1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 #include "target/arm/cpregs.h" 24 25 /* 26 * Special case return value from hppvi_index(); must be larger than 27 * the architecturally maximum possible list register index (which is 15) 28 */ 29 #define HPPVI_INDEX_VLPI 16 30 31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 32 { 33 return env->gicv3state; 34 } 35 36 static bool gicv3_use_ns_bank(CPUARMState *env) 37 { 38 /* Return true if we should use the NonSecure bank for a banked GIC 39 * CPU interface register. Note that this differs from the 40 * access_secure_reg() function because GICv3 banked registers are 41 * banked even for AArch64, unlike the other CPU system registers. 42 */ 43 return !arm_is_secure_below_el3(env); 44 } 45 46 /* The minimum BPR for the virtual interface is a configurable property */ 47 static inline int icv_min_vbpr(GICv3CPUState *cs) 48 { 49 return 7 - cs->vprebits; 50 } 51 52 /* Simple accessor functions for LR fields */ 53 static uint32_t ich_lr_vintid(uint64_t lr) 54 { 55 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 56 } 57 58 static uint32_t ich_lr_pintid(uint64_t lr) 59 { 60 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 61 } 62 63 static uint32_t ich_lr_prio(uint64_t lr) 64 { 65 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 66 } 67 68 static int ich_lr_state(uint64_t lr) 69 { 70 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 71 } 72 73 static bool icv_access(CPUARMState *env, int hcr_flags) 74 { 75 /* Return true if this ICC_ register access should really be 76 * directed to an ICV_ access. hcr_flags is a mask of 77 * HCR_EL2 bits to check: we treat this as an ICV_ access 78 * if we are in NS EL1 and at least one of the specified 79 * HCR_EL2 bits is set. 80 * 81 * ICV registers fall into four categories: 82 * * access if NS EL1 and HCR_EL2.FMO == 1: 83 * all ICV regs with '0' in their name 84 * * access if NS EL1 and HCR_EL2.IMO == 1: 85 * all ICV regs with '1' in their name 86 * * access if NS EL1 and either IMO or FMO == 1: 87 * CTLR, DIR, PMR, RPR 88 */ 89 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 90 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 91 92 return flagmatch && arm_current_el(env) == 1 93 && !arm_is_secure_below_el3(env); 94 } 95 96 static int read_vbpr(GICv3CPUState *cs, int grp) 97 { 98 /* Read VBPR value out of the VMCR field (caller must handle 99 * VCBPR effects if required) 100 */ 101 if (grp == GICV3_G0) { 102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 103 ICH_VMCR_EL2_VBPR0_LENGTH); 104 } else { 105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 106 ICH_VMCR_EL2_VBPR1_LENGTH); 107 } 108 } 109 110 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 111 { 112 /* Write new VBPR1 value, handling the "writing a value less than 113 * the minimum sets it to the minimum" semantics. 114 */ 115 int min = icv_min_vbpr(cs); 116 117 if (grp != GICV3_G0) { 118 min++; 119 } 120 121 value = MAX(value, min); 122 123 if (grp == GICV3_G0) { 124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 125 ICH_VMCR_EL2_VBPR0_LENGTH, value); 126 } else { 127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 128 ICH_VMCR_EL2_VBPR1_LENGTH, value); 129 } 130 } 131 132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 133 { 134 /* Return a mask word which clears the unimplemented priority bits 135 * from a priority value for a virtual interrupt. (Not to be confused 136 * with the group priority, whose mask depends on the value of VBPR 137 * for the interrupt group.) 138 */ 139 return ~0U << (8 - cs->vpribits); 140 } 141 142 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 143 { 144 /* Calculate the current running priority based on the set bits 145 * in the ICH Active Priority Registers. 146 */ 147 int i; 148 int aprmax = 1 << (cs->vprebits - 5); 149 150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 151 152 for (i = 0; i < aprmax; i++) { 153 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 154 cs->ich_apr[GICV3_G1NS][i]; 155 156 if (!apr) { 157 continue; 158 } 159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 160 } 161 /* No current active interrupts: return idle priority */ 162 return 0xff; 163 } 164 165 static int hppvi_index(GICv3CPUState *cs) 166 { 167 /* 168 * Return the list register index of the highest priority pending 169 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 170 * pseudocode. If no pending virtual interrupts, return -1. 171 * If the highest priority pending virtual interrupt is a vLPI, 172 * return HPPVI_INDEX_VLPI. 173 * (The pseudocode handles checking whether the vLPI is higher 174 * priority than the highest priority list register at every 175 * callsite of HighestPriorityVirtualInterrupt; we check it here.) 176 */ 177 ARMCPU *cpu = ARM_CPU(cs->cpu); 178 CPUARMState *env = &cpu->env; 179 int idx = -1; 180 int i; 181 /* Note that a list register entry with a priority of 0xff will 182 * never be reported by this function; this is the architecturally 183 * correct behaviour. 184 */ 185 int prio = 0xff; 186 187 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 188 /* Both groups disabled, definitely nothing to do */ 189 return idx; 190 } 191 192 for (i = 0; i < cs->num_list_regs; i++) { 193 uint64_t lr = cs->ich_lr_el2[i]; 194 int thisprio; 195 196 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 197 /* Not Pending */ 198 continue; 199 } 200 201 /* Ignore interrupts if relevant group enable not set */ 202 if (lr & ICH_LR_EL2_GROUP) { 203 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 204 continue; 205 } 206 } else { 207 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 208 continue; 209 } 210 } 211 212 thisprio = ich_lr_prio(lr); 213 214 if (thisprio < prio) { 215 prio = thisprio; 216 idx = i; 217 } 218 } 219 220 /* 221 * "no pending vLPI" is indicated with prio = 0xff, which always 222 * fails the priority check here. vLPIs are only considered 223 * when we are in Non-Secure state. 224 */ 225 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { 226 if (cs->hppvlpi.grp == GICV3_G0) { 227 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { 228 return HPPVI_INDEX_VLPI; 229 } 230 } else { 231 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { 232 return HPPVI_INDEX_VLPI; 233 } 234 } 235 } 236 237 return idx; 238 } 239 240 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 241 { 242 /* Return a mask word which clears the subpriority bits from 243 * a priority value for a virtual interrupt in the specified group. 244 * This depends on the VBPR value. 245 * If using VBPR0 then: 246 * a BPR of 0 means the group priority bits are [7:1]; 247 * a BPR of 1 means they are [7:2], and so on down to 248 * a BPR of 7 meaning no group priority bits at all. 249 * If using VBPR1 then: 250 * a BPR of 0 is impossible (the minimum value is 1) 251 * a BPR of 1 means the group priority bits are [7:1]; 252 * a BPR of 2 means they are [7:2], and so on down to 253 * a BPR of 7 meaning the group priority is [7]. 254 * 255 * Which BPR to use depends on the group of the interrupt and 256 * the current ICH_VMCR_EL2.VCBPR settings. 257 * 258 * This corresponds to the VGroupBits() pseudocode. 259 */ 260 int bpr; 261 262 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 263 group = GICV3_G0; 264 } 265 266 bpr = read_vbpr(cs, group); 267 if (group == GICV3_G1NS) { 268 assert(bpr > 0); 269 bpr--; 270 } 271 272 return ~0U << (bpr + 1); 273 } 274 275 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 276 { 277 /* Return true if we can signal this virtual interrupt defined by 278 * the given list register value; see the pseudocode functions 279 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 280 * Compare also icc_hppi_can_preempt() which is the non-virtual 281 * equivalent of these checks. 282 */ 283 int grp; 284 uint32_t mask, prio, rprio, vpmr; 285 286 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 287 /* Virtual interface disabled */ 288 return false; 289 } 290 291 /* We don't need to check that this LR is in Pending state because 292 * that has already been done in hppvi_index(). 293 */ 294 295 prio = ich_lr_prio(lr); 296 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 297 ICH_VMCR_EL2_VPMR_LENGTH); 298 299 if (prio >= vpmr) { 300 /* Priority mask masks this interrupt */ 301 return false; 302 } 303 304 rprio = ich_highest_active_virt_prio(cs); 305 if (rprio == 0xff) { 306 /* No running interrupt so we can preempt */ 307 return true; 308 } 309 310 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 311 312 mask = icv_gprio_mask(cs, grp); 313 314 /* We only preempt a running interrupt if the pending interrupt's 315 * group priority is sufficient (the subpriorities are not considered). 316 */ 317 if ((prio & mask) < (rprio & mask)) { 318 return true; 319 } 320 321 return false; 322 } 323 324 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) 325 { 326 /* 327 * Return true if we can signal the highest priority pending vLPI. 328 * We can assume we're Non-secure because hppvi_index() already 329 * tested for that. 330 */ 331 uint32_t mask, rprio, vpmr; 332 333 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 334 /* Virtual interface disabled */ 335 return false; 336 } 337 338 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 339 ICH_VMCR_EL2_VPMR_LENGTH); 340 341 if (cs->hppvlpi.prio >= vpmr) { 342 /* Priority mask masks this interrupt */ 343 return false; 344 } 345 346 rprio = ich_highest_active_virt_prio(cs); 347 if (rprio == 0xff) { 348 /* No running interrupt so we can preempt */ 349 return true; 350 } 351 352 mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 353 354 /* 355 * We only preempt a running interrupt if the pending interrupt's 356 * group priority is sufficient (the subpriorities are not considered). 357 */ 358 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { 359 return true; 360 } 361 362 return false; 363 } 364 365 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 366 uint32_t *misr) 367 { 368 /* Return a set of bits indicating the EOI maintenance interrupt status 369 * for each list register. The EOI maintenance interrupt status is 370 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 371 * (see the GICv3 spec for the ICH_EISR_EL2 register). 372 * If misr is not NULL then we should also collect the information 373 * about the MISR.EOI, MISR.NP and MISR.U bits. 374 */ 375 uint32_t value = 0; 376 int validcount = 0; 377 bool seenpending = false; 378 int i; 379 380 for (i = 0; i < cs->num_list_regs; i++) { 381 uint64_t lr = cs->ich_lr_el2[i]; 382 383 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 384 == ICH_LR_EL2_EOI) { 385 value |= (1 << i); 386 } 387 if ((lr & ICH_LR_EL2_STATE_MASK)) { 388 validcount++; 389 } 390 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 391 seenpending = true; 392 } 393 } 394 395 if (misr) { 396 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 397 *misr |= ICH_MISR_EL2_U; 398 } 399 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 400 *misr |= ICH_MISR_EL2_NP; 401 } 402 if (value) { 403 *misr |= ICH_MISR_EL2_EOI; 404 } 405 } 406 return value; 407 } 408 409 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 410 { 411 /* Return a set of bits indicating the maintenance interrupt status 412 * (as seen in the ICH_MISR_EL2 register). 413 */ 414 uint32_t value = 0; 415 416 /* Scan list registers and fill in the U, NP and EOI bits */ 417 eoi_maintenance_interrupt_state(cs, &value); 418 419 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 420 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 421 value |= ICH_MISR_EL2_LRENP; 422 } 423 424 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 425 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 426 value |= ICH_MISR_EL2_VGRP0E; 427 } 428 429 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 430 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 431 value |= ICH_MISR_EL2_VGRP0D; 432 } 433 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 434 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 435 value |= ICH_MISR_EL2_VGRP1E; 436 } 437 438 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 439 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 440 value |= ICH_MISR_EL2_VGRP1D; 441 } 442 443 return value; 444 } 445 446 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) 447 { 448 /* 449 * Tell the CPU about any pending virtual interrupts. 450 * This should only be called for changes that affect the 451 * vIRQ and vFIQ status and do not change the maintenance 452 * interrupt status. This means that unlike gicv3_cpuif_virt_update() 453 * this function won't recursively call back into the GIC code. 454 * The main use of this is when the redistributor has changed the 455 * highest priority pending virtual LPI. 456 */ 457 int idx; 458 int irqlevel = 0; 459 int fiqlevel = 0; 460 461 idx = hppvi_index(cs); 462 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, 463 cs->hppvlpi.irq, cs->hppvlpi.grp, 464 cs->hppvlpi.prio); 465 if (idx == HPPVI_INDEX_VLPI) { 466 if (icv_hppvlpi_can_preempt(cs)) { 467 if (cs->hppvlpi.grp == GICV3_G0) { 468 fiqlevel = 1; 469 } else { 470 irqlevel = 1; 471 } 472 } 473 } else if (idx >= 0) { 474 uint64_t lr = cs->ich_lr_el2[idx]; 475 476 if (icv_hppi_can_preempt(cs, lr)) { 477 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 478 if (lr & ICH_LR_EL2_GROUP) { 479 irqlevel = 1; 480 } else { 481 fiqlevel = 1; 482 } 483 } 484 } 485 486 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 487 qemu_set_irq(cs->parent_vfiq, fiqlevel); 488 qemu_set_irq(cs->parent_virq, irqlevel); 489 } 490 491 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 492 { 493 /* 494 * Tell the CPU about any pending virtual interrupts or 495 * maintenance interrupts, following a change to the state 496 * of the CPU interface relevant to virtual interrupts. 497 * 498 * CAUTION: this function will call qemu_set_irq() on the 499 * CPU maintenance IRQ line, which is typically wired up 500 * to the GIC as a per-CPU interrupt. This means that it 501 * will recursively call back into the GIC code via 502 * gicv3_redist_set_irq() and thus into the CPU interface code's 503 * gicv3_cpuif_update(). It is therefore important that this 504 * function is only called as the final action of a CPU interface 505 * register write implementation, after all the GIC state 506 * fields have been updated. gicv3_cpuif_update() also must 507 * not cause this function to be called, but that happens 508 * naturally as a result of there being no architectural 509 * linkage between the physical and virtual GIC logic. 510 */ 511 ARMCPU *cpu = ARM_CPU(cs->cpu); 512 int maintlevel = 0; 513 514 gicv3_cpuif_virt_irq_fiq_update(cs); 515 516 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 517 maintenance_interrupt_state(cs) != 0) { 518 maintlevel = 1; 519 } 520 521 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); 522 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 523 } 524 525 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 526 { 527 GICv3CPUState *cs = icc_cs_from_env(env); 528 int regno = ri->opc2 & 3; 529 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 530 uint64_t value = cs->ich_apr[grp][regno]; 531 532 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 533 return value; 534 } 535 536 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 537 uint64_t value) 538 { 539 GICv3CPUState *cs = icc_cs_from_env(env); 540 int regno = ri->opc2 & 3; 541 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 542 543 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 544 545 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 546 547 gicv3_cpuif_virt_irq_fiq_update(cs); 548 return; 549 } 550 551 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 552 { 553 GICv3CPUState *cs = icc_cs_from_env(env); 554 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 555 uint64_t bpr; 556 bool satinc = false; 557 558 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 559 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 560 grp = GICV3_G0; 561 satinc = true; 562 } 563 564 bpr = read_vbpr(cs, grp); 565 566 if (satinc) { 567 bpr++; 568 bpr = MIN(bpr, 7); 569 } 570 571 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 572 573 return bpr; 574 } 575 576 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 577 uint64_t value) 578 { 579 GICv3CPUState *cs = icc_cs_from_env(env); 580 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 581 582 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 583 gicv3_redist_affid(cs), value); 584 585 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 586 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 587 return; 588 } 589 590 write_vbpr(cs, grp, value); 591 592 gicv3_cpuif_virt_irq_fiq_update(cs); 593 } 594 595 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 596 { 597 GICv3CPUState *cs = icc_cs_from_env(env); 598 uint64_t value; 599 600 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 601 ICH_VMCR_EL2_VPMR_LENGTH); 602 603 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 604 return value; 605 } 606 607 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 608 uint64_t value) 609 { 610 GICv3CPUState *cs = icc_cs_from_env(env); 611 612 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 613 614 value &= icv_fullprio_mask(cs); 615 616 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 617 ICH_VMCR_EL2_VPMR_LENGTH, value); 618 619 gicv3_cpuif_virt_irq_fiq_update(cs); 620 } 621 622 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 623 { 624 GICv3CPUState *cs = icc_cs_from_env(env); 625 int enbit; 626 uint64_t value; 627 628 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 629 value = extract64(cs->ich_vmcr_el2, enbit, 1); 630 631 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 632 gicv3_redist_affid(cs), value); 633 return value; 634 } 635 636 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 637 uint64_t value) 638 { 639 GICv3CPUState *cs = icc_cs_from_env(env); 640 int enbit; 641 642 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 643 gicv3_redist_affid(cs), value); 644 645 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 646 647 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 648 gicv3_cpuif_virt_update(cs); 649 } 650 651 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 652 { 653 GICv3CPUState *cs = icc_cs_from_env(env); 654 uint64_t value; 655 656 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 657 * should match the ones reported in ich_vtr_read(). 658 */ 659 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 660 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 661 662 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 663 value |= ICC_CTLR_EL1_EOIMODE; 664 } 665 666 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 667 value |= ICC_CTLR_EL1_CBPR; 668 } 669 670 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 671 return value; 672 } 673 674 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 675 uint64_t value) 676 { 677 GICv3CPUState *cs = icc_cs_from_env(env); 678 679 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 680 681 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 682 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 683 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 684 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 685 686 gicv3_cpuif_virt_irq_fiq_update(cs); 687 } 688 689 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 690 { 691 GICv3CPUState *cs = icc_cs_from_env(env); 692 int prio = ich_highest_active_virt_prio(cs); 693 694 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 695 return prio; 696 } 697 698 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 699 { 700 GICv3CPUState *cs = icc_cs_from_env(env); 701 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 702 int idx = hppvi_index(cs); 703 uint64_t value = INTID_SPURIOUS; 704 705 if (idx == HPPVI_INDEX_VLPI) { 706 if (cs->hppvlpi.grp == grp) { 707 value = cs->hppvlpi.irq; 708 } 709 } else if (idx >= 0) { 710 uint64_t lr = cs->ich_lr_el2[idx]; 711 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 712 713 if (grp == thisgrp) { 714 value = ich_lr_vintid(lr); 715 } 716 } 717 718 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, 719 gicv3_redist_affid(cs), value); 720 return value; 721 } 722 723 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 724 { 725 /* Activate the interrupt in the specified list register 726 * by moving it from Pending to Active state, and update the 727 * Active Priority Registers. 728 */ 729 uint32_t mask = icv_gprio_mask(cs, grp); 730 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 731 int aprbit = prio >> (8 - cs->vprebits); 732 int regno = aprbit / 32; 733 int regbit = aprbit % 32; 734 735 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 736 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 737 cs->ich_apr[grp][regno] |= (1 << regbit); 738 } 739 740 static void icv_activate_vlpi(GICv3CPUState *cs) 741 { 742 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 743 int prio = cs->hppvlpi.prio & mask; 744 int aprbit = prio >> (8 - cs->vprebits); 745 int regno = aprbit / 32; 746 int regbit = aprbit % 32; 747 748 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); 749 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); 750 } 751 752 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 753 { 754 GICv3CPUState *cs = icc_cs_from_env(env); 755 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 756 int idx = hppvi_index(cs); 757 uint64_t intid = INTID_SPURIOUS; 758 759 if (idx == HPPVI_INDEX_VLPI) { 760 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { 761 intid = cs->hppvlpi.irq; 762 icv_activate_vlpi(cs); 763 } 764 } else if (idx >= 0) { 765 uint64_t lr = cs->ich_lr_el2[idx]; 766 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 767 768 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 769 intid = ich_lr_vintid(lr); 770 if (!gicv3_intid_is_special(intid)) { 771 icv_activate_irq(cs, idx, grp); 772 } else { 773 /* Interrupt goes from Pending to Invalid */ 774 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 775 /* We will now return the (bogus) ID from the list register, 776 * as per the pseudocode. 777 */ 778 } 779 } 780 } 781 782 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 783 gicv3_redist_affid(cs), intid); 784 785 gicv3_cpuif_virt_update(cs); 786 787 return intid; 788 } 789 790 static uint32_t icc_fullprio_mask(GICv3CPUState *cs) 791 { 792 /* 793 * Return a mask word which clears the unimplemented priority bits 794 * from a priority value for a physical interrupt. (Not to be confused 795 * with the group priority, whose mask depends on the value of BPR 796 * for the interrupt group.) 797 */ 798 return ~0U << (8 - cs->pribits); 799 } 800 801 static inline int icc_min_bpr(GICv3CPUState *cs) 802 { 803 /* The minimum BPR for the physical interface. */ 804 return 7 - cs->prebits; 805 } 806 807 static inline int icc_min_bpr_ns(GICv3CPUState *cs) 808 { 809 return icc_min_bpr(cs) + 1; 810 } 811 812 static inline int icc_num_aprs(GICv3CPUState *cs) 813 { 814 /* Return the number of APR registers (1, 2, or 4) */ 815 int aprmax = 1 << MAX(cs->prebits - 5, 0); 816 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); 817 return aprmax; 818 } 819 820 static int icc_highest_active_prio(GICv3CPUState *cs) 821 { 822 /* Calculate the current running priority based on the set bits 823 * in the Active Priority Registers. 824 */ 825 int i; 826 827 for (i = 0; i < icc_num_aprs(cs); i++) { 828 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 829 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 830 831 if (!apr) { 832 continue; 833 } 834 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); 835 } 836 /* No current active interrupts: return idle priority */ 837 return 0xff; 838 } 839 840 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 841 { 842 /* Return a mask word which clears the subpriority bits from 843 * a priority value for an interrupt in the specified group. 844 * This depends on the BPR value. For CBPR0 (S or NS): 845 * a BPR of 0 means the group priority bits are [7:1]; 846 * a BPR of 1 means they are [7:2], and so on down to 847 * a BPR of 7 meaning no group priority bits at all. 848 * For CBPR1 NS: 849 * a BPR of 0 is impossible (the minimum value is 1) 850 * a BPR of 1 means the group priority bits are [7:1]; 851 * a BPR of 2 means they are [7:2], and so on down to 852 * a BPR of 7 meaning the group priority is [7]. 853 * 854 * Which BPR to use depends on the group of the interrupt and 855 * the current ICC_CTLR.CBPR settings. 856 * 857 * This corresponds to the GroupBits() pseudocode. 858 */ 859 int bpr; 860 861 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 862 (group == GICV3_G1NS && 863 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 864 group = GICV3_G0; 865 } 866 867 bpr = cs->icc_bpr[group] & 7; 868 869 if (group == GICV3_G1NS) { 870 assert(bpr > 0); 871 bpr--; 872 } 873 874 return ~0U << (bpr + 1); 875 } 876 877 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 878 { 879 /* Return true if there is no pending interrupt, or the 880 * highest priority pending interrupt is in a group which has been 881 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 882 */ 883 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 884 } 885 886 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 887 { 888 /* Return true if we have a pending interrupt of sufficient 889 * priority to preempt. 890 */ 891 int rprio; 892 uint32_t mask; 893 894 if (icc_no_enabled_hppi(cs)) { 895 return false; 896 } 897 898 if (cs->hppi.prio >= cs->icc_pmr_el1) { 899 /* Priority mask masks this interrupt */ 900 return false; 901 } 902 903 rprio = icc_highest_active_prio(cs); 904 if (rprio == 0xff) { 905 /* No currently running interrupt so we can preempt */ 906 return true; 907 } 908 909 mask = icc_gprio_mask(cs, cs->hppi.grp); 910 911 /* We only preempt a running interrupt if the pending interrupt's 912 * group priority is sufficient (the subpriorities are not considered). 913 */ 914 if ((cs->hppi.prio & mask) < (rprio & mask)) { 915 return true; 916 } 917 918 return false; 919 } 920 921 void gicv3_cpuif_update(GICv3CPUState *cs) 922 { 923 /* Tell the CPU about its highest priority pending interrupt */ 924 int irqlevel = 0; 925 int fiqlevel = 0; 926 ARMCPU *cpu = ARM_CPU(cs->cpu); 927 CPUARMState *env = &cpu->env; 928 929 g_assert(qemu_mutex_iothread_locked()); 930 931 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 932 cs->hppi.grp, cs->hppi.prio); 933 934 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 935 /* If a Security-enabled GIC sends a G1S interrupt to a 936 * Security-disabled CPU, we must treat it as if it were G0. 937 */ 938 cs->hppi.grp = GICV3_G0; 939 } 940 941 if (icc_hppi_can_preempt(cs)) { 942 /* We have an interrupt: should we signal it as IRQ or FIQ? 943 * This is described in the GICv3 spec section 4.6.2. 944 */ 945 bool isfiq; 946 947 switch (cs->hppi.grp) { 948 case GICV3_G0: 949 isfiq = true; 950 break; 951 case GICV3_G1: 952 isfiq = (!arm_is_secure(env) || 953 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 954 break; 955 case GICV3_G1NS: 956 isfiq = arm_is_secure(env); 957 break; 958 default: 959 g_assert_not_reached(); 960 } 961 962 if (isfiq) { 963 fiqlevel = 1; 964 } else { 965 irqlevel = 1; 966 } 967 } 968 969 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 970 971 qemu_set_irq(cs->parent_fiq, fiqlevel); 972 qemu_set_irq(cs->parent_irq, irqlevel); 973 } 974 975 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 976 { 977 GICv3CPUState *cs = icc_cs_from_env(env); 978 uint32_t value = cs->icc_pmr_el1; 979 980 if (icv_access(env, HCR_FMO | HCR_IMO)) { 981 return icv_pmr_read(env, ri); 982 } 983 984 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 985 (env->cp15.scr_el3 & SCR_FIQ)) { 986 /* NS access and Group 0 is inaccessible to NS: return the 987 * NS view of the current priority 988 */ 989 if ((value & 0x80) == 0) { 990 /* Secure priorities not visible to NS */ 991 value = 0; 992 } else if (value != 0xff) { 993 value = (value << 1) & 0xff; 994 } 995 } 996 997 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 998 999 return value; 1000 } 1001 1002 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1003 uint64_t value) 1004 { 1005 GICv3CPUState *cs = icc_cs_from_env(env); 1006 1007 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1008 return icv_pmr_write(env, ri, value); 1009 } 1010 1011 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 1012 1013 value &= icc_fullprio_mask(cs); 1014 1015 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1016 (env->cp15.scr_el3 & SCR_FIQ)) { 1017 /* NS access and Group 0 is inaccessible to NS: return the 1018 * NS view of the current priority 1019 */ 1020 if (!(cs->icc_pmr_el1 & 0x80)) { 1021 /* Current PMR in the secure range, don't allow NS to change it */ 1022 return; 1023 } 1024 value = (value >> 1) | 0x80; 1025 } 1026 cs->icc_pmr_el1 = value; 1027 gicv3_cpuif_update(cs); 1028 } 1029 1030 static void icc_activate_irq(GICv3CPUState *cs, int irq) 1031 { 1032 /* Move the interrupt from the Pending state to Active, and update 1033 * the Active Priority Registers 1034 */ 1035 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 1036 int prio = cs->hppi.prio & mask; 1037 int aprbit = prio >> (8 - cs->prebits); 1038 int regno = aprbit / 32; 1039 int regbit = aprbit % 32; 1040 1041 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 1042 1043 if (irq < GIC_INTERNAL) { 1044 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 1045 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 1046 gicv3_redist_update(cs); 1047 } else if (irq < GICV3_LPI_INTID_START) { 1048 gicv3_gicd_active_set(cs->gic, irq); 1049 gicv3_gicd_pending_clear(cs->gic, irq); 1050 gicv3_update(cs->gic, irq, 1); 1051 } else { 1052 gicv3_redist_lpi_pending(cs, irq, 0); 1053 } 1054 } 1055 1056 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 1057 { 1058 /* Return the highest priority pending interrupt register value 1059 * for group 0. 1060 */ 1061 bool irq_is_secure; 1062 1063 if (cs->hppi.prio == 0xff) { 1064 return INTID_SPURIOUS; 1065 } 1066 1067 /* Check whether we can return the interrupt or if we should return 1068 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 1069 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1070 * is always zero.) 1071 */ 1072 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1073 (cs->hppi.grp != GICV3_G1NS)); 1074 1075 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 1076 return INTID_SPURIOUS; 1077 } 1078 if (irq_is_secure && !arm_is_secure(env)) { 1079 /* Secure interrupts not visible to Nonsecure */ 1080 return INTID_SPURIOUS; 1081 } 1082 1083 if (cs->hppi.grp != GICV3_G0) { 1084 /* Indicate to EL3 that there's a Group 1 interrupt for the other 1085 * state pending. 1086 */ 1087 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 1088 } 1089 1090 return cs->hppi.irq; 1091 } 1092 1093 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 1094 { 1095 /* Return the highest priority pending interrupt register value 1096 * for group 1. 1097 */ 1098 bool irq_is_secure; 1099 1100 if (cs->hppi.prio == 0xff) { 1101 return INTID_SPURIOUS; 1102 } 1103 1104 /* Check whether we can return the interrupt or if we should return 1105 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 1106 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1107 * is always zero.) 1108 */ 1109 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1110 (cs->hppi.grp != GICV3_G1NS)); 1111 1112 if (cs->hppi.grp == GICV3_G0) { 1113 /* Group 0 interrupts not visible via HPPIR1 */ 1114 return INTID_SPURIOUS; 1115 } 1116 if (irq_is_secure) { 1117 if (!arm_is_secure(env)) { 1118 /* Secure interrupts not visible in Non-secure */ 1119 return INTID_SPURIOUS; 1120 } 1121 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1122 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 1123 return INTID_SPURIOUS; 1124 } 1125 1126 return cs->hppi.irq; 1127 } 1128 1129 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1130 { 1131 GICv3CPUState *cs = icc_cs_from_env(env); 1132 uint64_t intid; 1133 1134 if (icv_access(env, HCR_FMO)) { 1135 return icv_iar_read(env, ri); 1136 } 1137 1138 if (!icc_hppi_can_preempt(cs)) { 1139 intid = INTID_SPURIOUS; 1140 } else { 1141 intid = icc_hppir0_value(cs, env); 1142 } 1143 1144 if (!gicv3_intid_is_special(intid)) { 1145 icc_activate_irq(cs, intid); 1146 } 1147 1148 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1149 return intid; 1150 } 1151 1152 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1153 { 1154 GICv3CPUState *cs = icc_cs_from_env(env); 1155 uint64_t intid; 1156 1157 if (icv_access(env, HCR_IMO)) { 1158 return icv_iar_read(env, ri); 1159 } 1160 1161 if (!icc_hppi_can_preempt(cs)) { 1162 intid = INTID_SPURIOUS; 1163 } else { 1164 intid = icc_hppir1_value(cs, env); 1165 } 1166 1167 if (!gicv3_intid_is_special(intid)) { 1168 icc_activate_irq(cs, intid); 1169 } 1170 1171 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1172 return intid; 1173 } 1174 1175 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1176 { 1177 /* Drop the priority of the currently active interrupt in 1178 * the specified group. 1179 * 1180 * Note that we can guarantee (because of the requirement to nest 1181 * ICC_IAR reads [which activate an interrupt and raise priority] 1182 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1183 * that the interrupt we're being called for is the highest priority 1184 * active interrupt, meaning that it has the lowest set bit in the 1185 * APR registers. 1186 * 1187 * If the guest does not honour the ordering constraints then the 1188 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1189 * the values of the APR registers might become incorrect and the 1190 * running priority will be wrong, so interrupts that should preempt 1191 * might not do so, and interrupts that should not preempt might do so. 1192 */ 1193 int i; 1194 1195 for (i = 0; i < icc_num_aprs(cs); i++) { 1196 uint64_t *papr = &cs->icc_apr[grp][i]; 1197 1198 if (!*papr) { 1199 continue; 1200 } 1201 /* Clear the lowest set bit */ 1202 *papr &= *papr - 1; 1203 break; 1204 } 1205 1206 /* running priority change means we need an update for this cpu i/f */ 1207 gicv3_cpuif_update(cs); 1208 } 1209 1210 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1211 { 1212 /* Return true if we should split priority drop and interrupt 1213 * deactivation, ie whether the relevant EOIMode bit is set. 1214 */ 1215 if (arm_is_el3_or_mon(env)) { 1216 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1217 } 1218 if (arm_is_secure_below_el3(env)) { 1219 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1220 } else { 1221 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1222 } 1223 } 1224 1225 static int icc_highest_active_group(GICv3CPUState *cs) 1226 { 1227 /* Return the group with the highest priority active interrupt. 1228 * We can do this by just comparing the APRs to see which one 1229 * has the lowest set bit. 1230 * (If more than one group is active at the same priority then 1231 * we're in UNPREDICTABLE territory.) 1232 */ 1233 int i; 1234 1235 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1236 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1237 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1238 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1239 1240 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1241 return GICV3_G1NS; 1242 } 1243 if (g1ctz < g0ctz) { 1244 return GICV3_G1; 1245 } 1246 if (g0ctz < 32) { 1247 return GICV3_G0; 1248 } 1249 } 1250 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1251 * ignores the spurious EOI attempt. 1252 */ 1253 return -1; 1254 } 1255 1256 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1257 { 1258 if (irq < GIC_INTERNAL) { 1259 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1260 gicv3_redist_update(cs); 1261 } else { 1262 gicv3_gicd_active_clear(cs->gic, irq); 1263 gicv3_update(cs->gic, irq, 1); 1264 } 1265 } 1266 1267 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1268 { 1269 /* Return true if we should split priority drop and interrupt 1270 * deactivation, ie whether the virtual EOIMode bit is set. 1271 */ 1272 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1273 } 1274 1275 static int icv_find_active(GICv3CPUState *cs, int irq) 1276 { 1277 /* Given an interrupt number for an active interrupt, return the index 1278 * of the corresponding list register, or -1 if there is no match. 1279 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1280 */ 1281 int i; 1282 1283 for (i = 0; i < cs->num_list_regs; i++) { 1284 uint64_t lr = cs->ich_lr_el2[i]; 1285 1286 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1287 return i; 1288 } 1289 } 1290 1291 return -1; 1292 } 1293 1294 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1295 { 1296 /* Deactivate the interrupt in the specified list register index */ 1297 uint64_t lr = cs->ich_lr_el2[idx]; 1298 1299 if (lr & ICH_LR_EL2_HW) { 1300 /* Deactivate the associated physical interrupt */ 1301 int pirq = ich_lr_pintid(lr); 1302 1303 if (pirq < INTID_SECURE) { 1304 icc_deactivate_irq(cs, pirq); 1305 } 1306 } 1307 1308 /* Clear the 'active' part of the state, so ActivePending->Pending 1309 * and Active->Invalid. 1310 */ 1311 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1312 cs->ich_lr_el2[idx] = lr; 1313 } 1314 1315 static void icv_increment_eoicount(GICv3CPUState *cs) 1316 { 1317 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1318 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1319 ICH_HCR_EL2_EOICOUNT_LENGTH); 1320 1321 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1322 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1323 } 1324 1325 static int icv_drop_prio(GICv3CPUState *cs) 1326 { 1327 /* Drop the priority of the currently active virtual interrupt 1328 * (favouring group 0 if there is a set active bit at 1329 * the same priority for both group 0 and group 1). 1330 * Return the priority value for the bit we just cleared, 1331 * or 0xff if no bits were set in the AP registers at all. 1332 * Note that though the ich_apr[] are uint64_t only the low 1333 * 32 bits are actually relevant. 1334 */ 1335 int i; 1336 int aprmax = 1 << (cs->vprebits - 5); 1337 1338 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1339 1340 for (i = 0; i < aprmax; i++) { 1341 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1342 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1343 int apr0count, apr1count; 1344 1345 if (!*papr0 && !*papr1) { 1346 continue; 1347 } 1348 1349 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1350 * because we need to return the bit number we cleared so 1351 * it can be compared against the list register's priority field. 1352 */ 1353 apr0count = ctz32(*papr0); 1354 apr1count = ctz32(*papr1); 1355 1356 if (apr0count <= apr1count) { 1357 *papr0 &= *papr0 - 1; 1358 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1359 } else { 1360 *papr1 &= *papr1 - 1; 1361 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1362 } 1363 } 1364 return 0xff; 1365 } 1366 1367 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1368 uint64_t value) 1369 { 1370 /* Deactivate interrupt */ 1371 GICv3CPUState *cs = icc_cs_from_env(env); 1372 int idx; 1373 int irq = value & 0xffffff; 1374 1375 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1376 1377 if (irq >= GICV3_MAXIRQ) { 1378 /* Also catches special interrupt numbers and LPIs */ 1379 return; 1380 } 1381 1382 if (!icv_eoi_split(env, cs)) { 1383 return; 1384 } 1385 1386 idx = icv_find_active(cs, irq); 1387 1388 if (idx < 0) { 1389 /* No list register matching this, so increment the EOI count 1390 * (might trigger a maintenance interrupt) 1391 */ 1392 icv_increment_eoicount(cs); 1393 } else { 1394 icv_deactivate_irq(cs, idx); 1395 } 1396 1397 gicv3_cpuif_virt_update(cs); 1398 } 1399 1400 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1401 uint64_t value) 1402 { 1403 /* End of Interrupt */ 1404 GICv3CPUState *cs = icc_cs_from_env(env); 1405 int irq = value & 0xffffff; 1406 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1407 int idx, dropprio; 1408 1409 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1410 gicv3_redist_affid(cs), value); 1411 1412 if (gicv3_intid_is_special(irq)) { 1413 return; 1414 } 1415 1416 /* We implement the IMPDEF choice of "drop priority before doing 1417 * error checks" (because that lets us avoid scanning the AP 1418 * registers twice). 1419 */ 1420 dropprio = icv_drop_prio(cs); 1421 if (dropprio == 0xff) { 1422 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1423 * whether the list registers are checked in this 1424 * situation; we choose not to. 1425 */ 1426 return; 1427 } 1428 1429 idx = icv_find_active(cs, irq); 1430 1431 if (idx < 0) { 1432 /* No valid list register corresponding to EOI ID */ 1433 icv_increment_eoicount(cs); 1434 } else { 1435 uint64_t lr = cs->ich_lr_el2[idx]; 1436 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1437 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1438 1439 if (thisgrp == grp && lr_gprio == dropprio) { 1440 if (!icv_eoi_split(env, cs)) { 1441 /* Priority drop and deactivate not split: deactivate irq now */ 1442 icv_deactivate_irq(cs, idx); 1443 } 1444 } 1445 } 1446 1447 gicv3_cpuif_virt_update(cs); 1448 } 1449 1450 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1451 uint64_t value) 1452 { 1453 /* End of Interrupt */ 1454 GICv3CPUState *cs = icc_cs_from_env(env); 1455 int irq = value & 0xffffff; 1456 int grp; 1457 bool is_eoir0 = ri->crm == 8; 1458 1459 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1460 icv_eoir_write(env, ri, value); 1461 return; 1462 } 1463 1464 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1465 gicv3_redist_affid(cs), value); 1466 1467 if ((irq >= cs->gic->num_irq) && 1468 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1469 /* This handles two cases: 1470 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1471 * to the GICC_EOIR, the GIC ignores that write. 1472 * 2. If software writes the number of a non-existent interrupt 1473 * this must be a subcase of "value written does not match the last 1474 * valid interrupt value read from the Interrupt Acknowledge 1475 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1476 */ 1477 return; 1478 } 1479 1480 grp = icc_highest_active_group(cs); 1481 switch (grp) { 1482 case GICV3_G0: 1483 if (!is_eoir0) { 1484 return; 1485 } 1486 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1487 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1488 return; 1489 } 1490 break; 1491 case GICV3_G1: 1492 if (is_eoir0) { 1493 return; 1494 } 1495 if (!arm_is_secure(env)) { 1496 return; 1497 } 1498 break; 1499 case GICV3_G1NS: 1500 if (is_eoir0) { 1501 return; 1502 } 1503 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1504 return; 1505 } 1506 break; 1507 default: 1508 qemu_log_mask(LOG_GUEST_ERROR, 1509 "%s: IRQ %d isn't active\n", __func__, irq); 1510 return; 1511 } 1512 1513 icc_drop_prio(cs, grp); 1514 1515 if (!icc_eoi_split(env, cs)) { 1516 /* Priority drop and deactivate not split: deactivate irq now */ 1517 icc_deactivate_irq(cs, irq); 1518 } 1519 } 1520 1521 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1522 { 1523 GICv3CPUState *cs = icc_cs_from_env(env); 1524 uint64_t value; 1525 1526 if (icv_access(env, HCR_FMO)) { 1527 return icv_hppir_read(env, ri); 1528 } 1529 1530 value = icc_hppir0_value(cs, env); 1531 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1532 return value; 1533 } 1534 1535 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1536 { 1537 GICv3CPUState *cs = icc_cs_from_env(env); 1538 uint64_t value; 1539 1540 if (icv_access(env, HCR_IMO)) { 1541 return icv_hppir_read(env, ri); 1542 } 1543 1544 value = icc_hppir1_value(cs, env); 1545 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1546 return value; 1547 } 1548 1549 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1550 { 1551 GICv3CPUState *cs = icc_cs_from_env(env); 1552 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1553 bool satinc = false; 1554 uint64_t bpr; 1555 1556 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1557 return icv_bpr_read(env, ri); 1558 } 1559 1560 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1561 grp = GICV3_G1NS; 1562 } 1563 1564 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1565 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1566 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1567 * modify BPR0 1568 */ 1569 grp = GICV3_G0; 1570 } 1571 1572 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1573 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1574 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1575 grp = GICV3_G0; 1576 satinc = true; 1577 } 1578 1579 bpr = cs->icc_bpr[grp]; 1580 if (satinc) { 1581 bpr++; 1582 bpr = MIN(bpr, 7); 1583 } 1584 1585 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1586 1587 return bpr; 1588 } 1589 1590 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1591 uint64_t value) 1592 { 1593 GICv3CPUState *cs = icc_cs_from_env(env); 1594 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1595 uint64_t minval; 1596 1597 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1598 icv_bpr_write(env, ri, value); 1599 return; 1600 } 1601 1602 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1603 gicv3_redist_affid(cs), value); 1604 1605 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1606 grp = GICV3_G1NS; 1607 } 1608 1609 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1610 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1611 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1612 * modify BPR0 1613 */ 1614 grp = GICV3_G0; 1615 } 1616 1617 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1618 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1619 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1620 return; 1621 } 1622 1623 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); 1624 if (value < minval) { 1625 value = minval; 1626 } 1627 1628 cs->icc_bpr[grp] = value & 7; 1629 gicv3_cpuif_update(cs); 1630 } 1631 1632 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1633 { 1634 GICv3CPUState *cs = icc_cs_from_env(env); 1635 uint64_t value; 1636 1637 int regno = ri->opc2 & 3; 1638 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1639 1640 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1641 return icv_ap_read(env, ri); 1642 } 1643 1644 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1645 grp = GICV3_G1NS; 1646 } 1647 1648 value = cs->icc_apr[grp][regno]; 1649 1650 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1651 return value; 1652 } 1653 1654 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1655 uint64_t value) 1656 { 1657 GICv3CPUState *cs = icc_cs_from_env(env); 1658 1659 int regno = ri->opc2 & 3; 1660 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1661 1662 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1663 icv_ap_write(env, ri, value); 1664 return; 1665 } 1666 1667 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1668 1669 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1670 grp = GICV3_G1NS; 1671 } 1672 1673 /* It's not possible to claim that a Non-secure interrupt is active 1674 * at a priority outside the Non-secure range (128..255), since this 1675 * would otherwise allow malicious NS code to block delivery of S interrupts 1676 * by writing a bad value to these registers. 1677 */ 1678 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1679 return; 1680 } 1681 1682 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1683 gicv3_cpuif_update(cs); 1684 } 1685 1686 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1687 uint64_t value) 1688 { 1689 /* Deactivate interrupt */ 1690 GICv3CPUState *cs = icc_cs_from_env(env); 1691 int irq = value & 0xffffff; 1692 bool irq_is_secure, single_sec_state, irq_is_grp0; 1693 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1694 1695 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1696 icv_dir_write(env, ri, value); 1697 return; 1698 } 1699 1700 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1701 1702 if (irq >= cs->gic->num_irq) { 1703 /* Also catches special interrupt numbers and LPIs */ 1704 return; 1705 } 1706 1707 if (!icc_eoi_split(env, cs)) { 1708 return; 1709 } 1710 1711 int grp = gicv3_irq_group(cs->gic, cs, irq); 1712 1713 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1714 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1715 irq_is_grp0 = grp == GICV3_G0; 1716 1717 /* Check whether we're allowed to deactivate this interrupt based 1718 * on its group and the current CPU state. 1719 * These checks are laid out to correspond to the spec's pseudocode. 1720 */ 1721 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1722 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1723 /* No need to include !IsSecure in route_*_to_el2 as it's only 1724 * tested in cases where we know !IsSecure is true. 1725 */ 1726 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1727 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1728 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1729 1730 switch (arm_current_el(env)) { 1731 case 3: 1732 break; 1733 case 2: 1734 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1735 break; 1736 } 1737 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1738 break; 1739 } 1740 return; 1741 case 1: 1742 if (!arm_is_secure_below_el3(env)) { 1743 if (single_sec_state && irq_is_grp0 && 1744 !route_fiq_to_el3 && !route_fiq_to_el2) { 1745 break; 1746 } 1747 if (!irq_is_secure && !irq_is_grp0 && 1748 !route_irq_to_el3 && !route_irq_to_el2) { 1749 break; 1750 } 1751 } else { 1752 if (irq_is_grp0 && !route_fiq_to_el3) { 1753 break; 1754 } 1755 if (!irq_is_grp0 && 1756 (!irq_is_secure || !single_sec_state) && 1757 !route_irq_to_el3) { 1758 break; 1759 } 1760 } 1761 return; 1762 default: 1763 g_assert_not_reached(); 1764 } 1765 1766 icc_deactivate_irq(cs, irq); 1767 } 1768 1769 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1770 { 1771 GICv3CPUState *cs = icc_cs_from_env(env); 1772 int prio; 1773 1774 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1775 return icv_rpr_read(env, ri); 1776 } 1777 1778 prio = icc_highest_active_prio(cs); 1779 1780 if (arm_feature(env, ARM_FEATURE_EL3) && 1781 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1782 /* NS GIC access and Group 0 is inaccessible to NS */ 1783 if ((prio & 0x80) == 0) { 1784 /* NS mustn't see priorities in the Secure half of the range */ 1785 prio = 0; 1786 } else if (prio != 0xff) { 1787 /* Non-idle priority: show the Non-secure view of it */ 1788 prio = (prio << 1) & 0xff; 1789 } 1790 } 1791 1792 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1793 return prio; 1794 } 1795 1796 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1797 uint64_t value, int grp, bool ns) 1798 { 1799 GICv3State *s = cs->gic; 1800 1801 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1802 uint64_t aff = extract64(value, 48, 8) << 16 | 1803 extract64(value, 32, 8) << 8 | 1804 extract64(value, 16, 8); 1805 uint32_t targetlist = extract64(value, 0, 16); 1806 uint32_t irq = extract64(value, 24, 4); 1807 bool irm = extract64(value, 40, 1); 1808 int i; 1809 1810 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1811 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1812 * interrupts as Group 0 interrupts and must send Secure Group 0 1813 * interrupts to the target CPUs. 1814 */ 1815 grp = GICV3_G0; 1816 } 1817 1818 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1819 aff, targetlist); 1820 1821 for (i = 0; i < s->num_cpu; i++) { 1822 GICv3CPUState *ocs = &s->cpu[i]; 1823 1824 if (irm) { 1825 /* IRM == 1 : route to all CPUs except self */ 1826 if (cs == ocs) { 1827 continue; 1828 } 1829 } else { 1830 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1831 * where the corresponding bit is set in targetlist 1832 */ 1833 int aff0; 1834 1835 if (ocs->gicr_typer >> 40 != aff) { 1836 continue; 1837 } 1838 aff0 = extract64(ocs->gicr_typer, 32, 8); 1839 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1840 continue; 1841 } 1842 } 1843 1844 /* The redistributor will check against its own GICR_NSACR as needed */ 1845 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1846 } 1847 } 1848 1849 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 /* Generate Secure Group 0 SGI. */ 1853 GICv3CPUState *cs = icc_cs_from_env(env); 1854 bool ns = !arm_is_secure(env); 1855 1856 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1857 } 1858 1859 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1860 uint64_t value) 1861 { 1862 /* Generate Group 1 SGI for the current Security state */ 1863 GICv3CPUState *cs = icc_cs_from_env(env); 1864 int grp; 1865 bool ns = !arm_is_secure(env); 1866 1867 grp = ns ? GICV3_G1NS : GICV3_G1; 1868 icc_generate_sgi(env, cs, value, grp, ns); 1869 } 1870 1871 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 /* Generate Group 1 SGI for the Security state that is not 1875 * the current state 1876 */ 1877 GICv3CPUState *cs = icc_cs_from_env(env); 1878 int grp; 1879 bool ns = !arm_is_secure(env); 1880 1881 grp = ns ? GICV3_G1 : GICV3_G1NS; 1882 icc_generate_sgi(env, cs, value, grp, ns); 1883 } 1884 1885 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1886 { 1887 GICv3CPUState *cs = icc_cs_from_env(env); 1888 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1889 uint64_t value; 1890 1891 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1892 return icv_igrpen_read(env, ri); 1893 } 1894 1895 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1896 grp = GICV3_G1NS; 1897 } 1898 1899 value = cs->icc_igrpen[grp]; 1900 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1901 gicv3_redist_affid(cs), value); 1902 return value; 1903 } 1904 1905 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1906 uint64_t value) 1907 { 1908 GICv3CPUState *cs = icc_cs_from_env(env); 1909 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1910 1911 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1912 icv_igrpen_write(env, ri, value); 1913 return; 1914 } 1915 1916 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1917 gicv3_redist_affid(cs), value); 1918 1919 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1920 grp = GICV3_G1NS; 1921 } 1922 1923 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1924 gicv3_cpuif_update(cs); 1925 } 1926 1927 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1928 { 1929 GICv3CPUState *cs = icc_cs_from_env(env); 1930 uint64_t value; 1931 1932 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1933 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1934 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1935 return value; 1936 } 1937 1938 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1939 uint64_t value) 1940 { 1941 GICv3CPUState *cs = icc_cs_from_env(env); 1942 1943 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1944 1945 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1946 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1947 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1948 gicv3_cpuif_update(cs); 1949 } 1950 1951 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1952 { 1953 GICv3CPUState *cs = icc_cs_from_env(env); 1954 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1955 uint64_t value; 1956 1957 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1958 return icv_ctlr_read(env, ri); 1959 } 1960 1961 value = cs->icc_ctlr_el1[bank]; 1962 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1963 return value; 1964 } 1965 1966 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1967 uint64_t value) 1968 { 1969 GICv3CPUState *cs = icc_cs_from_env(env); 1970 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1971 uint64_t mask; 1972 1973 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1974 icv_ctlr_write(env, ri, value); 1975 return; 1976 } 1977 1978 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1979 1980 /* Only CBPR and EOIMODE can be RW; 1981 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1982 * the asseciated priority-based routing of them); 1983 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1984 */ 1985 if (arm_feature(env, ARM_FEATURE_EL3) && 1986 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1987 mask = ICC_CTLR_EL1_EOIMODE; 1988 } else { 1989 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1990 } 1991 1992 cs->icc_ctlr_el1[bank] &= ~mask; 1993 cs->icc_ctlr_el1[bank] |= (value & mask); 1994 gicv3_cpuif_update(cs); 1995 } 1996 1997 1998 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1999 { 2000 GICv3CPUState *cs = icc_cs_from_env(env); 2001 uint64_t value; 2002 2003 value = cs->icc_ctlr_el3; 2004 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2005 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 2006 } 2007 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2008 value |= ICC_CTLR_EL3_CBPR_EL1NS; 2009 } 2010 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2011 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 2012 } 2013 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2014 value |= ICC_CTLR_EL3_CBPR_EL1S; 2015 } 2016 2017 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 2018 return value; 2019 } 2020 2021 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2022 uint64_t value) 2023 { 2024 GICv3CPUState *cs = icc_cs_from_env(env); 2025 uint64_t mask; 2026 2027 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 2028 2029 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 2030 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2031 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 2032 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 2033 } 2034 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 2035 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 2036 } 2037 2038 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2039 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 2040 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 2041 } 2042 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 2043 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 2044 } 2045 2046 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 2047 mask = ICC_CTLR_EL3_EOIMODE_EL3; 2048 2049 cs->icc_ctlr_el3 &= ~mask; 2050 cs->icc_ctlr_el3 |= (value & mask); 2051 gicv3_cpuif_update(cs); 2052 } 2053 2054 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 2055 const ARMCPRegInfo *ri, bool isread) 2056 { 2057 CPAccessResult r = CP_ACCESS_OK; 2058 GICv3CPUState *cs = icc_cs_from_env(env); 2059 int el = arm_current_el(env); 2060 2061 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 2062 el == 1 && !arm_is_secure_below_el3(env)) { 2063 /* Takes priority over a possible EL3 trap */ 2064 return CP_ACCESS_TRAP_EL2; 2065 } 2066 2067 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 2068 switch (el) { 2069 case 1: 2070 /* Note that arm_hcr_el2_eff takes secure state into account. */ 2071 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 2072 r = CP_ACCESS_TRAP_EL3; 2073 } 2074 break; 2075 case 2: 2076 r = CP_ACCESS_TRAP_EL3; 2077 break; 2078 case 3: 2079 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2080 r = CP_ACCESS_TRAP_EL3; 2081 } 2082 break; 2083 default: 2084 g_assert_not_reached(); 2085 } 2086 } 2087 2088 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2089 r = CP_ACCESS_TRAP; 2090 } 2091 return r; 2092 } 2093 2094 static CPAccessResult gicv3_dir_access(CPUARMState *env, 2095 const ARMCPRegInfo *ri, bool isread) 2096 { 2097 GICv3CPUState *cs = icc_cs_from_env(env); 2098 2099 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 2100 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 2101 /* Takes priority over a possible EL3 trap */ 2102 return CP_ACCESS_TRAP_EL2; 2103 } 2104 2105 return gicv3_irqfiq_access(env, ri, isread); 2106 } 2107 2108 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 2109 const ARMCPRegInfo *ri, bool isread) 2110 { 2111 if (arm_current_el(env) == 1 && 2112 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 2113 /* Takes priority over a possible EL3 trap */ 2114 return CP_ACCESS_TRAP_EL2; 2115 } 2116 2117 return gicv3_irqfiq_access(env, ri, isread); 2118 } 2119 2120 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 2121 const ARMCPRegInfo *ri, bool isread) 2122 { 2123 CPAccessResult r = CP_ACCESS_OK; 2124 GICv3CPUState *cs = icc_cs_from_env(env); 2125 int el = arm_current_el(env); 2126 2127 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 2128 el == 1 && !arm_is_secure_below_el3(env)) { 2129 /* Takes priority over a possible EL3 trap */ 2130 return CP_ACCESS_TRAP_EL2; 2131 } 2132 2133 if (env->cp15.scr_el3 & SCR_FIQ) { 2134 switch (el) { 2135 case 1: 2136 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 2137 r = CP_ACCESS_TRAP_EL3; 2138 } 2139 break; 2140 case 2: 2141 r = CP_ACCESS_TRAP_EL3; 2142 break; 2143 case 3: 2144 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2145 r = CP_ACCESS_TRAP_EL3; 2146 } 2147 break; 2148 default: 2149 g_assert_not_reached(); 2150 } 2151 } 2152 2153 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2154 r = CP_ACCESS_TRAP; 2155 } 2156 return r; 2157 } 2158 2159 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2160 const ARMCPRegInfo *ri, bool isread) 2161 { 2162 CPAccessResult r = CP_ACCESS_OK; 2163 GICv3CPUState *cs = icc_cs_from_env(env); 2164 int el = arm_current_el(env); 2165 2166 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2167 el == 1 && !arm_is_secure_below_el3(env)) { 2168 /* Takes priority over a possible EL3 trap */ 2169 return CP_ACCESS_TRAP_EL2; 2170 } 2171 2172 if (env->cp15.scr_el3 & SCR_IRQ) { 2173 switch (el) { 2174 case 1: 2175 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2176 r = CP_ACCESS_TRAP_EL3; 2177 } 2178 break; 2179 case 2: 2180 r = CP_ACCESS_TRAP_EL3; 2181 break; 2182 case 3: 2183 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2184 r = CP_ACCESS_TRAP_EL3; 2185 } 2186 break; 2187 default: 2188 g_assert_not_reached(); 2189 } 2190 } 2191 2192 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2193 r = CP_ACCESS_TRAP; 2194 } 2195 return r; 2196 } 2197 2198 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2199 { 2200 GICv3CPUState *cs = icc_cs_from_env(env); 2201 2202 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2203 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2204 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2205 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2206 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2207 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2208 cs->icc_pmr_el1 = 0; 2209 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); 2210 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); 2211 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); 2212 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2213 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2214 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2215 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2216 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); 2217 2218 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2219 cs->ich_hcr_el2 = 0; 2220 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2221 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2222 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2223 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2224 } 2225 2226 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2227 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2228 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2229 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2230 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2231 .readfn = icc_pmr_read, 2232 .writefn = icc_pmr_write, 2233 /* We hang the whole cpu interface reset routine off here 2234 * rather than parcelling it out into one little function 2235 * per register 2236 */ 2237 .resetfn = icc_reset, 2238 }, 2239 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2240 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2241 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2242 .access = PL1_R, .accessfn = gicv3_fiq_access, 2243 .readfn = icc_iar0_read, 2244 }, 2245 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2246 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2247 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2248 .access = PL1_W, .accessfn = gicv3_fiq_access, 2249 .writefn = icc_eoir_write, 2250 }, 2251 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2252 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2253 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2254 .access = PL1_R, .accessfn = gicv3_fiq_access, 2255 .readfn = icc_hppir0_read, 2256 }, 2257 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2258 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2259 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2260 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2261 .readfn = icc_bpr_read, 2262 .writefn = icc_bpr_write, 2263 }, 2264 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2265 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2266 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2267 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2268 .readfn = icc_ap_read, 2269 .writefn = icc_ap_write, 2270 }, 2271 /* All the ICC_AP1R*_EL1 registers are banked */ 2272 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2274 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2275 .access = PL1_RW, .accessfn = gicv3_irq_access, 2276 .readfn = icc_ap_read, 2277 .writefn = icc_ap_write, 2278 }, 2279 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2280 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2281 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2282 .access = PL1_W, .accessfn = gicv3_dir_access, 2283 .writefn = icc_dir_write, 2284 }, 2285 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2286 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2287 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2288 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2289 .readfn = icc_rpr_read, 2290 }, 2291 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2292 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2293 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2294 .access = PL1_W, .accessfn = gicv3_sgi_access, 2295 .writefn = icc_sgi1r_write, 2296 }, 2297 { .name = "ICC_SGI1R", 2298 .cp = 15, .opc1 = 0, .crm = 12, 2299 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2300 .access = PL1_W, .accessfn = gicv3_sgi_access, 2301 .writefn = icc_sgi1r_write, 2302 }, 2303 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2304 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2305 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2306 .access = PL1_W, .accessfn = gicv3_sgi_access, 2307 .writefn = icc_asgi1r_write, 2308 }, 2309 { .name = "ICC_ASGI1R", 2310 .cp = 15, .opc1 = 1, .crm = 12, 2311 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2312 .access = PL1_W, .accessfn = gicv3_sgi_access, 2313 .writefn = icc_asgi1r_write, 2314 }, 2315 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2316 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2317 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2318 .access = PL1_W, .accessfn = gicv3_sgi_access, 2319 .writefn = icc_sgi0r_write, 2320 }, 2321 { .name = "ICC_SGI0R", 2322 .cp = 15, .opc1 = 2, .crm = 12, 2323 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2324 .access = PL1_W, .accessfn = gicv3_sgi_access, 2325 .writefn = icc_sgi0r_write, 2326 }, 2327 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2328 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2329 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2330 .access = PL1_R, .accessfn = gicv3_irq_access, 2331 .readfn = icc_iar1_read, 2332 }, 2333 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2334 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2335 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2336 .access = PL1_W, .accessfn = gicv3_irq_access, 2337 .writefn = icc_eoir_write, 2338 }, 2339 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2340 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2341 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2342 .access = PL1_R, .accessfn = gicv3_irq_access, 2343 .readfn = icc_hppir1_read, 2344 }, 2345 /* This register is banked */ 2346 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2347 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2348 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2349 .access = PL1_RW, .accessfn = gicv3_irq_access, 2350 .readfn = icc_bpr_read, 2351 .writefn = icc_bpr_write, 2352 }, 2353 /* This register is banked */ 2354 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2355 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2356 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2357 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2358 .readfn = icc_ctlr_el1_read, 2359 .writefn = icc_ctlr_el1_write, 2360 }, 2361 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2362 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2363 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2364 .access = PL1_RW, 2365 /* We don't support IRQ/FIQ bypass and system registers are 2366 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2367 * This register is banked but since it's constant we don't 2368 * need to do anything special. 2369 */ 2370 .resetvalue = 0x7, 2371 }, 2372 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2373 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2374 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2375 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2376 .readfn = icc_igrpen_read, 2377 .writefn = icc_igrpen_write, 2378 }, 2379 /* This register is banked */ 2380 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2381 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2382 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2383 .access = PL1_RW, .accessfn = gicv3_irq_access, 2384 .readfn = icc_igrpen_read, 2385 .writefn = icc_igrpen_write, 2386 }, 2387 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2388 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2389 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2390 .access = PL2_RW, 2391 /* We don't support IRQ/FIQ bypass and system registers are 2392 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2393 */ 2394 .resetvalue = 0xf, 2395 }, 2396 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2397 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2398 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2399 .access = PL3_RW, 2400 .readfn = icc_ctlr_el3_read, 2401 .writefn = icc_ctlr_el3_write, 2402 }, 2403 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2404 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2405 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2406 .access = PL3_RW, 2407 /* We don't support IRQ/FIQ bypass and system registers are 2408 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2409 */ 2410 .resetvalue = 0xf, 2411 }, 2412 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2413 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2414 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2415 .access = PL3_RW, 2416 .readfn = icc_igrpen1_el3_read, 2417 .writefn = icc_igrpen1_el3_write, 2418 }, 2419 }; 2420 2421 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { 2422 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2423 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2424 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2425 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2426 .readfn = icc_ap_read, 2427 .writefn = icc_ap_write, 2428 }, 2429 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2430 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2431 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2432 .access = PL1_RW, .accessfn = gicv3_irq_access, 2433 .readfn = icc_ap_read, 2434 .writefn = icc_ap_write, 2435 }, 2436 }; 2437 2438 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { 2439 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2440 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2441 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2442 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2443 .readfn = icc_ap_read, 2444 .writefn = icc_ap_write, 2445 }, 2446 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2447 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2448 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2449 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2450 .readfn = icc_ap_read, 2451 .writefn = icc_ap_write, 2452 }, 2453 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2454 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2455 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2456 .access = PL1_RW, .accessfn = gicv3_irq_access, 2457 .readfn = icc_ap_read, 2458 .writefn = icc_ap_write, 2459 }, 2460 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2461 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2462 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2463 .access = PL1_RW, .accessfn = gicv3_irq_access, 2464 .readfn = icc_ap_read, 2465 .writefn = icc_ap_write, 2466 }, 2467 }; 2468 2469 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2470 { 2471 GICv3CPUState *cs = icc_cs_from_env(env); 2472 int regno = ri->opc2 & 3; 2473 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2474 uint64_t value; 2475 2476 value = cs->ich_apr[grp][regno]; 2477 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2478 return value; 2479 } 2480 2481 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2482 uint64_t value) 2483 { 2484 GICv3CPUState *cs = icc_cs_from_env(env); 2485 int regno = ri->opc2 & 3; 2486 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2487 2488 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2489 2490 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2491 gicv3_cpuif_virt_irq_fiq_update(cs); 2492 } 2493 2494 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2495 { 2496 GICv3CPUState *cs = icc_cs_from_env(env); 2497 uint64_t value = cs->ich_hcr_el2; 2498 2499 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2500 return value; 2501 } 2502 2503 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2504 uint64_t value) 2505 { 2506 GICv3CPUState *cs = icc_cs_from_env(env); 2507 2508 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2509 2510 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2511 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2512 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2513 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2514 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2515 2516 cs->ich_hcr_el2 = value; 2517 gicv3_cpuif_virt_update(cs); 2518 } 2519 2520 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2521 { 2522 GICv3CPUState *cs = icc_cs_from_env(env); 2523 uint64_t value = cs->ich_vmcr_el2; 2524 2525 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2526 return value; 2527 } 2528 2529 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2530 uint64_t value) 2531 { 2532 GICv3CPUState *cs = icc_cs_from_env(env); 2533 2534 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2535 2536 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2537 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2538 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2539 value |= ICH_VMCR_EL2_VFIQEN; 2540 2541 cs->ich_vmcr_el2 = value; 2542 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2543 * by reading and writing back the fields. 2544 */ 2545 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2546 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2547 2548 gicv3_cpuif_virt_update(cs); 2549 } 2550 2551 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2552 { 2553 GICv3CPUState *cs = icc_cs_from_env(env); 2554 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2555 uint64_t value; 2556 2557 /* This read function handles all of: 2558 * 64-bit reads of the whole LR 2559 * 32-bit reads of the low half of the LR 2560 * 32-bit reads of the high half of the LR 2561 */ 2562 if (ri->state == ARM_CP_STATE_AA32) { 2563 if (ri->crm >= 14) { 2564 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2565 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2566 } else { 2567 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2568 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2569 } 2570 } else { 2571 value = cs->ich_lr_el2[regno]; 2572 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2573 } 2574 2575 return value; 2576 } 2577 2578 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2579 uint64_t value) 2580 { 2581 GICv3CPUState *cs = icc_cs_from_env(env); 2582 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2583 2584 /* This write function handles all of: 2585 * 64-bit writes to the whole LR 2586 * 32-bit writes to the low half of the LR 2587 * 32-bit writes to the high half of the LR 2588 */ 2589 if (ri->state == ARM_CP_STATE_AA32) { 2590 if (ri->crm >= 14) { 2591 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2592 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2593 } else { 2594 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2595 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2596 } 2597 } else { 2598 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2599 } 2600 2601 /* Enforce RES0 bits in priority field */ 2602 if (cs->vpribits < 8) { 2603 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2604 8 - cs->vpribits, 0); 2605 } 2606 2607 cs->ich_lr_el2[regno] = value; 2608 gicv3_cpuif_virt_update(cs); 2609 } 2610 2611 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2612 { 2613 GICv3CPUState *cs = icc_cs_from_env(env); 2614 uint64_t value; 2615 2616 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2617 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V 2618 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2619 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2620 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2621 2622 if (cs->gic->revision < 4) { 2623 value |= ICH_VTR_EL2_NV4; 2624 } 2625 2626 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2627 return value; 2628 } 2629 2630 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2631 { 2632 GICv3CPUState *cs = icc_cs_from_env(env); 2633 uint64_t value = maintenance_interrupt_state(cs); 2634 2635 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2636 return value; 2637 } 2638 2639 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2640 { 2641 GICv3CPUState *cs = icc_cs_from_env(env); 2642 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2643 2644 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2645 return value; 2646 } 2647 2648 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2649 { 2650 GICv3CPUState *cs = icc_cs_from_env(env); 2651 uint64_t value = 0; 2652 int i; 2653 2654 for (i = 0; i < cs->num_list_regs; i++) { 2655 uint64_t lr = cs->ich_lr_el2[i]; 2656 2657 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2658 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2659 value |= (1 << i); 2660 } 2661 } 2662 2663 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2664 return value; 2665 } 2666 2667 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2668 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2669 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2670 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2671 .access = PL2_RW, 2672 .readfn = ich_ap_read, 2673 .writefn = ich_ap_write, 2674 }, 2675 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2676 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2677 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2678 .access = PL2_RW, 2679 .readfn = ich_ap_read, 2680 .writefn = ich_ap_write, 2681 }, 2682 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2683 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2684 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2685 .access = PL2_RW, 2686 .readfn = ich_hcr_read, 2687 .writefn = ich_hcr_write, 2688 }, 2689 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2690 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2691 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2692 .access = PL2_R, 2693 .readfn = ich_vtr_read, 2694 }, 2695 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2696 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2697 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2698 .access = PL2_R, 2699 .readfn = ich_misr_read, 2700 }, 2701 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2702 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2703 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2704 .access = PL2_R, 2705 .readfn = ich_eisr_read, 2706 }, 2707 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2708 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2709 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2710 .access = PL2_R, 2711 .readfn = ich_elrsr_read, 2712 }, 2713 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2714 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2715 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2716 .access = PL2_RW, 2717 .readfn = ich_vmcr_read, 2718 .writefn = ich_vmcr_write, 2719 }, 2720 }; 2721 2722 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2723 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2724 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2725 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2726 .access = PL2_RW, 2727 .readfn = ich_ap_read, 2728 .writefn = ich_ap_write, 2729 }, 2730 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2731 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2732 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2733 .access = PL2_RW, 2734 .readfn = ich_ap_read, 2735 .writefn = ich_ap_write, 2736 }, 2737 }; 2738 2739 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2740 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2741 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2742 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2743 .access = PL2_RW, 2744 .readfn = ich_ap_read, 2745 .writefn = ich_ap_write, 2746 }, 2747 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2748 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2749 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2750 .access = PL2_RW, 2751 .readfn = ich_ap_read, 2752 .writefn = ich_ap_write, 2753 }, 2754 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2755 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2756 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2757 .access = PL2_RW, 2758 .readfn = ich_ap_read, 2759 .writefn = ich_ap_write, 2760 }, 2761 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2762 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2763 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2764 .access = PL2_RW, 2765 .readfn = ich_ap_read, 2766 .writefn = ich_ap_write, 2767 }, 2768 }; 2769 2770 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2771 { 2772 GICv3CPUState *cs = opaque; 2773 2774 gicv3_cpuif_update(cs); 2775 /* 2776 * Because vLPIs are only pending in NonSecure state, 2777 * an EL change can change the VIRQ/VFIQ status (but 2778 * cannot affect the maintenance interrupt state) 2779 */ 2780 gicv3_cpuif_virt_irq_fiq_update(cs); 2781 } 2782 2783 void gicv3_init_cpuif(GICv3State *s) 2784 { 2785 /* Called from the GICv3 realize function; register our system 2786 * registers with the CPU 2787 */ 2788 int i; 2789 2790 for (i = 0; i < s->num_cpu; i++) { 2791 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2792 GICv3CPUState *cs = &s->cpu[i]; 2793 2794 /* 2795 * If the CPU doesn't define a GICv3 configuration, probably because 2796 * in real hardware it doesn't have one, then we use default values 2797 * matching the one used by most Arm CPUs. This applies to: 2798 * cpu->gic_num_lrs 2799 * cpu->gic_vpribits 2800 * cpu->gic_vprebits 2801 */ 2802 2803 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2804 * in define_arm_cp_regs_with_opaque(), because when we're called back 2805 * it might be with code translated by CPU 0 but run by CPU 1, in 2806 * which case we'd get the wrong value. 2807 * So instead we define the regs with no ri->opaque info, and 2808 * get back to the GICv3CPUState from the CPUARMState. 2809 */ 2810 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2811 2812 /* 2813 * For the moment, retain the existing behaviour of 8 priority bits; 2814 * in a following commit we will take this from the CPU state, 2815 * as we do for the virtual priority bits. 2816 */ 2817 cs->pribits = 8; 2818 /* 2819 * The GICv3 has separate ID register fields for virtual priority 2820 * and preemption bit values, but only a single ID register field 2821 * for the physical priority bits. The preemption bit count is 2822 * always the same as the priority bit count, except that 8 bits 2823 * of priority means 7 preemption bits. We precalculate the 2824 * preemption bits because it simplifies the code and makes the 2825 * parallels between the virtual and physical bits of the GIC 2826 * a bit clearer. 2827 */ 2828 cs->prebits = cs->pribits; 2829 if (cs->prebits == 8) { 2830 cs->prebits--; 2831 } 2832 /* 2833 * Check that CPU code defining pribits didn't violate 2834 * architectural constraints our implementation relies on. 2835 */ 2836 g_assert(cs->pribits >= 4 && cs->pribits <= 8); 2837 2838 /* 2839 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions 2840 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. 2841 */ 2842 if (cs->prebits >= 6) { 2843 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); 2844 } 2845 if (cs->prebits == 7) { 2846 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); 2847 } 2848 2849 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 2850 int j; 2851 2852 cs->num_list_regs = cpu->gic_num_lrs ?: 4; 2853 cs->vpribits = cpu->gic_vpribits ?: 5; 2854 cs->vprebits = cpu->gic_vprebits ?: 5; 2855 2856 /* Check against architectural constraints: getting these 2857 * wrong would be a bug in the CPU code defining these, 2858 * and the implementation relies on them holding. 2859 */ 2860 g_assert(cs->vprebits <= cs->vpribits); 2861 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2862 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2863 2864 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2865 2866 for (j = 0; j < cs->num_list_regs; j++) { 2867 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2868 * are split into two cp15 regs, LR (the low part, with the 2869 * same encoding as the AArch64 LR) and LRC (the high part). 2870 */ 2871 ARMCPRegInfo lr_regset[] = { 2872 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2873 .opc0 = 3, .opc1 = 4, .crn = 12, 2874 .crm = 12 + (j >> 3), .opc2 = j & 7, 2875 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2876 .access = PL2_RW, 2877 .readfn = ich_lr_read, 2878 .writefn = ich_lr_write, 2879 }, 2880 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2881 .cp = 15, .opc1 = 4, .crn = 12, 2882 .crm = 14 + (j >> 3), .opc2 = j & 7, 2883 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2884 .access = PL2_RW, 2885 .readfn = ich_lr_read, 2886 .writefn = ich_lr_write, 2887 }, 2888 }; 2889 define_arm_cp_regs(cpu, lr_regset); 2890 } 2891 if (cs->vprebits >= 6) { 2892 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2893 } 2894 if (cs->vprebits == 7) { 2895 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2896 } 2897 } 2898 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2899 } 2900 } 2901