010 } 1011 1012 rprio = icc_highest_active_prio(cs); 1013 if (rprio == 0xff) { 1014 /* No currently running interrupt so we can preempt */ 1015 return true; 1016 } 1017 1018 mask = icc_gprio_mask(cs, cs->hppi.grp); 1019 1020 /* We only preempt a running interrupt if the pending interrupt's 1021 * group priority is sufficient (the subpriorities are not considered). 1022 */ 1023 if ((cs->hppi.prio & mask) < (rprio & mask)) { 1024 return true; 1025 } 1026 1027 if (cs->hppi.nmi && (cs->hppi.prio & mask) == (rprio & mask)) { 1028 if (!(cs->icc_apr[cs->hppi.grp][0] & ICC_AP1R_EL1_NMI)) { 1029 return true; 1030 } 1031 } 1032 1033 return false; 1034 } 1035 1036 void gicv3_cpuif_update(GICv3CPUState *cs) 1037 { 1038 /* Tell the CPU about its highest priority pending interrupt */ 1039 int irqlevel = 0; 1040 int fiqlevel = 0; 1041 ARMCPU *cpu = ARM_CPU(cs->cpu); 1042 CPUARMState *env = &cpu->env; 1043 1044 g_assert(bql_locked()); 1045 1046 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 1047 cs->hppi.grp, cs->hppi.prio); 1048 1049 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 1050 /* If a Security-enabled GIC sends a G1S interrupt to a 1051 * Security-disabled CPU, we must treat it as if it were G0. 1052 */ 1053 cs->hppi.grp = GICV3_G0; 1054 } 1055 1056 if (icc_hppi_can_preempt(cs)) { 1057 /* We have an interrupt: should we signal it as IRQ or FIQ? 1058 * This is described in the GICv3 spec section 4.6.2. 1059 */ 1060 bool isfiq; 1061 1062 switch (cs->hppi.grp) { 1063 case GICV3_G0: 1064 isfiq = true; 1065 break; 1066 case GICV3_G1: 1067 isfiq = (!arm_is_secure(env) || 1068 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 1069 break; 1070 case GICV3_G1NS: 1071 isfiq = arm_is_secure(env); 1072 break; 1073 default: 1074 g_assert_not_reached(); 1075 } 1076 1077 if (isfiq) { 1078 fiqlevel = 1; 1079 } else { 1080 irqlevel = 1; 1081 } 1082 } 1083 1084 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 1085 1086 qemu_set_irq(cs->parent_fiq, fiqlevel); 1087 qemu_set_irq(cs->parent_irq, irqlevel); 1088 } 1089 1090 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1091 { 1092 GICv3CPUState *cs = icc_cs_from_env(env); 1093 uint32_t value = cs->icc_pmr_el1; 1094 1095 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1096 return icv_pmr_read(env, ri); 1097 } 1098 1099 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1100 (env->cp15.scr_el3 & SCR_FIQ)) { 1101 /* NS access and Group 0 is inaccessible to NS: return the 1102 * NS view of the current priority 1103 */ 1104 if ((value & 0x80) == 0) { 1105 /* Secure priorities not visible to NS */ 1106 value = 0; 1107 } else if (value != 0xff) { 1108 value = (value << 1) & 0xff; 1109 } 1110 } 1111 1112 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 1113 1114 return value; 1115 } 1116 1117 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1118 uint64_t value) 1119 { 1120 GICv3CPUState *cs = icc_cs_from_env(env); 1121 1122 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1123 return icv_pmr_write(env, ri, value); 1124 } 1125 1126 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 1127 1128 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1129 (env->cp15.scr_el3 & SCR_FIQ)) { 1130 /* NS access and Group 0 is inaccessible to NS: return the 1131 * NS view of the current priority 1132 */ 1133 if (!(cs->icc_pmr_el1 & 0x80)) { 1134 /* Current PMR in the secure range, don't allow NS to change it */ 1135 return; 1136 } 1137 value = (value >> 1) | 0x80; 1138 } 1139 value &= icc_fullprio_mask(cs); 1140 cs->icc_pmr_el1 = value; 1141 gicv3_cpuif_update(cs); 1142 } 1143 1144 static void icc_activate_irq(GICv3CPUState *cs, int irq) 1145 { 1146 /* Move the interrupt from the Pending state to Active, and update 1147 * the Active Priority Registers 1148 */ 1149 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 1150 int prio = cs->hppi.prio & mask; 1151 int aprbit = prio >> (8 - cs->prebits); 1152 int regno = aprbit / 32; 1153 int regbit = aprbit % 32; 1154 bool nmi = cs->hppi.nmi; 1155 1156 if (nmi) { 1157 cs->icc_apr[cs->hppi.grp][regno] |= ICC_AP1R_EL1_NMI; 1158 } else { 1159 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 1160 } 1161 1162 if (irq < GIC_INTERNAL) { 1163 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 1164 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 1165 gicv3_redist_update(cs); 1166 } else if (irq < GICV3_LPI_INTID_START) { 1167 gicv3_gicd_active_set(cs->gic, irq); 1168 gicv3_gicd_pending_clear(cs->gic, irq); 1169 gicv3_update(cs->gic, irq, 1); 1170 } else { 1171 gicv3_redist_lpi_pending(cs, irq, 0); 1172 } 1173 } 1174 1175 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 1176 { 1177 /* Return the highest priority pending interrupt register value 1178 * for group 0. 1179 */ 1180 bool irq_is_secure; 1181 1182 if (icc_no_enabled_hppi(cs)) { 1183 return INTID_SPURIOUS; 1184 } 1185 1186 /* Check whether we can return the interrupt or if we should return 1187 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 1188 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1189 * is always zero.) 1190 */ 1191 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1192 (cs->hppi.grp != GICV3_G1NS)); 1193 1194 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 1195 return INTID_SPURIOUS; 1196 } 1197 if (irq_is_secure && !arm_is_secure(env)) { 1198 /* Secure interrupts not visible to Nonsecure */ 1199 return INTID_SPURIOUS; 1200 } 1201 1202 if (cs->hppi.grp != GICV3_G0) { 1203 /* Indicate to EL3 that there's a Group 1 interrupt for the other 1204 * state pending. 1205 */ 1206 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 1207 } 1208 1209 return cs->hppi.irq; 1210 } 1211 1212 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 1213 { 1214 /* Return the highest priority pending interrupt register value 1215 * for group 1. 1216 */ 1217 bool irq_is_secure; 1218 1219 if (icc_no_enabled_hppi(cs)) { 1220 return INTID_SPURIOUS; 1221 } 1222 1223 /* Check whether we can return the interrupt or if we should return 1224 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 1225 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1226 * is always zero.) 1227 */ 1228 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1229 (cs->hppi.grp != GICV3_G1NS)); 1230 1231 if (cs->hppi.grp == GICV3_G0) { 1232 /* Group 0 interrupts not visible via HPPIR1 */ 1233 return INTID_SPURIOUS; 1234 } 1235 if (irq_is_secure) { 1236 if (!arm_is_secure(env)) { 1237 /* Secure interrupts not visible in Non-secure */ 1238 return INTID_SPURIOUS; 1239 } 1240 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1241 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 1242 return INTID_SPURIOUS; 1243 } 1244 1245 return cs->hppi.irq; 1246 } 1247 1248 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1249 { 1250 GICv3CPUState *cs = icc_cs_from_env(env); 1251 uint64_t intid; 1252 1253 if (icv_access(env, HCR_FMO)) { 1254 return icv_iar_read(env, ri); 1255 } 1256 1257 if (!icc_hppi_can_preempt(cs)) { 1258 intid = INTID_SPURIOUS; 1259 } else { 1260 intid = icc_hppir0_value(cs, env); 1261 } 1262 1263 if (!gicv3_intid_is_special(intid)) { 1264 icc_activate_irq(cs, intid); 1265 } 1266 1267 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1268 return intid; 1269 } 1270 1271 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1272 { 1273 GICv3CPUState *cs = icc_cs_from_env(env); 1274 int el = arm_current_el(env); 1275 uint64_t intid; 1276 1277 if (icv_access(env, HCR_IMO)) { 1278 return icv_iar_read(env, ri); 1279 } 1280 1281 if (!icc_hppi_can_preempt(cs)) { 1282 intid = INTID_SPURIOUS; 1283 } else { 1284 intid = icc_hppir1_value(cs, env); 1285 } 1286 1287 if (!gicv3_intid_is_special(intid)) { 1288 if (cs->hppi.nmi && env->cp15.sctlr_el[el] & SCTLR_NMI) { 1289 intid = INTID_NMI; 1290 } else { 1291 icc_activate_irq(cs, intid); 1292 } 1293 } 1294 1295 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1296 return intid; 1297 } 1298 1299 static uint64_t icc_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1300 { 1301 GICv3CPUState *cs = icc_cs_from_env(env); 1302 uint64_t intid; 1303 1304 if (icv_access(env, HCR_IMO)) { 1305 return icv_nmiar1_read(env, ri); 1306 } 1307 1308 if (!icc_hppi_can_preempt(cs)) { 1309 intid = INTID_SPURIOUS; 1310 } else { 1311 intid = icc_hppir1_value(cs, env); 1312 } 1313 1314 if (!gicv3_intid_is_special(intid)) { 1315 if (!cs->hppi.nmi) { 1316 intid = INTID_SPURIOUS; 1317 } else { 1318 icc_activate_irq(cs, intid); 1319 } 1320 } 1321 1322 trace_gicv3_icc_nmiar1_read(gicv3_redist_affid(cs), intid); 1323 return intid; 1324 } 1325 1326 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1327 { 1328 /* Drop the priority of the currently active interrupt in 1329 * the specified group. 1330 * 1331 * Note that we can guarantee (because of the requirement to nest 1332 * ICC_IAR reads [which activate an interrupt and raise priority] 1333 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1334 * that the interrupt we're being called for is the highest priority 1335 * active interrupt, meaning that it has the lowest set bit in the 1336 * APR registers. 1337 * 1338 * If the guest does not honour the ordering constraints then the 1339 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1340 * the values of the APR registers might become incorrect and the 1341 * running priority will be wrong, so interrupts that should preempt 1342 * might not do so, and interrupts that should not preempt might do so. 1343 */ 1344 int i; 1345 1346 for (i = 0; i < icc_num_aprs(cs); i++) { 1347 uint64_t *papr = &cs->icc_apr[grp][i]; 1348 1349 if (!*papr) { 1350 continue; 1351 } 1352 1353 if (i == 0 && cs->nmi_support && (*papr & ICC_AP1R_EL1_NMI)) { 1354 *papr &= (~ICC_AP1R_EL1_NMI); 1355 break; 1356 } 1357 1358 /* Clear the lowest set bit */ 1359 *papr &= *papr - 1; 1360 break; 1361 } 1362 1363 /* running priority change means we need an update for this cpu i/f */ 1364 gicv3_cpuif_update(cs); 1365 } 1366 1367 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1368 { 1369 /* Return true if we should split priority drop and interrupt 1370 * deactivation, ie whether the relevant EOIMode bit is set. 1371 */ 1372 if (arm_is_el3_or_mon(env)) { 1373 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1374 } 1375 if (arm_is_secure_below_el3(env)) { 1376 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1377 } else { 1378 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1379 } 1380 } 1381 1382 static int icc_highest_active_group(GICv3CPUState *cs) 1383 { 1384 /* Return the group with the highest priority active interrupt. 1385 * We can do this by just comparing the APRs to see which one 1386 * has the lowest set bit. 1387 * (If more than one group is active at the same priority then 1388 * we're in UNPREDICTABLE territory.) 1389 */ 1390 int i; 1391 1392 if (cs->nmi_support) { 1393 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { 1394 return GICV3_G1; 1395 } 1396 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 1397 return GICV3_G1NS; 1398 } 1399 } 1400 1401 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1402 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1403 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1404 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1405 1406 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1407 return GICV3_G1NS; 1408 } 1409 if (g1ctz < g0ctz) { 1410 return GICV3_G1; 1411 } 1412 if (g0ctz < 32) { 1413 return GICV3_G0; 1414 } 1415 } 1416 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1417 * ignores the spurious EOI attempt. 1418 */ 1419 return -1; 1420 } 1421 1422 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1423 { 1424 if (irq < GIC_INTERNAL) { 1425 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1426 gicv3_redist_update(cs); 1427 } else { 1428 gicv3_gicd_active_clear(cs->gic, irq); 1429 gicv3_update(cs->gic, irq, 1); 1430 } 1431 } 1432 1433 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1434 { 1435 /* Return true if we should split priority drop and interrupt 1436 * deactivation, ie whether the virtual EOIMode bit is set. 1437 */ 1438 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1439 } 1440 1441 static int icv_find_active(GICv3CPUState *cs, int irq) 1442 { 1443 /* Given an interrupt number for an active interrupt, return the index 1444 * of the corresponding list register, or -1 if there is no match. 1445 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1446 */ 1447 int i; 1448 1449 for (i = 0; i < cs->num_list_regs; i++) { 1450 uint64_t lr = cs->ich_lr_el2[i]; 1451 1452 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1453 return i; 1454 } 1455 } 1456 1457 return -1; 1458 } 1459 1460 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1461 { 1462 /* Deactivate the interrupt in the specified list register index */ 1463 uint64_t lr = cs->ich_lr_el2[idx]; 1464 1465 if (lr & ICH_LR_EL2_HW) { 1466 /* Deactivate the associated physical interrupt */ 1467 int pirq = ich_lr_pintid(lr); 1468 1469 if (pirq < INTID_SECURE) { 1470 icc_deactivate_irq(cs, pirq); 1471 } 1472 } 1473 1474 /* Clear the 'active' part of the state, so ActivePending->Pending 1475 * and Active->Invalid. 1476 */ 1477 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1478 cs->ich_lr_el2[idx] = lr; 1479 } 1480 1481 static void icv_increment_eoicount(GICv3CPUState *cs) 1482 { 1483 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1484 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1485 ICH_HCR_EL2_EOICOUNT_LENGTH); 1486 1487 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1488 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1489 } 1490 1491 static int icv_drop_prio(GICv3CPUState *cs, bool *nmi) 1492 { 1493 /* Drop the priority of the currently active virtual interrupt 1494 * (favouring group 0 if there is a set active bit at 1495 * the same priority for both group 0 and group 1). 1496 * Return the priority value for the bit we just cleared, 1497 * or 0xff if no bits were set in the AP registers at all. 1498 * Note that though the ich_apr[] are uint64_t only the low 1499 * 32 bits are actually relevant. 1500 */ 1501 int i; 1502 int aprmax = ich_num_aprs(cs); 1503 1504 for (i = 0; i < aprmax; i++) { 1505 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1506 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1507 int apr0count, apr1count; 1508 1509 if (!*papr0 && !*papr1) { 1510 continue; 1511 } 1512 1513 if (i == 0 && cs->nmi_support && (*papr1 & ICV_AP1R_EL1_NMI)) { 1514 *papr1 &= (~ICV_AP1R_EL1_NMI); 1515 *nmi = true; 1516 return 0xff; 1517 } 1518 1519 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1520 * because we need to return the bit number we cleared so 1521 * it can be compared against the list register's priority field. 1522 */ 1523 apr0count = ctz32(*papr0); 1524 apr1count = ctz32(*papr1); 1525 1526 if (apr0count <= apr1count) { 1527 *papr0 &= *papr0 - 1; 1528 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1529 } else { 1530 *papr1 &= *papr1 - 1; 1531 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1532 } 1533 } 1534 return 0xff; 1535 } 1536 1537 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1538 uint64_t value) 1539 { 1540 /* Deactivate interrupt */ 1541 GICv3CPUState *cs = icc_cs_from_env(env); 1542 int idx; 1543 int irq = value & 0xffffff; 1544 1545 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1546 1547 if (irq >= GICV3_MAXIRQ) { 1548 /* Also catches special interrupt numbers and LPIs */ 1549 return; 1550 } 1551 1552 if (!icv_eoi_split(env, cs)) { 1553 return; 1554 } 1555 1556 idx = icv_find_active(cs, irq); 1557 1558 if (idx < 0) { 1559 /* No list register matching this, so increment the EOI count 1560 * (might trigger a maintenance interrupt) 1561 */ 1562 icv_increment_eoicount(cs); 1563 } else { 1564 icv_deactivate_irq(cs, idx); 1565 } 1566 1567 gicv3_cpuif_virt_update(cs); 1568 } 1569 1570 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1571 uint64_t value) 1572 { 1573 /* End of Interrupt */ 1574 GICv3CPUState *cs = icc_cs_from_env(env); 1575 int irq = value & 0xffffff; 1576 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1577 int idx, dropprio; 1578 bool nmi = false; 1579 1580 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1581 gicv3_redist_affid(cs), value); 1582 1583 if (gicv3_intid_is_special(irq)) { 1584 return; 1585 } 1586 1587 /* We implement the IMPDEF choice of "drop priority before doing 1588 * error checks" (because that lets us avoid scanning the AP 1589 * registers twice). 1590 */ 1591 dropprio = icv_drop_prio(cs, &nmi); 1592 if (dropprio == 0xff && !nmi) { 1593 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1594 * whether the list registers are checked in this 1595 * situation; we choose not to. 1596 */ 1597 return; 1598 } 1599 1600 idx = icv_find_active(cs, irq); 1601 1602 if (idx < 0) { 1603 /* 1604 * No valid list register corresponding to EOI ID; if this is a vLPI 1605 * not in the list regs then do nothing; otherwise increment EOI count 1606 */ 1607 if (irq < GICV3_LPI_INTID_START) { 1608 icv_increment_eoicount(cs); 1609 } 1610 } else { 1611 uint64_t lr = cs->ich_lr_el2[idx]; 1612 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1613 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1614 bool thisnmi = lr & ICH_LR_EL2_NMI; 1615 1616 if (thisgrp == grp && (lr_gprio == dropprio || (thisnmi & nmi))) { 1617 if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) { 1618 /* 1619 * Priority drop and deactivate not split: deactivate irq now. 1620 * LPIs always get their active state cleared immediately 1621 * because no separate deactivate is expected. 1622 */ 1623 icv_deactivate_irq(cs, idx); 1624 } 1625 } 1626 } 1627 1628 gicv3_cpuif_virt_update(cs); 1629 } 1630 1631 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1632 uint64_t value) 1633 { 1634 /* End of Interrupt */ 1635 GICv3CPUState *cs = icc_cs_from_env(env); 1636 int irq = value & 0xffffff; 1637 int grp; 1638 bool is_eoir0 = ri->crm == 8; 1639 1640 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1641 icv_eoir_write(env, ri, value); 1642 return; 1643 } 1644 1645 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1646 gicv3_redist_affid(cs), value); 1647 1648 if ((irq >= cs->gic->num_irq) && 1649 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1650 /* This handles two cases: 1651 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1652 * to the GICC_EOIR, the GIC ignores that write. 1653 * 2. If software writes the number of a non-existent interrupt 1654 * this must be a subcase of "value written does not match the last 1655 * valid interrupt value read from the Interrupt Acknowledge 1656 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1657 */ 1658 return; 1659 } 1660 1661 grp = icc_highest_active_group(cs); 1662 switch (grp) { 1663 case GICV3_G0: 1664 if (!is_eoir0) { 1665 return; 1666 } 1667 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1668 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1669 return; 1670 } 1671 break; 1672 case GICV3_G1: 1673 if (is_eoir0) { 1674 return; 1675 } 1676 if (!arm_is_secure(env)) { 1677 return; 1678 } 1679 break; 1680 case GICV3_G1NS: 1681 if (is_eoir0) { 1682 return; 1683 } 1684 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1685 return; 1686 } 1687 break; 1688 default: 1689 qemu_log_mask(LOG_GUEST_ERROR, 1690 "%s: IRQ %d isn't active\n", __func__, irq); 1691 return; 1692 } 1693 1694 icc_drop_prio(cs, grp); 1695 1696 if (!icc_eoi_split(env, cs)) { 1697 /* Priority drop and deactivate not split: deactivate irq now */ 1698 icc_deactivate_irq(cs, irq); 1699 } 1700 } 1701 1702 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1703 { 1704 GICv3CPUState *cs = icc_cs_from_env(env); 1705 uint64_t value; 1706 1707 if (icv_access(env, HCR_FMO)) { 1708 return icv_hppir_read(env, ri); 1709 } 1710 1711 value = icc_hppir0_value(cs, env); 1712 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1713 return value; 1714 } 1715 1716 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1717 { 1718 GICv3CPUState *cs = icc_cs_from_env(env); 1719 uint64_t value; 1720 1721 if (icv_access(env, HCR_IMO)) { 1722 return icv_hppir_read(env, ri); 1723 } 1724 1725 value = icc_hppir1_value(cs, env); 1726 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1727 return value; 1728 } 1729 1730 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1731 { 1732 GICv3CPUState *cs = icc_cs_from_env(env); 1733 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1734 bool satinc = false; 1735 uint64_t bpr; 1736 1737 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1738 return icv_bpr_read(env, ri); 1739 } 1740 1741 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1742 grp = GICV3_G1NS; 1743 } 1744 1745 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1746 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1747 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1748 * modify BPR0 1749 */ 1750 grp = GICV3_G0; 1751 } 1752 1753 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1754 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1755 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1756 grp = GICV3_G0; 1757 satinc = true; 1758 } 1759 1760 bpr = cs->icc_bpr[grp]; 1761 if (satinc) { 1762 bpr++; 1763 bpr = MIN(bpr, 7); 1764 } 1765 1766 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1767 1768 return bpr; 1769 } 1770 1771 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1772 uint64_t value) 1773 { 1774 GICv3CPUState *cs = icc_cs_from_env(env); 1775 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1776 uint64_t minval; 1777 1778 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1779 icv_bpr_write(env, ri, value); 1780 return; 1781 } 1782 1783 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1784 gicv3_redist_affid(cs), value); 1785 1786 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1787 grp = GICV3_G1NS; 1788 } 1789 1790 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1791 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1792 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1793 * modify BPR0 1794 */ 1795 grp = GICV3_G0; 1796 } 1797 1798 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1799 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1800 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1801 return; 1802 } 1803 1804 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); 1805 if (value < minval) { 1806 value = minval; 1807 } 1808 1809 cs->icc_bpr[grp] = value & 7; 1810 gicv3_cpuif_update(cs); 1811 } 1812 1813 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1814 { 1815 GICv3CPUState *cs = icc_cs_from_env(env); 1816 uint64_t value; 1817 1818 int regno = ri->opc2 & 3; 1819 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1820 1821 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1822 return icv_ap_read(env, ri); 1823 } 1824 1825 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1826 grp = GICV3_G1NS; 1827 } 1828 1829 value = cs->icc_apr[grp][regno]; 1830 1831 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1832 return value; 1833 } 1834 1835 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1836 uint64_t value) 1837 { 1838 GICv3CPUState *cs = icc_cs_from_env(env); 1839 1840 int regno = ri->opc2 & 3; 1841 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1842 1843 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1844 icv_ap_write(env, ri, value); 1845 return; 1846 } 1847 1848 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1849 1850 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1851 grp = GICV3_G1NS; 1852 } 1853 1854 /* It's not possible to claim that a Non-secure interrupt is active 1855 * at a priority outside the Non-secure range (128..255), since this 1856 * would otherwise allow malicious NS code to block delivery of S interrupts 1857 * by writing a bad value to these registers. 1858 */ 1859 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1860 return; 1861 } 1862 1863 if (cs->nmi_support) { 1864 cs->icc_apr[grp][regno] = value & (0xFFFFFFFFU | ICC_AP1R_EL1_NMI); 1865 } else { 1866 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1867 } 1868 gicv3_cpuif_update(cs); 1869 } 1870 1871 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 /* Deactivate interrupt */ 1875 GICv3CPUState *cs = icc_cs_from_env(env); 1876 int irq = value & 0xffffff; 1877 bool irq_is_secure, single_sec_state, irq_is_grp0; 1878 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1879 1880 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1881 icv_dir_write(env, ri, value); 1882 return; 1883 } 1884 1885 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1886 1887 if (irq >= cs->gic->num_irq) { 1888 /* Also catches special interrupt numbers and LPIs */ 1889 return; 1890 } 1891 1892 if (!icc_eoi_split(env, cs)) { 1893 return; 1894 } 1895 1896 int grp = gicv3_irq_group(cs->gic, cs, irq); 1897 1898 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1899 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1900 irq_is_grp0 = grp == GICV3_G0; 1901 1902 /* Check whether we're allowed to deactivate this interrupt based 1903 * on its group and the current CPU state. 1904 * These checks are laid out to correspond to the spec's pseudocode. 1905 */ 1906 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1907 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1908 /* No need to include !IsSecure in route_*_to_el2 as it's only 1909 * tested in cases where we know !IsSecure is true. 1910 */ 1911 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1912 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1913 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1914 1915 switch (arm_current_el(env)) { 1916 case 3: 1917 break; 1918 case 2: 1919 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1920 break; 1921 } 1922 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1923 break; 1924 } 1925 return; 1926 case 1: 1927 if (!arm_is_secure_below_el3(env)) { 1928 if (single_sec_state && irq_is_grp0 && 1929 !route_fiq_to_el3 && !route_fiq_to_el2) { 1930 break; 1931 } 1932 if (!irq_is_secure && !irq_is_grp0 && 1933 !route_irq_to_el3 && !route_irq_to_el2) { 1934 break; 1935 } 1936 } else { 1937 if (irq_is_grp0 && !route_fiq_to_el3) { 1938 break; 1939 } 1940 if (!irq_is_grp0 && 1941 (!irq_is_secure || !single_sec_state) && 1942 !route_irq_to_el3) { 1943 break; 1944 } 1945 } 1946 return; 1947 default: 1948 g_assert_not_reached(); 1949 } 1950 1951 icc_deactivate_irq(cs, irq); 1952 } 1953 1954 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1955 { 1956 GICv3CPUState *cs = icc_cs_from_env(env); 1957 uint64_t prio; 1958 1959 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1960 return icv_rpr_read(env, ri); 1961 } 1962 1963 prio = icc_highest_active_prio(cs); 1964 1965 if (arm_feature(env, ARM_FEATURE_EL3) && 1966 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1967 /* NS GIC access and Group 0 is inaccessible to NS */ 1968 if ((prio & 0x80) == 0) { 1969 /* NS mustn't see priorities in the Secure half of the range */ 1970 prio = 0; 1971 } else if (prio != 0xff) { 1972 /* Non-idle priority: show the Non-secure view of it */ 1973 prio = (prio << 1) & 0xff; 1974 } 1975 } 1976 1977 if (cs->nmi_support) { 1978 /* NMI info is reported in the high bits of RPR */ 1979 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1980 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 1981 prio |= ICC_RPR_EL1_NMI; 1982 } 1983 } else { 1984 if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) { 1985 prio |= ICC_RPR_EL1_NSNMI; 1986 } 1987 if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) { 1988 prio |= ICC_RPR_EL1_NMI; 1989 } 1990 } 1991 } 1992 1993 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1994 return prio; 1995 } 1996 1997 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1998 uint64_t value, int grp, bool ns) 1999 { 2000 GICv3State *s = cs->gic; 2001 2002 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 2003 uint64_t aff = extract64(value, 48, 8) << 16 | 2004 extract64(value, 32, 8) << 8 | 2005 extract64(value, 16, 8); 2006 uint32_t targetlist = extract64(value, 0, 16); 2007 uint32_t irq = extract64(value, 24, 4); 2008 bool irm = extract64(value, 40, 1); 2009 int i; 2010 2011 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 2012 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 2013 * interrupts as Group 0 interrupts and must send Secure Group 0 2014 * interrupts to the target CPUs. 2015 */ 2016 grp = GICV3_G0; 2017 } 2018 2019 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 2020 aff, targetlist); 2021 2022 for (i = 0; i < s->num_cpu; i++) { 2023 GICv3CPUState *ocs = &s->cpu[i]; 2024 2025 if (irm) { 2026 /* IRM == 1 : route to all CPUs except self */ 2027 if (cs == ocs) { 2028 continue; 2029 } 2030 } else { 2031 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 2032 * where the corresponding bit is set in targetlist 2033 */ 2034 int aff0; 2035 2036 if (ocs->gicr_typer >> 40 != aff) { 2037 continue; 2038 } 2039 aff0 = extract64(ocs->gicr_typer, 32, 8); 2040 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 2041 continue; 2042 } 2043 } 2044 2045 /* The redistributor will check against its own GICR_NSACR as needed */ 2046 gicv3_redist_send_sgi(ocs, grp, irq, ns); 2047 } 2048 } 2049 2050 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 2051 uint64_t value) 2052 { 2053 /* Generate Secure Group 0 SGI. */ 2054 GICv3CPUState *cs = icc_cs_from_env(env); 2055 bool ns = !arm_is_secure(env); 2056 2057 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 2058 } 2059 2060 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 2061 uint64_t value) 2062 { 2063 /* Generate Group 1 SGI for the current Security state */ 2064 GICv3CPUState *cs = icc_cs_from_env(env); 2065 int grp; 2066 bool ns = !arm_is_secure(env); 2067 2068 grp = ns ? GICV3_G1NS : GICV3_G1; 2069 icc_generate_sgi(env, cs, value, grp, ns); 2070 } 2071 2072 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 2073 uint64_t value) 2074 { 2075 /* Generate Group 1 SGI for the Security state that is not 2076 * the current state 2077 */ 2078 GICv3CPUState *cs = icc_cs_from_env(env); 2079 int grp; 2080 bool ns = !arm_is_secure(env); 2081 2082 grp = ns ? GICV3_G1 : GICV3_G1NS; 2083 icc_generate_sgi(env, cs, value, grp, ns); 2084 } 2085 2086 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 2087 { 2088 GICv3CPUState *cs = icc_cs_from_env(env); 2089 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 2090 uint64_t value; 2091 2092 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 2093 return icv_igrpen_read(env, ri); 2094 } 2095 2096 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 2097 grp = GICV3_G1NS; 2098 } 2099 2100 value = cs->icc_igrpen[grp]; 2101 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 2102 gicv3_redist_affid(cs), value); 2103 return value; 2104 } 2105 2106 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 2107 uint64_t value) 2108 { 2109 GICv3CPUState *cs = icc_cs_from_env(env); 2110 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 2111 2112 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 2113 icv_igrpen_write(env, ri, value); 2114 return; 2115 } 2116 2117 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 2118 gicv3_redist_affid(cs), value); 2119 2120 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 2121 grp = GICV3_G1NS; 2122 } 2123 2124 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 2125 gicv3_cpuif_update(cs); 2126 } 2127 2128 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2129 { 2130 GICv3CPUState *cs = icc_cs_from_env(env); 2131 uint64_t value; 2132 2133 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 2134 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 2135 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 2136 return value; 2137 } 2138 2139 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2140 uint64_t value) 2141 { 2142 GICv3CPUState *cs = icc_cs_from_env(env); 2143 2144 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 2145 2146 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 2147 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 2148 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 2149 gicv3_cpuif_update(cs); 2150 } 2151 2152 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 2153 { 2154 GICv3CPUState *cs = icc_cs_from_env(env); 2155 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 2156 uint64_t value; 2157 2158 if (icv_access(env, HCR_FMO | HCR_IMO)) { 2159 return icv_ctlr_read(env, ri); 2160 } 2161 2162 value = cs->icc_ctlr_el1[bank]; 2163 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 2164 return value; 2165 } 2166 2167 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 2168 uint64_t value) 2169 { 2170 GICv3CPUState *cs = icc_cs_from_env(env); 2171 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 2172 uint64_t mask; 2173 2174 if (icv_access(env, HCR_FMO | HCR_IMO)) { 2175 icv_ctlr_write(env, ri, value); 2176 return; 2177 } 2178 2179 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 2180 2181 /* Only CBPR and EOIMODE can be RW; 2182 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 2183 * the asseciated priority-based routing of them); 2184 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 2185 */ 2186 if (arm_feature(env, ARM_FEATURE_EL3) && 2187 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 2188 mask = ICC_CTLR_EL1_EOIMODE; 2189 } else { 2190 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 2191 } 2192 2193 cs->icc_ctlr_el1[bank] &= ~mask; 2194 cs->icc_ctlr_el1[bank] |= (value & mask); 2195 gicv3_cpuif_update(cs); 2196 } 2197 2198 2199 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2200 { 2201 GICv3CPUState *cs = icc_cs_from_env(env); 2202 uint64_t value; 2203 2204 value = cs->icc_ctlr_el3; 2205 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2206 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 2207 } 2208 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2209 value |= ICC_CTLR_EL3_CBPR_EL1NS; 2210 } 2211 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2212 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 2213 } 2214 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2215 value |= ICC_CTLR_EL3_CBPR_EL1S; 2216 } 2217 2218 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 2219 return value; 2220 } 2221 2222 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2223 uint64_t value) 2224 { 2225 GICv3CPUState *cs = icc_cs_from_env(env); 2226 uint64_t mask; 2227 2228 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 2229 2230 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 2231 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2232 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 2233 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 2234 } 2235 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 2236 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 2237 } 2238 2239 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2240 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 2241 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 2242 } 2243 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 2244 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 2245 } 2246 2247 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ 2248 mask = ICC_CTLR_EL3_EOIMODE_EL3; 2249 2250 cs->icc_ctlr_el3 &= ~mask; 2251 cs->icc_ctlr_el3 |= (value & mask); 2252 gicv3_cpuif_update(cs); 2253 } 2254 2255 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 2256 const ARMCPRegInfo *ri, bool isread) 2257 { 2258 CPAccessResult r = CP_ACCESS_OK; 2259 GICv3CPUState *cs = icc_cs_from_env(env); 2260 int el = arm_current_el(env); 2261 2262 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 2263 el == 1 && !arm_is_secure_below_el3(env)) { 2264 /* Takes priority over a possible EL3 trap */ 2265 return CP_ACCESS_TRAP_EL2; 2266 } 2267 2268 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 2269 switch (el) { 2270 case 1: 2271 /* Note that arm_hcr_el2_eff takes secure state into account. */ 2272 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 2273 r = CP_ACCESS_TRAP_EL3; 2274 } 2275 break; 2276 case 2: 2277 r = CP_ACCESS_TRAP_EL3; 2278 break; 2279 case 3: 2280 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2281 r = CP_ACCESS_TRAP_EL3; 2282 } 2283 break; 2284 default: 2285 g_assert_not_reached(); 2286 } 2287 } 2288 2289 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2290 r = CP_ACCESS_TRAP; 2291 } 2292 return r; 2293 } 2294 2295 static CPAccessResult gicv3_dir_access(CPUARMState *env, 2296 const ARMCPRegInfo *ri, bool isread) 2297 { 2298 GICv3CPUState *cs = icc_cs_from_env(env); 2299 2300 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 2301 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 2302 /* Takes priority over a possible EL3 trap */ 2303 return CP_ACCESS_TRAP_EL2; 2304 } 2305 2306 return gicv3_irqfiq_access(env, ri, isread); 2307 } 2308 2309 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 2310 const ARMCPRegInfo *ri, bool isread) 2311 { 2312 if (arm_current_el(env) == 1 && 2313 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 2314 /* Takes priority over a possible EL3 trap */ 2315 return CP_ACCESS_TRAP_EL2; 2316 } 2317 2318 return gicv3_irqfiq_access(env, ri, isread); 2319 } 2320 2321 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 2322 const ARMCPRegInfo *ri, bool isread) 2323 { 2324 CPAccessResult r = CP_ACCESS_OK; 2325 GICv3CPUState *cs = icc_cs_from_env(env); 2326 int el = arm_current_el(env); 2327 2328 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 2329 el == 1 && !arm_is_secure_below_el3(env)) { 2330 /* Takes priority over a possible EL3 trap */ 2331 return CP_ACCESS_TRAP_EL2; 2332 } 2333 2334 if (env->cp15.scr_el3 & SCR_FIQ) { 2335 switch (el) { 2336 case 1: 2337 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 2338 r = CP_ACCESS_TRAP_EL3; 2339 } 2340 break; 2341 case 2: 2342 r = CP_ACCESS_TRAP_EL3; 2343 break; 2344 case 3: 2345 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2346 r = CP_ACCESS_TRAP_EL3; 2347 } 2348 break; 2349 default: 2350 g_assert_not_reached(); 2351 } 2352 } 2353 2354 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2355 r = CP_ACCESS_TRAP; 2356 } 2357 return r; 2358 } 2359 2360 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2361 const ARMCPRegInfo *ri, bool isread) 2362 { 2363 CPAccessResult r = CP_ACCESS_OK; 2364 GICv3CPUState *cs = icc_cs_from_env(env); 2365 int el = arm_current_el(env); 2366 2367 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2368 el == 1 && !arm_is_secure_below_el3(env)) { 2369 /* Takes priority over a possible EL3 trap */ 2370 return CP_ACCESS_TRAP_EL2; 2371 } 2372 2373 if (env->cp15.scr_el3 & SCR_IRQ) { 2374 switch (el) { 2375 case 1: 2376 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2377 r = CP_ACCESS_TRAP_EL3; 2378 } 2379 break; 2380 case 2: 2381 r = CP_ACCESS_TRAP_EL3; 2382 break; 2383 case 3: 2384 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2385 r = CP_ACCESS_TRAP_EL3; 2386 } 2387 break; 2388 default: 2389 g_assert_not_reached(); 2390 } 2391 } 2392 2393 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2394 r = CP_ACCESS_TRAP; 2395 } 2396 return r; 2397 } 2398 2399 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2400 { 2401 GICv3CPUState *cs = icc_cs_from_env(env); 2402 2403 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2404 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2405 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2406 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2407 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2408 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2409 cs->icc_pmr_el1 = 0; 2410 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); 2411 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); 2412 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); 2413 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2414 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2415 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2416 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2417 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); 2418 2419 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2420 cs->ich_hcr_el2 = 0; 2421 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2422 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2423 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2424 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2425 } 2426 2427 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2428 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2429 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2430 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2431 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2432 .readfn = icc_pmr_read, 2433 .writefn = icc_pmr_write, 2434 /* We hang the whole cpu interface reset routine off here 2435 * rather than parcelling it out into one little function 2436 * per register 2437 */ 2438 .resetfn = icc_reset, 2439 }, 2440 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2441 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2442 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2443 .access = PL1_R, .accessfn = gicv3_fiq_access, 2444 .readfn = icc_iar0_read, 2445 }, 2446 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2447 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2448 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2449 .access = PL1_W, .accessfn = gicv3_fiq_access, 2450 .writefn = icc_eoir_write, 2451 }, 2452 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2453 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2454 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2455 .access = PL1_R, .accessfn = gicv3_fiq_access, 2456 .readfn = icc_hppir0_read, 2457 }, 2458 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2459 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2460 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2461 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2462 .readfn = icc_bpr_read, 2463 .writefn = icc_bpr_write, 2464 }, 2465 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2466 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2467 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2468 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2469 .readfn = icc_ap_read, 2470 .writefn = icc_ap_write, 2471 }, 2472 /* All the ICC_AP1R*_EL1 registers are banked */ 2473 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2474 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2475 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2476 .access = PL1_RW, .accessfn = gicv3_irq_access, 2477 .readfn = icc_ap_read, 2478 .writefn = icc_ap_write, 2479 }, 2480 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2481 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2482 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2483 .access = PL1_W, .accessfn = gicv3_dir_access, 2484 .writefn = icc_dir_write, 2485 }, 2486 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2487 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2488 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2489 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2490 .readfn = icc_rpr_read, 2491 }, 2492 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2493 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2494 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2495 .access = PL1_W, .accessfn = gicv3_sgi_access, 2496 .writefn = icc_sgi1r_write, 2497 }, 2498 { .name = "ICC_SGI1R", 2499 .cp = 15, .opc1 = 0, .crm = 12, 2500 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2501 .access = PL1_W, .accessfn = gicv3_sgi_access, 2502 .writefn = icc_sgi1r_write, 2503 }, 2504 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2505 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2506 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2507 .access = PL1_W, .accessfn = gicv3_sgi_access, 2508 .writefn = icc_asgi1r_write, 2509 }, 2510 { .name = "ICC_ASGI1R", 2511 .cp = 15, .opc1 = 1, .crm = 12, 2512 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2513 .access = PL1_W, .accessfn = gicv3_sgi_access, 2514 .writefn = icc_asgi1r_write, 2515 }, 2516 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2517 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2518 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2519 .access = PL1_W, .accessfn = gicv3_sgi_access, 2520 .writefn = icc_sgi0r_write, 2521 }, 2522 { .name = "ICC_SGI0R", 2523 .cp = 15, .opc1 = 2, .crm = 12, 2524 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2525 .access = PL1_W, .accessfn = gicv3_sgi_access, 2526 .writefn = icc_sgi0r_write, 2527 }, 2528 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2529 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2530 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2531 .access = PL1_R, .accessfn = gicv3_irq_access, 2532 .readfn = icc_iar1_read, 2533 }, 2534 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2535 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2536 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2537 .access = PL1_W, .accessfn = gicv3_irq_access, 2538 .writefn = icc_eoir_write, 2539 }, 2540 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2541 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2542 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2543 .access = PL1_R, .accessfn = gicv3_irq_access, 2544 .readfn = icc_hppir1_read, 2545 }, 2546 /* This register is banked */ 2547 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2548 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2549 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2550 .access = PL1_RW, .accessfn = gicv3_irq_access, 2551 .readfn = icc_bpr_read, 2552 .writefn = icc_bpr_write, 2553 }, 2554 /* This register is banked */ 2555 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2556 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2557 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2558 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2559 .readfn = icc_ctlr_el1_read, 2560 .writefn = icc_ctlr_el1_write, 2561 }, 2562 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2563 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2564 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2565 .access = PL1_RW, 2566 /* We don't support IRQ/FIQ bypass and system registers are 2567 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2568 * This register is banked but since it's constant we don't 2569 * need to do anything special. 2570 */ 2571 .resetvalue = 0x7, 2572 }, 2573 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2574 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2575 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2576 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2577 .fgt = FGT_ICC_IGRPENN_EL1, 2578 .readfn = icc_igrpen_read, 2579 .writefn = icc_igrpen_write, 2580 }, 2581 /* This register is banked */ 2582 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2583 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2584 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2585 .access = PL1_RW, .accessfn = gicv3_irq_access, 2586 .fgt = FGT_ICC_IGRPENN_EL1, 2587 .readfn = icc_igrpen_read, 2588 .writefn = icc_igrpen_write, 2589 }, 2590 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2591 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2592 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2593 .access = PL2_RW, 2594 /* We don't support IRQ/FIQ bypass and system registers are 2595 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2596 */ 2597 .resetvalue = 0xf, 2598 }, 2599 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2600 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2601 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2602 .access = PL3_RW, 2603 .readfn = icc_ctlr_el3_read, 2604 .writefn = icc_ctlr_el3_write, 2605 }, 2606 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2607 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2608 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2609 .access = PL3_RW, 2610 /* We don't support IRQ/FIQ bypass and system registers are 2611 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2612 */ 2613 .resetvalue = 0xf, 2614 }, 2615 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2616 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2617 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2618 .access = PL3_RW, 2619 .readfn = icc_igrpen1_el3_read, 2620 .writefn = icc_igrpen1_el3_write, 2621 }, 2622 }; 2623 2624 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { 2625 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2626 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2627 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2628 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2629 .readfn = icc_ap_read, 2630 .writefn = icc_ap_write, 2631 }, 2632 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2633 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2634 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2635 .access = PL1_RW, .accessfn = gicv3_irq_access, 2636 .readfn = icc_ap_read, 2637 .writefn = icc_ap_write, 2638 }, 2639 }; 2640 2641 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { 2642 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2643 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2644 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2645 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2646 .readfn = icc_ap_read, 2647 .writefn = icc_ap_write, 2648 }, 2649 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2650 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2651 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2652 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2653 .readfn = icc_ap_read, 2654 .writefn = icc_ap_write, 2655 }, 2656 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2657 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2658 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2659 .access = PL1_RW, .accessfn = gicv3_irq_access, 2660 .readfn = icc_ap_read, 2661 .writefn = icc_ap_write, 2662 }, 2663 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2664 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2665 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2666 .access = PL1_RW, .accessfn = gicv3_irq_access, 2667 .readfn = icc_ap_read, 2668 .writefn = icc_ap_write, 2669 }, 2670 }; 2671 2672 static const ARMCPRegInfo gicv3_cpuif_gicv3_nmi_reginfo[] = { 2673 { .name = "ICC_NMIAR1_EL1", .state = ARM_CP_STATE_BOTH, 2674 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 5, 2675 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2676 .access = PL1_R, .accessfn = gicv3_irq_access, 2677 .readfn = icc_nmiar1_read, 2678 }, 2679 }; 2680 2681 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2682 { 2683 GICv3CPUState *cs = icc_cs_from_env(env); 2684 int regno = ri->opc2 & 3; 2685 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2686 uint64_t value; 2687 2688 value = cs->ich_apr[grp][regno]; 2689 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2690 return value; 2691 } 2692 2693 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2694 uint64_t value) 2695 { 2696 GICv3CPUState *cs = icc_cs_from_env(env); 2697 int regno = ri->opc2 & 3; 2698 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2699 2700 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2701 2702 if (cs->nmi_support) { 2703 cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI); 2704 } else { 2705 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2706 } 2707 gicv3_cpuif_virt_irq_fiq_update(cs); 2708 } 2709 2710 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2711 { 2712 GICv3CPUState *cs = icc_cs_from_env(env); 2713 uint64_t value = cs->ich_hcr_el2; 2714 2715 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2716 return value; 2717 } 2718 2719 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2720 uint64_t value) 2721 { 2722 GICv3CPUState *cs = icc_cs_from_env(env); 2723 2724 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2725 2726 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2727 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2728 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2729 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2730 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2731 2732 cs->ich_hcr_el2 = value; 2733 gicv3_cpuif_virt_update(cs); 2734 } 2735 2736 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2737 { 2738 GICv3CPUState *cs = icc_cs_from_env(env); 2739 uint64_t value = cs->ich_vmcr_el2; 2740 2741 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2742 return value; 2743 } 2744 2745 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2746 uint64_t value) 2747 { 2748 GICv3CPUState *cs = icc_cs_from_env(env); 2749 2750 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2751 2752 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2753 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2754 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2755 value |= ICH_VMCR_EL2_VFIQEN; 2756 2757 cs->ich_vmcr_el2 = value; 2758 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2759 * by reading and writing back the fields. 2760 */ 2761 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2762 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2763 2764 gicv3_cpuif_virt_update(cs); 2765 } 2766 2767 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2768 { 2769 GICv3CPUState *cs = icc_cs_from_env(env); 2770 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2771 uint64_t value; 2772 2773 /* This read function handles all of: 2774 * 64-bit reads of the whole LR 2775 * 32-bit reads of the low half of the LR 2776 * 32-bit reads of the high half of the LR 2777 */ 2778 if (ri->state == ARM_CP_STATE_AA32) { 2779 if (ri->crm >= 14) { 2780 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2781 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2782 } else { 2783 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2784 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2785 } 2786 } else { 2787 value = cs->ich_lr_el2[regno]; 2788 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2789 } 2790 2791 return value; 2792 } 2793 2794 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2795 uint64_t value) 2796 { 2797 GICv3CPUState *cs = icc_cs_from_env(env); 2798 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2799 2800 /* This write function handles all of: 2801 * 64-bit writes to the whole LR 2802 * 32-bit writes to the low half of the LR 2803 * 32-bit writes to the high half of the LR 2804 */ 2805 if (ri->state == ARM_CP_STATE_AA32) { 2806 if (ri->crm >= 14) { 2807 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2808 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2809 } else { 2810 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2811 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2812 } 2813 } else { 2814 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2815 } 2816 2817 /* Enforce RES0 bits in priority field */ 2818 if (cs->vpribits < 8) { 2819 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2820 8 - cs->vpribits, 0); 2821 } 2822 2823 /* Enforce RES0 bit in NMI field when FEAT_GICv3_NMI is not implemented */ 2824 if (!cs->nmi_support) { 2825 value &= ~ICH_LR_EL2_NMI; 2826 } 2827 2828 cs->ich_lr_el2[regno] = value; 2829 gicv3_cpuif_virt_update(cs); 2830 } 2831 2832 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2833 { 2834 GICv3CPUState *cs = icc_cs_from_env(env); 2835 uint64_t value; 2836 2837 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2838 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V 2839 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2840 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2841 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2842 2843 if (cs->gic->revision < 4) { 2844 value |= ICH_VTR_EL2_NV4; 2845 } 2846 2847 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2848 return value; 2849 } 2850 2851 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2852 { 2853 GICv3CPUState *cs = icc_cs_from_env(env); 2854 uint64_t value = maintenance_interrupt_state(cs); 2855 2856 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2857 return value; 2858 } 2859 2860 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2861 { 2862 GICv3CPUState *cs = icc_cs_from_env(env); 2863 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2864 2865 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2866 return value; 2867 } 2868 2869 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2870 { 2871 GICv3CPUState *cs = icc_cs_from_env(env); 2872 uint64_t value = 0; 2873 int i; 2874 2875 for (i = 0; i < cs->num_list_regs; i++) { 2876 uint64_t lr = cs->ich_lr_el2[i]; 2877 2878 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2879 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2880 value |= (1 << i); 2881 } 2882 } 2883 2884 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2885 return value; 2886 } 2887 2888 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2889 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2890 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2891 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2892 .nv2_redirect_offset = 0x480, 2893 .access = PL2_RW, 2894 .readfn = ich_ap_read, 2895 .writefn = ich_ap_write, 2896 }, 2897 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2898 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2899 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2900 .nv2_redirect_offset = 0x4a0, 2901 .access = PL2_RW, 2902 .readfn = ich_ap_read, 2903 .writefn = ich_ap_write, 2904 }, 2905 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2906 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2907 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2908 .nv2_redirect_offset = 0x4c0, 2909 .access = PL2_RW, 2910 .readfn = ich_hcr_read, 2911 .writefn = ich_hcr_write, 2912 }, 2913 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2914 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2915 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2916 .access = PL2_R, 2917 .readfn = ich_vtr_read, 2918 }, 2919 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2920 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2921 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2922 .access = PL2_R, 2923 .readfn = ich_misr_read, 2924 }, 2925 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2926 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2927 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2928 .access = PL2_R, 2929 .readfn = ich_eisr_read, 2930 }, 2931 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2932 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2933 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2934 .access = PL2_R, 2935 .readfn = ich_elrsr_read, 2936 }, 2937 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2938 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2939 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2940 .nv2_redirect_offset = 0x4c8, 2941 .access = PL2_RW, 2942 .readfn = ich_vmcr_read, 2943 .writefn = ich_vmcr_write, 2944 }, 2945 }; 2946 2947 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2948 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2949 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2950 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2951 .nv2_redirect_offset = 0x488, 2952 .access = PL2_RW, 2953 .readfn = ich_ap_read, 2954 .writefn = ich_ap_write, 2955 }, 2956 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2957 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2958 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2959 .nv2_redirect_offset = 0x4a8, 2960 .access = PL2_RW, 2961 .readfn = ich_ap_read, 2962 .writefn = ich_ap_write, 2963 }, 2964 }; 2965 2966 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2967 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2968 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2969 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2970 .nv2_redirect_offset = 0x490, 2971 .access = PL2_RW, 2972 .readfn = ich_ap_read, 2973 .writefn = ich_ap_write, 2974 }, 2975 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2976 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2977 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2978 .nv2_redirect_offset = 0x498, 2979 .access = PL2_RW, 2980 .readfn = ich_ap_read, 2981 .writefn = ich_ap_write, 2982 }, 2983 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2984 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2985 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2986 .nv2_redirect_offset = 0x4b0, 2987 .access = PL2_RW, 2988 .readfn = ich_ap_read, 2989 .writefn = ich_ap_write, 2990 }, 2991 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2992 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2993 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2994 .nv2_redirect_offset = 0x4b8, 2995 .access = PL2_RW, 2996 .readfn = ich_ap_read, 2997 .writefn = ich_ap_write, 2998 }, 2999 }; 3000 3001 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 3002 { 3003 GICv3CPUState *cs = opaque; 3004 3005 gicv3_cpuif_update(cs); 3006 /* 3007 * Because vLPIs are only pending in NonSecure state, 3008 * an EL change can change the VIRQ/VFIQ status (but 3009 * cannot affect the maintenance interrupt state) 3010 */ 3011 gicv3_cpuif_virt_irq_fiq_update(cs); 3012 } 3013 3014 void gicv3_init_cpuif(GICv3State *s) 3015 { 3016 /* Called from the GICv3 realize function; register our system 3017 * registers with the CPU 3018 */ 3019 int i; 3020 3021 for (i = 0; i < s->num_cpu; i++) { 3022 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 3023 GICv3CPUState *cs = &s->cpu[i]; 3024 3025 /* 3026 * If the CPU doesn't define a GICv3 configuration, probably because 3027 * in real hardware it doesn't have one, then we use default values 3028 * matching the one used by most Arm CPUs. This applies to: 3029 * cpu->gic_num_lrs 3030 * cpu->gic_vpribits 3031 * cpu->gic_vprebits 3032 * cpu->gic_pribits 3033 */ 3034 3035 /* Note that we can't just use the GICv3CPUState as an opaque pointer 3036 * in define_arm_cp_regs_with_opaque(), because when we're called back 3037 * it might be with code translated by CPU 0 but run by CPU 1, in 3038 * which case we'd get the wrong value. 3039 * So instead we define the regs with no ri->opaque info, and 3040 * get back to the GICv3CPUState from the CPUARMState. 3041 * 3042 * These CP regs callbacks can be called from either TCG or HVF code. 3043 */ 3044 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 3045 3046 /* 3047 * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also 3048 * implement FEAT_GICv3_NMI, which is the CPU interface part 3049 * of NMI support. This is distinct from whether the GIC proper 3050 * (redistributors and distributor) have NMI support. In QEMU 3051 * that is a property of the GIC device in s->nmi_support; 3052 * cs->nmi_support indicates the CPU interface's support. 3053 */ 3054 if (cpu_isar_feature(aa64_nmi, cpu)) { 3055 cs->nmi_support = true; 3056 define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo); 3057 } 3058 3059 /* 3060 * The CPU implementation specifies the number of supported 3061 * bits of physical priority. For backwards compatibility 3062 * of migration, we have a compat property that forces use 3063 * of 8 priority bits regardless of what the CPU really has. 3064 */ 3065 if (s->force_8bit_prio) { 3066 cs->pribits = 8; 3067 } else { 3068 cs->pribits = cpu->gic_pribits ?: 5; 3069 } 3070 3071 /* 3072 * The GICv3 has separate ID register fields for virtual priority 3073 * and preemption bit values, but only a single ID register field 3074 * for the physical priority bits. The preemption bit count is 3075 * always the same as the priority bit count, except that 8 bits 3076 * of priority means 7 preemption bits. We precalculate the 3077 * preemption bits because it simplifies the code and makes the 3078 * parallels between the virtual and physical bits of the GIC 3079 * a bit clearer. 3080 */ 3081 cs->prebits = cs->pribits; 3082 if (cs->prebits == 8) { 3083 cs->prebits--; 3084 } 3085 /* 3086 * Check that CPU code defining pribits didn't violate 3087 * architectural constraints our implementation relies on. 3088 */ 3089 g_assert(cs->pribits >= 4 && cs->pribits <= 8); 3090 3091 /* 3092 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions 3093 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. 3094 */ 3095 if (cs->prebits >= 6) { 3096 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); 3097 } 3098 if (cs->prebits == 7) { 3099 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); 3100 } 3101 3102 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 3103 int j; 3104 3105 cs->num_list_regs = cpu->gic_num_lrs ?: 4; 3106 cs->vpribits = cpu->gic_vpribits ?: 5; 3107 cs->vprebits = cpu->gic_vprebits ?: 5; 3108 3109 /* Check against architectural constraints: getting these 3110 * wrong would be a bug in the CPU code defining these, 3111 * and the implementation relies on them holding. 3112 */ 3113 g_assert(cs->vprebits <= cs->vpribits); 3114 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 3115 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 3116 3117 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 3118 3119 for (j = 0; j < cs->num_list_regs; j++) { 3120 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 3121 * are split into two cp15 regs, LR (the low part, with the 3122 * same encoding as the AArch64 LR) and LRC (the high part). 3123 */ 3124 ARMCPRegInfo lr_regset[] = { 3125 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 3126 .opc0 = 3, .opc1 = 4, .crn = 12, 3127 .crm = 12 + (j >> 3), .opc2 = j & 7, 3128 .type = ARM_CP_IO | ARM_CP_NO_RAW, 3129 .nv2_redirect_offset = 0x400 + 8 * j, 3130 .access = PL2_RW, 3131 .readfn = ich_lr_read, 3132 .writefn = ich_lr_write, 3133 }, 3134 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 3135 .cp = 15, .opc1 = 4, .crn = 12, 3136 .crm = 14 + (j >> 3), .opc2 = j & 7, 3137 .type = ARM_CP_IO | ARM_CP_NO_RAW, 3138 .access = PL2_RW, 3139 .readfn = ich_lr_read, 3140 .writefn = ich_lr_write, 3141 }, 3142 }; 3143 define_arm_cp_regs(cpu, lr_regset); 3144 } 3145 if (cs->vprebits >= 6) { 3146 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 3147 } 3148 if (cs->vprebits == 7) { 3149 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 3150 } 3151 } 3152 if (tcg_enabled() || qtest_enabled()) { 3153 /* 3154 * We can only trap EL changes with TCG. However the GIC interrupt 3155 * state only changes on EL changes involving EL2 or EL3, so for 3156 * the non-TCG case this is OK, as EL2 and EL3 can't exist. 3157 */ 3158 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 3159 } else { 3160 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); 3161 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); 3162 } 3163 } 3164 } 3165