1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "hw/irq.h" 21 #include "cpu.h" 22 23 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 24 { 25 ARMCPU *arm_cpu = ARM_CPU(cpu); 26 CPUARMState *env = &arm_cpu->env; 27 28 env->gicv3state = (void *)s; 29 }; 30 31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 32 { 33 return env->gicv3state; 34 } 35 36 static bool gicv3_use_ns_bank(CPUARMState *env) 37 { 38 /* Return true if we should use the NonSecure bank for a banked GIC 39 * CPU interface register. Note that this differs from the 40 * access_secure_reg() function because GICv3 banked registers are 41 * banked even for AArch64, unlike the other CPU system registers. 42 */ 43 return !arm_is_secure_below_el3(env); 44 } 45 46 /* The minimum BPR for the virtual interface is a configurable property */ 47 static inline int icv_min_vbpr(GICv3CPUState *cs) 48 { 49 return 7 - cs->vprebits; 50 } 51 52 /* Simple accessor functions for LR fields */ 53 static uint32_t ich_lr_vintid(uint64_t lr) 54 { 55 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 56 } 57 58 static uint32_t ich_lr_pintid(uint64_t lr) 59 { 60 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 61 } 62 63 static uint32_t ich_lr_prio(uint64_t lr) 64 { 65 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 66 } 67 68 static int ich_lr_state(uint64_t lr) 69 { 70 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 71 } 72 73 static bool icv_access(CPUARMState *env, int hcr_flags) 74 { 75 /* Return true if this ICC_ register access should really be 76 * directed to an ICV_ access. hcr_flags is a mask of 77 * HCR_EL2 bits to check: we treat this as an ICV_ access 78 * if we are in NS EL1 and at least one of the specified 79 * HCR_EL2 bits is set. 80 * 81 * ICV registers fall into four categories: 82 * * access if NS EL1 and HCR_EL2.FMO == 1: 83 * all ICV regs with '0' in their name 84 * * access if NS EL1 and HCR_EL2.IMO == 1: 85 * all ICV regs with '1' in their name 86 * * access if NS EL1 and either IMO or FMO == 1: 87 * CTLR, DIR, PMR, RPR 88 */ 89 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 90 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 91 92 return flagmatch && arm_current_el(env) == 1 93 && !arm_is_secure_below_el3(env); 94 } 95 96 static int read_vbpr(GICv3CPUState *cs, int grp) 97 { 98 /* Read VBPR value out of the VMCR field (caller must handle 99 * VCBPR effects if required) 100 */ 101 if (grp == GICV3_G0) { 102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 103 ICH_VMCR_EL2_VBPR0_LENGTH); 104 } else { 105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 106 ICH_VMCR_EL2_VBPR1_LENGTH); 107 } 108 } 109 110 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 111 { 112 /* Write new VBPR1 value, handling the "writing a value less than 113 * the minimum sets it to the minimum" semantics. 114 */ 115 int min = icv_min_vbpr(cs); 116 117 if (grp != GICV3_G0) { 118 min++; 119 } 120 121 value = MAX(value, min); 122 123 if (grp == GICV3_G0) { 124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 125 ICH_VMCR_EL2_VBPR0_LENGTH, value); 126 } else { 127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 128 ICH_VMCR_EL2_VBPR1_LENGTH, value); 129 } 130 } 131 132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 133 { 134 /* Return a mask word which clears the unimplemented priority bits 135 * from a priority value for a virtual interrupt. (Not to be confused 136 * with the group priority, whose mask depends on the value of VBPR 137 * for the interrupt group.) 138 */ 139 return ~0U << (8 - cs->vpribits); 140 } 141 142 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 143 { 144 /* Calculate the current running priority based on the set bits 145 * in the ICH Active Priority Registers. 146 */ 147 int i; 148 int aprmax = 1 << (cs->vprebits - 5); 149 150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 151 152 for (i = 0; i < aprmax; i++) { 153 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 154 cs->ich_apr[GICV3_G1NS][i]; 155 156 if (!apr) { 157 continue; 158 } 159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 160 } 161 /* No current active interrupts: return idle priority */ 162 return 0xff; 163 } 164 165 static int hppvi_index(GICv3CPUState *cs) 166 { 167 /* Return the list register index of the highest priority pending 168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 169 * pseudocode. If no pending virtual interrupts, return -1. 170 */ 171 int idx = -1; 172 int i; 173 /* Note that a list register entry with a priority of 0xff will 174 * never be reported by this function; this is the architecturally 175 * correct behaviour. 176 */ 177 int prio = 0xff; 178 179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 180 /* Both groups disabled, definitely nothing to do */ 181 return idx; 182 } 183 184 for (i = 0; i < cs->num_list_regs; i++) { 185 uint64_t lr = cs->ich_lr_el2[i]; 186 int thisprio; 187 188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 189 /* Not Pending */ 190 continue; 191 } 192 193 /* Ignore interrupts if relevant group enable not set */ 194 if (lr & ICH_LR_EL2_GROUP) { 195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 196 continue; 197 } 198 } else { 199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 200 continue; 201 } 202 } 203 204 thisprio = ich_lr_prio(lr); 205 206 if (thisprio < prio) { 207 prio = thisprio; 208 idx = i; 209 } 210 } 211 212 return idx; 213 } 214 215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 216 { 217 /* Return a mask word which clears the subpriority bits from 218 * a priority value for a virtual interrupt in the specified group. 219 * This depends on the VBPR value. 220 * If using VBPR0 then: 221 * a BPR of 0 means the group priority bits are [7:1]; 222 * a BPR of 1 means they are [7:2], and so on down to 223 * a BPR of 7 meaning no group priority bits at all. 224 * If using VBPR1 then: 225 * a BPR of 0 is impossible (the minimum value is 1) 226 * a BPR of 1 means the group priority bits are [7:1]; 227 * a BPR of 2 means they are [7:2], and so on down to 228 * a BPR of 7 meaning the group priority is [7]. 229 * 230 * Which BPR to use depends on the group of the interrupt and 231 * the current ICH_VMCR_EL2.VCBPR settings. 232 * 233 * This corresponds to the VGroupBits() pseudocode. 234 */ 235 int bpr; 236 237 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 238 group = GICV3_G0; 239 } 240 241 bpr = read_vbpr(cs, group); 242 if (group == GICV3_G1NS) { 243 assert(bpr > 0); 244 bpr--; 245 } 246 247 return ~0U << (bpr + 1); 248 } 249 250 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 251 { 252 /* Return true if we can signal this virtual interrupt defined by 253 * the given list register value; see the pseudocode functions 254 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 255 * Compare also icc_hppi_can_preempt() which is the non-virtual 256 * equivalent of these checks. 257 */ 258 int grp; 259 uint32_t mask, prio, rprio, vpmr; 260 261 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 262 /* Virtual interface disabled */ 263 return false; 264 } 265 266 /* We don't need to check that this LR is in Pending state because 267 * that has already been done in hppvi_index(). 268 */ 269 270 prio = ich_lr_prio(lr); 271 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 272 ICH_VMCR_EL2_VPMR_LENGTH); 273 274 if (prio >= vpmr) { 275 /* Priority mask masks this interrupt */ 276 return false; 277 } 278 279 rprio = ich_highest_active_virt_prio(cs); 280 if (rprio == 0xff) { 281 /* No running interrupt so we can preempt */ 282 return true; 283 } 284 285 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 286 287 mask = icv_gprio_mask(cs, grp); 288 289 /* We only preempt a running interrupt if the pending interrupt's 290 * group priority is sufficient (the subpriorities are not considered). 291 */ 292 if ((prio & mask) < (rprio & mask)) { 293 return true; 294 } 295 296 return false; 297 } 298 299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 300 uint32_t *misr) 301 { 302 /* Return a set of bits indicating the EOI maintenance interrupt status 303 * for each list register. The EOI maintenance interrupt status is 304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 305 * (see the GICv3 spec for the ICH_EISR_EL2 register). 306 * If misr is not NULL then we should also collect the information 307 * about the MISR.EOI, MISR.NP and MISR.U bits. 308 */ 309 uint32_t value = 0; 310 int validcount = 0; 311 bool seenpending = false; 312 int i; 313 314 for (i = 0; i < cs->num_list_regs; i++) { 315 uint64_t lr = cs->ich_lr_el2[i]; 316 317 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 318 == ICH_LR_EL2_EOI) { 319 value |= (1 << i); 320 } 321 if ((lr & ICH_LR_EL2_STATE_MASK)) { 322 validcount++; 323 } 324 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 325 seenpending = true; 326 } 327 } 328 329 if (misr) { 330 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 331 *misr |= ICH_MISR_EL2_U; 332 } 333 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 334 *misr |= ICH_MISR_EL2_NP; 335 } 336 if (value) { 337 *misr |= ICH_MISR_EL2_EOI; 338 } 339 } 340 return value; 341 } 342 343 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 344 { 345 /* Return a set of bits indicating the maintenance interrupt status 346 * (as seen in the ICH_MISR_EL2 register). 347 */ 348 uint32_t value = 0; 349 350 /* Scan list registers and fill in the U, NP and EOI bits */ 351 eoi_maintenance_interrupt_state(cs, &value); 352 353 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 354 value |= ICH_MISR_EL2_LRENP; 355 } 356 357 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 358 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 359 value |= ICH_MISR_EL2_VGRP0E; 360 } 361 362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 363 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 364 value |= ICH_MISR_EL2_VGRP0D; 365 } 366 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 367 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 368 value |= ICH_MISR_EL2_VGRP1E; 369 } 370 371 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 372 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 373 value |= ICH_MISR_EL2_VGRP1D; 374 } 375 376 return value; 377 } 378 379 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 380 { 381 /* Tell the CPU about any pending virtual interrupts or 382 * maintenance interrupts, following a change to the state 383 * of the CPU interface relevant to virtual interrupts. 384 * 385 * CAUTION: this function will call qemu_set_irq() on the 386 * CPU maintenance IRQ line, which is typically wired up 387 * to the GIC as a per-CPU interrupt. This means that it 388 * will recursively call back into the GIC code via 389 * gicv3_redist_set_irq() and thus into the CPU interface code's 390 * gicv3_cpuif_update(). It is therefore important that this 391 * function is only called as the final action of a CPU interface 392 * register write implementation, after all the GIC state 393 * fields have been updated. gicv3_cpuif_update() also must 394 * not cause this function to be called, but that happens 395 * naturally as a result of there being no architectural 396 * linkage between the physical and virtual GIC logic. 397 */ 398 int idx; 399 int irqlevel = 0; 400 int fiqlevel = 0; 401 int maintlevel = 0; 402 ARMCPU *cpu = ARM_CPU(cs->cpu); 403 404 idx = hppvi_index(cs); 405 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 406 if (idx >= 0) { 407 uint64_t lr = cs->ich_lr_el2[idx]; 408 409 if (icv_hppi_can_preempt(cs, lr)) { 410 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 411 if (lr & ICH_LR_EL2_GROUP) { 412 irqlevel = 1; 413 } else { 414 fiqlevel = 1; 415 } 416 } 417 } 418 419 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 420 maintlevel = maintenance_interrupt_state(cs); 421 } 422 423 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 424 irqlevel, maintlevel); 425 426 qemu_set_irq(cs->parent_vfiq, fiqlevel); 427 qemu_set_irq(cs->parent_virq, irqlevel); 428 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 429 } 430 431 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 432 { 433 GICv3CPUState *cs = icc_cs_from_env(env); 434 int regno = ri->opc2 & 3; 435 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 436 uint64_t value = cs->ich_apr[grp][regno]; 437 438 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 439 return value; 440 } 441 442 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 443 uint64_t value) 444 { 445 GICv3CPUState *cs = icc_cs_from_env(env); 446 int regno = ri->opc2 & 3; 447 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 448 449 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 450 451 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 452 453 gicv3_cpuif_virt_update(cs); 454 return; 455 } 456 457 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 458 { 459 GICv3CPUState *cs = icc_cs_from_env(env); 460 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 461 uint64_t bpr; 462 bool satinc = false; 463 464 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 465 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 466 grp = GICV3_G0; 467 satinc = true; 468 } 469 470 bpr = read_vbpr(cs, grp); 471 472 if (satinc) { 473 bpr++; 474 bpr = MIN(bpr, 7); 475 } 476 477 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 478 479 return bpr; 480 } 481 482 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 483 uint64_t value) 484 { 485 GICv3CPUState *cs = icc_cs_from_env(env); 486 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 487 488 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 489 gicv3_redist_affid(cs), value); 490 491 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 492 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 493 return; 494 } 495 496 write_vbpr(cs, grp, value); 497 498 gicv3_cpuif_virt_update(cs); 499 } 500 501 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 502 { 503 GICv3CPUState *cs = icc_cs_from_env(env); 504 uint64_t value; 505 506 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 507 ICH_VMCR_EL2_VPMR_LENGTH); 508 509 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 510 return value; 511 } 512 513 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 GICv3CPUState *cs = icc_cs_from_env(env); 517 518 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 519 520 value &= icv_fullprio_mask(cs); 521 522 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 523 ICH_VMCR_EL2_VPMR_LENGTH, value); 524 525 gicv3_cpuif_virt_update(cs); 526 } 527 528 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 529 { 530 GICv3CPUState *cs = icc_cs_from_env(env); 531 int enbit; 532 uint64_t value; 533 534 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 535 value = extract64(cs->ich_vmcr_el2, enbit, 1); 536 537 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 538 gicv3_redist_affid(cs), value); 539 return value; 540 } 541 542 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 GICv3CPUState *cs = icc_cs_from_env(env); 546 int enbit; 547 548 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 549 gicv3_redist_affid(cs), value); 550 551 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 552 553 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 554 gicv3_cpuif_virt_update(cs); 555 } 556 557 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 558 { 559 GICv3CPUState *cs = icc_cs_from_env(env); 560 uint64_t value; 561 562 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 563 * should match the ones reported in ich_vtr_read(). 564 */ 565 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 566 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 567 568 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 569 value |= ICC_CTLR_EL1_EOIMODE; 570 } 571 572 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 573 value |= ICC_CTLR_EL1_CBPR; 574 } 575 576 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 577 return value; 578 } 579 580 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 GICv3CPUState *cs = icc_cs_from_env(env); 584 585 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 586 587 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 588 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 589 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 590 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 591 592 gicv3_cpuif_virt_update(cs); 593 } 594 595 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 596 { 597 GICv3CPUState *cs = icc_cs_from_env(env); 598 int prio = ich_highest_active_virt_prio(cs); 599 600 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 601 return prio; 602 } 603 604 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 605 { 606 GICv3CPUState *cs = icc_cs_from_env(env); 607 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 608 int idx = hppvi_index(cs); 609 uint64_t value = INTID_SPURIOUS; 610 611 if (idx >= 0) { 612 uint64_t lr = cs->ich_lr_el2[idx]; 613 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 614 615 if (grp == thisgrp) { 616 value = ich_lr_vintid(lr); 617 } 618 } 619 620 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 621 return value; 622 } 623 624 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 625 { 626 /* Activate the interrupt in the specified list register 627 * by moving it from Pending to Active state, and update the 628 * Active Priority Registers. 629 */ 630 uint32_t mask = icv_gprio_mask(cs, grp); 631 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 632 int aprbit = prio >> (8 - cs->vprebits); 633 int regno = aprbit / 32; 634 int regbit = aprbit % 32; 635 636 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 637 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 638 cs->ich_apr[grp][regno] |= (1 << regbit); 639 } 640 641 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 642 { 643 GICv3CPUState *cs = icc_cs_from_env(env); 644 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 645 int idx = hppvi_index(cs); 646 uint64_t intid = INTID_SPURIOUS; 647 648 if (idx >= 0) { 649 uint64_t lr = cs->ich_lr_el2[idx]; 650 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 651 652 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 653 intid = ich_lr_vintid(lr); 654 if (intid < INTID_SECURE) { 655 icv_activate_irq(cs, idx, grp); 656 } else { 657 /* Interrupt goes from Pending to Invalid */ 658 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 659 /* We will now return the (bogus) ID from the list register, 660 * as per the pseudocode. 661 */ 662 } 663 } 664 } 665 666 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 667 gicv3_redist_affid(cs), intid); 668 669 gicv3_cpuif_virt_update(cs); 670 671 return intid; 672 } 673 674 static int icc_highest_active_prio(GICv3CPUState *cs) 675 { 676 /* Calculate the current running priority based on the set bits 677 * in the Active Priority Registers. 678 */ 679 int i; 680 681 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 682 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 683 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 684 685 if (!apr) { 686 continue; 687 } 688 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 689 } 690 /* No current active interrupts: return idle priority */ 691 return 0xff; 692 } 693 694 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 695 { 696 /* Return a mask word which clears the subpriority bits from 697 * a priority value for an interrupt in the specified group. 698 * This depends on the BPR value. For CBPR0 (S or NS): 699 * a BPR of 0 means the group priority bits are [7:1]; 700 * a BPR of 1 means they are [7:2], and so on down to 701 * a BPR of 7 meaning no group priority bits at all. 702 * For CBPR1 NS: 703 * a BPR of 0 is impossible (the minimum value is 1) 704 * a BPR of 1 means the group priority bits are [7:1]; 705 * a BPR of 2 means they are [7:2], and so on down to 706 * a BPR of 7 meaning the group priority is [7]. 707 * 708 * Which BPR to use depends on the group of the interrupt and 709 * the current ICC_CTLR.CBPR settings. 710 * 711 * This corresponds to the GroupBits() pseudocode. 712 */ 713 int bpr; 714 715 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 716 (group == GICV3_G1NS && 717 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 718 group = GICV3_G0; 719 } 720 721 bpr = cs->icc_bpr[group] & 7; 722 723 if (group == GICV3_G1NS) { 724 assert(bpr > 0); 725 bpr--; 726 } 727 728 return ~0U << (bpr + 1); 729 } 730 731 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 732 { 733 /* Return true if there is no pending interrupt, or the 734 * highest priority pending interrupt is in a group which has been 735 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 736 */ 737 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 738 } 739 740 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 741 { 742 /* Return true if we have a pending interrupt of sufficient 743 * priority to preempt. 744 */ 745 int rprio; 746 uint32_t mask; 747 748 if (icc_no_enabled_hppi(cs)) { 749 return false; 750 } 751 752 if (cs->hppi.prio >= cs->icc_pmr_el1) { 753 /* Priority mask masks this interrupt */ 754 return false; 755 } 756 757 rprio = icc_highest_active_prio(cs); 758 if (rprio == 0xff) { 759 /* No currently running interrupt so we can preempt */ 760 return true; 761 } 762 763 mask = icc_gprio_mask(cs, cs->hppi.grp); 764 765 /* We only preempt a running interrupt if the pending interrupt's 766 * group priority is sufficient (the subpriorities are not considered). 767 */ 768 if ((cs->hppi.prio & mask) < (rprio & mask)) { 769 return true; 770 } 771 772 return false; 773 } 774 775 void gicv3_cpuif_update(GICv3CPUState *cs) 776 { 777 /* Tell the CPU about its highest priority pending interrupt */ 778 int irqlevel = 0; 779 int fiqlevel = 0; 780 ARMCPU *cpu = ARM_CPU(cs->cpu); 781 CPUARMState *env = &cpu->env; 782 783 g_assert(qemu_mutex_iothread_locked()); 784 785 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 786 cs->hppi.grp, cs->hppi.prio); 787 788 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 789 /* If a Security-enabled GIC sends a G1S interrupt to a 790 * Security-disabled CPU, we must treat it as if it were G0. 791 */ 792 cs->hppi.grp = GICV3_G0; 793 } 794 795 if (icc_hppi_can_preempt(cs)) { 796 /* We have an interrupt: should we signal it as IRQ or FIQ? 797 * This is described in the GICv3 spec section 4.6.2. 798 */ 799 bool isfiq; 800 801 switch (cs->hppi.grp) { 802 case GICV3_G0: 803 isfiq = true; 804 break; 805 case GICV3_G1: 806 isfiq = (!arm_is_secure(env) || 807 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 808 break; 809 case GICV3_G1NS: 810 isfiq = arm_is_secure(env); 811 break; 812 default: 813 g_assert_not_reached(); 814 } 815 816 if (isfiq) { 817 fiqlevel = 1; 818 } else { 819 irqlevel = 1; 820 } 821 } 822 823 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 824 825 qemu_set_irq(cs->parent_fiq, fiqlevel); 826 qemu_set_irq(cs->parent_irq, irqlevel); 827 } 828 829 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 830 { 831 GICv3CPUState *cs = icc_cs_from_env(env); 832 uint32_t value = cs->icc_pmr_el1; 833 834 if (icv_access(env, HCR_FMO | HCR_IMO)) { 835 return icv_pmr_read(env, ri); 836 } 837 838 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 839 (env->cp15.scr_el3 & SCR_FIQ)) { 840 /* NS access and Group 0 is inaccessible to NS: return the 841 * NS view of the current priority 842 */ 843 if ((value & 0x80) == 0) { 844 /* Secure priorities not visible to NS */ 845 value = 0; 846 } else if (value != 0xff) { 847 value = (value << 1) & 0xff; 848 } 849 } 850 851 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 852 853 return value; 854 } 855 856 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 857 uint64_t value) 858 { 859 GICv3CPUState *cs = icc_cs_from_env(env); 860 861 if (icv_access(env, HCR_FMO | HCR_IMO)) { 862 return icv_pmr_write(env, ri, value); 863 } 864 865 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 866 867 value &= 0xff; 868 869 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 870 (env->cp15.scr_el3 & SCR_FIQ)) { 871 /* NS access and Group 0 is inaccessible to NS: return the 872 * NS view of the current priority 873 */ 874 if (!(cs->icc_pmr_el1 & 0x80)) { 875 /* Current PMR in the secure range, don't allow NS to change it */ 876 return; 877 } 878 value = (value >> 1) | 0x80; 879 } 880 cs->icc_pmr_el1 = value; 881 gicv3_cpuif_update(cs); 882 } 883 884 static void icc_activate_irq(GICv3CPUState *cs, int irq) 885 { 886 /* Move the interrupt from the Pending state to Active, and update 887 * the Active Priority Registers 888 */ 889 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 890 int prio = cs->hppi.prio & mask; 891 int aprbit = prio >> 1; 892 int regno = aprbit / 32; 893 int regbit = aprbit % 32; 894 895 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 896 897 if (irq < GIC_INTERNAL) { 898 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 899 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 900 gicv3_redist_update(cs); 901 } else { 902 gicv3_gicd_active_set(cs->gic, irq); 903 gicv3_gicd_pending_clear(cs->gic, irq); 904 gicv3_update(cs->gic, irq, 1); 905 } 906 } 907 908 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 909 { 910 /* Return the highest priority pending interrupt register value 911 * for group 0. 912 */ 913 bool irq_is_secure; 914 915 if (cs->hppi.prio == 0xff) { 916 return INTID_SPURIOUS; 917 } 918 919 /* Check whether we can return the interrupt or if we should return 920 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 921 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 922 * is always zero.) 923 */ 924 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 925 (cs->hppi.grp != GICV3_G1NS)); 926 927 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 928 return INTID_SPURIOUS; 929 } 930 if (irq_is_secure && !arm_is_secure(env)) { 931 /* Secure interrupts not visible to Nonsecure */ 932 return INTID_SPURIOUS; 933 } 934 935 if (cs->hppi.grp != GICV3_G0) { 936 /* Indicate to EL3 that there's a Group 1 interrupt for the other 937 * state pending. 938 */ 939 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 940 } 941 942 return cs->hppi.irq; 943 } 944 945 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 946 { 947 /* Return the highest priority pending interrupt register value 948 * for group 1. 949 */ 950 bool irq_is_secure; 951 952 if (cs->hppi.prio == 0xff) { 953 return INTID_SPURIOUS; 954 } 955 956 /* Check whether we can return the interrupt or if we should return 957 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 958 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 959 * is always zero.) 960 */ 961 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 962 (cs->hppi.grp != GICV3_G1NS)); 963 964 if (cs->hppi.grp == GICV3_G0) { 965 /* Group 0 interrupts not visible via HPPIR1 */ 966 return INTID_SPURIOUS; 967 } 968 if (irq_is_secure) { 969 if (!arm_is_secure(env)) { 970 /* Secure interrupts not visible in Non-secure */ 971 return INTID_SPURIOUS; 972 } 973 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 974 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 975 return INTID_SPURIOUS; 976 } 977 978 return cs->hppi.irq; 979 } 980 981 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 982 { 983 GICv3CPUState *cs = icc_cs_from_env(env); 984 uint64_t intid; 985 986 if (icv_access(env, HCR_FMO)) { 987 return icv_iar_read(env, ri); 988 } 989 990 if (!icc_hppi_can_preempt(cs)) { 991 intid = INTID_SPURIOUS; 992 } else { 993 intid = icc_hppir0_value(cs, env); 994 } 995 996 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 997 icc_activate_irq(cs, intid); 998 } 999 1000 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1001 return intid; 1002 } 1003 1004 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1005 { 1006 GICv3CPUState *cs = icc_cs_from_env(env); 1007 uint64_t intid; 1008 1009 if (icv_access(env, HCR_IMO)) { 1010 return icv_iar_read(env, ri); 1011 } 1012 1013 if (!icc_hppi_can_preempt(cs)) { 1014 intid = INTID_SPURIOUS; 1015 } else { 1016 intid = icc_hppir1_value(cs, env); 1017 } 1018 1019 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 1020 icc_activate_irq(cs, intid); 1021 } 1022 1023 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1024 return intid; 1025 } 1026 1027 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1028 { 1029 /* Drop the priority of the currently active interrupt in 1030 * the specified group. 1031 * 1032 * Note that we can guarantee (because of the requirement to nest 1033 * ICC_IAR reads [which activate an interrupt and raise priority] 1034 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1035 * that the interrupt we're being called for is the highest priority 1036 * active interrupt, meaning that it has the lowest set bit in the 1037 * APR registers. 1038 * 1039 * If the guest does not honour the ordering constraints then the 1040 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1041 * the values of the APR registers might become incorrect and the 1042 * running priority will be wrong, so interrupts that should preempt 1043 * might not do so, and interrupts that should not preempt might do so. 1044 */ 1045 int i; 1046 1047 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1048 uint64_t *papr = &cs->icc_apr[grp][i]; 1049 1050 if (!*papr) { 1051 continue; 1052 } 1053 /* Clear the lowest set bit */ 1054 *papr &= *papr - 1; 1055 break; 1056 } 1057 1058 /* running priority change means we need an update for this cpu i/f */ 1059 gicv3_cpuif_update(cs); 1060 } 1061 1062 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1063 { 1064 /* Return true if we should split priority drop and interrupt 1065 * deactivation, ie whether the relevant EOIMode bit is set. 1066 */ 1067 if (arm_is_el3_or_mon(env)) { 1068 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1069 } 1070 if (arm_is_secure_below_el3(env)) { 1071 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1072 } else { 1073 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1074 } 1075 } 1076 1077 static int icc_highest_active_group(GICv3CPUState *cs) 1078 { 1079 /* Return the group with the highest priority active interrupt. 1080 * We can do this by just comparing the APRs to see which one 1081 * has the lowest set bit. 1082 * (If more than one group is active at the same priority then 1083 * we're in UNPREDICTABLE territory.) 1084 */ 1085 int i; 1086 1087 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1088 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1089 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1090 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1091 1092 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1093 return GICV3_G1NS; 1094 } 1095 if (g1ctz < g0ctz) { 1096 return GICV3_G1; 1097 } 1098 if (g0ctz < 32) { 1099 return GICV3_G0; 1100 } 1101 } 1102 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1103 * ignores the spurious EOI attempt. 1104 */ 1105 return -1; 1106 } 1107 1108 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1109 { 1110 if (irq < GIC_INTERNAL) { 1111 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1112 gicv3_redist_update(cs); 1113 } else { 1114 gicv3_gicd_active_clear(cs->gic, irq); 1115 gicv3_update(cs->gic, irq, 1); 1116 } 1117 } 1118 1119 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1120 { 1121 /* Return true if we should split priority drop and interrupt 1122 * deactivation, ie whether the virtual EOIMode bit is set. 1123 */ 1124 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1125 } 1126 1127 static int icv_find_active(GICv3CPUState *cs, int irq) 1128 { 1129 /* Given an interrupt number for an active interrupt, return the index 1130 * of the corresponding list register, or -1 if there is no match. 1131 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1132 */ 1133 int i; 1134 1135 for (i = 0; i < cs->num_list_regs; i++) { 1136 uint64_t lr = cs->ich_lr_el2[i]; 1137 1138 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1139 return i; 1140 } 1141 } 1142 1143 return -1; 1144 } 1145 1146 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1147 { 1148 /* Deactivate the interrupt in the specified list register index */ 1149 uint64_t lr = cs->ich_lr_el2[idx]; 1150 1151 if (lr & ICH_LR_EL2_HW) { 1152 /* Deactivate the associated physical interrupt */ 1153 int pirq = ich_lr_pintid(lr); 1154 1155 if (pirq < INTID_SECURE) { 1156 icc_deactivate_irq(cs, pirq); 1157 } 1158 } 1159 1160 /* Clear the 'active' part of the state, so ActivePending->Pending 1161 * and Active->Invalid. 1162 */ 1163 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1164 cs->ich_lr_el2[idx] = lr; 1165 } 1166 1167 static void icv_increment_eoicount(GICv3CPUState *cs) 1168 { 1169 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1170 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1171 ICH_HCR_EL2_EOICOUNT_LENGTH); 1172 1173 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1174 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1175 } 1176 1177 static int icv_drop_prio(GICv3CPUState *cs) 1178 { 1179 /* Drop the priority of the currently active virtual interrupt 1180 * (favouring group 0 if there is a set active bit at 1181 * the same priority for both group 0 and group 1). 1182 * Return the priority value for the bit we just cleared, 1183 * or 0xff if no bits were set in the AP registers at all. 1184 * Note that though the ich_apr[] are uint64_t only the low 1185 * 32 bits are actually relevant. 1186 */ 1187 int i; 1188 int aprmax = 1 << (cs->vprebits - 5); 1189 1190 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1191 1192 for (i = 0; i < aprmax; i++) { 1193 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1194 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1195 int apr0count, apr1count; 1196 1197 if (!*papr0 && !*papr1) { 1198 continue; 1199 } 1200 1201 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1202 * because we need to return the bit number we cleared so 1203 * it can be compared against the list register's priority field. 1204 */ 1205 apr0count = ctz32(*papr0); 1206 apr1count = ctz32(*papr1); 1207 1208 if (apr0count <= apr1count) { 1209 *papr0 &= *papr0 - 1; 1210 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1211 } else { 1212 *papr1 &= *papr1 - 1; 1213 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1214 } 1215 } 1216 return 0xff; 1217 } 1218 1219 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 /* Deactivate interrupt */ 1223 GICv3CPUState *cs = icc_cs_from_env(env); 1224 int idx; 1225 int irq = value & 0xffffff; 1226 1227 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1228 1229 if (irq >= cs->gic->num_irq) { 1230 /* Also catches special interrupt numbers and LPIs */ 1231 return; 1232 } 1233 1234 if (!icv_eoi_split(env, cs)) { 1235 return; 1236 } 1237 1238 idx = icv_find_active(cs, irq); 1239 1240 if (idx < 0) { 1241 /* No list register matching this, so increment the EOI count 1242 * (might trigger a maintenance interrupt) 1243 */ 1244 icv_increment_eoicount(cs); 1245 } else { 1246 icv_deactivate_irq(cs, idx); 1247 } 1248 1249 gicv3_cpuif_virt_update(cs); 1250 } 1251 1252 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1253 uint64_t value) 1254 { 1255 /* End of Interrupt */ 1256 GICv3CPUState *cs = icc_cs_from_env(env); 1257 int irq = value & 0xffffff; 1258 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1259 int idx, dropprio; 1260 1261 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1262 gicv3_redist_affid(cs), value); 1263 1264 if (irq >= cs->gic->num_irq) { 1265 /* Also catches special interrupt numbers and LPIs */ 1266 return; 1267 } 1268 1269 /* We implement the IMPDEF choice of "drop priority before doing 1270 * error checks" (because that lets us avoid scanning the AP 1271 * registers twice). 1272 */ 1273 dropprio = icv_drop_prio(cs); 1274 if (dropprio == 0xff) { 1275 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1276 * whether the list registers are checked in this 1277 * situation; we choose not to. 1278 */ 1279 return; 1280 } 1281 1282 idx = icv_find_active(cs, irq); 1283 1284 if (idx < 0) { 1285 /* No valid list register corresponding to EOI ID */ 1286 icv_increment_eoicount(cs); 1287 } else { 1288 uint64_t lr = cs->ich_lr_el2[idx]; 1289 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1290 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1291 1292 if (thisgrp == grp && lr_gprio == dropprio) { 1293 if (!icv_eoi_split(env, cs)) { 1294 /* Priority drop and deactivate not split: deactivate irq now */ 1295 icv_deactivate_irq(cs, idx); 1296 } 1297 } 1298 } 1299 1300 gicv3_cpuif_virt_update(cs); 1301 } 1302 1303 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1304 uint64_t value) 1305 { 1306 /* End of Interrupt */ 1307 GICv3CPUState *cs = icc_cs_from_env(env); 1308 int irq = value & 0xffffff; 1309 int grp; 1310 1311 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1312 icv_eoir_write(env, ri, value); 1313 return; 1314 } 1315 1316 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1317 gicv3_redist_affid(cs), value); 1318 1319 if (ri->crm == 8) { 1320 /* EOIR0 */ 1321 grp = GICV3_G0; 1322 } else { 1323 /* EOIR1 */ 1324 if (arm_is_secure(env)) { 1325 grp = GICV3_G1; 1326 } else { 1327 grp = GICV3_G1NS; 1328 } 1329 } 1330 1331 if (irq >= cs->gic->num_irq) { 1332 /* This handles two cases: 1333 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1334 * to the GICC_EOIR, the GIC ignores that write. 1335 * 2. If software writes the number of a non-existent interrupt 1336 * this must be a subcase of "value written does not match the last 1337 * valid interrupt value read from the Interrupt Acknowledge 1338 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1339 */ 1340 return; 1341 } 1342 1343 if (icc_highest_active_group(cs) != grp) { 1344 return; 1345 } 1346 1347 icc_drop_prio(cs, grp); 1348 1349 if (!icc_eoi_split(env, cs)) { 1350 /* Priority drop and deactivate not split: deactivate irq now */ 1351 icc_deactivate_irq(cs, irq); 1352 } 1353 } 1354 1355 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1356 { 1357 GICv3CPUState *cs = icc_cs_from_env(env); 1358 uint64_t value; 1359 1360 if (icv_access(env, HCR_FMO)) { 1361 return icv_hppir_read(env, ri); 1362 } 1363 1364 value = icc_hppir0_value(cs, env); 1365 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1366 return value; 1367 } 1368 1369 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1370 { 1371 GICv3CPUState *cs = icc_cs_from_env(env); 1372 uint64_t value; 1373 1374 if (icv_access(env, HCR_IMO)) { 1375 return icv_hppir_read(env, ri); 1376 } 1377 1378 value = icc_hppir1_value(cs, env); 1379 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1380 return value; 1381 } 1382 1383 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1384 { 1385 GICv3CPUState *cs = icc_cs_from_env(env); 1386 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1387 bool satinc = false; 1388 uint64_t bpr; 1389 1390 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1391 return icv_bpr_read(env, ri); 1392 } 1393 1394 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1395 grp = GICV3_G1NS; 1396 } 1397 1398 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1399 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1400 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1401 * modify BPR0 1402 */ 1403 grp = GICV3_G0; 1404 } 1405 1406 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1407 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1408 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1409 grp = GICV3_G0; 1410 satinc = true; 1411 } 1412 1413 bpr = cs->icc_bpr[grp]; 1414 if (satinc) { 1415 bpr++; 1416 bpr = MIN(bpr, 7); 1417 } 1418 1419 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1420 1421 return bpr; 1422 } 1423 1424 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1425 uint64_t value) 1426 { 1427 GICv3CPUState *cs = icc_cs_from_env(env); 1428 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1429 uint64_t minval; 1430 1431 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1432 icv_bpr_write(env, ri, value); 1433 return; 1434 } 1435 1436 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1437 gicv3_redist_affid(cs), value); 1438 1439 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1440 grp = GICV3_G1NS; 1441 } 1442 1443 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1444 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1445 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1446 * modify BPR0 1447 */ 1448 grp = GICV3_G0; 1449 } 1450 1451 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1452 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1453 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1454 return; 1455 } 1456 1457 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1458 if (value < minval) { 1459 value = minval; 1460 } 1461 1462 cs->icc_bpr[grp] = value & 7; 1463 gicv3_cpuif_update(cs); 1464 } 1465 1466 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1467 { 1468 GICv3CPUState *cs = icc_cs_from_env(env); 1469 uint64_t value; 1470 1471 int regno = ri->opc2 & 3; 1472 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1473 1474 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1475 return icv_ap_read(env, ri); 1476 } 1477 1478 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1479 grp = GICV3_G1NS; 1480 } 1481 1482 value = cs->icc_apr[grp][regno]; 1483 1484 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1485 return value; 1486 } 1487 1488 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1489 uint64_t value) 1490 { 1491 GICv3CPUState *cs = icc_cs_from_env(env); 1492 1493 int regno = ri->opc2 & 3; 1494 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1495 1496 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1497 icv_ap_write(env, ri, value); 1498 return; 1499 } 1500 1501 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1502 1503 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1504 grp = GICV3_G1NS; 1505 } 1506 1507 /* It's not possible to claim that a Non-secure interrupt is active 1508 * at a priority outside the Non-secure range (128..255), since this 1509 * would otherwise allow malicious NS code to block delivery of S interrupts 1510 * by writing a bad value to these registers. 1511 */ 1512 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1513 return; 1514 } 1515 1516 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1517 gicv3_cpuif_update(cs); 1518 } 1519 1520 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1521 uint64_t value) 1522 { 1523 /* Deactivate interrupt */ 1524 GICv3CPUState *cs = icc_cs_from_env(env); 1525 int irq = value & 0xffffff; 1526 bool irq_is_secure, single_sec_state, irq_is_grp0; 1527 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1528 1529 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1530 icv_dir_write(env, ri, value); 1531 return; 1532 } 1533 1534 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1535 1536 if (irq >= cs->gic->num_irq) { 1537 /* Also catches special interrupt numbers and LPIs */ 1538 return; 1539 } 1540 1541 if (!icc_eoi_split(env, cs)) { 1542 return; 1543 } 1544 1545 int grp = gicv3_irq_group(cs->gic, cs, irq); 1546 1547 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1548 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1549 irq_is_grp0 = grp == GICV3_G0; 1550 1551 /* Check whether we're allowed to deactivate this interrupt based 1552 * on its group and the current CPU state. 1553 * These checks are laid out to correspond to the spec's pseudocode. 1554 */ 1555 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1556 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1557 /* No need to include !IsSecure in route_*_to_el2 as it's only 1558 * tested in cases where we know !IsSecure is true. 1559 */ 1560 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1561 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1562 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1563 1564 switch (arm_current_el(env)) { 1565 case 3: 1566 break; 1567 case 2: 1568 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1569 break; 1570 } 1571 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1572 break; 1573 } 1574 return; 1575 case 1: 1576 if (!arm_is_secure_below_el3(env)) { 1577 if (single_sec_state && irq_is_grp0 && 1578 !route_fiq_to_el3 && !route_fiq_to_el2) { 1579 break; 1580 } 1581 if (!irq_is_secure && !irq_is_grp0 && 1582 !route_irq_to_el3 && !route_irq_to_el2) { 1583 break; 1584 } 1585 } else { 1586 if (irq_is_grp0 && !route_fiq_to_el3) { 1587 break; 1588 } 1589 if (!irq_is_grp0 && 1590 (!irq_is_secure || !single_sec_state) && 1591 !route_irq_to_el3) { 1592 break; 1593 } 1594 } 1595 return; 1596 default: 1597 g_assert_not_reached(); 1598 } 1599 1600 icc_deactivate_irq(cs, irq); 1601 } 1602 1603 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1604 { 1605 GICv3CPUState *cs = icc_cs_from_env(env); 1606 int prio; 1607 1608 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1609 return icv_rpr_read(env, ri); 1610 } 1611 1612 prio = icc_highest_active_prio(cs); 1613 1614 if (arm_feature(env, ARM_FEATURE_EL3) && 1615 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1616 /* NS GIC access and Group 0 is inaccessible to NS */ 1617 if ((prio & 0x80) == 0) { 1618 /* NS mustn't see priorities in the Secure half of the range */ 1619 prio = 0; 1620 } else if (prio != 0xff) { 1621 /* Non-idle priority: show the Non-secure view of it */ 1622 prio = (prio << 1) & 0xff; 1623 } 1624 } 1625 1626 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1627 return prio; 1628 } 1629 1630 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1631 uint64_t value, int grp, bool ns) 1632 { 1633 GICv3State *s = cs->gic; 1634 1635 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1636 uint64_t aff = extract64(value, 48, 8) << 16 | 1637 extract64(value, 32, 8) << 8 | 1638 extract64(value, 16, 8); 1639 uint32_t targetlist = extract64(value, 0, 16); 1640 uint32_t irq = extract64(value, 24, 4); 1641 bool irm = extract64(value, 40, 1); 1642 int i; 1643 1644 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1645 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1646 * interrupts as Group 0 interrupts and must send Secure Group 0 1647 * interrupts to the target CPUs. 1648 */ 1649 grp = GICV3_G0; 1650 } 1651 1652 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1653 aff, targetlist); 1654 1655 for (i = 0; i < s->num_cpu; i++) { 1656 GICv3CPUState *ocs = &s->cpu[i]; 1657 1658 if (irm) { 1659 /* IRM == 1 : route to all CPUs except self */ 1660 if (cs == ocs) { 1661 continue; 1662 } 1663 } else { 1664 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1665 * where the corresponding bit is set in targetlist 1666 */ 1667 int aff0; 1668 1669 if (ocs->gicr_typer >> 40 != aff) { 1670 continue; 1671 } 1672 aff0 = extract64(ocs->gicr_typer, 32, 8); 1673 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1674 continue; 1675 } 1676 } 1677 1678 /* The redistributor will check against its own GICR_NSACR as needed */ 1679 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1680 } 1681 } 1682 1683 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1684 uint64_t value) 1685 { 1686 /* Generate Secure Group 0 SGI. */ 1687 GICv3CPUState *cs = icc_cs_from_env(env); 1688 bool ns = !arm_is_secure(env); 1689 1690 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1691 } 1692 1693 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1694 uint64_t value) 1695 { 1696 /* Generate Group 1 SGI for the current Security state */ 1697 GICv3CPUState *cs = icc_cs_from_env(env); 1698 int grp; 1699 bool ns = !arm_is_secure(env); 1700 1701 grp = ns ? GICV3_G1NS : GICV3_G1; 1702 icc_generate_sgi(env, cs, value, grp, ns); 1703 } 1704 1705 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1706 uint64_t value) 1707 { 1708 /* Generate Group 1 SGI for the Security state that is not 1709 * the current state 1710 */ 1711 GICv3CPUState *cs = icc_cs_from_env(env); 1712 int grp; 1713 bool ns = !arm_is_secure(env); 1714 1715 grp = ns ? GICV3_G1 : GICV3_G1NS; 1716 icc_generate_sgi(env, cs, value, grp, ns); 1717 } 1718 1719 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1720 { 1721 GICv3CPUState *cs = icc_cs_from_env(env); 1722 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1723 uint64_t value; 1724 1725 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1726 return icv_igrpen_read(env, ri); 1727 } 1728 1729 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1730 grp = GICV3_G1NS; 1731 } 1732 1733 value = cs->icc_igrpen[grp]; 1734 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1735 gicv3_redist_affid(cs), value); 1736 return value; 1737 } 1738 1739 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1740 uint64_t value) 1741 { 1742 GICv3CPUState *cs = icc_cs_from_env(env); 1743 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1744 1745 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1746 icv_igrpen_write(env, ri, value); 1747 return; 1748 } 1749 1750 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1751 gicv3_redist_affid(cs), value); 1752 1753 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1754 grp = GICV3_G1NS; 1755 } 1756 1757 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1758 gicv3_cpuif_update(cs); 1759 } 1760 1761 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1762 { 1763 GICv3CPUState *cs = icc_cs_from_env(env); 1764 uint64_t value; 1765 1766 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1767 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1768 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1769 return value; 1770 } 1771 1772 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1773 uint64_t value) 1774 { 1775 GICv3CPUState *cs = icc_cs_from_env(env); 1776 1777 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1778 1779 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1780 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1781 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1782 gicv3_cpuif_update(cs); 1783 } 1784 1785 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1786 { 1787 GICv3CPUState *cs = icc_cs_from_env(env); 1788 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1789 uint64_t value; 1790 1791 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1792 return icv_ctlr_read(env, ri); 1793 } 1794 1795 value = cs->icc_ctlr_el1[bank]; 1796 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1797 return value; 1798 } 1799 1800 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1801 uint64_t value) 1802 { 1803 GICv3CPUState *cs = icc_cs_from_env(env); 1804 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1805 uint64_t mask; 1806 1807 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1808 icv_ctlr_write(env, ri, value); 1809 return; 1810 } 1811 1812 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1813 1814 /* Only CBPR and EOIMODE can be RW; 1815 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1816 * the asseciated priority-based routing of them); 1817 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1818 */ 1819 if (arm_feature(env, ARM_FEATURE_EL3) && 1820 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1821 mask = ICC_CTLR_EL1_EOIMODE; 1822 } else { 1823 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1824 } 1825 1826 cs->icc_ctlr_el1[bank] &= ~mask; 1827 cs->icc_ctlr_el1[bank] |= (value & mask); 1828 gicv3_cpuif_update(cs); 1829 } 1830 1831 1832 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1833 { 1834 GICv3CPUState *cs = icc_cs_from_env(env); 1835 uint64_t value; 1836 1837 value = cs->icc_ctlr_el3; 1838 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1839 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1840 } 1841 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1842 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1843 } 1844 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1845 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1846 } 1847 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1848 value |= ICC_CTLR_EL3_CBPR_EL1S; 1849 } 1850 1851 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1852 return value; 1853 } 1854 1855 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1856 uint64_t value) 1857 { 1858 GICv3CPUState *cs = icc_cs_from_env(env); 1859 uint64_t mask; 1860 1861 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1862 1863 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1864 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1865 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1866 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1867 } 1868 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1869 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1870 } 1871 1872 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1873 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1874 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1875 } 1876 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1877 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1878 } 1879 1880 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1881 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1882 1883 cs->icc_ctlr_el3 &= ~mask; 1884 cs->icc_ctlr_el3 |= (value & mask); 1885 gicv3_cpuif_update(cs); 1886 } 1887 1888 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1889 const ARMCPRegInfo *ri, bool isread) 1890 { 1891 CPAccessResult r = CP_ACCESS_OK; 1892 GICv3CPUState *cs = icc_cs_from_env(env); 1893 int el = arm_current_el(env); 1894 1895 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1896 el == 1 && !arm_is_secure_below_el3(env)) { 1897 /* Takes priority over a possible EL3 trap */ 1898 return CP_ACCESS_TRAP_EL2; 1899 } 1900 1901 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1902 switch (el) { 1903 case 1: 1904 /* Note that arm_hcr_el2_eff takes secure state into account. */ 1905 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 1906 r = CP_ACCESS_TRAP_EL3; 1907 } 1908 break; 1909 case 2: 1910 r = CP_ACCESS_TRAP_EL3; 1911 break; 1912 case 3: 1913 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1914 r = CP_ACCESS_TRAP_EL3; 1915 } 1916 break; 1917 default: 1918 g_assert_not_reached(); 1919 } 1920 } 1921 1922 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1923 r = CP_ACCESS_TRAP; 1924 } 1925 return r; 1926 } 1927 1928 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1929 const ARMCPRegInfo *ri, bool isread) 1930 { 1931 GICv3CPUState *cs = icc_cs_from_env(env); 1932 1933 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1934 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1935 /* Takes priority over a possible EL3 trap */ 1936 return CP_ACCESS_TRAP_EL2; 1937 } 1938 1939 return gicv3_irqfiq_access(env, ri, isread); 1940 } 1941 1942 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1943 const ARMCPRegInfo *ri, bool isread) 1944 { 1945 if (arm_current_el(env) == 1 && 1946 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 1947 /* Takes priority over a possible EL3 trap */ 1948 return CP_ACCESS_TRAP_EL2; 1949 } 1950 1951 return gicv3_irqfiq_access(env, ri, isread); 1952 } 1953 1954 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1955 const ARMCPRegInfo *ri, bool isread) 1956 { 1957 CPAccessResult r = CP_ACCESS_OK; 1958 GICv3CPUState *cs = icc_cs_from_env(env); 1959 int el = arm_current_el(env); 1960 1961 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1962 el == 1 && !arm_is_secure_below_el3(env)) { 1963 /* Takes priority over a possible EL3 trap */ 1964 return CP_ACCESS_TRAP_EL2; 1965 } 1966 1967 if (env->cp15.scr_el3 & SCR_FIQ) { 1968 switch (el) { 1969 case 1: 1970 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 1971 r = CP_ACCESS_TRAP_EL3; 1972 } 1973 break; 1974 case 2: 1975 r = CP_ACCESS_TRAP_EL3; 1976 break; 1977 case 3: 1978 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1979 r = CP_ACCESS_TRAP_EL3; 1980 } 1981 break; 1982 default: 1983 g_assert_not_reached(); 1984 } 1985 } 1986 1987 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1988 r = CP_ACCESS_TRAP; 1989 } 1990 return r; 1991 } 1992 1993 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1994 const ARMCPRegInfo *ri, bool isread) 1995 { 1996 CPAccessResult r = CP_ACCESS_OK; 1997 GICv3CPUState *cs = icc_cs_from_env(env); 1998 int el = arm_current_el(env); 1999 2000 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2001 el == 1 && !arm_is_secure_below_el3(env)) { 2002 /* Takes priority over a possible EL3 trap */ 2003 return CP_ACCESS_TRAP_EL2; 2004 } 2005 2006 if (env->cp15.scr_el3 & SCR_IRQ) { 2007 switch (el) { 2008 case 1: 2009 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2010 r = CP_ACCESS_TRAP_EL3; 2011 } 2012 break; 2013 case 2: 2014 r = CP_ACCESS_TRAP_EL3; 2015 break; 2016 case 3: 2017 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2018 r = CP_ACCESS_TRAP_EL3; 2019 } 2020 break; 2021 default: 2022 g_assert_not_reached(); 2023 } 2024 } 2025 2026 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2027 r = CP_ACCESS_TRAP; 2028 } 2029 return r; 2030 } 2031 2032 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2033 { 2034 GICv3CPUState *cs = icc_cs_from_env(env); 2035 2036 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2037 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2038 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2039 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2040 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2041 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2042 cs->icc_pmr_el1 = 0; 2043 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2044 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2045 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2046 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2047 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2048 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2049 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2050 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2051 2052 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2053 cs->ich_hcr_el2 = 0; 2054 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2055 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2056 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2057 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2058 } 2059 2060 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2061 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2062 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2063 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2064 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2065 .readfn = icc_pmr_read, 2066 .writefn = icc_pmr_write, 2067 /* We hang the whole cpu interface reset routine off here 2068 * rather than parcelling it out into one little function 2069 * per register 2070 */ 2071 .resetfn = icc_reset, 2072 }, 2073 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2075 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2076 .access = PL1_R, .accessfn = gicv3_fiq_access, 2077 .readfn = icc_iar0_read, 2078 }, 2079 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2080 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2081 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2082 .access = PL1_W, .accessfn = gicv3_fiq_access, 2083 .writefn = icc_eoir_write, 2084 }, 2085 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2086 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2087 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2088 .access = PL1_R, .accessfn = gicv3_fiq_access, 2089 .readfn = icc_hppir0_read, 2090 }, 2091 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2092 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2093 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2094 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2095 .readfn = icc_bpr_read, 2096 .writefn = icc_bpr_write, 2097 }, 2098 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2100 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2101 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2102 .readfn = icc_ap_read, 2103 .writefn = icc_ap_write, 2104 }, 2105 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2107 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2108 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2109 .readfn = icc_ap_read, 2110 .writefn = icc_ap_write, 2111 }, 2112 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2114 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2115 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2116 .readfn = icc_ap_read, 2117 .writefn = icc_ap_write, 2118 }, 2119 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2120 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2121 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2122 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2123 .readfn = icc_ap_read, 2124 .writefn = icc_ap_write, 2125 }, 2126 /* All the ICC_AP1R*_EL1 registers are banked */ 2127 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2128 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2129 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2130 .access = PL1_RW, .accessfn = gicv3_irq_access, 2131 .readfn = icc_ap_read, 2132 .writefn = icc_ap_write, 2133 }, 2134 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2136 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2137 .access = PL1_RW, .accessfn = gicv3_irq_access, 2138 .readfn = icc_ap_read, 2139 .writefn = icc_ap_write, 2140 }, 2141 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2143 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2144 .access = PL1_RW, .accessfn = gicv3_irq_access, 2145 .readfn = icc_ap_read, 2146 .writefn = icc_ap_write, 2147 }, 2148 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2149 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2150 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2151 .access = PL1_RW, .accessfn = gicv3_irq_access, 2152 .readfn = icc_ap_read, 2153 .writefn = icc_ap_write, 2154 }, 2155 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2156 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2157 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2158 .access = PL1_W, .accessfn = gicv3_dir_access, 2159 .writefn = icc_dir_write, 2160 }, 2161 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2162 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2163 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2164 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2165 .readfn = icc_rpr_read, 2166 }, 2167 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2168 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2169 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2170 .access = PL1_W, .accessfn = gicv3_sgi_access, 2171 .writefn = icc_sgi1r_write, 2172 }, 2173 { .name = "ICC_SGI1R", 2174 .cp = 15, .opc1 = 0, .crm = 12, 2175 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2176 .access = PL1_W, .accessfn = gicv3_sgi_access, 2177 .writefn = icc_sgi1r_write, 2178 }, 2179 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2180 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2181 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2182 .access = PL1_W, .accessfn = gicv3_sgi_access, 2183 .writefn = icc_asgi1r_write, 2184 }, 2185 { .name = "ICC_ASGI1R", 2186 .cp = 15, .opc1 = 1, .crm = 12, 2187 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2188 .access = PL1_W, .accessfn = gicv3_sgi_access, 2189 .writefn = icc_asgi1r_write, 2190 }, 2191 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2192 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2193 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2194 .access = PL1_W, .accessfn = gicv3_sgi_access, 2195 .writefn = icc_sgi0r_write, 2196 }, 2197 { .name = "ICC_SGI0R", 2198 .cp = 15, .opc1 = 2, .crm = 12, 2199 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2200 .access = PL1_W, .accessfn = gicv3_sgi_access, 2201 .writefn = icc_sgi0r_write, 2202 }, 2203 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2204 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2205 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2206 .access = PL1_R, .accessfn = gicv3_irq_access, 2207 .readfn = icc_iar1_read, 2208 }, 2209 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2210 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2211 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2212 .access = PL1_W, .accessfn = gicv3_irq_access, 2213 .writefn = icc_eoir_write, 2214 }, 2215 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2217 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2218 .access = PL1_R, .accessfn = gicv3_irq_access, 2219 .readfn = icc_hppir1_read, 2220 }, 2221 /* This register is banked */ 2222 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2223 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2224 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2225 .access = PL1_RW, .accessfn = gicv3_irq_access, 2226 .readfn = icc_bpr_read, 2227 .writefn = icc_bpr_write, 2228 }, 2229 /* This register is banked */ 2230 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2232 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2233 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2234 .readfn = icc_ctlr_el1_read, 2235 .writefn = icc_ctlr_el1_write, 2236 }, 2237 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2238 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2239 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2240 .access = PL1_RW, 2241 /* We don't support IRQ/FIQ bypass and system registers are 2242 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2243 * This register is banked but since it's constant we don't 2244 * need to do anything special. 2245 */ 2246 .resetvalue = 0x7, 2247 }, 2248 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2250 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2251 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2252 .readfn = icc_igrpen_read, 2253 .writefn = icc_igrpen_write, 2254 }, 2255 /* This register is banked */ 2256 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2257 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2258 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2259 .access = PL1_RW, .accessfn = gicv3_irq_access, 2260 .readfn = icc_igrpen_read, 2261 .writefn = icc_igrpen_write, 2262 }, 2263 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2264 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2265 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2266 .access = PL2_RW, 2267 /* We don't support IRQ/FIQ bypass and system registers are 2268 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2269 */ 2270 .resetvalue = 0xf, 2271 }, 2272 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2274 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2275 .access = PL3_RW, 2276 .readfn = icc_ctlr_el3_read, 2277 .writefn = icc_ctlr_el3_write, 2278 }, 2279 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2280 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2281 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2282 .access = PL3_RW, 2283 /* We don't support IRQ/FIQ bypass and system registers are 2284 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2285 */ 2286 .resetvalue = 0xf, 2287 }, 2288 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2289 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2290 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2291 .access = PL3_RW, 2292 .readfn = icc_igrpen1_el3_read, 2293 .writefn = icc_igrpen1_el3_write, 2294 }, 2295 REGINFO_SENTINEL 2296 }; 2297 2298 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2299 { 2300 GICv3CPUState *cs = icc_cs_from_env(env); 2301 int regno = ri->opc2 & 3; 2302 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2303 uint64_t value; 2304 2305 value = cs->ich_apr[grp][regno]; 2306 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2307 return value; 2308 } 2309 2310 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2311 uint64_t value) 2312 { 2313 GICv3CPUState *cs = icc_cs_from_env(env); 2314 int regno = ri->opc2 & 3; 2315 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2316 2317 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2318 2319 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2320 gicv3_cpuif_virt_update(cs); 2321 } 2322 2323 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2324 { 2325 GICv3CPUState *cs = icc_cs_from_env(env); 2326 uint64_t value = cs->ich_hcr_el2; 2327 2328 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2329 return value; 2330 } 2331 2332 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2333 uint64_t value) 2334 { 2335 GICv3CPUState *cs = icc_cs_from_env(env); 2336 2337 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2338 2339 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2340 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2341 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2342 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2343 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2344 2345 cs->ich_hcr_el2 = value; 2346 gicv3_cpuif_virt_update(cs); 2347 } 2348 2349 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2350 { 2351 GICv3CPUState *cs = icc_cs_from_env(env); 2352 uint64_t value = cs->ich_vmcr_el2; 2353 2354 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2355 return value; 2356 } 2357 2358 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2359 uint64_t value) 2360 { 2361 GICv3CPUState *cs = icc_cs_from_env(env); 2362 2363 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2364 2365 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2366 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2367 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2368 value |= ICH_VMCR_EL2_VFIQEN; 2369 2370 cs->ich_vmcr_el2 = value; 2371 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2372 * by reading and writing back the fields. 2373 */ 2374 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2375 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2376 2377 gicv3_cpuif_virt_update(cs); 2378 } 2379 2380 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2381 { 2382 GICv3CPUState *cs = icc_cs_from_env(env); 2383 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2384 uint64_t value; 2385 2386 /* This read function handles all of: 2387 * 64-bit reads of the whole LR 2388 * 32-bit reads of the low half of the LR 2389 * 32-bit reads of the high half of the LR 2390 */ 2391 if (ri->state == ARM_CP_STATE_AA32) { 2392 if (ri->crm >= 14) { 2393 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2394 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2395 } else { 2396 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2397 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2398 } 2399 } else { 2400 value = cs->ich_lr_el2[regno]; 2401 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2402 } 2403 2404 return value; 2405 } 2406 2407 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2408 uint64_t value) 2409 { 2410 GICv3CPUState *cs = icc_cs_from_env(env); 2411 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2412 2413 /* This write function handles all of: 2414 * 64-bit writes to the whole LR 2415 * 32-bit writes to the low half of the LR 2416 * 32-bit writes to the high half of the LR 2417 */ 2418 if (ri->state == ARM_CP_STATE_AA32) { 2419 if (ri->crm >= 14) { 2420 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2421 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2422 } else { 2423 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2424 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2425 } 2426 } else { 2427 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2428 } 2429 2430 /* Enforce RES0 bits in priority field */ 2431 if (cs->vpribits < 8) { 2432 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2433 8 - cs->vpribits, 0); 2434 } 2435 2436 cs->ich_lr_el2[regno] = value; 2437 gicv3_cpuif_virt_update(cs); 2438 } 2439 2440 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2441 { 2442 GICv3CPUState *cs = icc_cs_from_env(env); 2443 uint64_t value; 2444 2445 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2446 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2447 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2448 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2449 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2450 2451 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2452 return value; 2453 } 2454 2455 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2456 { 2457 GICv3CPUState *cs = icc_cs_from_env(env); 2458 uint64_t value = maintenance_interrupt_state(cs); 2459 2460 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2461 return value; 2462 } 2463 2464 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2465 { 2466 GICv3CPUState *cs = icc_cs_from_env(env); 2467 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2468 2469 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2470 return value; 2471 } 2472 2473 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2474 { 2475 GICv3CPUState *cs = icc_cs_from_env(env); 2476 uint64_t value = 0; 2477 int i; 2478 2479 for (i = 0; i < cs->num_list_regs; i++) { 2480 uint64_t lr = cs->ich_lr_el2[i]; 2481 2482 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2483 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2484 value |= (1 << i); 2485 } 2486 } 2487 2488 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2489 return value; 2490 } 2491 2492 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2493 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2495 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2496 .access = PL2_RW, 2497 .readfn = ich_ap_read, 2498 .writefn = ich_ap_write, 2499 }, 2500 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2501 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2502 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2503 .access = PL2_RW, 2504 .readfn = ich_ap_read, 2505 .writefn = ich_ap_write, 2506 }, 2507 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2508 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2509 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2510 .access = PL2_RW, 2511 .readfn = ich_hcr_read, 2512 .writefn = ich_hcr_write, 2513 }, 2514 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2515 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2516 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2517 .access = PL2_R, 2518 .readfn = ich_vtr_read, 2519 }, 2520 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2521 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2522 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2523 .access = PL2_R, 2524 .readfn = ich_misr_read, 2525 }, 2526 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2527 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2528 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2529 .access = PL2_R, 2530 .readfn = ich_eisr_read, 2531 }, 2532 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2533 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2534 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2535 .access = PL2_R, 2536 .readfn = ich_elrsr_read, 2537 }, 2538 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2539 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2540 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2541 .access = PL2_RW, 2542 .readfn = ich_vmcr_read, 2543 .writefn = ich_vmcr_write, 2544 }, 2545 REGINFO_SENTINEL 2546 }; 2547 2548 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2549 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2551 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2552 .access = PL2_RW, 2553 .readfn = ich_ap_read, 2554 .writefn = ich_ap_write, 2555 }, 2556 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2557 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2558 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2559 .access = PL2_RW, 2560 .readfn = ich_ap_read, 2561 .writefn = ich_ap_write, 2562 }, 2563 REGINFO_SENTINEL 2564 }; 2565 2566 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2567 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2568 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2569 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2570 .access = PL2_RW, 2571 .readfn = ich_ap_read, 2572 .writefn = ich_ap_write, 2573 }, 2574 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2575 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2576 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2577 .access = PL2_RW, 2578 .readfn = ich_ap_read, 2579 .writefn = ich_ap_write, 2580 }, 2581 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2582 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2583 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2584 .access = PL2_RW, 2585 .readfn = ich_ap_read, 2586 .writefn = ich_ap_write, 2587 }, 2588 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2589 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2590 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2591 .access = PL2_RW, 2592 .readfn = ich_ap_read, 2593 .writefn = ich_ap_write, 2594 }, 2595 REGINFO_SENTINEL 2596 }; 2597 2598 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2599 { 2600 GICv3CPUState *cs = opaque; 2601 2602 gicv3_cpuif_update(cs); 2603 } 2604 2605 void gicv3_init_cpuif(GICv3State *s) 2606 { 2607 /* Called from the GICv3 realize function; register our system 2608 * registers with the CPU 2609 */ 2610 int i; 2611 2612 for (i = 0; i < s->num_cpu; i++) { 2613 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2614 GICv3CPUState *cs = &s->cpu[i]; 2615 2616 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2617 * in define_arm_cp_regs_with_opaque(), because when we're called back 2618 * it might be with code translated by CPU 0 but run by CPU 1, in 2619 * which case we'd get the wrong value. 2620 * So instead we define the regs with no ri->opaque info, and 2621 * get back to the GICv3CPUState from the CPUARMState. 2622 */ 2623 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2624 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2625 && cpu->gic_num_lrs) { 2626 int j; 2627 2628 cs->num_list_regs = cpu->gic_num_lrs; 2629 cs->vpribits = cpu->gic_vpribits; 2630 cs->vprebits = cpu->gic_vprebits; 2631 2632 /* Check against architectural constraints: getting these 2633 * wrong would be a bug in the CPU code defining these, 2634 * and the implementation relies on them holding. 2635 */ 2636 g_assert(cs->vprebits <= cs->vpribits); 2637 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2638 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2639 2640 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2641 2642 for (j = 0; j < cs->num_list_regs; j++) { 2643 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2644 * are split into two cp15 regs, LR (the low part, with the 2645 * same encoding as the AArch64 LR) and LRC (the high part). 2646 */ 2647 ARMCPRegInfo lr_regset[] = { 2648 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2649 .opc0 = 3, .opc1 = 4, .crn = 12, 2650 .crm = 12 + (j >> 3), .opc2 = j & 7, 2651 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2652 .access = PL2_RW, 2653 .readfn = ich_lr_read, 2654 .writefn = ich_lr_write, 2655 }, 2656 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2657 .cp = 15, .opc1 = 4, .crn = 12, 2658 .crm = 14 + (j >> 3), .opc2 = j & 7, 2659 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2660 .access = PL2_RW, 2661 .readfn = ich_lr_read, 2662 .writefn = ich_lr_write, 2663 }, 2664 REGINFO_SENTINEL 2665 }; 2666 define_arm_cp_regs(cpu, lr_regset); 2667 } 2668 if (cs->vprebits >= 6) { 2669 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2670 } 2671 if (cs->vprebits == 7) { 2672 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2673 } 2674 } 2675 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2676 } 2677 } 2678