xref: /openbmc/qemu/hw/intc/arm_gicv3_cpuif.c (revision 90bb6d67)
1 /*
2  * ARM Generic Interrupt Controller v3 (emulation)
3  *
4  * Copyright (c) 2016 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This code is licensed under the GPL, version 2 or (at your option)
8  * any later version.
9  */
10 
11 /* This file contains the code for the system register interface
12  * portions of the GICv3.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 #include "target/arm/cpregs.h"
24 #include "sysemu/tcg.h"
25 #include "sysemu/qtest.h"
26 
27 /*
28  * Special case return value from hppvi_index(); must be larger than
29  * the architecturally maximum possible list register index (which is 15)
30  */
31 #define HPPVI_INDEX_VLPI 16
32 
33 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
34 {
35     return env->gicv3state;
36 }
37 
38 static bool gicv3_use_ns_bank(CPUARMState *env)
39 {
40     /* Return true if we should use the NonSecure bank for a banked GIC
41      * CPU interface register. Note that this differs from the
42      * access_secure_reg() function because GICv3 banked registers are
43      * banked even for AArch64, unlike the other CPU system registers.
44      */
45     return !arm_is_secure_below_el3(env);
46 }
47 
48 /* The minimum BPR for the virtual interface is a configurable property */
49 static inline int icv_min_vbpr(GICv3CPUState *cs)
50 {
51     return 7 - cs->vprebits;
52 }
53 
54 static inline int ich_num_aprs(GICv3CPUState *cs)
55 {
56     /* Return the number of virtual APR registers (1, 2, or 4) */
57     int aprmax = 1 << (cs->vprebits - 5);
58     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
59     return aprmax;
60 }
61 
62 /* Simple accessor functions for LR fields */
63 static uint32_t ich_lr_vintid(uint64_t lr)
64 {
65     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
66 }
67 
68 static uint32_t ich_lr_pintid(uint64_t lr)
69 {
70     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
71 }
72 
73 static uint32_t ich_lr_prio(uint64_t lr)
74 {
75     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
76 }
77 
78 static int ich_lr_state(uint64_t lr)
79 {
80     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
81 }
82 
83 static bool icv_access(CPUARMState *env, int hcr_flags)
84 {
85     /* Return true if this ICC_ register access should really be
86      * directed to an ICV_ access. hcr_flags is a mask of
87      * HCR_EL2 bits to check: we treat this as an ICV_ access
88      * if we are in NS EL1 and at least one of the specified
89      * HCR_EL2 bits is set.
90      *
91      * ICV registers fall into four categories:
92      *  * access if NS EL1 and HCR_EL2.FMO == 1:
93      *    all ICV regs with '0' in their name
94      *  * access if NS EL1 and HCR_EL2.IMO == 1:
95      *    all ICV regs with '1' in their name
96      *  * access if NS EL1 and either IMO or FMO == 1:
97      *    CTLR, DIR, PMR, RPR
98      */
99     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
100     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
101 
102     return flagmatch && arm_current_el(env) == 1
103         && !arm_is_secure_below_el3(env);
104 }
105 
106 static int read_vbpr(GICv3CPUState *cs, int grp)
107 {
108     /* Read VBPR value out of the VMCR field (caller must handle
109      * VCBPR effects if required)
110      */
111     if (grp == GICV3_G0) {
112         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
113                      ICH_VMCR_EL2_VBPR0_LENGTH);
114     } else {
115         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
116                          ICH_VMCR_EL2_VBPR1_LENGTH);
117     }
118 }
119 
120 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
121 {
122     /* Write new VBPR1 value, handling the "writing a value less than
123      * the minimum sets it to the minimum" semantics.
124      */
125     int min = icv_min_vbpr(cs);
126 
127     if (grp != GICV3_G0) {
128         min++;
129     }
130 
131     value = MAX(value, min);
132 
133     if (grp == GICV3_G0) {
134         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
135                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
136     } else {
137         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
138                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
139     }
140 }
141 
142 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
143 {
144     /* Return a mask word which clears the unimplemented priority bits
145      * from a priority value for a virtual interrupt. (Not to be confused
146      * with the group priority, whose mask depends on the value of VBPR
147      * for the interrupt group.)
148      */
149     return (~0U << (8 - cs->vpribits)) & 0xff;
150 }
151 
152 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
153 {
154     /* Calculate the current running priority based on the set bits
155      * in the ICH Active Priority Registers.
156      */
157     int i;
158     int aprmax = ich_num_aprs(cs);
159 
160     for (i = 0; i < aprmax; i++) {
161         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
162             cs->ich_apr[GICV3_G1NS][i];
163 
164         if (!apr) {
165             continue;
166         }
167         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
168     }
169     /* No current active interrupts: return idle priority */
170     return 0xff;
171 }
172 
173 static int hppvi_index(GICv3CPUState *cs)
174 {
175     /*
176      * Return the list register index of the highest priority pending
177      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
178      * pseudocode. If no pending virtual interrupts, return -1.
179      * If the highest priority pending virtual interrupt is a vLPI,
180      * return HPPVI_INDEX_VLPI.
181      * (The pseudocode handles checking whether the vLPI is higher
182      * priority than the highest priority list register at every
183      * callsite of HighestPriorityVirtualInterrupt; we check it here.)
184      */
185     ARMCPU *cpu = ARM_CPU(cs->cpu);
186     CPUARMState *env = &cpu->env;
187     int idx = -1;
188     int i;
189     /* Note that a list register entry with a priority of 0xff will
190      * never be reported by this function; this is the architecturally
191      * correct behaviour.
192      */
193     int prio = 0xff;
194 
195     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
196         /* Both groups disabled, definitely nothing to do */
197         return idx;
198     }
199 
200     for (i = 0; i < cs->num_list_regs; i++) {
201         uint64_t lr = cs->ich_lr_el2[i];
202         int thisprio;
203 
204         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
205             /* Not Pending */
206             continue;
207         }
208 
209         /* Ignore interrupts if relevant group enable not set */
210         if (lr & ICH_LR_EL2_GROUP) {
211             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
212                 continue;
213             }
214         } else {
215             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
216                 continue;
217             }
218         }
219 
220         thisprio = ich_lr_prio(lr);
221 
222         if (thisprio < prio) {
223             prio = thisprio;
224             idx = i;
225         }
226     }
227 
228     /*
229      * "no pending vLPI" is indicated with prio = 0xff, which always
230      * fails the priority check here. vLPIs are only considered
231      * when we are in Non-Secure state.
232      */
233     if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
234         if (cs->hppvlpi.grp == GICV3_G0) {
235             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
236                 return HPPVI_INDEX_VLPI;
237             }
238         } else {
239             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
240                 return HPPVI_INDEX_VLPI;
241             }
242         }
243     }
244 
245     return idx;
246 }
247 
248 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
249 {
250     /* Return a mask word which clears the subpriority bits from
251      * a priority value for a virtual interrupt in the specified group.
252      * This depends on the VBPR value.
253      * If using VBPR0 then:
254      *  a BPR of 0 means the group priority bits are [7:1];
255      *  a BPR of 1 means they are [7:2], and so on down to
256      *  a BPR of 7 meaning no group priority bits at all.
257      * If using VBPR1 then:
258      *  a BPR of 0 is impossible (the minimum value is 1)
259      *  a BPR of 1 means the group priority bits are [7:1];
260      *  a BPR of 2 means they are [7:2], and so on down to
261      *  a BPR of 7 meaning the group priority is [7].
262      *
263      * Which BPR to use depends on the group of the interrupt and
264      * the current ICH_VMCR_EL2.VCBPR settings.
265      *
266      * This corresponds to the VGroupBits() pseudocode.
267      */
268     int bpr;
269 
270     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
271         group = GICV3_G0;
272     }
273 
274     bpr = read_vbpr(cs, group);
275     if (group == GICV3_G1NS) {
276         assert(bpr > 0);
277         bpr--;
278     }
279 
280     return ~0U << (bpr + 1);
281 }
282 
283 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
284 {
285     /* Return true if we can signal this virtual interrupt defined by
286      * the given list register value; see the pseudocode functions
287      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
288      * Compare also icc_hppi_can_preempt() which is the non-virtual
289      * equivalent of these checks.
290      */
291     int grp;
292     uint32_t mask, prio, rprio, vpmr;
293 
294     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
295         /* Virtual interface disabled */
296         return false;
297     }
298 
299     /* We don't need to check that this LR is in Pending state because
300      * that has already been done in hppvi_index().
301      */
302 
303     prio = ich_lr_prio(lr);
304     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
305                      ICH_VMCR_EL2_VPMR_LENGTH);
306 
307     if (prio >= vpmr) {
308         /* Priority mask masks this interrupt */
309         return false;
310     }
311 
312     rprio = ich_highest_active_virt_prio(cs);
313     if (rprio == 0xff) {
314         /* No running interrupt so we can preempt */
315         return true;
316     }
317 
318     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
319 
320     mask = icv_gprio_mask(cs, grp);
321 
322     /* We only preempt a running interrupt if the pending interrupt's
323      * group priority is sufficient (the subpriorities are not considered).
324      */
325     if ((prio & mask) < (rprio & mask)) {
326         return true;
327     }
328 
329     return false;
330 }
331 
332 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
333 {
334     /*
335      * Return true if we can signal the highest priority pending vLPI.
336      * We can assume we're Non-secure because hppvi_index() already
337      * tested for that.
338      */
339     uint32_t mask, rprio, vpmr;
340 
341     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
342         /* Virtual interface disabled */
343         return false;
344     }
345 
346     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
347                      ICH_VMCR_EL2_VPMR_LENGTH);
348 
349     if (cs->hppvlpi.prio >= vpmr) {
350         /* Priority mask masks this interrupt */
351         return false;
352     }
353 
354     rprio = ich_highest_active_virt_prio(cs);
355     if (rprio == 0xff) {
356         /* No running interrupt so we can preempt */
357         return true;
358     }
359 
360     mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
361 
362     /*
363      * We only preempt a running interrupt if the pending interrupt's
364      * group priority is sufficient (the subpriorities are not considered).
365      */
366     if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
367         return true;
368     }
369 
370     return false;
371 }
372 
373 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
374                                                 uint32_t *misr)
375 {
376     /* Return a set of bits indicating the EOI maintenance interrupt status
377      * for each list register. The EOI maintenance interrupt status is
378      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
379      * (see the GICv3 spec for the ICH_EISR_EL2 register).
380      * If misr is not NULL then we should also collect the information
381      * about the MISR.EOI, MISR.NP and MISR.U bits.
382      */
383     uint32_t value = 0;
384     int validcount = 0;
385     bool seenpending = false;
386     int i;
387 
388     for (i = 0; i < cs->num_list_regs; i++) {
389         uint64_t lr = cs->ich_lr_el2[i];
390 
391         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
392             == ICH_LR_EL2_EOI) {
393             value |= (1 << i);
394         }
395         if ((lr & ICH_LR_EL2_STATE_MASK)) {
396             validcount++;
397         }
398         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
399             seenpending = true;
400         }
401     }
402 
403     if (misr) {
404         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
405             *misr |= ICH_MISR_EL2_U;
406         }
407         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
408             *misr |= ICH_MISR_EL2_NP;
409         }
410         if (value) {
411             *misr |= ICH_MISR_EL2_EOI;
412         }
413     }
414     return value;
415 }
416 
417 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
418 {
419     /* Return a set of bits indicating the maintenance interrupt status
420      * (as seen in the ICH_MISR_EL2 register).
421      */
422     uint32_t value = 0;
423 
424     /* Scan list registers and fill in the U, NP and EOI bits */
425     eoi_maintenance_interrupt_state(cs, &value);
426 
427     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
428         (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
429         value |= ICH_MISR_EL2_LRENP;
430     }
431 
432     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
433         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
434         value |= ICH_MISR_EL2_VGRP0E;
435     }
436 
437     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
438         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
439         value |= ICH_MISR_EL2_VGRP0D;
440     }
441     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
442         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
443         value |= ICH_MISR_EL2_VGRP1E;
444     }
445 
446     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
447         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
448         value |= ICH_MISR_EL2_VGRP1D;
449     }
450 
451     return value;
452 }
453 
454 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
455 {
456     /*
457      * Tell the CPU about any pending virtual interrupts.
458      * This should only be called for changes that affect the
459      * vIRQ and vFIQ status and do not change the maintenance
460      * interrupt status. This means that unlike gicv3_cpuif_virt_update()
461      * this function won't recursively call back into the GIC code.
462      * The main use of this is when the redistributor has changed the
463      * highest priority pending virtual LPI.
464      */
465     int idx;
466     int irqlevel = 0;
467     int fiqlevel = 0;
468 
469     idx = hppvi_index(cs);
470     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
471                                   cs->hppvlpi.irq, cs->hppvlpi.grp,
472                                   cs->hppvlpi.prio);
473     if (idx == HPPVI_INDEX_VLPI) {
474         if (icv_hppvlpi_can_preempt(cs)) {
475             if (cs->hppvlpi.grp == GICV3_G0) {
476                 fiqlevel = 1;
477             } else {
478                 irqlevel = 1;
479             }
480         }
481     } else if (idx >= 0) {
482         uint64_t lr = cs->ich_lr_el2[idx];
483 
484         if (icv_hppi_can_preempt(cs, lr)) {
485             /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
486             if (lr & ICH_LR_EL2_GROUP) {
487                 irqlevel = 1;
488             } else {
489                 fiqlevel = 1;
490             }
491         }
492     }
493 
494     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
495     qemu_set_irq(cs->parent_vfiq, fiqlevel);
496     qemu_set_irq(cs->parent_virq, irqlevel);
497 }
498 
499 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
500 {
501     /*
502      * Tell the CPU about any pending virtual interrupts or
503      * maintenance interrupts, following a change to the state
504      * of the CPU interface relevant to virtual interrupts.
505      *
506      * CAUTION: this function will call qemu_set_irq() on the
507      * CPU maintenance IRQ line, which is typically wired up
508      * to the GIC as a per-CPU interrupt. This means that it
509      * will recursively call back into the GIC code via
510      * gicv3_redist_set_irq() and thus into the CPU interface code's
511      * gicv3_cpuif_update(). It is therefore important that this
512      * function is only called as the final action of a CPU interface
513      * register write implementation, after all the GIC state
514      * fields have been updated. gicv3_cpuif_update() also must
515      * not cause this function to be called, but that happens
516      * naturally as a result of there being no architectural
517      * linkage between the physical and virtual GIC logic.
518      */
519     ARMCPU *cpu = ARM_CPU(cs->cpu);
520     int maintlevel = 0;
521 
522     gicv3_cpuif_virt_irq_fiq_update(cs);
523 
524     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
525         maintenance_interrupt_state(cs) != 0) {
526         maintlevel = 1;
527     }
528 
529     trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
530     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
531 }
532 
533 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
534 {
535     GICv3CPUState *cs = icc_cs_from_env(env);
536     int regno = ri->opc2 & 3;
537     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
538     uint64_t value = cs->ich_apr[grp][regno];
539 
540     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
541     return value;
542 }
543 
544 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
545                          uint64_t value)
546 {
547     GICv3CPUState *cs = icc_cs_from_env(env);
548     int regno = ri->opc2 & 3;
549     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
550 
551     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
552 
553     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
554 
555     gicv3_cpuif_virt_irq_fiq_update(cs);
556     return;
557 }
558 
559 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
560 {
561     GICv3CPUState *cs = icc_cs_from_env(env);
562     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
563     uint64_t bpr;
564     bool satinc = false;
565 
566     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
567         /* reads return bpr0 + 1 saturated to 7, writes ignored */
568         grp = GICV3_G0;
569         satinc = true;
570     }
571 
572     bpr = read_vbpr(cs, grp);
573 
574     if (satinc) {
575         bpr++;
576         bpr = MIN(bpr, 7);
577     }
578 
579     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
580 
581     return bpr;
582 }
583 
584 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
585                           uint64_t value)
586 {
587     GICv3CPUState *cs = icc_cs_from_env(env);
588     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
589 
590     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
591                               gicv3_redist_affid(cs), value);
592 
593     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
594         /* reads return bpr0 + 1 saturated to 7, writes ignored */
595         return;
596     }
597 
598     write_vbpr(cs, grp, value);
599 
600     gicv3_cpuif_virt_irq_fiq_update(cs);
601 }
602 
603 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
604 {
605     GICv3CPUState *cs = icc_cs_from_env(env);
606     uint64_t value;
607 
608     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
609                       ICH_VMCR_EL2_VPMR_LENGTH);
610 
611     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
612     return value;
613 }
614 
615 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
616                           uint64_t value)
617 {
618     GICv3CPUState *cs = icc_cs_from_env(env);
619 
620     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
621 
622     value &= icv_fullprio_mask(cs);
623 
624     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
625                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
626 
627     gicv3_cpuif_virt_irq_fiq_update(cs);
628 }
629 
630 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
631 {
632     GICv3CPUState *cs = icc_cs_from_env(env);
633     int enbit;
634     uint64_t value;
635 
636     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
637     value = extract64(cs->ich_vmcr_el2, enbit, 1);
638 
639     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
640                                 gicv3_redist_affid(cs), value);
641     return value;
642 }
643 
644 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
645                              uint64_t value)
646 {
647     GICv3CPUState *cs = icc_cs_from_env(env);
648     int enbit;
649 
650     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
651                                  gicv3_redist_affid(cs), value);
652 
653     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
654 
655     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
656     gicv3_cpuif_virt_update(cs);
657 }
658 
659 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
660 {
661     GICv3CPUState *cs = icc_cs_from_env(env);
662     uint64_t value;
663 
664     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
665      * should match the ones reported in ich_vtr_read().
666      */
667     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
668         ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
669 
670     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
671         value |= ICC_CTLR_EL1_EOIMODE;
672     }
673 
674     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
675         value |= ICC_CTLR_EL1_CBPR;
676     }
677 
678     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
679     return value;
680 }
681 
682 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
683                                uint64_t value)
684 {
685     GICv3CPUState *cs = icc_cs_from_env(env);
686 
687     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
688 
689     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
690                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
691     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
692                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
693 
694     gicv3_cpuif_virt_irq_fiq_update(cs);
695 }
696 
697 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
698 {
699     GICv3CPUState *cs = icc_cs_from_env(env);
700     int prio = ich_highest_active_virt_prio(cs);
701 
702     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
703     return prio;
704 }
705 
706 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
707 {
708     GICv3CPUState *cs = icc_cs_from_env(env);
709     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
710     int idx = hppvi_index(cs);
711     uint64_t value = INTID_SPURIOUS;
712 
713     if (idx == HPPVI_INDEX_VLPI) {
714         if (cs->hppvlpi.grp == grp) {
715             value = cs->hppvlpi.irq;
716         }
717     } else if (idx >= 0) {
718         uint64_t lr = cs->ich_lr_el2[idx];
719         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
720 
721         if (grp == thisgrp) {
722             value = ich_lr_vintid(lr);
723         }
724     }
725 
726     trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
727                                gicv3_redist_affid(cs), value);
728     return value;
729 }
730 
731 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
732 {
733     /* Activate the interrupt in the specified list register
734      * by moving it from Pending to Active state, and update the
735      * Active Priority Registers.
736      */
737     uint32_t mask = icv_gprio_mask(cs, grp);
738     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
739     int aprbit = prio >> (8 - cs->vprebits);
740     int regno = aprbit / 32;
741     int regbit = aprbit % 32;
742 
743     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
744     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
745     cs->ich_apr[grp][regno] |= (1 << regbit);
746 }
747 
748 static void icv_activate_vlpi(GICv3CPUState *cs)
749 {
750     uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
751     int prio = cs->hppvlpi.prio & mask;
752     int aprbit = prio >> (8 - cs->vprebits);
753     int regno = aprbit / 32;
754     int regbit = aprbit % 32;
755 
756     cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
757     gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
758 }
759 
760 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
761 {
762     GICv3CPUState *cs = icc_cs_from_env(env);
763     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
764     int idx = hppvi_index(cs);
765     uint64_t intid = INTID_SPURIOUS;
766 
767     if (idx == HPPVI_INDEX_VLPI) {
768         if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
769             intid = cs->hppvlpi.irq;
770             icv_activate_vlpi(cs);
771         }
772     } else if (idx >= 0) {
773         uint64_t lr = cs->ich_lr_el2[idx];
774         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
775 
776         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
777             intid = ich_lr_vintid(lr);
778             if (!gicv3_intid_is_special(intid)) {
779                 icv_activate_irq(cs, idx, grp);
780             } else {
781                 /* Interrupt goes from Pending to Invalid */
782                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
783                 /* We will now return the (bogus) ID from the list register,
784                  * as per the pseudocode.
785                  */
786             }
787         }
788     }
789 
790     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
791                              gicv3_redist_affid(cs), intid);
792 
793     gicv3_cpuif_virt_update(cs);
794 
795     return intid;
796 }
797 
798 static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
799 {
800     /*
801      * Return a mask word which clears the unimplemented priority bits
802      * from a priority value for a physical interrupt. (Not to be confused
803      * with the group priority, whose mask depends on the value of BPR
804      * for the interrupt group.)
805      */
806     return (~0U << (8 - cs->pribits)) & 0xff;
807 }
808 
809 static inline int icc_min_bpr(GICv3CPUState *cs)
810 {
811     /* The minimum BPR for the physical interface. */
812     return 7 - cs->prebits;
813 }
814 
815 static inline int icc_min_bpr_ns(GICv3CPUState *cs)
816 {
817     return icc_min_bpr(cs) + 1;
818 }
819 
820 static inline int icc_num_aprs(GICv3CPUState *cs)
821 {
822     /* Return the number of APR registers (1, 2, or 4) */
823     int aprmax = 1 << MAX(cs->prebits - 5, 0);
824     assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
825     return aprmax;
826 }
827 
828 static int icc_highest_active_prio(GICv3CPUState *cs)
829 {
830     /* Calculate the current running priority based on the set bits
831      * in the Active Priority Registers.
832      */
833     int i;
834 
835     for (i = 0; i < icc_num_aprs(cs); i++) {
836         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
837             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
838 
839         if (!apr) {
840             continue;
841         }
842         return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
843     }
844     /* No current active interrupts: return idle priority */
845     return 0xff;
846 }
847 
848 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
849 {
850     /* Return a mask word which clears the subpriority bits from
851      * a priority value for an interrupt in the specified group.
852      * This depends on the BPR value. For CBPR0 (S or NS):
853      *  a BPR of 0 means the group priority bits are [7:1];
854      *  a BPR of 1 means they are [7:2], and so on down to
855      *  a BPR of 7 meaning no group priority bits at all.
856      * For CBPR1 NS:
857      *  a BPR of 0 is impossible (the minimum value is 1)
858      *  a BPR of 1 means the group priority bits are [7:1];
859      *  a BPR of 2 means they are [7:2], and so on down to
860      *  a BPR of 7 meaning the group priority is [7].
861      *
862      * Which BPR to use depends on the group of the interrupt and
863      * the current ICC_CTLR.CBPR settings.
864      *
865      * This corresponds to the GroupBits() pseudocode.
866      */
867     int bpr;
868 
869     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
870         (group == GICV3_G1NS &&
871          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
872         group = GICV3_G0;
873     }
874 
875     bpr = cs->icc_bpr[group] & 7;
876 
877     if (group == GICV3_G1NS) {
878         assert(bpr > 0);
879         bpr--;
880     }
881 
882     return ~0U << (bpr + 1);
883 }
884 
885 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
886 {
887     /* Return true if there is no pending interrupt, or the
888      * highest priority pending interrupt is in a group which has been
889      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
890      */
891     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
892 }
893 
894 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
895 {
896     /* Return true if we have a pending interrupt of sufficient
897      * priority to preempt.
898      */
899     int rprio;
900     uint32_t mask;
901 
902     if (icc_no_enabled_hppi(cs)) {
903         return false;
904     }
905 
906     if (cs->hppi.prio >= cs->icc_pmr_el1) {
907         /* Priority mask masks this interrupt */
908         return false;
909     }
910 
911     rprio = icc_highest_active_prio(cs);
912     if (rprio == 0xff) {
913         /* No currently running interrupt so we can preempt */
914         return true;
915     }
916 
917     mask = icc_gprio_mask(cs, cs->hppi.grp);
918 
919     /* We only preempt a running interrupt if the pending interrupt's
920      * group priority is sufficient (the subpriorities are not considered).
921      */
922     if ((cs->hppi.prio & mask) < (rprio & mask)) {
923         return true;
924     }
925 
926     return false;
927 }
928 
929 void gicv3_cpuif_update(GICv3CPUState *cs)
930 {
931     /* Tell the CPU about its highest priority pending interrupt */
932     int irqlevel = 0;
933     int fiqlevel = 0;
934     ARMCPU *cpu = ARM_CPU(cs->cpu);
935     CPUARMState *env = &cpu->env;
936 
937     g_assert(qemu_mutex_iothread_locked());
938 
939     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
940                              cs->hppi.grp, cs->hppi.prio);
941 
942     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
943         /* If a Security-enabled GIC sends a G1S interrupt to a
944          * Security-disabled CPU, we must treat it as if it were G0.
945          */
946         cs->hppi.grp = GICV3_G0;
947     }
948 
949     if (icc_hppi_can_preempt(cs)) {
950         /* We have an interrupt: should we signal it as IRQ or FIQ?
951          * This is described in the GICv3 spec section 4.6.2.
952          */
953         bool isfiq;
954 
955         switch (cs->hppi.grp) {
956         case GICV3_G0:
957             isfiq = true;
958             break;
959         case GICV3_G1:
960             isfiq = (!arm_is_secure(env) ||
961                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
962             break;
963         case GICV3_G1NS:
964             isfiq = arm_is_secure(env);
965             break;
966         default:
967             g_assert_not_reached();
968         }
969 
970         if (isfiq) {
971             fiqlevel = 1;
972         } else {
973             irqlevel = 1;
974         }
975     }
976 
977     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
978 
979     qemu_set_irq(cs->parent_fiq, fiqlevel);
980     qemu_set_irq(cs->parent_irq, irqlevel);
981 }
982 
983 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
984 {
985     GICv3CPUState *cs = icc_cs_from_env(env);
986     uint32_t value = cs->icc_pmr_el1;
987 
988     if (icv_access(env, HCR_FMO | HCR_IMO)) {
989         return icv_pmr_read(env, ri);
990     }
991 
992     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
993         (env->cp15.scr_el3 & SCR_FIQ)) {
994         /* NS access and Group 0 is inaccessible to NS: return the
995          * NS view of the current priority
996          */
997         if ((value & 0x80) == 0) {
998             /* Secure priorities not visible to NS */
999             value = 0;
1000         } else if (value != 0xff) {
1001             value = (value << 1) & 0xff;
1002         }
1003     }
1004 
1005     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1006 
1007     return value;
1008 }
1009 
1010 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1011                           uint64_t value)
1012 {
1013     GICv3CPUState *cs = icc_cs_from_env(env);
1014 
1015     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1016         return icv_pmr_write(env, ri, value);
1017     }
1018 
1019     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1020 
1021     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1022         (env->cp15.scr_el3 & SCR_FIQ)) {
1023         /* NS access and Group 0 is inaccessible to NS: return the
1024          * NS view of the current priority
1025          */
1026         if (!(cs->icc_pmr_el1 & 0x80)) {
1027             /* Current PMR in the secure range, don't allow NS to change it */
1028             return;
1029         }
1030         value = (value >> 1) | 0x80;
1031     }
1032     value &= icc_fullprio_mask(cs);
1033     cs->icc_pmr_el1 = value;
1034     gicv3_cpuif_update(cs);
1035 }
1036 
1037 static void icc_activate_irq(GICv3CPUState *cs, int irq)
1038 {
1039     /* Move the interrupt from the Pending state to Active, and update
1040      * the Active Priority Registers
1041      */
1042     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1043     int prio = cs->hppi.prio & mask;
1044     int aprbit = prio >> (8 - cs->prebits);
1045     int regno = aprbit / 32;
1046     int regbit = aprbit % 32;
1047 
1048     cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1049 
1050     if (irq < GIC_INTERNAL) {
1051         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1052         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1053         gicv3_redist_update(cs);
1054     } else if (irq < GICV3_LPI_INTID_START) {
1055         gicv3_gicd_active_set(cs->gic, irq);
1056         gicv3_gicd_pending_clear(cs->gic, irq);
1057         gicv3_update(cs->gic, irq, 1);
1058     } else {
1059         gicv3_redist_lpi_pending(cs, irq, 0);
1060     }
1061 }
1062 
1063 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1064 {
1065     /* Return the highest priority pending interrupt register value
1066      * for group 0.
1067      */
1068     bool irq_is_secure;
1069 
1070     if (cs->hppi.prio == 0xff) {
1071         return INTID_SPURIOUS;
1072     }
1073 
1074     /* Check whether we can return the interrupt or if we should return
1075      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1076      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1077      * is always zero.)
1078      */
1079     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1080                      (cs->hppi.grp != GICV3_G1NS));
1081 
1082     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1083         return INTID_SPURIOUS;
1084     }
1085     if (irq_is_secure && !arm_is_secure(env)) {
1086         /* Secure interrupts not visible to Nonsecure */
1087         return INTID_SPURIOUS;
1088     }
1089 
1090     if (cs->hppi.grp != GICV3_G0) {
1091         /* Indicate to EL3 that there's a Group 1 interrupt for the other
1092          * state pending.
1093          */
1094         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1095     }
1096 
1097     return cs->hppi.irq;
1098 }
1099 
1100 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1101 {
1102     /* Return the highest priority pending interrupt register value
1103      * for group 1.
1104      */
1105     bool irq_is_secure;
1106 
1107     if (cs->hppi.prio == 0xff) {
1108         return INTID_SPURIOUS;
1109     }
1110 
1111     /* Check whether we can return the interrupt or if we should return
1112      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1113      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1114      * is always zero.)
1115      */
1116     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1117                      (cs->hppi.grp != GICV3_G1NS));
1118 
1119     if (cs->hppi.grp == GICV3_G0) {
1120         /* Group 0 interrupts not visible via HPPIR1 */
1121         return INTID_SPURIOUS;
1122     }
1123     if (irq_is_secure) {
1124         if (!arm_is_secure(env)) {
1125             /* Secure interrupts not visible in Non-secure */
1126             return INTID_SPURIOUS;
1127         }
1128     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1129         /* Group 1 non-secure interrupts not visible in Secure EL1 */
1130         return INTID_SPURIOUS;
1131     }
1132 
1133     return cs->hppi.irq;
1134 }
1135 
1136 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1137 {
1138     GICv3CPUState *cs = icc_cs_from_env(env);
1139     uint64_t intid;
1140 
1141     if (icv_access(env, HCR_FMO)) {
1142         return icv_iar_read(env, ri);
1143     }
1144 
1145     if (!icc_hppi_can_preempt(cs)) {
1146         intid = INTID_SPURIOUS;
1147     } else {
1148         intid = icc_hppir0_value(cs, env);
1149     }
1150 
1151     if (!gicv3_intid_is_special(intid)) {
1152         icc_activate_irq(cs, intid);
1153     }
1154 
1155     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1156     return intid;
1157 }
1158 
1159 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1160 {
1161     GICv3CPUState *cs = icc_cs_from_env(env);
1162     uint64_t intid;
1163 
1164     if (icv_access(env, HCR_IMO)) {
1165         return icv_iar_read(env, ri);
1166     }
1167 
1168     if (!icc_hppi_can_preempt(cs)) {
1169         intid = INTID_SPURIOUS;
1170     } else {
1171         intid = icc_hppir1_value(cs, env);
1172     }
1173 
1174     if (!gicv3_intid_is_special(intid)) {
1175         icc_activate_irq(cs, intid);
1176     }
1177 
1178     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1179     return intid;
1180 }
1181 
1182 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1183 {
1184     /* Drop the priority of the currently active interrupt in
1185      * the specified group.
1186      *
1187      * Note that we can guarantee (because of the requirement to nest
1188      * ICC_IAR reads [which activate an interrupt and raise priority]
1189      * with ICC_EOIR writes [which drop the priority for the interrupt])
1190      * that the interrupt we're being called for is the highest priority
1191      * active interrupt, meaning that it has the lowest set bit in the
1192      * APR registers.
1193      *
1194      * If the guest does not honour the ordering constraints then the
1195      * behaviour of the GIC is UNPREDICTABLE, which for us means that
1196      * the values of the APR registers might become incorrect and the
1197      * running priority will be wrong, so interrupts that should preempt
1198      * might not do so, and interrupts that should not preempt might do so.
1199      */
1200     int i;
1201 
1202     for (i = 0; i < icc_num_aprs(cs); i++) {
1203         uint64_t *papr = &cs->icc_apr[grp][i];
1204 
1205         if (!*papr) {
1206             continue;
1207         }
1208         /* Clear the lowest set bit */
1209         *papr &= *papr - 1;
1210         break;
1211     }
1212 
1213     /* running priority change means we need an update for this cpu i/f */
1214     gicv3_cpuif_update(cs);
1215 }
1216 
1217 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1218 {
1219     /* Return true if we should split priority drop and interrupt
1220      * deactivation, ie whether the relevant EOIMode bit is set.
1221      */
1222     if (arm_is_el3_or_mon(env)) {
1223         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1224     }
1225     if (arm_is_secure_below_el3(env)) {
1226         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1227     } else {
1228         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1229     }
1230 }
1231 
1232 static int icc_highest_active_group(GICv3CPUState *cs)
1233 {
1234     /* Return the group with the highest priority active interrupt.
1235      * We can do this by just comparing the APRs to see which one
1236      * has the lowest set bit.
1237      * (If more than one group is active at the same priority then
1238      * we're in UNPREDICTABLE territory.)
1239      */
1240     int i;
1241 
1242     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1243         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1244         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1245         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1246 
1247         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1248             return GICV3_G1NS;
1249         }
1250         if (g1ctz < g0ctz) {
1251             return GICV3_G1;
1252         }
1253         if (g0ctz < 32) {
1254             return GICV3_G0;
1255         }
1256     }
1257     /* No set active bits? UNPREDICTABLE; return -1 so the caller
1258      * ignores the spurious EOI attempt.
1259      */
1260     return -1;
1261 }
1262 
1263 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1264 {
1265     if (irq < GIC_INTERNAL) {
1266         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1267         gicv3_redist_update(cs);
1268     } else {
1269         gicv3_gicd_active_clear(cs->gic, irq);
1270         gicv3_update(cs->gic, irq, 1);
1271     }
1272 }
1273 
1274 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1275 {
1276     /* Return true if we should split priority drop and interrupt
1277      * deactivation, ie whether the virtual EOIMode bit is set.
1278      */
1279     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1280 }
1281 
1282 static int icv_find_active(GICv3CPUState *cs, int irq)
1283 {
1284     /* Given an interrupt number for an active interrupt, return the index
1285      * of the corresponding list register, or -1 if there is no match.
1286      * Corresponds to FindActiveVirtualInterrupt pseudocode.
1287      */
1288     int i;
1289 
1290     for (i = 0; i < cs->num_list_regs; i++) {
1291         uint64_t lr = cs->ich_lr_el2[i];
1292 
1293         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1294             return i;
1295         }
1296     }
1297 
1298     return -1;
1299 }
1300 
1301 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1302 {
1303     /* Deactivate the interrupt in the specified list register index */
1304     uint64_t lr = cs->ich_lr_el2[idx];
1305 
1306     if (lr & ICH_LR_EL2_HW) {
1307         /* Deactivate the associated physical interrupt */
1308         int pirq = ich_lr_pintid(lr);
1309 
1310         if (pirq < INTID_SECURE) {
1311             icc_deactivate_irq(cs, pirq);
1312         }
1313     }
1314 
1315     /* Clear the 'active' part of the state, so ActivePending->Pending
1316      * and Active->Invalid.
1317      */
1318     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1319     cs->ich_lr_el2[idx] = lr;
1320 }
1321 
1322 static void icv_increment_eoicount(GICv3CPUState *cs)
1323 {
1324     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1325     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1326                              ICH_HCR_EL2_EOICOUNT_LENGTH);
1327 
1328     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1329                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1330 }
1331 
1332 static int icv_drop_prio(GICv3CPUState *cs)
1333 {
1334     /* Drop the priority of the currently active virtual interrupt
1335      * (favouring group 0 if there is a set active bit at
1336      * the same priority for both group 0 and group 1).
1337      * Return the priority value for the bit we just cleared,
1338      * or 0xff if no bits were set in the AP registers at all.
1339      * Note that though the ich_apr[] are uint64_t only the low
1340      * 32 bits are actually relevant.
1341      */
1342     int i;
1343     int aprmax = ich_num_aprs(cs);
1344 
1345     for (i = 0; i < aprmax; i++) {
1346         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1347         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1348         int apr0count, apr1count;
1349 
1350         if (!*papr0 && !*papr1) {
1351             continue;
1352         }
1353 
1354         /* We can't just use the bit-twiddling hack icc_drop_prio() does
1355          * because we need to return the bit number we cleared so
1356          * it can be compared against the list register's priority field.
1357          */
1358         apr0count = ctz32(*papr0);
1359         apr1count = ctz32(*papr1);
1360 
1361         if (apr0count <= apr1count) {
1362             *papr0 &= *papr0 - 1;
1363             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1364         } else {
1365             *papr1 &= *papr1 - 1;
1366             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1367         }
1368     }
1369     return 0xff;
1370 }
1371 
1372 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1373                           uint64_t value)
1374 {
1375     /* Deactivate interrupt */
1376     GICv3CPUState *cs = icc_cs_from_env(env);
1377     int idx;
1378     int irq = value & 0xffffff;
1379 
1380     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1381 
1382     if (irq >= GICV3_MAXIRQ) {
1383         /* Also catches special interrupt numbers and LPIs */
1384         return;
1385     }
1386 
1387     if (!icv_eoi_split(env, cs)) {
1388         return;
1389     }
1390 
1391     idx = icv_find_active(cs, irq);
1392 
1393     if (idx < 0) {
1394         /* No list register matching this, so increment the EOI count
1395          * (might trigger a maintenance interrupt)
1396          */
1397         icv_increment_eoicount(cs);
1398     } else {
1399         icv_deactivate_irq(cs, idx);
1400     }
1401 
1402     gicv3_cpuif_virt_update(cs);
1403 }
1404 
1405 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1406                            uint64_t value)
1407 {
1408     /* End of Interrupt */
1409     GICv3CPUState *cs = icc_cs_from_env(env);
1410     int irq = value & 0xffffff;
1411     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1412     int idx, dropprio;
1413 
1414     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1415                                gicv3_redist_affid(cs), value);
1416 
1417     if (gicv3_intid_is_special(irq)) {
1418         return;
1419     }
1420 
1421     /* We implement the IMPDEF choice of "drop priority before doing
1422      * error checks" (because that lets us avoid scanning the AP
1423      * registers twice).
1424      */
1425     dropprio = icv_drop_prio(cs);
1426     if (dropprio == 0xff) {
1427         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1428          * whether the list registers are checked in this
1429          * situation; we choose not to.
1430          */
1431         return;
1432     }
1433 
1434     idx = icv_find_active(cs, irq);
1435 
1436     if (idx < 0) {
1437         /* No valid list register corresponding to EOI ID */
1438         icv_increment_eoicount(cs);
1439     } else {
1440         uint64_t lr = cs->ich_lr_el2[idx];
1441         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1442         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1443 
1444         if (thisgrp == grp && lr_gprio == dropprio) {
1445             if (!icv_eoi_split(env, cs)) {
1446                 /* Priority drop and deactivate not split: deactivate irq now */
1447                 icv_deactivate_irq(cs, idx);
1448             }
1449         }
1450     }
1451 
1452     gicv3_cpuif_virt_update(cs);
1453 }
1454 
1455 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1456                            uint64_t value)
1457 {
1458     /* End of Interrupt */
1459     GICv3CPUState *cs = icc_cs_from_env(env);
1460     int irq = value & 0xffffff;
1461     int grp;
1462     bool is_eoir0 = ri->crm == 8;
1463 
1464     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1465         icv_eoir_write(env, ri, value);
1466         return;
1467     }
1468 
1469     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1470                                gicv3_redist_affid(cs), value);
1471 
1472     if ((irq >= cs->gic->num_irq) &&
1473         !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1474         /* This handles two cases:
1475          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1476          * to the GICC_EOIR, the GIC ignores that write.
1477          * 2. If software writes the number of a non-existent interrupt
1478          * this must be a subcase of "value written does not match the last
1479          * valid interrupt value read from the Interrupt Acknowledge
1480          * register" and so this is UNPREDICTABLE. We choose to ignore it.
1481          */
1482         return;
1483     }
1484 
1485     grp = icc_highest_active_group(cs);
1486     switch (grp) {
1487     case GICV3_G0:
1488         if (!is_eoir0) {
1489             return;
1490         }
1491         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1492             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1493             return;
1494         }
1495         break;
1496     case GICV3_G1:
1497         if (is_eoir0) {
1498             return;
1499         }
1500         if (!arm_is_secure(env)) {
1501             return;
1502         }
1503         break;
1504     case GICV3_G1NS:
1505         if (is_eoir0) {
1506             return;
1507         }
1508         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1509             return;
1510         }
1511         break;
1512     default:
1513         qemu_log_mask(LOG_GUEST_ERROR,
1514                       "%s: IRQ %d isn't active\n", __func__, irq);
1515         return;
1516     }
1517 
1518     icc_drop_prio(cs, grp);
1519 
1520     if (!icc_eoi_split(env, cs)) {
1521         /* Priority drop and deactivate not split: deactivate irq now */
1522         icc_deactivate_irq(cs, irq);
1523     }
1524 }
1525 
1526 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1527 {
1528     GICv3CPUState *cs = icc_cs_from_env(env);
1529     uint64_t value;
1530 
1531     if (icv_access(env, HCR_FMO)) {
1532         return icv_hppir_read(env, ri);
1533     }
1534 
1535     value = icc_hppir0_value(cs, env);
1536     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1537     return value;
1538 }
1539 
1540 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1541 {
1542     GICv3CPUState *cs = icc_cs_from_env(env);
1543     uint64_t value;
1544 
1545     if (icv_access(env, HCR_IMO)) {
1546         return icv_hppir_read(env, ri);
1547     }
1548 
1549     value = icc_hppir1_value(cs, env);
1550     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1551     return value;
1552 }
1553 
1554 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1555 {
1556     GICv3CPUState *cs = icc_cs_from_env(env);
1557     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1558     bool satinc = false;
1559     uint64_t bpr;
1560 
1561     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1562         return icv_bpr_read(env, ri);
1563     }
1564 
1565     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1566         grp = GICV3_G1NS;
1567     }
1568 
1569     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1570         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1571         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1572          * modify BPR0
1573          */
1574         grp = GICV3_G0;
1575     }
1576 
1577     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1578         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1579         /* reads return bpr0 + 1 sat to 7, writes ignored */
1580         grp = GICV3_G0;
1581         satinc = true;
1582     }
1583 
1584     bpr = cs->icc_bpr[grp];
1585     if (satinc) {
1586         bpr++;
1587         bpr = MIN(bpr, 7);
1588     }
1589 
1590     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1591 
1592     return bpr;
1593 }
1594 
1595 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1596                           uint64_t value)
1597 {
1598     GICv3CPUState *cs = icc_cs_from_env(env);
1599     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1600     uint64_t minval;
1601 
1602     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1603         icv_bpr_write(env, ri, value);
1604         return;
1605     }
1606 
1607     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1608                               gicv3_redist_affid(cs), value);
1609 
1610     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1611         grp = GICV3_G1NS;
1612     }
1613 
1614     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1615         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1616         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1617          * modify BPR0
1618          */
1619         grp = GICV3_G0;
1620     }
1621 
1622     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1623         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1624         /* reads return bpr0 + 1 sat to 7, writes ignored */
1625         return;
1626     }
1627 
1628     minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1629     if (value < minval) {
1630         value = minval;
1631     }
1632 
1633     cs->icc_bpr[grp] = value & 7;
1634     gicv3_cpuif_update(cs);
1635 }
1636 
1637 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1638 {
1639     GICv3CPUState *cs = icc_cs_from_env(env);
1640     uint64_t value;
1641 
1642     int regno = ri->opc2 & 3;
1643     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1644 
1645     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1646         return icv_ap_read(env, ri);
1647     }
1648 
1649     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1650         grp = GICV3_G1NS;
1651     }
1652 
1653     value = cs->icc_apr[grp][regno];
1654 
1655     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1656     return value;
1657 }
1658 
1659 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1660                          uint64_t value)
1661 {
1662     GICv3CPUState *cs = icc_cs_from_env(env);
1663 
1664     int regno = ri->opc2 & 3;
1665     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1666 
1667     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1668         icv_ap_write(env, ri, value);
1669         return;
1670     }
1671 
1672     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1673 
1674     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1675         grp = GICV3_G1NS;
1676     }
1677 
1678     /* It's not possible to claim that a Non-secure interrupt is active
1679      * at a priority outside the Non-secure range (128..255), since this
1680      * would otherwise allow malicious NS code to block delivery of S interrupts
1681      * by writing a bad value to these registers.
1682      */
1683     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1684         return;
1685     }
1686 
1687     cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1688     gicv3_cpuif_update(cs);
1689 }
1690 
1691 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1692                           uint64_t value)
1693 {
1694     /* Deactivate interrupt */
1695     GICv3CPUState *cs = icc_cs_from_env(env);
1696     int irq = value & 0xffffff;
1697     bool irq_is_secure, single_sec_state, irq_is_grp0;
1698     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1699 
1700     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1701         icv_dir_write(env, ri, value);
1702         return;
1703     }
1704 
1705     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1706 
1707     if (irq >= cs->gic->num_irq) {
1708         /* Also catches special interrupt numbers and LPIs */
1709         return;
1710     }
1711 
1712     if (!icc_eoi_split(env, cs)) {
1713         return;
1714     }
1715 
1716     int grp = gicv3_irq_group(cs->gic, cs, irq);
1717 
1718     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1719     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1720     irq_is_grp0 = grp == GICV3_G0;
1721 
1722     /* Check whether we're allowed to deactivate this interrupt based
1723      * on its group and the current CPU state.
1724      * These checks are laid out to correspond to the spec's pseudocode.
1725      */
1726     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1727     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1728     /* No need to include !IsSecure in route_*_to_el2 as it's only
1729      * tested in cases where we know !IsSecure is true.
1730      */
1731     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1732     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1733     route_irq_to_el2 = hcr_el2 & HCR_IMO;
1734 
1735     switch (arm_current_el(env)) {
1736     case 3:
1737         break;
1738     case 2:
1739         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1740             break;
1741         }
1742         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1743             break;
1744         }
1745         return;
1746     case 1:
1747         if (!arm_is_secure_below_el3(env)) {
1748             if (single_sec_state && irq_is_grp0 &&
1749                 !route_fiq_to_el3 && !route_fiq_to_el2) {
1750                 break;
1751             }
1752             if (!irq_is_secure && !irq_is_grp0 &&
1753                 !route_irq_to_el3 && !route_irq_to_el2) {
1754                 break;
1755             }
1756         } else {
1757             if (irq_is_grp0 && !route_fiq_to_el3) {
1758                 break;
1759             }
1760             if (!irq_is_grp0 &&
1761                 (!irq_is_secure || !single_sec_state) &&
1762                 !route_irq_to_el3) {
1763                 break;
1764             }
1765         }
1766         return;
1767     default:
1768         g_assert_not_reached();
1769     }
1770 
1771     icc_deactivate_irq(cs, irq);
1772 }
1773 
1774 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1775 {
1776     GICv3CPUState *cs = icc_cs_from_env(env);
1777     int prio;
1778 
1779     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1780         return icv_rpr_read(env, ri);
1781     }
1782 
1783     prio = icc_highest_active_prio(cs);
1784 
1785     if (arm_feature(env, ARM_FEATURE_EL3) &&
1786         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1787         /* NS GIC access and Group 0 is inaccessible to NS */
1788         if ((prio & 0x80) == 0) {
1789             /* NS mustn't see priorities in the Secure half of the range */
1790             prio = 0;
1791         } else if (prio != 0xff) {
1792             /* Non-idle priority: show the Non-secure view of it */
1793             prio = (prio << 1) & 0xff;
1794         }
1795     }
1796 
1797     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1798     return prio;
1799 }
1800 
1801 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1802                              uint64_t value, int grp, bool ns)
1803 {
1804     GICv3State *s = cs->gic;
1805 
1806     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1807     uint64_t aff = extract64(value, 48, 8) << 16 |
1808         extract64(value, 32, 8) << 8 |
1809         extract64(value, 16, 8);
1810     uint32_t targetlist = extract64(value, 0, 16);
1811     uint32_t irq = extract64(value, 24, 4);
1812     bool irm = extract64(value, 40, 1);
1813     int i;
1814 
1815     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1816         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1817          * interrupts as Group 0 interrupts and must send Secure Group 0
1818          * interrupts to the target CPUs.
1819          */
1820         grp = GICV3_G0;
1821     }
1822 
1823     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1824                                  aff, targetlist);
1825 
1826     for (i = 0; i < s->num_cpu; i++) {
1827         GICv3CPUState *ocs = &s->cpu[i];
1828 
1829         if (irm) {
1830             /* IRM == 1 : route to all CPUs except self */
1831             if (cs == ocs) {
1832                 continue;
1833             }
1834         } else {
1835             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1836              * where the corresponding bit is set in targetlist
1837              */
1838             int aff0;
1839 
1840             if (ocs->gicr_typer >> 40 != aff) {
1841                 continue;
1842             }
1843             aff0 = extract64(ocs->gicr_typer, 32, 8);
1844             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1845                 continue;
1846             }
1847         }
1848 
1849         /* The redistributor will check against its own GICR_NSACR as needed */
1850         gicv3_redist_send_sgi(ocs, grp, irq, ns);
1851     }
1852 }
1853 
1854 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1855                            uint64_t value)
1856 {
1857     /* Generate Secure Group 0 SGI. */
1858     GICv3CPUState *cs = icc_cs_from_env(env);
1859     bool ns = !arm_is_secure(env);
1860 
1861     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1862 }
1863 
1864 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1865                            uint64_t value)
1866 {
1867     /* Generate Group 1 SGI for the current Security state */
1868     GICv3CPUState *cs = icc_cs_from_env(env);
1869     int grp;
1870     bool ns = !arm_is_secure(env);
1871 
1872     grp = ns ? GICV3_G1NS : GICV3_G1;
1873     icc_generate_sgi(env, cs, value, grp, ns);
1874 }
1875 
1876 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1877                              uint64_t value)
1878 {
1879     /* Generate Group 1 SGI for the Security state that is not
1880      * the current state
1881      */
1882     GICv3CPUState *cs = icc_cs_from_env(env);
1883     int grp;
1884     bool ns = !arm_is_secure(env);
1885 
1886     grp = ns ? GICV3_G1 : GICV3_G1NS;
1887     icc_generate_sgi(env, cs, value, grp, ns);
1888 }
1889 
1890 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1891 {
1892     GICv3CPUState *cs = icc_cs_from_env(env);
1893     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1894     uint64_t value;
1895 
1896     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1897         return icv_igrpen_read(env, ri);
1898     }
1899 
1900     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1901         grp = GICV3_G1NS;
1902     }
1903 
1904     value = cs->icc_igrpen[grp];
1905     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1906                                 gicv3_redist_affid(cs), value);
1907     return value;
1908 }
1909 
1910 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1911                              uint64_t value)
1912 {
1913     GICv3CPUState *cs = icc_cs_from_env(env);
1914     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1915 
1916     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1917         icv_igrpen_write(env, ri, value);
1918         return;
1919     }
1920 
1921     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1922                                  gicv3_redist_affid(cs), value);
1923 
1924     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1925         grp = GICV3_G1NS;
1926     }
1927 
1928     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1929     gicv3_cpuif_update(cs);
1930 }
1931 
1932 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1933 {
1934     GICv3CPUState *cs = icc_cs_from_env(env);
1935     uint64_t value;
1936 
1937     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1938     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1939     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1940     return value;
1941 }
1942 
1943 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1944                                   uint64_t value)
1945 {
1946     GICv3CPUState *cs = icc_cs_from_env(env);
1947 
1948     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1949 
1950     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1951     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1952     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1953     gicv3_cpuif_update(cs);
1954 }
1955 
1956 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1957 {
1958     GICv3CPUState *cs = icc_cs_from_env(env);
1959     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1960     uint64_t value;
1961 
1962     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1963         return icv_ctlr_read(env, ri);
1964     }
1965 
1966     value = cs->icc_ctlr_el1[bank];
1967     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1968     return value;
1969 }
1970 
1971 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1972                                uint64_t value)
1973 {
1974     GICv3CPUState *cs = icc_cs_from_env(env);
1975     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1976     uint64_t mask;
1977 
1978     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1979         icv_ctlr_write(env, ri, value);
1980         return;
1981     }
1982 
1983     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1984 
1985     /* Only CBPR and EOIMODE can be RW;
1986      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1987      * the asseciated priority-based routing of them);
1988      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1989      */
1990     if (arm_feature(env, ARM_FEATURE_EL3) &&
1991         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1992         mask = ICC_CTLR_EL1_EOIMODE;
1993     } else {
1994         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1995     }
1996 
1997     cs->icc_ctlr_el1[bank] &= ~mask;
1998     cs->icc_ctlr_el1[bank] |= (value & mask);
1999     gicv3_cpuif_update(cs);
2000 }
2001 
2002 
2003 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2004 {
2005     GICv3CPUState *cs = icc_cs_from_env(env);
2006     uint64_t value;
2007 
2008     value = cs->icc_ctlr_el3;
2009     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2010         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2011     }
2012     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2013         value |= ICC_CTLR_EL3_CBPR_EL1NS;
2014     }
2015     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2016         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2017     }
2018     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2019         value |= ICC_CTLR_EL3_CBPR_EL1S;
2020     }
2021 
2022     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2023     return value;
2024 }
2025 
2026 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2027                                uint64_t value)
2028 {
2029     GICv3CPUState *cs = icc_cs_from_env(env);
2030     uint64_t mask;
2031 
2032     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2033 
2034     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2035     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2036     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2037         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2038     }
2039     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2040         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2041     }
2042 
2043     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2044     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2045         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2046     }
2047     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2048         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2049     }
2050 
2051     /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2052     mask = ICC_CTLR_EL3_EOIMODE_EL3;
2053 
2054     cs->icc_ctlr_el3 &= ~mask;
2055     cs->icc_ctlr_el3 |= (value & mask);
2056     gicv3_cpuif_update(cs);
2057 }
2058 
2059 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2060                                           const ARMCPRegInfo *ri, bool isread)
2061 {
2062     CPAccessResult r = CP_ACCESS_OK;
2063     GICv3CPUState *cs = icc_cs_from_env(env);
2064     int el = arm_current_el(env);
2065 
2066     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2067         el == 1 && !arm_is_secure_below_el3(env)) {
2068         /* Takes priority over a possible EL3 trap */
2069         return CP_ACCESS_TRAP_EL2;
2070     }
2071 
2072     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2073         switch (el) {
2074         case 1:
2075             /* Note that arm_hcr_el2_eff takes secure state into account.  */
2076             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2077                 r = CP_ACCESS_TRAP_EL3;
2078             }
2079             break;
2080         case 2:
2081             r = CP_ACCESS_TRAP_EL3;
2082             break;
2083         case 3:
2084             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2085                 r = CP_ACCESS_TRAP_EL3;
2086             }
2087             break;
2088         default:
2089             g_assert_not_reached();
2090         }
2091     }
2092 
2093     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2094         r = CP_ACCESS_TRAP;
2095     }
2096     return r;
2097 }
2098 
2099 static CPAccessResult gicv3_dir_access(CPUARMState *env,
2100                                        const ARMCPRegInfo *ri, bool isread)
2101 {
2102     GICv3CPUState *cs = icc_cs_from_env(env);
2103 
2104     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2105         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2106         /* Takes priority over a possible EL3 trap */
2107         return CP_ACCESS_TRAP_EL2;
2108     }
2109 
2110     return gicv3_irqfiq_access(env, ri, isread);
2111 }
2112 
2113 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2114                                        const ARMCPRegInfo *ri, bool isread)
2115 {
2116     if (arm_current_el(env) == 1 &&
2117         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2118         /* Takes priority over a possible EL3 trap */
2119         return CP_ACCESS_TRAP_EL2;
2120     }
2121 
2122     return gicv3_irqfiq_access(env, ri, isread);
2123 }
2124 
2125 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2126                                        const ARMCPRegInfo *ri, bool isread)
2127 {
2128     CPAccessResult r = CP_ACCESS_OK;
2129     GICv3CPUState *cs = icc_cs_from_env(env);
2130     int el = arm_current_el(env);
2131 
2132     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2133         el == 1 && !arm_is_secure_below_el3(env)) {
2134         /* Takes priority over a possible EL3 trap */
2135         return CP_ACCESS_TRAP_EL2;
2136     }
2137 
2138     if (env->cp15.scr_el3 & SCR_FIQ) {
2139         switch (el) {
2140         case 1:
2141             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2142                 r = CP_ACCESS_TRAP_EL3;
2143             }
2144             break;
2145         case 2:
2146             r = CP_ACCESS_TRAP_EL3;
2147             break;
2148         case 3:
2149             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2150                 r = CP_ACCESS_TRAP_EL3;
2151             }
2152             break;
2153         default:
2154             g_assert_not_reached();
2155         }
2156     }
2157 
2158     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2159         r = CP_ACCESS_TRAP;
2160     }
2161     return r;
2162 }
2163 
2164 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2165                                        const ARMCPRegInfo *ri, bool isread)
2166 {
2167     CPAccessResult r = CP_ACCESS_OK;
2168     GICv3CPUState *cs = icc_cs_from_env(env);
2169     int el = arm_current_el(env);
2170 
2171     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2172         el == 1 && !arm_is_secure_below_el3(env)) {
2173         /* Takes priority over a possible EL3 trap */
2174         return CP_ACCESS_TRAP_EL2;
2175     }
2176 
2177     if (env->cp15.scr_el3 & SCR_IRQ) {
2178         switch (el) {
2179         case 1:
2180             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2181                 r = CP_ACCESS_TRAP_EL3;
2182             }
2183             break;
2184         case 2:
2185             r = CP_ACCESS_TRAP_EL3;
2186             break;
2187         case 3:
2188             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2189                 r = CP_ACCESS_TRAP_EL3;
2190             }
2191             break;
2192         default:
2193             g_assert_not_reached();
2194         }
2195     }
2196 
2197     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2198         r = CP_ACCESS_TRAP;
2199     }
2200     return r;
2201 }
2202 
2203 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2204 {
2205     GICv3CPUState *cs = icc_cs_from_env(env);
2206 
2207     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2208         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2209         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2210     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2211         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2212         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2213     cs->icc_pmr_el1 = 0;
2214     cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2215     cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2216     cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2217     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2218     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2219     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2220         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2221         ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2222 
2223     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2224     cs->ich_hcr_el2 = 0;
2225     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2226     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2227         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2228         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2229 }
2230 
2231 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2232     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2233       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2234       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2235       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2236       .readfn = icc_pmr_read,
2237       .writefn = icc_pmr_write,
2238       /* We hang the whole cpu interface reset routine off here
2239        * rather than parcelling it out into one little function
2240        * per register
2241        */
2242       .resetfn = icc_reset,
2243     },
2244     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2245       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2246       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2247       .access = PL1_R, .accessfn = gicv3_fiq_access,
2248       .readfn = icc_iar0_read,
2249     },
2250     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2251       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2252       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2253       .access = PL1_W, .accessfn = gicv3_fiq_access,
2254       .writefn = icc_eoir_write,
2255     },
2256     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2257       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2258       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2259       .access = PL1_R, .accessfn = gicv3_fiq_access,
2260       .readfn = icc_hppir0_read,
2261     },
2262     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2263       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2264       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2265       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2266       .readfn = icc_bpr_read,
2267       .writefn = icc_bpr_write,
2268     },
2269     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2270       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2271       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2272       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2273       .readfn = icc_ap_read,
2274       .writefn = icc_ap_write,
2275     },
2276     /* All the ICC_AP1R*_EL1 registers are banked */
2277     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2278       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2279       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2280       .access = PL1_RW, .accessfn = gicv3_irq_access,
2281       .readfn = icc_ap_read,
2282       .writefn = icc_ap_write,
2283     },
2284     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2285       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2286       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2287       .access = PL1_W, .accessfn = gicv3_dir_access,
2288       .writefn = icc_dir_write,
2289     },
2290     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2291       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2292       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2293       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2294       .readfn = icc_rpr_read,
2295     },
2296     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2297       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2298       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2299       .access = PL1_W, .accessfn = gicv3_sgi_access,
2300       .writefn = icc_sgi1r_write,
2301     },
2302     { .name = "ICC_SGI1R",
2303       .cp = 15, .opc1 = 0, .crm = 12,
2304       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2305       .access = PL1_W, .accessfn = gicv3_sgi_access,
2306       .writefn = icc_sgi1r_write,
2307     },
2308     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2309       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2310       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2311       .access = PL1_W, .accessfn = gicv3_sgi_access,
2312       .writefn = icc_asgi1r_write,
2313     },
2314     { .name = "ICC_ASGI1R",
2315       .cp = 15, .opc1 = 1, .crm = 12,
2316       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2317       .access = PL1_W, .accessfn = gicv3_sgi_access,
2318       .writefn = icc_asgi1r_write,
2319     },
2320     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2321       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2322       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2323       .access = PL1_W, .accessfn = gicv3_sgi_access,
2324       .writefn = icc_sgi0r_write,
2325     },
2326     { .name = "ICC_SGI0R",
2327       .cp = 15, .opc1 = 2, .crm = 12,
2328       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2329       .access = PL1_W, .accessfn = gicv3_sgi_access,
2330       .writefn = icc_sgi0r_write,
2331     },
2332     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2333       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2334       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2335       .access = PL1_R, .accessfn = gicv3_irq_access,
2336       .readfn = icc_iar1_read,
2337     },
2338     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2339       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2340       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2341       .access = PL1_W, .accessfn = gicv3_irq_access,
2342       .writefn = icc_eoir_write,
2343     },
2344     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2345       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2346       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2347       .access = PL1_R, .accessfn = gicv3_irq_access,
2348       .readfn = icc_hppir1_read,
2349     },
2350     /* This register is banked */
2351     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2352       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2353       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2354       .access = PL1_RW, .accessfn = gicv3_irq_access,
2355       .readfn = icc_bpr_read,
2356       .writefn = icc_bpr_write,
2357     },
2358     /* This register is banked */
2359     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2360       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2361       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2362       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2363       .readfn = icc_ctlr_el1_read,
2364       .writefn = icc_ctlr_el1_write,
2365     },
2366     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2367       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2368       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2369       .access = PL1_RW,
2370       /* We don't support IRQ/FIQ bypass and system registers are
2371        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2372        * This register is banked but since it's constant we don't
2373        * need to do anything special.
2374        */
2375       .resetvalue = 0x7,
2376     },
2377     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2378       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2379       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2380       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2381       .fgt = FGT_ICC_IGRPENN_EL1,
2382       .readfn = icc_igrpen_read,
2383       .writefn = icc_igrpen_write,
2384     },
2385     /* This register is banked */
2386     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2387       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2388       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2389       .access = PL1_RW, .accessfn = gicv3_irq_access,
2390       .fgt = FGT_ICC_IGRPENN_EL1,
2391       .readfn = icc_igrpen_read,
2392       .writefn = icc_igrpen_write,
2393     },
2394     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2395       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2396       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2397       .access = PL2_RW,
2398       /* We don't support IRQ/FIQ bypass and system registers are
2399        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2400        */
2401       .resetvalue = 0xf,
2402     },
2403     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2404       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2405       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2406       .access = PL3_RW,
2407       .readfn = icc_ctlr_el3_read,
2408       .writefn = icc_ctlr_el3_write,
2409     },
2410     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2411       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2412       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2413       .access = PL3_RW,
2414       /* We don't support IRQ/FIQ bypass and system registers are
2415        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2416        */
2417       .resetvalue = 0xf,
2418     },
2419     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2420       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2421       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2422       .access = PL3_RW,
2423       .readfn = icc_igrpen1_el3_read,
2424       .writefn = icc_igrpen1_el3_write,
2425     },
2426 };
2427 
2428 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2429     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2430       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2431       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2432       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2433       .readfn = icc_ap_read,
2434       .writefn = icc_ap_write,
2435     },
2436     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2437       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2438       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2439       .access = PL1_RW, .accessfn = gicv3_irq_access,
2440       .readfn = icc_ap_read,
2441       .writefn = icc_ap_write,
2442     },
2443 };
2444 
2445 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2446     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2447       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2448       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2449       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2450       .readfn = icc_ap_read,
2451       .writefn = icc_ap_write,
2452     },
2453     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2454       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2455       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2456       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2457       .readfn = icc_ap_read,
2458       .writefn = icc_ap_write,
2459     },
2460     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2461       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2462       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2463       .access = PL1_RW, .accessfn = gicv3_irq_access,
2464       .readfn = icc_ap_read,
2465       .writefn = icc_ap_write,
2466     },
2467     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2468       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2469       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2470       .access = PL1_RW, .accessfn = gicv3_irq_access,
2471       .readfn = icc_ap_read,
2472       .writefn = icc_ap_write,
2473     },
2474 };
2475 
2476 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2477 {
2478     GICv3CPUState *cs = icc_cs_from_env(env);
2479     int regno = ri->opc2 & 3;
2480     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2481     uint64_t value;
2482 
2483     value = cs->ich_apr[grp][regno];
2484     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2485     return value;
2486 }
2487 
2488 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2489                          uint64_t value)
2490 {
2491     GICv3CPUState *cs = icc_cs_from_env(env);
2492     int regno = ri->opc2 & 3;
2493     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2494 
2495     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2496 
2497     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2498     gicv3_cpuif_virt_irq_fiq_update(cs);
2499 }
2500 
2501 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2502 {
2503     GICv3CPUState *cs = icc_cs_from_env(env);
2504     uint64_t value = cs->ich_hcr_el2;
2505 
2506     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2507     return value;
2508 }
2509 
2510 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2511                           uint64_t value)
2512 {
2513     GICv3CPUState *cs = icc_cs_from_env(env);
2514 
2515     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2516 
2517     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2518         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2519         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2520         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2521         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2522 
2523     cs->ich_hcr_el2 = value;
2524     gicv3_cpuif_virt_update(cs);
2525 }
2526 
2527 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2528 {
2529     GICv3CPUState *cs = icc_cs_from_env(env);
2530     uint64_t value = cs->ich_vmcr_el2;
2531 
2532     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2533     return value;
2534 }
2535 
2536 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2537                          uint64_t value)
2538 {
2539     GICv3CPUState *cs = icc_cs_from_env(env);
2540 
2541     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2542 
2543     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2544         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2545         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2546     value |= ICH_VMCR_EL2_VFIQEN;
2547 
2548     cs->ich_vmcr_el2 = value;
2549     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2550      * by reading and writing back the fields.
2551      */
2552     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2553     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2554 
2555     gicv3_cpuif_virt_update(cs);
2556 }
2557 
2558 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2559 {
2560     GICv3CPUState *cs = icc_cs_from_env(env);
2561     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2562     uint64_t value;
2563 
2564     /* This read function handles all of:
2565      * 64-bit reads of the whole LR
2566      * 32-bit reads of the low half of the LR
2567      * 32-bit reads of the high half of the LR
2568      */
2569     if (ri->state == ARM_CP_STATE_AA32) {
2570         if (ri->crm >= 14) {
2571             value = extract64(cs->ich_lr_el2[regno], 32, 32);
2572             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2573         } else {
2574             value = extract64(cs->ich_lr_el2[regno], 0, 32);
2575             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2576         }
2577     } else {
2578         value = cs->ich_lr_el2[regno];
2579         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2580     }
2581 
2582     return value;
2583 }
2584 
2585 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2586                          uint64_t value)
2587 {
2588     GICv3CPUState *cs = icc_cs_from_env(env);
2589     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2590 
2591     /* This write function handles all of:
2592      * 64-bit writes to the whole LR
2593      * 32-bit writes to the low half of the LR
2594      * 32-bit writes to the high half of the LR
2595      */
2596     if (ri->state == ARM_CP_STATE_AA32) {
2597         if (ri->crm >= 14) {
2598             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2599             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2600         } else {
2601             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2602             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2603         }
2604     } else {
2605         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2606     }
2607 
2608     /* Enforce RES0 bits in priority field */
2609     if (cs->vpribits < 8) {
2610         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2611                           8 - cs->vpribits, 0);
2612     }
2613 
2614     cs->ich_lr_el2[regno] = value;
2615     gicv3_cpuif_virt_update(cs);
2616 }
2617 
2618 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2619 {
2620     GICv3CPUState *cs = icc_cs_from_env(env);
2621     uint64_t value;
2622 
2623     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2624         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2625         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2626         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2627         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2628 
2629     if (cs->gic->revision < 4) {
2630         value |= ICH_VTR_EL2_NV4;
2631     }
2632 
2633     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2634     return value;
2635 }
2636 
2637 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2638 {
2639     GICv3CPUState *cs = icc_cs_from_env(env);
2640     uint64_t value = maintenance_interrupt_state(cs);
2641 
2642     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2643     return value;
2644 }
2645 
2646 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2647 {
2648     GICv3CPUState *cs = icc_cs_from_env(env);
2649     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2650 
2651     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2652     return value;
2653 }
2654 
2655 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2656 {
2657     GICv3CPUState *cs = icc_cs_from_env(env);
2658     uint64_t value = 0;
2659     int i;
2660 
2661     for (i = 0; i < cs->num_list_regs; i++) {
2662         uint64_t lr = cs->ich_lr_el2[i];
2663 
2664         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2665             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2666             value |= (1 << i);
2667         }
2668     }
2669 
2670     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2671     return value;
2672 }
2673 
2674 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2675     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2676       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2677       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2678       .access = PL2_RW,
2679       .readfn = ich_ap_read,
2680       .writefn = ich_ap_write,
2681     },
2682     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2683       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2684       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2685       .access = PL2_RW,
2686       .readfn = ich_ap_read,
2687       .writefn = ich_ap_write,
2688     },
2689     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2690       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2691       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2692       .access = PL2_RW,
2693       .readfn = ich_hcr_read,
2694       .writefn = ich_hcr_write,
2695     },
2696     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2697       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2698       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2699       .access = PL2_R,
2700       .readfn = ich_vtr_read,
2701     },
2702     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2703       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2704       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2705       .access = PL2_R,
2706       .readfn = ich_misr_read,
2707     },
2708     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2709       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2710       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2711       .access = PL2_R,
2712       .readfn = ich_eisr_read,
2713     },
2714     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2715       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2716       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2717       .access = PL2_R,
2718       .readfn = ich_elrsr_read,
2719     },
2720     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2721       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2722       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2723       .access = PL2_RW,
2724       .readfn = ich_vmcr_read,
2725       .writefn = ich_vmcr_write,
2726     },
2727 };
2728 
2729 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2730     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2731       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2732       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2733       .access = PL2_RW,
2734       .readfn = ich_ap_read,
2735       .writefn = ich_ap_write,
2736     },
2737     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2738       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2739       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2740       .access = PL2_RW,
2741       .readfn = ich_ap_read,
2742       .writefn = ich_ap_write,
2743     },
2744 };
2745 
2746 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2747     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2748       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2749       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2750       .access = PL2_RW,
2751       .readfn = ich_ap_read,
2752       .writefn = ich_ap_write,
2753     },
2754     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2755       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2756       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2757       .access = PL2_RW,
2758       .readfn = ich_ap_read,
2759       .writefn = ich_ap_write,
2760     },
2761     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2762       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2763       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2764       .access = PL2_RW,
2765       .readfn = ich_ap_read,
2766       .writefn = ich_ap_write,
2767     },
2768     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2769       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2770       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2771       .access = PL2_RW,
2772       .readfn = ich_ap_read,
2773       .writefn = ich_ap_write,
2774     },
2775 };
2776 
2777 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2778 {
2779     GICv3CPUState *cs = opaque;
2780 
2781     gicv3_cpuif_update(cs);
2782     /*
2783      * Because vLPIs are only pending in NonSecure state,
2784      * an EL change can change the VIRQ/VFIQ status (but
2785      * cannot affect the maintenance interrupt state)
2786      */
2787     gicv3_cpuif_virt_irq_fiq_update(cs);
2788 }
2789 
2790 void gicv3_init_cpuif(GICv3State *s)
2791 {
2792     /* Called from the GICv3 realize function; register our system
2793      * registers with the CPU
2794      */
2795     int i;
2796 
2797     for (i = 0; i < s->num_cpu; i++) {
2798         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2799         GICv3CPUState *cs = &s->cpu[i];
2800 
2801         /*
2802          * If the CPU doesn't define a GICv3 configuration, probably because
2803          * in real hardware it doesn't have one, then we use default values
2804          * matching the one used by most Arm CPUs. This applies to:
2805          *  cpu->gic_num_lrs
2806          *  cpu->gic_vpribits
2807          *  cpu->gic_vprebits
2808          *  cpu->gic_pribits
2809          */
2810 
2811         /* Note that we can't just use the GICv3CPUState as an opaque pointer
2812          * in define_arm_cp_regs_with_opaque(), because when we're called back
2813          * it might be with code translated by CPU 0 but run by CPU 1, in
2814          * which case we'd get the wrong value.
2815          * So instead we define the regs with no ri->opaque info, and
2816          * get back to the GICv3CPUState from the CPUARMState.
2817          *
2818          * These CP regs callbacks can be called from either TCG or HVF code.
2819          */
2820         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2821 
2822         /*
2823          * The CPU implementation specifies the number of supported
2824          * bits of physical priority. For backwards compatibility
2825          * of migration, we have a compat property that forces use
2826          * of 8 priority bits regardless of what the CPU really has.
2827          */
2828         if (s->force_8bit_prio) {
2829             cs->pribits = 8;
2830         } else {
2831             cs->pribits = cpu->gic_pribits ?: 5;
2832         }
2833 
2834         /*
2835          * The GICv3 has separate ID register fields for virtual priority
2836          * and preemption bit values, but only a single ID register field
2837          * for the physical priority bits. The preemption bit count is
2838          * always the same as the priority bit count, except that 8 bits
2839          * of priority means 7 preemption bits. We precalculate the
2840          * preemption bits because it simplifies the code and makes the
2841          * parallels between the virtual and physical bits of the GIC
2842          * a bit clearer.
2843          */
2844         cs->prebits = cs->pribits;
2845         if (cs->prebits == 8) {
2846             cs->prebits--;
2847         }
2848         /*
2849          * Check that CPU code defining pribits didn't violate
2850          * architectural constraints our implementation relies on.
2851          */
2852         g_assert(cs->pribits >= 4 && cs->pribits <= 8);
2853 
2854         /*
2855          * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
2856          * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
2857          */
2858         if (cs->prebits >= 6) {
2859             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
2860         }
2861         if (cs->prebits == 7) {
2862             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
2863         }
2864 
2865         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
2866             int j;
2867 
2868             cs->num_list_regs = cpu->gic_num_lrs ?: 4;
2869             cs->vpribits = cpu->gic_vpribits ?: 5;
2870             cs->vprebits = cpu->gic_vprebits ?: 5;
2871 
2872             /* Check against architectural constraints: getting these
2873              * wrong would be a bug in the CPU code defining these,
2874              * and the implementation relies on them holding.
2875              */
2876             g_assert(cs->vprebits <= cs->vpribits);
2877             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2878             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2879 
2880             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2881 
2882             for (j = 0; j < cs->num_list_regs; j++) {
2883                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2884                  * are split into two cp15 regs, LR (the low part, with the
2885                  * same encoding as the AArch64 LR) and LRC (the high part).
2886                  */
2887                 ARMCPRegInfo lr_regset[] = {
2888                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2889                       .opc0 = 3, .opc1 = 4, .crn = 12,
2890                       .crm = 12 + (j >> 3), .opc2 = j & 7,
2891                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2892                       .access = PL2_RW,
2893                       .readfn = ich_lr_read,
2894                       .writefn = ich_lr_write,
2895                     },
2896                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2897                       .cp = 15, .opc1 = 4, .crn = 12,
2898                       .crm = 14 + (j >> 3), .opc2 = j & 7,
2899                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2900                       .access = PL2_RW,
2901                       .readfn = ich_lr_read,
2902                       .writefn = ich_lr_write,
2903                     },
2904                 };
2905                 define_arm_cp_regs(cpu, lr_regset);
2906             }
2907             if (cs->vprebits >= 6) {
2908                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2909             }
2910             if (cs->vprebits == 7) {
2911                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2912             }
2913         }
2914         if (tcg_enabled() || qtest_enabled()) {
2915             /*
2916              * We can only trap EL changes with TCG. However the GIC interrupt
2917              * state only changes on EL changes involving EL2 or EL3, so for
2918              * the non-TCG case this is OK, as EL2 and EL3 can't exist.
2919              */
2920             arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2921         } else {
2922             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2));
2923             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3));
2924         }
2925     }
2926 }
2927