1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "hw/irq.h" 21 #include "cpu.h" 22 23 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 24 { 25 ARMCPU *arm_cpu = ARM_CPU(cpu); 26 CPUARMState *env = &arm_cpu->env; 27 28 env->gicv3state = (void *)s; 29 }; 30 31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 32 { 33 return env->gicv3state; 34 } 35 36 static bool gicv3_use_ns_bank(CPUARMState *env) 37 { 38 /* Return true if we should use the NonSecure bank for a banked GIC 39 * CPU interface register. Note that this differs from the 40 * access_secure_reg() function because GICv3 banked registers are 41 * banked even for AArch64, unlike the other CPU system registers. 42 */ 43 return !arm_is_secure_below_el3(env); 44 } 45 46 /* The minimum BPR for the virtual interface is a configurable property */ 47 static inline int icv_min_vbpr(GICv3CPUState *cs) 48 { 49 return 7 - cs->vprebits; 50 } 51 52 /* Simple accessor functions for LR fields */ 53 static uint32_t ich_lr_vintid(uint64_t lr) 54 { 55 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 56 } 57 58 static uint32_t ich_lr_pintid(uint64_t lr) 59 { 60 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 61 } 62 63 static uint32_t ich_lr_prio(uint64_t lr) 64 { 65 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 66 } 67 68 static int ich_lr_state(uint64_t lr) 69 { 70 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 71 } 72 73 static bool icv_access(CPUARMState *env, int hcr_flags) 74 { 75 /* Return true if this ICC_ register access should really be 76 * directed to an ICV_ access. hcr_flags is a mask of 77 * HCR_EL2 bits to check: we treat this as an ICV_ access 78 * if we are in NS EL1 and at least one of the specified 79 * HCR_EL2 bits is set. 80 * 81 * ICV registers fall into four categories: 82 * * access if NS EL1 and HCR_EL2.FMO == 1: 83 * all ICV regs with '0' in their name 84 * * access if NS EL1 and HCR_EL2.IMO == 1: 85 * all ICV regs with '1' in their name 86 * * access if NS EL1 and either IMO or FMO == 1: 87 * CTLR, DIR, PMR, RPR 88 */ 89 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 90 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 91 92 return flagmatch && arm_current_el(env) == 1 93 && !arm_is_secure_below_el3(env); 94 } 95 96 static int read_vbpr(GICv3CPUState *cs, int grp) 97 { 98 /* Read VBPR value out of the VMCR field (caller must handle 99 * VCBPR effects if required) 100 */ 101 if (grp == GICV3_G0) { 102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 103 ICH_VMCR_EL2_VBPR0_LENGTH); 104 } else { 105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 106 ICH_VMCR_EL2_VBPR1_LENGTH); 107 } 108 } 109 110 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 111 { 112 /* Write new VBPR1 value, handling the "writing a value less than 113 * the minimum sets it to the minimum" semantics. 114 */ 115 int min = icv_min_vbpr(cs); 116 117 if (grp != GICV3_G0) { 118 min++; 119 } 120 121 value = MAX(value, min); 122 123 if (grp == GICV3_G0) { 124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 125 ICH_VMCR_EL2_VBPR0_LENGTH, value); 126 } else { 127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 128 ICH_VMCR_EL2_VBPR1_LENGTH, value); 129 } 130 } 131 132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 133 { 134 /* Return a mask word which clears the unimplemented priority bits 135 * from a priority value for a virtual interrupt. (Not to be confused 136 * with the group priority, whose mask depends on the value of VBPR 137 * for the interrupt group.) 138 */ 139 return ~0U << (8 - cs->vpribits); 140 } 141 142 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 143 { 144 /* Calculate the current running priority based on the set bits 145 * in the ICH Active Priority Registers. 146 */ 147 int i; 148 int aprmax = 1 << (cs->vprebits - 5); 149 150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 151 152 for (i = 0; i < aprmax; i++) { 153 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 154 cs->ich_apr[GICV3_G1NS][i]; 155 156 if (!apr) { 157 continue; 158 } 159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 160 } 161 /* No current active interrupts: return idle priority */ 162 return 0xff; 163 } 164 165 static int hppvi_index(GICv3CPUState *cs) 166 { 167 /* Return the list register index of the highest priority pending 168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 169 * pseudocode. If no pending virtual interrupts, return -1. 170 */ 171 int idx = -1; 172 int i; 173 /* Note that a list register entry with a priority of 0xff will 174 * never be reported by this function; this is the architecturally 175 * correct behaviour. 176 */ 177 int prio = 0xff; 178 179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 180 /* Both groups disabled, definitely nothing to do */ 181 return idx; 182 } 183 184 for (i = 0; i < cs->num_list_regs; i++) { 185 uint64_t lr = cs->ich_lr_el2[i]; 186 int thisprio; 187 188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 189 /* Not Pending */ 190 continue; 191 } 192 193 /* Ignore interrupts if relevant group enable not set */ 194 if (lr & ICH_LR_EL2_GROUP) { 195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 196 continue; 197 } 198 } else { 199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 200 continue; 201 } 202 } 203 204 thisprio = ich_lr_prio(lr); 205 206 if (thisprio < prio) { 207 prio = thisprio; 208 idx = i; 209 } 210 } 211 212 return idx; 213 } 214 215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 216 { 217 /* Return a mask word which clears the subpriority bits from 218 * a priority value for a virtual interrupt in the specified group. 219 * This depends on the VBPR value. 220 * If using VBPR0 then: 221 * a BPR of 0 means the group priority bits are [7:1]; 222 * a BPR of 1 means they are [7:2], and so on down to 223 * a BPR of 7 meaning no group priority bits at all. 224 * If using VBPR1 then: 225 * a BPR of 0 is impossible (the minimum value is 1) 226 * a BPR of 1 means the group priority bits are [7:1]; 227 * a BPR of 2 means they are [7:2], and so on down to 228 * a BPR of 7 meaning the group priority is [7]. 229 * 230 * Which BPR to use depends on the group of the interrupt and 231 * the current ICH_VMCR_EL2.VCBPR settings. 232 * 233 * This corresponds to the VGroupBits() pseudocode. 234 */ 235 int bpr; 236 237 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 238 group = GICV3_G0; 239 } 240 241 bpr = read_vbpr(cs, group); 242 if (group == GICV3_G1NS) { 243 assert(bpr > 0); 244 bpr--; 245 } 246 247 return ~0U << (bpr + 1); 248 } 249 250 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 251 { 252 /* Return true if we can signal this virtual interrupt defined by 253 * the given list register value; see the pseudocode functions 254 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 255 * Compare also icc_hppi_can_preempt() which is the non-virtual 256 * equivalent of these checks. 257 */ 258 int grp; 259 uint32_t mask, prio, rprio, vpmr; 260 261 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 262 /* Virtual interface disabled */ 263 return false; 264 } 265 266 /* We don't need to check that this LR is in Pending state because 267 * that has already been done in hppvi_index(). 268 */ 269 270 prio = ich_lr_prio(lr); 271 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 272 ICH_VMCR_EL2_VPMR_LENGTH); 273 274 if (prio >= vpmr) { 275 /* Priority mask masks this interrupt */ 276 return false; 277 } 278 279 rprio = ich_highest_active_virt_prio(cs); 280 if (rprio == 0xff) { 281 /* No running interrupt so we can preempt */ 282 return true; 283 } 284 285 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 286 287 mask = icv_gprio_mask(cs, grp); 288 289 /* We only preempt a running interrupt if the pending interrupt's 290 * group priority is sufficient (the subpriorities are not considered). 291 */ 292 if ((prio & mask) < (rprio & mask)) { 293 return true; 294 } 295 296 return false; 297 } 298 299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 300 uint32_t *misr) 301 { 302 /* Return a set of bits indicating the EOI maintenance interrupt status 303 * for each list register. The EOI maintenance interrupt status is 304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 305 * (see the GICv3 spec for the ICH_EISR_EL2 register). 306 * If misr is not NULL then we should also collect the information 307 * about the MISR.EOI, MISR.NP and MISR.U bits. 308 */ 309 uint32_t value = 0; 310 int validcount = 0; 311 bool seenpending = false; 312 int i; 313 314 for (i = 0; i < cs->num_list_regs; i++) { 315 uint64_t lr = cs->ich_lr_el2[i]; 316 317 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 318 == ICH_LR_EL2_EOI) { 319 value |= (1 << i); 320 } 321 if ((lr & ICH_LR_EL2_STATE_MASK)) { 322 validcount++; 323 } 324 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 325 seenpending = true; 326 } 327 } 328 329 if (misr) { 330 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 331 *misr |= ICH_MISR_EL2_U; 332 } 333 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 334 *misr |= ICH_MISR_EL2_NP; 335 } 336 if (value) { 337 *misr |= ICH_MISR_EL2_EOI; 338 } 339 } 340 return value; 341 } 342 343 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 344 { 345 /* Return a set of bits indicating the maintenance interrupt status 346 * (as seen in the ICH_MISR_EL2 register). 347 */ 348 uint32_t value = 0; 349 350 /* Scan list registers and fill in the U, NP and EOI bits */ 351 eoi_maintenance_interrupt_state(cs, &value); 352 353 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 354 value |= ICH_MISR_EL2_LRENP; 355 } 356 357 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 358 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 359 value |= ICH_MISR_EL2_VGRP0E; 360 } 361 362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 363 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 364 value |= ICH_MISR_EL2_VGRP0D; 365 } 366 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 367 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 368 value |= ICH_MISR_EL2_VGRP1E; 369 } 370 371 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 372 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 373 value |= ICH_MISR_EL2_VGRP1D; 374 } 375 376 return value; 377 } 378 379 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 380 { 381 /* Tell the CPU about any pending virtual interrupts or 382 * maintenance interrupts, following a change to the state 383 * of the CPU interface relevant to virtual interrupts. 384 * 385 * CAUTION: this function will call qemu_set_irq() on the 386 * CPU maintenance IRQ line, which is typically wired up 387 * to the GIC as a per-CPU interrupt. This means that it 388 * will recursively call back into the GIC code via 389 * gicv3_redist_set_irq() and thus into the CPU interface code's 390 * gicv3_cpuif_update(). It is therefore important that this 391 * function is only called as the final action of a CPU interface 392 * register write implementation, after all the GIC state 393 * fields have been updated. gicv3_cpuif_update() also must 394 * not cause this function to be called, but that happens 395 * naturally as a result of there being no architectural 396 * linkage between the physical and virtual GIC logic. 397 */ 398 int idx; 399 int irqlevel = 0; 400 int fiqlevel = 0; 401 int maintlevel = 0; 402 403 idx = hppvi_index(cs); 404 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 405 if (idx >= 0) { 406 uint64_t lr = cs->ich_lr_el2[idx]; 407 408 if (icv_hppi_can_preempt(cs, lr)) { 409 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 410 if (lr & ICH_LR_EL2_GROUP) { 411 irqlevel = 1; 412 } else { 413 fiqlevel = 1; 414 } 415 } 416 } 417 418 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 419 maintlevel = maintenance_interrupt_state(cs); 420 } 421 422 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 423 irqlevel, maintlevel); 424 425 qemu_set_irq(cs->parent_vfiq, fiqlevel); 426 qemu_set_irq(cs->parent_virq, irqlevel); 427 qemu_set_irq(cs->maintenance_irq, maintlevel); 428 } 429 430 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 431 { 432 GICv3CPUState *cs = icc_cs_from_env(env); 433 int regno = ri->opc2 & 3; 434 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 435 uint64_t value = cs->ich_apr[grp][regno]; 436 437 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 438 return value; 439 } 440 441 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 442 uint64_t value) 443 { 444 GICv3CPUState *cs = icc_cs_from_env(env); 445 int regno = ri->opc2 & 3; 446 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 447 448 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 449 450 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 451 452 gicv3_cpuif_virt_update(cs); 453 return; 454 } 455 456 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 457 { 458 GICv3CPUState *cs = icc_cs_from_env(env); 459 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 460 uint64_t bpr; 461 bool satinc = false; 462 463 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 464 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 465 grp = GICV3_G0; 466 satinc = true; 467 } 468 469 bpr = read_vbpr(cs, grp); 470 471 if (satinc) { 472 bpr++; 473 bpr = MIN(bpr, 7); 474 } 475 476 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 477 478 return bpr; 479 } 480 481 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 482 uint64_t value) 483 { 484 GICv3CPUState *cs = icc_cs_from_env(env); 485 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 486 487 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 488 gicv3_redist_affid(cs), value); 489 490 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 491 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 492 return; 493 } 494 495 write_vbpr(cs, grp, value); 496 497 gicv3_cpuif_virt_update(cs); 498 } 499 500 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 501 { 502 GICv3CPUState *cs = icc_cs_from_env(env); 503 uint64_t value; 504 505 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 506 ICH_VMCR_EL2_VPMR_LENGTH); 507 508 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 509 return value; 510 } 511 512 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 513 uint64_t value) 514 { 515 GICv3CPUState *cs = icc_cs_from_env(env); 516 517 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 518 519 value &= icv_fullprio_mask(cs); 520 521 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 522 ICH_VMCR_EL2_VPMR_LENGTH, value); 523 524 gicv3_cpuif_virt_update(cs); 525 } 526 527 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 528 { 529 GICv3CPUState *cs = icc_cs_from_env(env); 530 int enbit; 531 uint64_t value; 532 533 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 534 value = extract64(cs->ich_vmcr_el2, enbit, 1); 535 536 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 537 gicv3_redist_affid(cs), value); 538 return value; 539 } 540 541 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 542 uint64_t value) 543 { 544 GICv3CPUState *cs = icc_cs_from_env(env); 545 int enbit; 546 547 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 548 gicv3_redist_affid(cs), value); 549 550 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 551 552 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 553 gicv3_cpuif_virt_update(cs); 554 } 555 556 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 557 { 558 GICv3CPUState *cs = icc_cs_from_env(env); 559 uint64_t value; 560 561 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 562 * should match the ones reported in ich_vtr_read(). 563 */ 564 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 565 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 566 567 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 568 value |= ICC_CTLR_EL1_EOIMODE; 569 } 570 571 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 572 value |= ICC_CTLR_EL1_CBPR; 573 } 574 575 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 576 return value; 577 } 578 579 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 580 uint64_t value) 581 { 582 GICv3CPUState *cs = icc_cs_from_env(env); 583 584 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 585 586 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 587 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 588 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 589 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 590 591 gicv3_cpuif_virt_update(cs); 592 } 593 594 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 595 { 596 GICv3CPUState *cs = icc_cs_from_env(env); 597 int prio = ich_highest_active_virt_prio(cs); 598 599 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 600 return prio; 601 } 602 603 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 604 { 605 GICv3CPUState *cs = icc_cs_from_env(env); 606 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 607 int idx = hppvi_index(cs); 608 uint64_t value = INTID_SPURIOUS; 609 610 if (idx >= 0) { 611 uint64_t lr = cs->ich_lr_el2[idx]; 612 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 613 614 if (grp == thisgrp) { 615 value = ich_lr_vintid(lr); 616 } 617 } 618 619 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 620 return value; 621 } 622 623 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 624 { 625 /* Activate the interrupt in the specified list register 626 * by moving it from Pending to Active state, and update the 627 * Active Priority Registers. 628 */ 629 uint32_t mask = icv_gprio_mask(cs, grp); 630 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 631 int aprbit = prio >> (8 - cs->vprebits); 632 int regno = aprbit / 32; 633 int regbit = aprbit % 32; 634 635 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 636 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 637 cs->ich_apr[grp][regno] |= (1 << regbit); 638 } 639 640 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 641 { 642 GICv3CPUState *cs = icc_cs_from_env(env); 643 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 644 int idx = hppvi_index(cs); 645 uint64_t intid = INTID_SPURIOUS; 646 647 if (idx >= 0) { 648 uint64_t lr = cs->ich_lr_el2[idx]; 649 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 650 651 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 652 intid = ich_lr_vintid(lr); 653 if (intid < INTID_SECURE) { 654 icv_activate_irq(cs, idx, grp); 655 } else { 656 /* Interrupt goes from Pending to Invalid */ 657 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 658 /* We will now return the (bogus) ID from the list register, 659 * as per the pseudocode. 660 */ 661 } 662 } 663 } 664 665 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 666 gicv3_redist_affid(cs), intid); 667 668 gicv3_cpuif_virt_update(cs); 669 670 return intid; 671 } 672 673 static int icc_highest_active_prio(GICv3CPUState *cs) 674 { 675 /* Calculate the current running priority based on the set bits 676 * in the Active Priority Registers. 677 */ 678 int i; 679 680 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 681 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 682 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 683 684 if (!apr) { 685 continue; 686 } 687 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 688 } 689 /* No current active interrupts: return idle priority */ 690 return 0xff; 691 } 692 693 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 694 { 695 /* Return a mask word which clears the subpriority bits from 696 * a priority value for an interrupt in the specified group. 697 * This depends on the BPR value. For CBPR0 (S or NS): 698 * a BPR of 0 means the group priority bits are [7:1]; 699 * a BPR of 1 means they are [7:2], and so on down to 700 * a BPR of 7 meaning no group priority bits at all. 701 * For CBPR1 NS: 702 * a BPR of 0 is impossible (the minimum value is 1) 703 * a BPR of 1 means the group priority bits are [7:1]; 704 * a BPR of 2 means they are [7:2], and so on down to 705 * a BPR of 7 meaning the group priority is [7]. 706 * 707 * Which BPR to use depends on the group of the interrupt and 708 * the current ICC_CTLR.CBPR settings. 709 * 710 * This corresponds to the GroupBits() pseudocode. 711 */ 712 int bpr; 713 714 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 715 (group == GICV3_G1NS && 716 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 717 group = GICV3_G0; 718 } 719 720 bpr = cs->icc_bpr[group] & 7; 721 722 if (group == GICV3_G1NS) { 723 assert(bpr > 0); 724 bpr--; 725 } 726 727 return ~0U << (bpr + 1); 728 } 729 730 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 731 { 732 /* Return true if there is no pending interrupt, or the 733 * highest priority pending interrupt is in a group which has been 734 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 735 */ 736 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 737 } 738 739 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 740 { 741 /* Return true if we have a pending interrupt of sufficient 742 * priority to preempt. 743 */ 744 int rprio; 745 uint32_t mask; 746 747 if (icc_no_enabled_hppi(cs)) { 748 return false; 749 } 750 751 if (cs->hppi.prio >= cs->icc_pmr_el1) { 752 /* Priority mask masks this interrupt */ 753 return false; 754 } 755 756 rprio = icc_highest_active_prio(cs); 757 if (rprio == 0xff) { 758 /* No currently running interrupt so we can preempt */ 759 return true; 760 } 761 762 mask = icc_gprio_mask(cs, cs->hppi.grp); 763 764 /* We only preempt a running interrupt if the pending interrupt's 765 * group priority is sufficient (the subpriorities are not considered). 766 */ 767 if ((cs->hppi.prio & mask) < (rprio & mask)) { 768 return true; 769 } 770 771 return false; 772 } 773 774 void gicv3_cpuif_update(GICv3CPUState *cs) 775 { 776 /* Tell the CPU about its highest priority pending interrupt */ 777 int irqlevel = 0; 778 int fiqlevel = 0; 779 ARMCPU *cpu = ARM_CPU(cs->cpu); 780 CPUARMState *env = &cpu->env; 781 782 g_assert(qemu_mutex_iothread_locked()); 783 784 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 785 cs->hppi.grp, cs->hppi.prio); 786 787 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 788 /* If a Security-enabled GIC sends a G1S interrupt to a 789 * Security-disabled CPU, we must treat it as if it were G0. 790 */ 791 cs->hppi.grp = GICV3_G0; 792 } 793 794 if (icc_hppi_can_preempt(cs)) { 795 /* We have an interrupt: should we signal it as IRQ or FIQ? 796 * This is described in the GICv3 spec section 4.6.2. 797 */ 798 bool isfiq; 799 800 switch (cs->hppi.grp) { 801 case GICV3_G0: 802 isfiq = true; 803 break; 804 case GICV3_G1: 805 isfiq = (!arm_is_secure(env) || 806 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 807 break; 808 case GICV3_G1NS: 809 isfiq = arm_is_secure(env); 810 break; 811 default: 812 g_assert_not_reached(); 813 } 814 815 if (isfiq) { 816 fiqlevel = 1; 817 } else { 818 irqlevel = 1; 819 } 820 } 821 822 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 823 824 qemu_set_irq(cs->parent_fiq, fiqlevel); 825 qemu_set_irq(cs->parent_irq, irqlevel); 826 } 827 828 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 829 { 830 GICv3CPUState *cs = icc_cs_from_env(env); 831 uint32_t value = cs->icc_pmr_el1; 832 833 if (icv_access(env, HCR_FMO | HCR_IMO)) { 834 return icv_pmr_read(env, ri); 835 } 836 837 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 838 (env->cp15.scr_el3 & SCR_FIQ)) { 839 /* NS access and Group 0 is inaccessible to NS: return the 840 * NS view of the current priority 841 */ 842 if ((value & 0x80) == 0) { 843 /* Secure priorities not visible to NS */ 844 value = 0; 845 } else if (value != 0xff) { 846 value = (value << 1) & 0xff; 847 } 848 } 849 850 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 851 852 return value; 853 } 854 855 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 856 uint64_t value) 857 { 858 GICv3CPUState *cs = icc_cs_from_env(env); 859 860 if (icv_access(env, HCR_FMO | HCR_IMO)) { 861 return icv_pmr_write(env, ri, value); 862 } 863 864 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 865 866 value &= 0xff; 867 868 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 869 (env->cp15.scr_el3 & SCR_FIQ)) { 870 /* NS access and Group 0 is inaccessible to NS: return the 871 * NS view of the current priority 872 */ 873 if (!(cs->icc_pmr_el1 & 0x80)) { 874 /* Current PMR in the secure range, don't allow NS to change it */ 875 return; 876 } 877 value = (value >> 1) | 0x80; 878 } 879 cs->icc_pmr_el1 = value; 880 gicv3_cpuif_update(cs); 881 } 882 883 static void icc_activate_irq(GICv3CPUState *cs, int irq) 884 { 885 /* Move the interrupt from the Pending state to Active, and update 886 * the Active Priority Registers 887 */ 888 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 889 int prio = cs->hppi.prio & mask; 890 int aprbit = prio >> 1; 891 int regno = aprbit / 32; 892 int regbit = aprbit % 32; 893 894 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 895 896 if (irq < GIC_INTERNAL) { 897 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 898 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 899 gicv3_redist_update(cs); 900 } else { 901 gicv3_gicd_active_set(cs->gic, irq); 902 gicv3_gicd_pending_clear(cs->gic, irq); 903 gicv3_update(cs->gic, irq, 1); 904 } 905 } 906 907 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 908 { 909 /* Return the highest priority pending interrupt register value 910 * for group 0. 911 */ 912 bool irq_is_secure; 913 914 if (cs->hppi.prio == 0xff) { 915 return INTID_SPURIOUS; 916 } 917 918 /* Check whether we can return the interrupt or if we should return 919 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 921 * is always zero.) 922 */ 923 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 924 (cs->hppi.grp != GICV3_G1NS)); 925 926 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 927 return INTID_SPURIOUS; 928 } 929 if (irq_is_secure && !arm_is_secure(env)) { 930 /* Secure interrupts not visible to Nonsecure */ 931 return INTID_SPURIOUS; 932 } 933 934 if (cs->hppi.grp != GICV3_G0) { 935 /* Indicate to EL3 that there's a Group 1 interrupt for the other 936 * state pending. 937 */ 938 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 939 } 940 941 return cs->hppi.irq; 942 } 943 944 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 945 { 946 /* Return the highest priority pending interrupt register value 947 * for group 1. 948 */ 949 bool irq_is_secure; 950 951 if (cs->hppi.prio == 0xff) { 952 return INTID_SPURIOUS; 953 } 954 955 /* Check whether we can return the interrupt or if we should return 956 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 957 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 958 * is always zero.) 959 */ 960 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 961 (cs->hppi.grp != GICV3_G1NS)); 962 963 if (cs->hppi.grp == GICV3_G0) { 964 /* Group 0 interrupts not visible via HPPIR1 */ 965 return INTID_SPURIOUS; 966 } 967 if (irq_is_secure) { 968 if (!arm_is_secure(env)) { 969 /* Secure interrupts not visible in Non-secure */ 970 return INTID_SPURIOUS; 971 } 972 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 973 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 974 return INTID_SPURIOUS; 975 } 976 977 return cs->hppi.irq; 978 } 979 980 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 981 { 982 GICv3CPUState *cs = icc_cs_from_env(env); 983 uint64_t intid; 984 985 if (icv_access(env, HCR_FMO)) { 986 return icv_iar_read(env, ri); 987 } 988 989 if (!icc_hppi_can_preempt(cs)) { 990 intid = INTID_SPURIOUS; 991 } else { 992 intid = icc_hppir0_value(cs, env); 993 } 994 995 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 996 icc_activate_irq(cs, intid); 997 } 998 999 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1000 return intid; 1001 } 1002 1003 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1004 { 1005 GICv3CPUState *cs = icc_cs_from_env(env); 1006 uint64_t intid; 1007 1008 if (icv_access(env, HCR_IMO)) { 1009 return icv_iar_read(env, ri); 1010 } 1011 1012 if (!icc_hppi_can_preempt(cs)) { 1013 intid = INTID_SPURIOUS; 1014 } else { 1015 intid = icc_hppir1_value(cs, env); 1016 } 1017 1018 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 1019 icc_activate_irq(cs, intid); 1020 } 1021 1022 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1023 return intid; 1024 } 1025 1026 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1027 { 1028 /* Drop the priority of the currently active interrupt in 1029 * the specified group. 1030 * 1031 * Note that we can guarantee (because of the requirement to nest 1032 * ICC_IAR reads [which activate an interrupt and raise priority] 1033 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1034 * that the interrupt we're being called for is the highest priority 1035 * active interrupt, meaning that it has the lowest set bit in the 1036 * APR registers. 1037 * 1038 * If the guest does not honour the ordering constraints then the 1039 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1040 * the values of the APR registers might become incorrect and the 1041 * running priority will be wrong, so interrupts that should preempt 1042 * might not do so, and interrupts that should not preempt might do so. 1043 */ 1044 int i; 1045 1046 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1047 uint64_t *papr = &cs->icc_apr[grp][i]; 1048 1049 if (!*papr) { 1050 continue; 1051 } 1052 /* Clear the lowest set bit */ 1053 *papr &= *papr - 1; 1054 break; 1055 } 1056 1057 /* running priority change means we need an update for this cpu i/f */ 1058 gicv3_cpuif_update(cs); 1059 } 1060 1061 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1062 { 1063 /* Return true if we should split priority drop and interrupt 1064 * deactivation, ie whether the relevant EOIMode bit is set. 1065 */ 1066 if (arm_is_el3_or_mon(env)) { 1067 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1068 } 1069 if (arm_is_secure_below_el3(env)) { 1070 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1071 } else { 1072 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1073 } 1074 } 1075 1076 static int icc_highest_active_group(GICv3CPUState *cs) 1077 { 1078 /* Return the group with the highest priority active interrupt. 1079 * We can do this by just comparing the APRs to see which one 1080 * has the lowest set bit. 1081 * (If more than one group is active at the same priority then 1082 * we're in UNPREDICTABLE territory.) 1083 */ 1084 int i; 1085 1086 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1087 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1088 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1089 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1090 1091 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1092 return GICV3_G1NS; 1093 } 1094 if (g1ctz < g0ctz) { 1095 return GICV3_G1; 1096 } 1097 if (g0ctz < 32) { 1098 return GICV3_G0; 1099 } 1100 } 1101 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1102 * ignores the spurious EOI attempt. 1103 */ 1104 return -1; 1105 } 1106 1107 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1108 { 1109 if (irq < GIC_INTERNAL) { 1110 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1111 gicv3_redist_update(cs); 1112 } else { 1113 gicv3_gicd_active_clear(cs->gic, irq); 1114 gicv3_update(cs->gic, irq, 1); 1115 } 1116 } 1117 1118 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1119 { 1120 /* Return true if we should split priority drop and interrupt 1121 * deactivation, ie whether the virtual EOIMode bit is set. 1122 */ 1123 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1124 } 1125 1126 static int icv_find_active(GICv3CPUState *cs, int irq) 1127 { 1128 /* Given an interrupt number for an active interrupt, return the index 1129 * of the corresponding list register, or -1 if there is no match. 1130 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1131 */ 1132 int i; 1133 1134 for (i = 0; i < cs->num_list_regs; i++) { 1135 uint64_t lr = cs->ich_lr_el2[i]; 1136 1137 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1138 return i; 1139 } 1140 } 1141 1142 return -1; 1143 } 1144 1145 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1146 { 1147 /* Deactivate the interrupt in the specified list register index */ 1148 uint64_t lr = cs->ich_lr_el2[idx]; 1149 1150 if (lr & ICH_LR_EL2_HW) { 1151 /* Deactivate the associated physical interrupt */ 1152 int pirq = ich_lr_pintid(lr); 1153 1154 if (pirq < INTID_SECURE) { 1155 icc_deactivate_irq(cs, pirq); 1156 } 1157 } 1158 1159 /* Clear the 'active' part of the state, so ActivePending->Pending 1160 * and Active->Invalid. 1161 */ 1162 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1163 cs->ich_lr_el2[idx] = lr; 1164 } 1165 1166 static void icv_increment_eoicount(GICv3CPUState *cs) 1167 { 1168 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1169 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1170 ICH_HCR_EL2_EOICOUNT_LENGTH); 1171 1172 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1173 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1174 } 1175 1176 static int icv_drop_prio(GICv3CPUState *cs) 1177 { 1178 /* Drop the priority of the currently active virtual interrupt 1179 * (favouring group 0 if there is a set active bit at 1180 * the same priority for both group 0 and group 1). 1181 * Return the priority value for the bit we just cleared, 1182 * or 0xff if no bits were set in the AP registers at all. 1183 * Note that though the ich_apr[] are uint64_t only the low 1184 * 32 bits are actually relevant. 1185 */ 1186 int i; 1187 int aprmax = 1 << (cs->vprebits - 5); 1188 1189 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1190 1191 for (i = 0; i < aprmax; i++) { 1192 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1193 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1194 int apr0count, apr1count; 1195 1196 if (!*papr0 && !*papr1) { 1197 continue; 1198 } 1199 1200 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1201 * because we need to return the bit number we cleared so 1202 * it can be compared against the list register's priority field. 1203 */ 1204 apr0count = ctz32(*papr0); 1205 apr1count = ctz32(*papr1); 1206 1207 if (apr0count <= apr1count) { 1208 *papr0 &= *papr0 - 1; 1209 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1210 } else { 1211 *papr1 &= *papr1 - 1; 1212 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1213 } 1214 } 1215 return 0xff; 1216 } 1217 1218 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1219 uint64_t value) 1220 { 1221 /* Deactivate interrupt */ 1222 GICv3CPUState *cs = icc_cs_from_env(env); 1223 int idx; 1224 int irq = value & 0xffffff; 1225 1226 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1227 1228 if (irq >= cs->gic->num_irq) { 1229 /* Also catches special interrupt numbers and LPIs */ 1230 return; 1231 } 1232 1233 if (!icv_eoi_split(env, cs)) { 1234 return; 1235 } 1236 1237 idx = icv_find_active(cs, irq); 1238 1239 if (idx < 0) { 1240 /* No list register matching this, so increment the EOI count 1241 * (might trigger a maintenance interrupt) 1242 */ 1243 icv_increment_eoicount(cs); 1244 } else { 1245 icv_deactivate_irq(cs, idx); 1246 } 1247 1248 gicv3_cpuif_virt_update(cs); 1249 } 1250 1251 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1252 uint64_t value) 1253 { 1254 /* End of Interrupt */ 1255 GICv3CPUState *cs = icc_cs_from_env(env); 1256 int irq = value & 0xffffff; 1257 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1258 int idx, dropprio; 1259 1260 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1261 gicv3_redist_affid(cs), value); 1262 1263 if (irq >= cs->gic->num_irq) { 1264 /* Also catches special interrupt numbers and LPIs */ 1265 return; 1266 } 1267 1268 /* We implement the IMPDEF choice of "drop priority before doing 1269 * error checks" (because that lets us avoid scanning the AP 1270 * registers twice). 1271 */ 1272 dropprio = icv_drop_prio(cs); 1273 if (dropprio == 0xff) { 1274 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1275 * whether the list registers are checked in this 1276 * situation; we choose not to. 1277 */ 1278 return; 1279 } 1280 1281 idx = icv_find_active(cs, irq); 1282 1283 if (idx < 0) { 1284 /* No valid list register corresponding to EOI ID */ 1285 icv_increment_eoicount(cs); 1286 } else { 1287 uint64_t lr = cs->ich_lr_el2[idx]; 1288 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1289 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1290 1291 if (thisgrp == grp && lr_gprio == dropprio) { 1292 if (!icv_eoi_split(env, cs)) { 1293 /* Priority drop and deactivate not split: deactivate irq now */ 1294 icv_deactivate_irq(cs, idx); 1295 } 1296 } 1297 } 1298 1299 gicv3_cpuif_virt_update(cs); 1300 } 1301 1302 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1303 uint64_t value) 1304 { 1305 /* End of Interrupt */ 1306 GICv3CPUState *cs = icc_cs_from_env(env); 1307 int irq = value & 0xffffff; 1308 int grp; 1309 1310 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1311 icv_eoir_write(env, ri, value); 1312 return; 1313 } 1314 1315 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1316 gicv3_redist_affid(cs), value); 1317 1318 if (ri->crm == 8) { 1319 /* EOIR0 */ 1320 grp = GICV3_G0; 1321 } else { 1322 /* EOIR1 */ 1323 if (arm_is_secure(env)) { 1324 grp = GICV3_G1; 1325 } else { 1326 grp = GICV3_G1NS; 1327 } 1328 } 1329 1330 if (irq >= cs->gic->num_irq) { 1331 /* This handles two cases: 1332 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1333 * to the GICC_EOIR, the GIC ignores that write. 1334 * 2. If software writes the number of a non-existent interrupt 1335 * this must be a subcase of "value written does not match the last 1336 * valid interrupt value read from the Interrupt Acknowledge 1337 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1338 */ 1339 return; 1340 } 1341 1342 if (icc_highest_active_group(cs) != grp) { 1343 return; 1344 } 1345 1346 icc_drop_prio(cs, grp); 1347 1348 if (!icc_eoi_split(env, cs)) { 1349 /* Priority drop and deactivate not split: deactivate irq now */ 1350 icc_deactivate_irq(cs, irq); 1351 } 1352 } 1353 1354 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1355 { 1356 GICv3CPUState *cs = icc_cs_from_env(env); 1357 uint64_t value; 1358 1359 if (icv_access(env, HCR_FMO)) { 1360 return icv_hppir_read(env, ri); 1361 } 1362 1363 value = icc_hppir0_value(cs, env); 1364 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1365 return value; 1366 } 1367 1368 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1369 { 1370 GICv3CPUState *cs = icc_cs_from_env(env); 1371 uint64_t value; 1372 1373 if (icv_access(env, HCR_IMO)) { 1374 return icv_hppir_read(env, ri); 1375 } 1376 1377 value = icc_hppir1_value(cs, env); 1378 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1379 return value; 1380 } 1381 1382 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1383 { 1384 GICv3CPUState *cs = icc_cs_from_env(env); 1385 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1386 bool satinc = false; 1387 uint64_t bpr; 1388 1389 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1390 return icv_bpr_read(env, ri); 1391 } 1392 1393 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1394 grp = GICV3_G1NS; 1395 } 1396 1397 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1398 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1399 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1400 * modify BPR0 1401 */ 1402 grp = GICV3_G0; 1403 } 1404 1405 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1406 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1407 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1408 grp = GICV3_G0; 1409 satinc = true; 1410 } 1411 1412 bpr = cs->icc_bpr[grp]; 1413 if (satinc) { 1414 bpr++; 1415 bpr = MIN(bpr, 7); 1416 } 1417 1418 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1419 1420 return bpr; 1421 } 1422 1423 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1424 uint64_t value) 1425 { 1426 GICv3CPUState *cs = icc_cs_from_env(env); 1427 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1428 uint64_t minval; 1429 1430 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1431 icv_bpr_write(env, ri, value); 1432 return; 1433 } 1434 1435 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1436 gicv3_redist_affid(cs), value); 1437 1438 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1439 grp = GICV3_G1NS; 1440 } 1441 1442 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1443 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1444 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1445 * modify BPR0 1446 */ 1447 grp = GICV3_G0; 1448 } 1449 1450 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1451 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1452 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1453 return; 1454 } 1455 1456 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1457 if (value < minval) { 1458 value = minval; 1459 } 1460 1461 cs->icc_bpr[grp] = value & 7; 1462 gicv3_cpuif_update(cs); 1463 } 1464 1465 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1466 { 1467 GICv3CPUState *cs = icc_cs_from_env(env); 1468 uint64_t value; 1469 1470 int regno = ri->opc2 & 3; 1471 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1472 1473 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1474 return icv_ap_read(env, ri); 1475 } 1476 1477 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1478 grp = GICV3_G1NS; 1479 } 1480 1481 value = cs->icc_apr[grp][regno]; 1482 1483 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1484 return value; 1485 } 1486 1487 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1488 uint64_t value) 1489 { 1490 GICv3CPUState *cs = icc_cs_from_env(env); 1491 1492 int regno = ri->opc2 & 3; 1493 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1494 1495 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1496 icv_ap_write(env, ri, value); 1497 return; 1498 } 1499 1500 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1501 1502 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1503 grp = GICV3_G1NS; 1504 } 1505 1506 /* It's not possible to claim that a Non-secure interrupt is active 1507 * at a priority outside the Non-secure range (128..255), since this 1508 * would otherwise allow malicious NS code to block delivery of S interrupts 1509 * by writing a bad value to these registers. 1510 */ 1511 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1512 return; 1513 } 1514 1515 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1516 gicv3_cpuif_update(cs); 1517 } 1518 1519 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1520 uint64_t value) 1521 { 1522 /* Deactivate interrupt */ 1523 GICv3CPUState *cs = icc_cs_from_env(env); 1524 int irq = value & 0xffffff; 1525 bool irq_is_secure, single_sec_state, irq_is_grp0; 1526 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1527 1528 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1529 icv_dir_write(env, ri, value); 1530 return; 1531 } 1532 1533 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1534 1535 if (irq >= cs->gic->num_irq) { 1536 /* Also catches special interrupt numbers and LPIs */ 1537 return; 1538 } 1539 1540 if (!icc_eoi_split(env, cs)) { 1541 return; 1542 } 1543 1544 int grp = gicv3_irq_group(cs->gic, cs, irq); 1545 1546 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1547 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1548 irq_is_grp0 = grp == GICV3_G0; 1549 1550 /* Check whether we're allowed to deactivate this interrupt based 1551 * on its group and the current CPU state. 1552 * These checks are laid out to correspond to the spec's pseudocode. 1553 */ 1554 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1555 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1556 /* No need to include !IsSecure in route_*_to_el2 as it's only 1557 * tested in cases where we know !IsSecure is true. 1558 */ 1559 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1560 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1561 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1562 1563 switch (arm_current_el(env)) { 1564 case 3: 1565 break; 1566 case 2: 1567 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1568 break; 1569 } 1570 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1571 break; 1572 } 1573 return; 1574 case 1: 1575 if (!arm_is_secure_below_el3(env)) { 1576 if (single_sec_state && irq_is_grp0 && 1577 !route_fiq_to_el3 && !route_fiq_to_el2) { 1578 break; 1579 } 1580 if (!irq_is_secure && !irq_is_grp0 && 1581 !route_irq_to_el3 && !route_irq_to_el2) { 1582 break; 1583 } 1584 } else { 1585 if (irq_is_grp0 && !route_fiq_to_el3) { 1586 break; 1587 } 1588 if (!irq_is_grp0 && 1589 (!irq_is_secure || !single_sec_state) && 1590 !route_irq_to_el3) { 1591 break; 1592 } 1593 } 1594 return; 1595 default: 1596 g_assert_not_reached(); 1597 } 1598 1599 icc_deactivate_irq(cs, irq); 1600 } 1601 1602 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1603 { 1604 GICv3CPUState *cs = icc_cs_from_env(env); 1605 int prio; 1606 1607 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1608 return icv_rpr_read(env, ri); 1609 } 1610 1611 prio = icc_highest_active_prio(cs); 1612 1613 if (arm_feature(env, ARM_FEATURE_EL3) && 1614 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1615 /* NS GIC access and Group 0 is inaccessible to NS */ 1616 if ((prio & 0x80) == 0) { 1617 /* NS mustn't see priorities in the Secure half of the range */ 1618 prio = 0; 1619 } else if (prio != 0xff) { 1620 /* Non-idle priority: show the Non-secure view of it */ 1621 prio = (prio << 1) & 0xff; 1622 } 1623 } 1624 1625 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1626 return prio; 1627 } 1628 1629 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1630 uint64_t value, int grp, bool ns) 1631 { 1632 GICv3State *s = cs->gic; 1633 1634 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1635 uint64_t aff = extract64(value, 48, 8) << 16 | 1636 extract64(value, 32, 8) << 8 | 1637 extract64(value, 16, 8); 1638 uint32_t targetlist = extract64(value, 0, 16); 1639 uint32_t irq = extract64(value, 24, 4); 1640 bool irm = extract64(value, 40, 1); 1641 int i; 1642 1643 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1644 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1645 * interrupts as Group 0 interrupts and must send Secure Group 0 1646 * interrupts to the target CPUs. 1647 */ 1648 grp = GICV3_G0; 1649 } 1650 1651 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1652 aff, targetlist); 1653 1654 for (i = 0; i < s->num_cpu; i++) { 1655 GICv3CPUState *ocs = &s->cpu[i]; 1656 1657 if (irm) { 1658 /* IRM == 1 : route to all CPUs except self */ 1659 if (cs == ocs) { 1660 continue; 1661 } 1662 } else { 1663 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1664 * where the corresponding bit is set in targetlist 1665 */ 1666 int aff0; 1667 1668 if (ocs->gicr_typer >> 40 != aff) { 1669 continue; 1670 } 1671 aff0 = extract64(ocs->gicr_typer, 32, 8); 1672 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1673 continue; 1674 } 1675 } 1676 1677 /* The redistributor will check against its own GICR_NSACR as needed */ 1678 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1679 } 1680 } 1681 1682 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1683 uint64_t value) 1684 { 1685 /* Generate Secure Group 0 SGI. */ 1686 GICv3CPUState *cs = icc_cs_from_env(env); 1687 bool ns = !arm_is_secure(env); 1688 1689 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1690 } 1691 1692 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1693 uint64_t value) 1694 { 1695 /* Generate Group 1 SGI for the current Security state */ 1696 GICv3CPUState *cs = icc_cs_from_env(env); 1697 int grp; 1698 bool ns = !arm_is_secure(env); 1699 1700 grp = ns ? GICV3_G1NS : GICV3_G1; 1701 icc_generate_sgi(env, cs, value, grp, ns); 1702 } 1703 1704 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1705 uint64_t value) 1706 { 1707 /* Generate Group 1 SGI for the Security state that is not 1708 * the current state 1709 */ 1710 GICv3CPUState *cs = icc_cs_from_env(env); 1711 int grp; 1712 bool ns = !arm_is_secure(env); 1713 1714 grp = ns ? GICV3_G1 : GICV3_G1NS; 1715 icc_generate_sgi(env, cs, value, grp, ns); 1716 } 1717 1718 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1719 { 1720 GICv3CPUState *cs = icc_cs_from_env(env); 1721 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1722 uint64_t value; 1723 1724 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1725 return icv_igrpen_read(env, ri); 1726 } 1727 1728 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1729 grp = GICV3_G1NS; 1730 } 1731 1732 value = cs->icc_igrpen[grp]; 1733 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1734 gicv3_redist_affid(cs), value); 1735 return value; 1736 } 1737 1738 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1739 uint64_t value) 1740 { 1741 GICv3CPUState *cs = icc_cs_from_env(env); 1742 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1743 1744 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1745 icv_igrpen_write(env, ri, value); 1746 return; 1747 } 1748 1749 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1750 gicv3_redist_affid(cs), value); 1751 1752 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1753 grp = GICV3_G1NS; 1754 } 1755 1756 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1757 gicv3_cpuif_update(cs); 1758 } 1759 1760 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1761 { 1762 GICv3CPUState *cs = icc_cs_from_env(env); 1763 uint64_t value; 1764 1765 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1766 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1767 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1768 return value; 1769 } 1770 1771 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1772 uint64_t value) 1773 { 1774 GICv3CPUState *cs = icc_cs_from_env(env); 1775 1776 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1777 1778 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1779 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1780 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1781 gicv3_cpuif_update(cs); 1782 } 1783 1784 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1785 { 1786 GICv3CPUState *cs = icc_cs_from_env(env); 1787 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1788 uint64_t value; 1789 1790 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1791 return icv_ctlr_read(env, ri); 1792 } 1793 1794 value = cs->icc_ctlr_el1[bank]; 1795 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1796 return value; 1797 } 1798 1799 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1800 uint64_t value) 1801 { 1802 GICv3CPUState *cs = icc_cs_from_env(env); 1803 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1804 uint64_t mask; 1805 1806 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1807 icv_ctlr_write(env, ri, value); 1808 return; 1809 } 1810 1811 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1812 1813 /* Only CBPR and EOIMODE can be RW; 1814 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1815 * the asseciated priority-based routing of them); 1816 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1817 */ 1818 if (arm_feature(env, ARM_FEATURE_EL3) && 1819 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1820 mask = ICC_CTLR_EL1_EOIMODE; 1821 } else { 1822 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1823 } 1824 1825 cs->icc_ctlr_el1[bank] &= ~mask; 1826 cs->icc_ctlr_el1[bank] |= (value & mask); 1827 gicv3_cpuif_update(cs); 1828 } 1829 1830 1831 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1832 { 1833 GICv3CPUState *cs = icc_cs_from_env(env); 1834 uint64_t value; 1835 1836 value = cs->icc_ctlr_el3; 1837 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1838 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1839 } 1840 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1841 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1842 } 1843 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1844 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1845 } 1846 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1847 value |= ICC_CTLR_EL3_CBPR_EL1S; 1848 } 1849 1850 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1851 return value; 1852 } 1853 1854 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1855 uint64_t value) 1856 { 1857 GICv3CPUState *cs = icc_cs_from_env(env); 1858 uint64_t mask; 1859 1860 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1861 1862 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1863 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1864 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1865 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1866 } 1867 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1868 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1869 } 1870 1871 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1872 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1873 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1874 } 1875 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1876 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1877 } 1878 1879 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1880 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1881 1882 cs->icc_ctlr_el3 &= ~mask; 1883 cs->icc_ctlr_el3 |= (value & mask); 1884 gicv3_cpuif_update(cs); 1885 } 1886 1887 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1888 const ARMCPRegInfo *ri, bool isread) 1889 { 1890 CPAccessResult r = CP_ACCESS_OK; 1891 GICv3CPUState *cs = icc_cs_from_env(env); 1892 int el = arm_current_el(env); 1893 1894 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1895 el == 1 && !arm_is_secure_below_el3(env)) { 1896 /* Takes priority over a possible EL3 trap */ 1897 return CP_ACCESS_TRAP_EL2; 1898 } 1899 1900 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1901 switch (el) { 1902 case 1: 1903 /* Note that arm_hcr_el2_eff takes secure state into account. */ 1904 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 1905 r = CP_ACCESS_TRAP_EL3; 1906 } 1907 break; 1908 case 2: 1909 r = CP_ACCESS_TRAP_EL3; 1910 break; 1911 case 3: 1912 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1913 r = CP_ACCESS_TRAP_EL3; 1914 } 1915 break; 1916 default: 1917 g_assert_not_reached(); 1918 } 1919 } 1920 1921 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1922 r = CP_ACCESS_TRAP; 1923 } 1924 return r; 1925 } 1926 1927 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1928 const ARMCPRegInfo *ri, bool isread) 1929 { 1930 GICv3CPUState *cs = icc_cs_from_env(env); 1931 1932 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1933 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1934 /* Takes priority over a possible EL3 trap */ 1935 return CP_ACCESS_TRAP_EL2; 1936 } 1937 1938 return gicv3_irqfiq_access(env, ri, isread); 1939 } 1940 1941 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1942 const ARMCPRegInfo *ri, bool isread) 1943 { 1944 if (arm_current_el(env) == 1 && 1945 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 1946 /* Takes priority over a possible EL3 trap */ 1947 return CP_ACCESS_TRAP_EL2; 1948 } 1949 1950 return gicv3_irqfiq_access(env, ri, isread); 1951 } 1952 1953 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1954 const ARMCPRegInfo *ri, bool isread) 1955 { 1956 CPAccessResult r = CP_ACCESS_OK; 1957 GICv3CPUState *cs = icc_cs_from_env(env); 1958 int el = arm_current_el(env); 1959 1960 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1961 el == 1 && !arm_is_secure_below_el3(env)) { 1962 /* Takes priority over a possible EL3 trap */ 1963 return CP_ACCESS_TRAP_EL2; 1964 } 1965 1966 if (env->cp15.scr_el3 & SCR_FIQ) { 1967 switch (el) { 1968 case 1: 1969 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 1970 r = CP_ACCESS_TRAP_EL3; 1971 } 1972 break; 1973 case 2: 1974 r = CP_ACCESS_TRAP_EL3; 1975 break; 1976 case 3: 1977 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1978 r = CP_ACCESS_TRAP_EL3; 1979 } 1980 break; 1981 default: 1982 g_assert_not_reached(); 1983 } 1984 } 1985 1986 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1987 r = CP_ACCESS_TRAP; 1988 } 1989 return r; 1990 } 1991 1992 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1993 const ARMCPRegInfo *ri, bool isread) 1994 { 1995 CPAccessResult r = CP_ACCESS_OK; 1996 GICv3CPUState *cs = icc_cs_from_env(env); 1997 int el = arm_current_el(env); 1998 1999 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2000 el == 1 && !arm_is_secure_below_el3(env)) { 2001 /* Takes priority over a possible EL3 trap */ 2002 return CP_ACCESS_TRAP_EL2; 2003 } 2004 2005 if (env->cp15.scr_el3 & SCR_IRQ) { 2006 switch (el) { 2007 case 1: 2008 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2009 r = CP_ACCESS_TRAP_EL3; 2010 } 2011 break; 2012 case 2: 2013 r = CP_ACCESS_TRAP_EL3; 2014 break; 2015 case 3: 2016 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2017 r = CP_ACCESS_TRAP_EL3; 2018 } 2019 break; 2020 default: 2021 g_assert_not_reached(); 2022 } 2023 } 2024 2025 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2026 r = CP_ACCESS_TRAP; 2027 } 2028 return r; 2029 } 2030 2031 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2032 { 2033 GICv3CPUState *cs = icc_cs_from_env(env); 2034 2035 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2036 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2037 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2038 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2039 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2040 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2041 cs->icc_pmr_el1 = 0; 2042 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2043 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2044 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2045 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2046 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2047 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2048 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2049 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2050 2051 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2052 cs->ich_hcr_el2 = 0; 2053 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2054 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2055 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2056 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2057 } 2058 2059 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2060 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2061 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2062 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2063 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2064 .readfn = icc_pmr_read, 2065 .writefn = icc_pmr_write, 2066 /* We hang the whole cpu interface reset routine off here 2067 * rather than parcelling it out into one little function 2068 * per register 2069 */ 2070 .resetfn = icc_reset, 2071 }, 2072 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2074 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2075 .access = PL1_R, .accessfn = gicv3_fiq_access, 2076 .readfn = icc_iar0_read, 2077 }, 2078 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2079 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2080 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2081 .access = PL1_W, .accessfn = gicv3_fiq_access, 2082 .writefn = icc_eoir_write, 2083 }, 2084 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2086 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2087 .access = PL1_R, .accessfn = gicv3_fiq_access, 2088 .readfn = icc_hppir0_read, 2089 }, 2090 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2091 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2092 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2093 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2094 .readfn = icc_bpr_read, 2095 .writefn = icc_bpr_write, 2096 }, 2097 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2098 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2099 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2100 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2101 .readfn = icc_ap_read, 2102 .writefn = icc_ap_write, 2103 }, 2104 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2105 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2106 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2107 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2108 .readfn = icc_ap_read, 2109 .writefn = icc_ap_write, 2110 }, 2111 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2113 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2114 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2115 .readfn = icc_ap_read, 2116 .writefn = icc_ap_write, 2117 }, 2118 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2120 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2121 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2122 .readfn = icc_ap_read, 2123 .writefn = icc_ap_write, 2124 }, 2125 /* All the ICC_AP1R*_EL1 registers are banked */ 2126 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2127 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2128 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2129 .access = PL1_RW, .accessfn = gicv3_irq_access, 2130 .readfn = icc_ap_read, 2131 .writefn = icc_ap_write, 2132 }, 2133 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2134 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2135 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2136 .access = PL1_RW, .accessfn = gicv3_irq_access, 2137 .readfn = icc_ap_read, 2138 .writefn = icc_ap_write, 2139 }, 2140 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2141 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2142 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2143 .access = PL1_RW, .accessfn = gicv3_irq_access, 2144 .readfn = icc_ap_read, 2145 .writefn = icc_ap_write, 2146 }, 2147 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2148 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2149 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2150 .access = PL1_RW, .accessfn = gicv3_irq_access, 2151 .readfn = icc_ap_read, 2152 .writefn = icc_ap_write, 2153 }, 2154 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2155 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2156 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2157 .access = PL1_W, .accessfn = gicv3_dir_access, 2158 .writefn = icc_dir_write, 2159 }, 2160 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2162 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2163 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2164 .readfn = icc_rpr_read, 2165 }, 2166 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2167 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2168 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2169 .access = PL1_W, .accessfn = gicv3_sgi_access, 2170 .writefn = icc_sgi1r_write, 2171 }, 2172 { .name = "ICC_SGI1R", 2173 .cp = 15, .opc1 = 0, .crm = 12, 2174 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2175 .access = PL1_W, .accessfn = gicv3_sgi_access, 2176 .writefn = icc_sgi1r_write, 2177 }, 2178 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2179 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2180 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2181 .access = PL1_W, .accessfn = gicv3_sgi_access, 2182 .writefn = icc_asgi1r_write, 2183 }, 2184 { .name = "ICC_ASGI1R", 2185 .cp = 15, .opc1 = 1, .crm = 12, 2186 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2187 .access = PL1_W, .accessfn = gicv3_sgi_access, 2188 .writefn = icc_asgi1r_write, 2189 }, 2190 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2191 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2192 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2193 .access = PL1_W, .accessfn = gicv3_sgi_access, 2194 .writefn = icc_sgi0r_write, 2195 }, 2196 { .name = "ICC_SGI0R", 2197 .cp = 15, .opc1 = 2, .crm = 12, 2198 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2199 .access = PL1_W, .accessfn = gicv3_sgi_access, 2200 .writefn = icc_sgi0r_write, 2201 }, 2202 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2203 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2204 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2205 .access = PL1_R, .accessfn = gicv3_irq_access, 2206 .readfn = icc_iar1_read, 2207 }, 2208 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2209 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2210 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2211 .access = PL1_W, .accessfn = gicv3_irq_access, 2212 .writefn = icc_eoir_write, 2213 }, 2214 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2215 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2216 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2217 .access = PL1_R, .accessfn = gicv3_irq_access, 2218 .readfn = icc_hppir1_read, 2219 }, 2220 /* This register is banked */ 2221 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2222 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2223 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2224 .access = PL1_RW, .accessfn = gicv3_irq_access, 2225 .readfn = icc_bpr_read, 2226 .writefn = icc_bpr_write, 2227 }, 2228 /* This register is banked */ 2229 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2230 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2231 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2232 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2233 .readfn = icc_ctlr_el1_read, 2234 .writefn = icc_ctlr_el1_write, 2235 }, 2236 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2237 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2238 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2239 .access = PL1_RW, 2240 /* We don't support IRQ/FIQ bypass and system registers are 2241 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2242 * This register is banked but since it's constant we don't 2243 * need to do anything special. 2244 */ 2245 .resetvalue = 0x7, 2246 }, 2247 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2248 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2249 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2250 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2251 .readfn = icc_igrpen_read, 2252 .writefn = icc_igrpen_write, 2253 }, 2254 /* This register is banked */ 2255 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2256 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2257 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2258 .access = PL1_RW, .accessfn = gicv3_irq_access, 2259 .readfn = icc_igrpen_read, 2260 .writefn = icc_igrpen_write, 2261 }, 2262 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2263 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2264 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2265 .access = PL2_RW, 2266 /* We don't support IRQ/FIQ bypass and system registers are 2267 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2268 */ 2269 .resetvalue = 0xf, 2270 }, 2271 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2272 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2273 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2274 .access = PL3_RW, 2275 .readfn = icc_ctlr_el3_read, 2276 .writefn = icc_ctlr_el3_write, 2277 }, 2278 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2279 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2280 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2281 .access = PL3_RW, 2282 /* We don't support IRQ/FIQ bypass and system registers are 2283 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2284 */ 2285 .resetvalue = 0xf, 2286 }, 2287 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2288 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2289 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2290 .access = PL3_RW, 2291 .readfn = icc_igrpen1_el3_read, 2292 .writefn = icc_igrpen1_el3_write, 2293 }, 2294 REGINFO_SENTINEL 2295 }; 2296 2297 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2298 { 2299 GICv3CPUState *cs = icc_cs_from_env(env); 2300 int regno = ri->opc2 & 3; 2301 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2302 uint64_t value; 2303 2304 value = cs->ich_apr[grp][regno]; 2305 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2306 return value; 2307 } 2308 2309 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2310 uint64_t value) 2311 { 2312 GICv3CPUState *cs = icc_cs_from_env(env); 2313 int regno = ri->opc2 & 3; 2314 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2315 2316 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2317 2318 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2319 gicv3_cpuif_virt_update(cs); 2320 } 2321 2322 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2323 { 2324 GICv3CPUState *cs = icc_cs_from_env(env); 2325 uint64_t value = cs->ich_hcr_el2; 2326 2327 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2328 return value; 2329 } 2330 2331 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2332 uint64_t value) 2333 { 2334 GICv3CPUState *cs = icc_cs_from_env(env); 2335 2336 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2337 2338 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2339 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2340 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2341 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2342 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2343 2344 cs->ich_hcr_el2 = value; 2345 gicv3_cpuif_virt_update(cs); 2346 } 2347 2348 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2349 { 2350 GICv3CPUState *cs = icc_cs_from_env(env); 2351 uint64_t value = cs->ich_vmcr_el2; 2352 2353 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2354 return value; 2355 } 2356 2357 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2358 uint64_t value) 2359 { 2360 GICv3CPUState *cs = icc_cs_from_env(env); 2361 2362 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2363 2364 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2365 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2366 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2367 value |= ICH_VMCR_EL2_VFIQEN; 2368 2369 cs->ich_vmcr_el2 = value; 2370 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2371 * by reading and writing back the fields. 2372 */ 2373 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2374 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2375 2376 gicv3_cpuif_virt_update(cs); 2377 } 2378 2379 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2380 { 2381 GICv3CPUState *cs = icc_cs_from_env(env); 2382 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2383 uint64_t value; 2384 2385 /* This read function handles all of: 2386 * 64-bit reads of the whole LR 2387 * 32-bit reads of the low half of the LR 2388 * 32-bit reads of the high half of the LR 2389 */ 2390 if (ri->state == ARM_CP_STATE_AA32) { 2391 if (ri->crm >= 14) { 2392 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2393 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2394 } else { 2395 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2396 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2397 } 2398 } else { 2399 value = cs->ich_lr_el2[regno]; 2400 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2401 } 2402 2403 return value; 2404 } 2405 2406 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2407 uint64_t value) 2408 { 2409 GICv3CPUState *cs = icc_cs_from_env(env); 2410 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2411 2412 /* This write function handles all of: 2413 * 64-bit writes to the whole LR 2414 * 32-bit writes to the low half of the LR 2415 * 32-bit writes to the high half of the LR 2416 */ 2417 if (ri->state == ARM_CP_STATE_AA32) { 2418 if (ri->crm >= 14) { 2419 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2420 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2421 } else { 2422 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2423 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2424 } 2425 } else { 2426 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2427 } 2428 2429 /* Enforce RES0 bits in priority field */ 2430 if (cs->vpribits < 8) { 2431 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2432 8 - cs->vpribits, 0); 2433 } 2434 2435 cs->ich_lr_el2[regno] = value; 2436 gicv3_cpuif_virt_update(cs); 2437 } 2438 2439 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2440 { 2441 GICv3CPUState *cs = icc_cs_from_env(env); 2442 uint64_t value; 2443 2444 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2445 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2446 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2447 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2448 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2449 2450 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2451 return value; 2452 } 2453 2454 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2455 { 2456 GICv3CPUState *cs = icc_cs_from_env(env); 2457 uint64_t value = maintenance_interrupt_state(cs); 2458 2459 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2460 return value; 2461 } 2462 2463 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2464 { 2465 GICv3CPUState *cs = icc_cs_from_env(env); 2466 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2467 2468 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2469 return value; 2470 } 2471 2472 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2473 { 2474 GICv3CPUState *cs = icc_cs_from_env(env); 2475 uint64_t value = 0; 2476 int i; 2477 2478 for (i = 0; i < cs->num_list_regs; i++) { 2479 uint64_t lr = cs->ich_lr_el2[i]; 2480 2481 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2482 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2483 value |= (1 << i); 2484 } 2485 } 2486 2487 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2488 return value; 2489 } 2490 2491 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2492 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2493 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2494 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2495 .access = PL2_RW, 2496 .readfn = ich_ap_read, 2497 .writefn = ich_ap_write, 2498 }, 2499 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2501 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2502 .access = PL2_RW, 2503 .readfn = ich_ap_read, 2504 .writefn = ich_ap_write, 2505 }, 2506 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2507 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2508 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2509 .access = PL2_RW, 2510 .readfn = ich_hcr_read, 2511 .writefn = ich_hcr_write, 2512 }, 2513 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2514 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2515 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2516 .access = PL2_R, 2517 .readfn = ich_vtr_read, 2518 }, 2519 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2521 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2522 .access = PL2_R, 2523 .readfn = ich_misr_read, 2524 }, 2525 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2526 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2527 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2528 .access = PL2_R, 2529 .readfn = ich_eisr_read, 2530 }, 2531 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2532 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2533 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2534 .access = PL2_R, 2535 .readfn = ich_elrsr_read, 2536 }, 2537 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2538 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2539 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2540 .access = PL2_RW, 2541 .readfn = ich_vmcr_read, 2542 .writefn = ich_vmcr_write, 2543 }, 2544 REGINFO_SENTINEL 2545 }; 2546 2547 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2548 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2549 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2550 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2551 .access = PL2_RW, 2552 .readfn = ich_ap_read, 2553 .writefn = ich_ap_write, 2554 }, 2555 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2556 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2557 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2558 .access = PL2_RW, 2559 .readfn = ich_ap_read, 2560 .writefn = ich_ap_write, 2561 }, 2562 REGINFO_SENTINEL 2563 }; 2564 2565 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2566 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2567 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2568 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2569 .access = PL2_RW, 2570 .readfn = ich_ap_read, 2571 .writefn = ich_ap_write, 2572 }, 2573 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2574 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2575 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2576 .access = PL2_RW, 2577 .readfn = ich_ap_read, 2578 .writefn = ich_ap_write, 2579 }, 2580 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2581 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2582 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2583 .access = PL2_RW, 2584 .readfn = ich_ap_read, 2585 .writefn = ich_ap_write, 2586 }, 2587 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2588 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2589 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2590 .access = PL2_RW, 2591 .readfn = ich_ap_read, 2592 .writefn = ich_ap_write, 2593 }, 2594 REGINFO_SENTINEL 2595 }; 2596 2597 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2598 { 2599 GICv3CPUState *cs = opaque; 2600 2601 gicv3_cpuif_update(cs); 2602 } 2603 2604 void gicv3_init_cpuif(GICv3State *s) 2605 { 2606 /* Called from the GICv3 realize function; register our system 2607 * registers with the CPU 2608 */ 2609 int i; 2610 2611 for (i = 0; i < s->num_cpu; i++) { 2612 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2613 GICv3CPUState *cs = &s->cpu[i]; 2614 2615 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2616 * in define_arm_cp_regs_with_opaque(), because when we're called back 2617 * it might be with code translated by CPU 0 but run by CPU 1, in 2618 * which case we'd get the wrong value. 2619 * So instead we define the regs with no ri->opaque info, and 2620 * get back to the GICv3CPUState from the CPUARMState. 2621 */ 2622 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2623 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2624 && cpu->gic_num_lrs) { 2625 int j; 2626 2627 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; 2628 2629 cs->num_list_regs = cpu->gic_num_lrs; 2630 cs->vpribits = cpu->gic_vpribits; 2631 cs->vprebits = cpu->gic_vprebits; 2632 2633 /* Check against architectural constraints: getting these 2634 * wrong would be a bug in the CPU code defining these, 2635 * and the implementation relies on them holding. 2636 */ 2637 g_assert(cs->vprebits <= cs->vpribits); 2638 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2639 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2640 2641 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2642 2643 for (j = 0; j < cs->num_list_regs; j++) { 2644 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2645 * are split into two cp15 regs, LR (the low part, with the 2646 * same encoding as the AArch64 LR) and LRC (the high part). 2647 */ 2648 ARMCPRegInfo lr_regset[] = { 2649 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2650 .opc0 = 3, .opc1 = 4, .crn = 12, 2651 .crm = 12 + (j >> 3), .opc2 = j & 7, 2652 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2653 .access = PL2_RW, 2654 .readfn = ich_lr_read, 2655 .writefn = ich_lr_write, 2656 }, 2657 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2658 .cp = 15, .opc1 = 4, .crn = 12, 2659 .crm = 14 + (j >> 3), .opc2 = j & 7, 2660 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2661 .access = PL2_RW, 2662 .readfn = ich_lr_read, 2663 .writefn = ich_lr_write, 2664 }, 2665 REGINFO_SENTINEL 2666 }; 2667 define_arm_cp_regs(cpu, lr_regset); 2668 } 2669 if (cs->vprebits >= 6) { 2670 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2671 } 2672 if (cs->vprebits == 7) { 2673 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2674 } 2675 } 2676 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2677 } 2678 } 2679