1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "cpu.h" 21 22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 23 { 24 ARMCPU *arm_cpu = ARM_CPU(cpu); 25 CPUARMState *env = &arm_cpu->env; 26 27 env->gicv3state = (void *)s; 28 }; 29 30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 31 { 32 /* Given the CPU, find the right GICv3CPUState struct. 33 * Since we registered the CPU interface with the EL change hook as 34 * the opaque pointer, we can just directly get from the CPU to it. 35 */ 36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env)); 37 } 38 39 static bool gicv3_use_ns_bank(CPUARMState *env) 40 { 41 /* Return true if we should use the NonSecure bank for a banked GIC 42 * CPU interface register. Note that this differs from the 43 * access_secure_reg() function because GICv3 banked registers are 44 * banked even for AArch64, unlike the other CPU system registers. 45 */ 46 return !arm_is_secure_below_el3(env); 47 } 48 49 /* The minimum BPR for the virtual interface is a configurable property */ 50 static inline int icv_min_vbpr(GICv3CPUState *cs) 51 { 52 return 7 - cs->vprebits; 53 } 54 55 /* Simple accessor functions for LR fields */ 56 static uint32_t ich_lr_vintid(uint64_t lr) 57 { 58 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 59 } 60 61 static uint32_t ich_lr_pintid(uint64_t lr) 62 { 63 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 64 } 65 66 static uint32_t ich_lr_prio(uint64_t lr) 67 { 68 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 69 } 70 71 static int ich_lr_state(uint64_t lr) 72 { 73 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 74 } 75 76 static bool icv_access(CPUARMState *env, int hcr_flags) 77 { 78 /* Return true if this ICC_ register access should really be 79 * directed to an ICV_ access. hcr_flags is a mask of 80 * HCR_EL2 bits to check: we treat this as an ICV_ access 81 * if we are in NS EL1 and at least one of the specified 82 * HCR_EL2 bits is set. 83 * 84 * ICV registers fall into four categories: 85 * * access if NS EL1 and HCR_EL2.FMO == 1: 86 * all ICV regs with '0' in their name 87 * * access if NS EL1 and HCR_EL2.IMO == 1: 88 * all ICV regs with '1' in their name 89 * * access if NS EL1 and either IMO or FMO == 1: 90 * CTLR, DIR, PMR, RPR 91 */ 92 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 93 && !arm_is_secure_below_el3(env); 94 } 95 96 static int read_vbpr(GICv3CPUState *cs, int grp) 97 { 98 /* Read VBPR value out of the VMCR field (caller must handle 99 * VCBPR effects if required) 100 */ 101 if (grp == GICV3_G0) { 102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 103 ICH_VMCR_EL2_VBPR0_LENGTH); 104 } else { 105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 106 ICH_VMCR_EL2_VBPR1_LENGTH); 107 } 108 } 109 110 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 111 { 112 /* Write new VBPR1 value, handling the "writing a value less than 113 * the minimum sets it to the minimum" semantics. 114 */ 115 int min = icv_min_vbpr(cs); 116 117 if (grp != GICV3_G0) { 118 min++; 119 } 120 121 value = MAX(value, min); 122 123 if (grp == GICV3_G0) { 124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 125 ICH_VMCR_EL2_VBPR0_LENGTH, value); 126 } else { 127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 128 ICH_VMCR_EL2_VBPR1_LENGTH, value); 129 } 130 } 131 132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 133 { 134 /* Return a mask word which clears the unimplemented priority bits 135 * from a priority value for a virtual interrupt. (Not to be confused 136 * with the group priority, whose mask depends on the value of VBPR 137 * for the interrupt group.) 138 */ 139 return ~0U << (8 - cs->vpribits); 140 } 141 142 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 143 { 144 /* Calculate the current running priority based on the set bits 145 * in the ICH Active Priority Registers. 146 */ 147 int i; 148 int aprmax = 1 << (cs->vprebits - 5); 149 150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 151 152 for (i = 0; i < aprmax; i++) { 153 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 154 cs->ich_apr[GICV3_G1NS][i]; 155 156 if (!apr) { 157 continue; 158 } 159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 160 } 161 /* No current active interrupts: return idle priority */ 162 return 0xff; 163 } 164 165 static int hppvi_index(GICv3CPUState *cs) 166 { 167 /* Return the list register index of the highest priority pending 168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 169 * pseudocode. If no pending virtual interrupts, return -1. 170 */ 171 int idx = -1; 172 int i; 173 /* Note that a list register entry with a priority of 0xff will 174 * never be reported by this function; this is the architecturally 175 * correct behaviour. 176 */ 177 int prio = 0xff; 178 179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 180 /* Both groups disabled, definitely nothing to do */ 181 return idx; 182 } 183 184 for (i = 0; i < cs->num_list_regs; i++) { 185 uint64_t lr = cs->ich_lr_el2[i]; 186 int thisprio; 187 188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 189 /* Not Pending */ 190 continue; 191 } 192 193 /* Ignore interrupts if relevant group enable not set */ 194 if (lr & ICH_LR_EL2_GROUP) { 195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 196 continue; 197 } 198 } else { 199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 200 continue; 201 } 202 } 203 204 thisprio = ich_lr_prio(lr); 205 206 if (thisprio < prio) { 207 prio = thisprio; 208 idx = i; 209 } 210 } 211 212 return idx; 213 } 214 215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 216 { 217 /* Return a mask word which clears the subpriority bits from 218 * a priority value for a virtual interrupt in the specified group. 219 * This depends on the VBPR value: 220 * a BPR of 0 means the group priority bits are [7:1]; 221 * a BPR of 1 means they are [7:2], and so on down to 222 * a BPR of 7 meaning no group priority bits at all. 223 * Which BPR to use depends on the group of the interrupt and 224 * the current ICH_VMCR_EL2.VCBPR settings. 225 */ 226 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 227 group = GICV3_G0; 228 } 229 230 return ~0U << (read_vbpr(cs, group) + 1); 231 } 232 233 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 234 { 235 /* Return true if we can signal this virtual interrupt defined by 236 * the given list register value; see the pseudocode functions 237 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 238 * Compare also icc_hppi_can_preempt() which is the non-virtual 239 * equivalent of these checks. 240 */ 241 int grp; 242 uint32_t mask, prio, rprio, vpmr; 243 244 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 245 /* Virtual interface disabled */ 246 return false; 247 } 248 249 /* We don't need to check that this LR is in Pending state because 250 * that has already been done in hppvi_index(). 251 */ 252 253 prio = ich_lr_prio(lr); 254 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 255 ICH_VMCR_EL2_VPMR_LENGTH); 256 257 if (prio >= vpmr) { 258 /* Priority mask masks this interrupt */ 259 return false; 260 } 261 262 rprio = ich_highest_active_virt_prio(cs); 263 if (rprio == 0xff) { 264 /* No running interrupt so we can preempt */ 265 return true; 266 } 267 268 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 269 270 mask = icv_gprio_mask(cs, grp); 271 272 /* We only preempt a running interrupt if the pending interrupt's 273 * group priority is sufficient (the subpriorities are not considered). 274 */ 275 if ((prio & mask) < (rprio & mask)) { 276 return true; 277 } 278 279 return false; 280 } 281 282 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 283 uint32_t *misr) 284 { 285 /* Return a set of bits indicating the EOI maintenance interrupt status 286 * for each list register. The EOI maintenance interrupt status is 287 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 288 * (see the GICv3 spec for the ICH_EISR_EL2 register). 289 * If misr is not NULL then we should also collect the information 290 * about the MISR.EOI, MISR.NP and MISR.U bits. 291 */ 292 uint32_t value = 0; 293 int validcount = 0; 294 bool seenpending = false; 295 int i; 296 297 for (i = 0; i < cs->num_list_regs; i++) { 298 uint64_t lr = cs->ich_lr_el2[i]; 299 300 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 301 == ICH_LR_EL2_EOI) { 302 value |= (1 << i); 303 } 304 if ((lr & ICH_LR_EL2_STATE_MASK)) { 305 validcount++; 306 } 307 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 308 seenpending = true; 309 } 310 } 311 312 if (misr) { 313 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 314 *misr |= ICH_MISR_EL2_U; 315 } 316 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 317 *misr |= ICH_MISR_EL2_NP; 318 } 319 if (value) { 320 *misr |= ICH_MISR_EL2_EOI; 321 } 322 } 323 return value; 324 } 325 326 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 327 { 328 /* Return a set of bits indicating the maintenance interrupt status 329 * (as seen in the ICH_MISR_EL2 register). 330 */ 331 uint32_t value = 0; 332 333 /* Scan list registers and fill in the U, NP and EOI bits */ 334 eoi_maintenance_interrupt_state(cs, &value); 335 336 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 337 value |= ICH_MISR_EL2_LRENP; 338 } 339 340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 341 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 342 value |= ICH_MISR_EL2_VGRP0E; 343 } 344 345 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 346 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 347 value |= ICH_MISR_EL2_VGRP0D; 348 } 349 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 350 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 351 value |= ICH_MISR_EL2_VGRP1E; 352 } 353 354 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 355 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 356 value |= ICH_MISR_EL2_VGRP1D; 357 } 358 359 return value; 360 } 361 362 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 363 { 364 /* Tell the CPU about any pending virtual interrupts or 365 * maintenance interrupts, following a change to the state 366 * of the CPU interface relevant to virtual interrupts. 367 * 368 * CAUTION: this function will call qemu_set_irq() on the 369 * CPU maintenance IRQ line, which is typically wired up 370 * to the GIC as a per-CPU interrupt. This means that it 371 * will recursively call back into the GIC code via 372 * gicv3_redist_set_irq() and thus into the CPU interface code's 373 * gicv3_cpuif_update(). It is therefore important that this 374 * function is only called as the final action of a CPU interface 375 * register write implementation, after all the GIC state 376 * fields have been updated. gicv3_cpuif_update() also must 377 * not cause this function to be called, but that happens 378 * naturally as a result of there being no architectural 379 * linkage between the physical and virtual GIC logic. 380 */ 381 int idx; 382 int irqlevel = 0; 383 int fiqlevel = 0; 384 int maintlevel = 0; 385 386 idx = hppvi_index(cs); 387 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 388 if (idx >= 0) { 389 uint64_t lr = cs->ich_lr_el2[idx]; 390 391 if (icv_hppi_can_preempt(cs, lr)) { 392 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 393 if (lr & ICH_LR_EL2_GROUP) { 394 irqlevel = 1; 395 } else { 396 fiqlevel = 1; 397 } 398 } 399 } 400 401 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 402 maintlevel = maintenance_interrupt_state(cs); 403 } 404 405 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 406 irqlevel, maintlevel); 407 408 qemu_set_irq(cs->parent_vfiq, fiqlevel); 409 qemu_set_irq(cs->parent_virq, irqlevel); 410 qemu_set_irq(cs->maintenance_irq, maintlevel); 411 } 412 413 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 414 { 415 GICv3CPUState *cs = icc_cs_from_env(env); 416 int regno = ri->opc2 & 3; 417 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 418 uint64_t value = cs->ich_apr[grp][regno]; 419 420 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 421 return value; 422 } 423 424 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 GICv3CPUState *cs = icc_cs_from_env(env); 428 int regno = ri->opc2 & 3; 429 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 430 431 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 432 433 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 434 435 gicv3_cpuif_virt_update(cs); 436 return; 437 } 438 439 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 440 { 441 GICv3CPUState *cs = icc_cs_from_env(env); 442 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 443 uint64_t bpr; 444 bool satinc = false; 445 446 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 447 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 448 grp = GICV3_G0; 449 satinc = true; 450 } 451 452 bpr = read_vbpr(cs, grp); 453 454 if (satinc) { 455 bpr++; 456 bpr = MIN(bpr, 7); 457 } 458 459 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 460 461 return bpr; 462 } 463 464 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 465 uint64_t value) 466 { 467 GICv3CPUState *cs = icc_cs_from_env(env); 468 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 469 470 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 471 gicv3_redist_affid(cs), value); 472 473 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 474 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 475 return; 476 } 477 478 write_vbpr(cs, grp, value); 479 480 gicv3_cpuif_virt_update(cs); 481 } 482 483 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 484 { 485 GICv3CPUState *cs = icc_cs_from_env(env); 486 uint64_t value; 487 488 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 489 ICH_VMCR_EL2_VPMR_LENGTH); 490 491 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 492 return value; 493 } 494 495 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 496 uint64_t value) 497 { 498 GICv3CPUState *cs = icc_cs_from_env(env); 499 500 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 501 502 value &= icv_fullprio_mask(cs); 503 504 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 505 ICH_VMCR_EL2_VPMR_LENGTH, value); 506 507 gicv3_cpuif_virt_update(cs); 508 } 509 510 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 511 { 512 GICv3CPUState *cs = icc_cs_from_env(env); 513 int enbit; 514 uint64_t value; 515 516 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 517 value = extract64(cs->ich_vmcr_el2, enbit, 1); 518 519 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 520 gicv3_redist_affid(cs), value); 521 return value; 522 } 523 524 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 GICv3CPUState *cs = icc_cs_from_env(env); 528 int enbit; 529 530 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 531 gicv3_redist_affid(cs), value); 532 533 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 534 535 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 536 gicv3_cpuif_virt_update(cs); 537 } 538 539 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 540 { 541 GICv3CPUState *cs = icc_cs_from_env(env); 542 uint64_t value; 543 544 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 545 * should match the ones reported in ich_vtr_read(). 546 */ 547 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 548 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 549 550 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 551 value |= ICC_CTLR_EL1_EOIMODE; 552 } 553 554 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 555 value |= ICC_CTLR_EL1_CBPR; 556 } 557 558 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 559 return value; 560 } 561 562 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 563 uint64_t value) 564 { 565 GICv3CPUState *cs = icc_cs_from_env(env); 566 567 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 568 569 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 570 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 571 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 572 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 573 574 gicv3_cpuif_virt_update(cs); 575 } 576 577 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 578 { 579 GICv3CPUState *cs = icc_cs_from_env(env); 580 int prio = ich_highest_active_virt_prio(cs); 581 582 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 583 return prio; 584 } 585 586 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 587 { 588 GICv3CPUState *cs = icc_cs_from_env(env); 589 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 590 int idx = hppvi_index(cs); 591 uint64_t value = INTID_SPURIOUS; 592 593 if (idx >= 0) { 594 uint64_t lr = cs->ich_lr_el2[idx]; 595 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 596 597 if (grp == thisgrp) { 598 value = ich_lr_vintid(lr); 599 } 600 } 601 602 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 603 return value; 604 } 605 606 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 607 { 608 /* Activate the interrupt in the specified list register 609 * by moving it from Pending to Active state, and update the 610 * Active Priority Registers. 611 */ 612 uint32_t mask = icv_gprio_mask(cs, grp); 613 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 614 int aprbit = prio >> (8 - cs->vprebits); 615 int regno = aprbit / 32; 616 int regbit = aprbit % 32; 617 618 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 619 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 620 cs->ich_apr[grp][regno] |= (1 << regbit); 621 } 622 623 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 624 { 625 GICv3CPUState *cs = icc_cs_from_env(env); 626 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 627 int idx = hppvi_index(cs); 628 uint64_t intid = INTID_SPURIOUS; 629 630 if (idx >= 0) { 631 uint64_t lr = cs->ich_lr_el2[idx]; 632 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 633 634 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 635 intid = ich_lr_vintid(lr); 636 if (intid < INTID_SECURE) { 637 icv_activate_irq(cs, idx, grp); 638 } else { 639 /* Interrupt goes from Pending to Invalid */ 640 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 641 /* We will now return the (bogus) ID from the list register, 642 * as per the pseudocode. 643 */ 644 } 645 } 646 } 647 648 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 649 gicv3_redist_affid(cs), intid); 650 return intid; 651 } 652 653 static int icc_highest_active_prio(GICv3CPUState *cs) 654 { 655 /* Calculate the current running priority based on the set bits 656 * in the Active Priority Registers. 657 */ 658 int i; 659 660 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 661 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 662 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 663 664 if (!apr) { 665 continue; 666 } 667 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 668 } 669 /* No current active interrupts: return idle priority */ 670 return 0xff; 671 } 672 673 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 674 { 675 /* Return a mask word which clears the subpriority bits from 676 * a priority value for an interrupt in the specified group. 677 * This depends on the BPR value: 678 * a BPR of 0 means the group priority bits are [7:1]; 679 * a BPR of 1 means they are [7:2], and so on down to 680 * a BPR of 7 meaning no group priority bits at all. 681 * Which BPR to use depends on the group of the interrupt and 682 * the current ICC_CTLR.CBPR settings. 683 */ 684 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 685 (group == GICV3_G1NS && 686 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 687 group = GICV3_G0; 688 } 689 690 return ~0U << ((cs->icc_bpr[group] & 7) + 1); 691 } 692 693 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 694 { 695 /* Return true if there is no pending interrupt, or the 696 * highest priority pending interrupt is in a group which has been 697 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 698 */ 699 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 700 } 701 702 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 703 { 704 /* Return true if we have a pending interrupt of sufficient 705 * priority to preempt. 706 */ 707 int rprio; 708 uint32_t mask; 709 710 if (icc_no_enabled_hppi(cs)) { 711 return false; 712 } 713 714 if (cs->hppi.prio >= cs->icc_pmr_el1) { 715 /* Priority mask masks this interrupt */ 716 return false; 717 } 718 719 rprio = icc_highest_active_prio(cs); 720 if (rprio == 0xff) { 721 /* No currently running interrupt so we can preempt */ 722 return true; 723 } 724 725 mask = icc_gprio_mask(cs, cs->hppi.grp); 726 727 /* We only preempt a running interrupt if the pending interrupt's 728 * group priority is sufficient (the subpriorities are not considered). 729 */ 730 if ((cs->hppi.prio & mask) < (rprio & mask)) { 731 return true; 732 } 733 734 return false; 735 } 736 737 void gicv3_cpuif_update(GICv3CPUState *cs) 738 { 739 /* Tell the CPU about its highest priority pending interrupt */ 740 int irqlevel = 0; 741 int fiqlevel = 0; 742 ARMCPU *cpu = ARM_CPU(cs->cpu); 743 CPUARMState *env = &cpu->env; 744 745 g_assert(qemu_mutex_iothread_locked()); 746 747 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 748 cs->hppi.grp, cs->hppi.prio); 749 750 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 751 /* If a Security-enabled GIC sends a G1S interrupt to a 752 * Security-disabled CPU, we must treat it as if it were G0. 753 */ 754 cs->hppi.grp = GICV3_G0; 755 } 756 757 if (icc_hppi_can_preempt(cs)) { 758 /* We have an interrupt: should we signal it as IRQ or FIQ? 759 * This is described in the GICv3 spec section 4.6.2. 760 */ 761 bool isfiq; 762 763 switch (cs->hppi.grp) { 764 case GICV3_G0: 765 isfiq = true; 766 break; 767 case GICV3_G1: 768 isfiq = (!arm_is_secure(env) || 769 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 770 break; 771 case GICV3_G1NS: 772 isfiq = arm_is_secure(env); 773 break; 774 default: 775 g_assert_not_reached(); 776 } 777 778 if (isfiq) { 779 fiqlevel = 1; 780 } else { 781 irqlevel = 1; 782 } 783 } 784 785 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 786 787 qemu_set_irq(cs->parent_fiq, fiqlevel); 788 qemu_set_irq(cs->parent_irq, irqlevel); 789 } 790 791 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 792 { 793 GICv3CPUState *cs = icc_cs_from_env(env); 794 uint32_t value = cs->icc_pmr_el1; 795 796 if (icv_access(env, HCR_FMO | HCR_IMO)) { 797 return icv_pmr_read(env, ri); 798 } 799 800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 801 (env->cp15.scr_el3 & SCR_FIQ)) { 802 /* NS access and Group 0 is inaccessible to NS: return the 803 * NS view of the current priority 804 */ 805 if (value & 0x80) { 806 /* Secure priorities not visible to NS */ 807 value = 0; 808 } else if (value != 0xff) { 809 value = (value << 1) & 0xff; 810 } 811 } 812 813 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 814 815 return value; 816 } 817 818 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 819 uint64_t value) 820 { 821 GICv3CPUState *cs = icc_cs_from_env(env); 822 823 if (icv_access(env, HCR_FMO | HCR_IMO)) { 824 return icv_pmr_write(env, ri, value); 825 } 826 827 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 828 829 value &= 0xff; 830 831 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 832 (env->cp15.scr_el3 & SCR_FIQ)) { 833 /* NS access and Group 0 is inaccessible to NS: return the 834 * NS view of the current priority 835 */ 836 if (!(cs->icc_pmr_el1 & 0x80)) { 837 /* Current PMR in the secure range, don't allow NS to change it */ 838 return; 839 } 840 value = (value >> 1) & 0x80; 841 } 842 cs->icc_pmr_el1 = value; 843 gicv3_cpuif_update(cs); 844 } 845 846 static void icc_activate_irq(GICv3CPUState *cs, int irq) 847 { 848 /* Move the interrupt from the Pending state to Active, and update 849 * the Active Priority Registers 850 */ 851 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 852 int prio = cs->hppi.prio & mask; 853 int aprbit = prio >> 1; 854 int regno = aprbit / 32; 855 int regbit = aprbit % 32; 856 857 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 858 859 if (irq < GIC_INTERNAL) { 860 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 861 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 862 gicv3_redist_update(cs); 863 } else { 864 gicv3_gicd_active_set(cs->gic, irq); 865 gicv3_gicd_pending_clear(cs->gic, irq); 866 gicv3_update(cs->gic, irq, 1); 867 } 868 } 869 870 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 871 { 872 /* Return the highest priority pending interrupt register value 873 * for group 0. 874 */ 875 bool irq_is_secure; 876 877 if (cs->hppi.prio == 0xff) { 878 return INTID_SPURIOUS; 879 } 880 881 /* Check whether we can return the interrupt or if we should return 882 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 883 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 884 * is always zero.) 885 */ 886 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 887 (cs->hppi.grp != GICV3_G1NS)); 888 889 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 890 return INTID_SPURIOUS; 891 } 892 if (irq_is_secure && !arm_is_secure(env)) { 893 /* Secure interrupts not visible to Nonsecure */ 894 return INTID_SPURIOUS; 895 } 896 897 if (cs->hppi.grp != GICV3_G0) { 898 /* Indicate to EL3 that there's a Group 1 interrupt for the other 899 * state pending. 900 */ 901 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 902 } 903 904 return cs->hppi.irq; 905 } 906 907 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 908 { 909 /* Return the highest priority pending interrupt register value 910 * for group 1. 911 */ 912 bool irq_is_secure; 913 914 if (cs->hppi.prio == 0xff) { 915 return INTID_SPURIOUS; 916 } 917 918 /* Check whether we can return the interrupt or if we should return 919 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 921 * is always zero.) 922 */ 923 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 924 (cs->hppi.grp != GICV3_G1NS)); 925 926 if (cs->hppi.grp == GICV3_G0) { 927 /* Group 0 interrupts not visible via HPPIR1 */ 928 return INTID_SPURIOUS; 929 } 930 if (irq_is_secure) { 931 if (!arm_is_secure(env)) { 932 /* Secure interrupts not visible in Non-secure */ 933 return INTID_SPURIOUS; 934 } 935 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 936 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 937 return INTID_SPURIOUS; 938 } 939 940 return cs->hppi.irq; 941 } 942 943 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 944 { 945 GICv3CPUState *cs = icc_cs_from_env(env); 946 uint64_t intid; 947 948 if (icv_access(env, HCR_FMO)) { 949 return icv_iar_read(env, ri); 950 } 951 952 if (!icc_hppi_can_preempt(cs)) { 953 intid = INTID_SPURIOUS; 954 } else { 955 intid = icc_hppir0_value(cs, env); 956 } 957 958 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 959 icc_activate_irq(cs, intid); 960 } 961 962 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 963 return intid; 964 } 965 966 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 967 { 968 GICv3CPUState *cs = icc_cs_from_env(env); 969 uint64_t intid; 970 971 if (icv_access(env, HCR_IMO)) { 972 return icv_iar_read(env, ri); 973 } 974 975 if (!icc_hppi_can_preempt(cs)) { 976 intid = INTID_SPURIOUS; 977 } else { 978 intid = icc_hppir1_value(cs, env); 979 } 980 981 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 982 icc_activate_irq(cs, intid); 983 } 984 985 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 986 return intid; 987 } 988 989 static void icc_drop_prio(GICv3CPUState *cs, int grp) 990 { 991 /* Drop the priority of the currently active interrupt in 992 * the specified group. 993 * 994 * Note that we can guarantee (because of the requirement to nest 995 * ICC_IAR reads [which activate an interrupt and raise priority] 996 * with ICC_EOIR writes [which drop the priority for the interrupt]) 997 * that the interrupt we're being called for is the highest priority 998 * active interrupt, meaning that it has the lowest set bit in the 999 * APR registers. 1000 * 1001 * If the guest does not honour the ordering constraints then the 1002 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1003 * the values of the APR registers might become incorrect and the 1004 * running priority will be wrong, so interrupts that should preempt 1005 * might not do so, and interrupts that should not preempt might do so. 1006 */ 1007 int i; 1008 1009 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1010 uint64_t *papr = &cs->icc_apr[grp][i]; 1011 1012 if (!*papr) { 1013 continue; 1014 } 1015 /* Clear the lowest set bit */ 1016 *papr &= *papr - 1; 1017 break; 1018 } 1019 1020 /* running priority change means we need an update for this cpu i/f */ 1021 gicv3_cpuif_update(cs); 1022 } 1023 1024 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1025 { 1026 /* Return true if we should split priority drop and interrupt 1027 * deactivation, ie whether the relevant EOIMode bit is set. 1028 */ 1029 if (arm_is_el3_or_mon(env)) { 1030 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1031 } 1032 if (arm_is_secure_below_el3(env)) { 1033 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1034 } else { 1035 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1036 } 1037 } 1038 1039 static int icc_highest_active_group(GICv3CPUState *cs) 1040 { 1041 /* Return the group with the highest priority active interrupt. 1042 * We can do this by just comparing the APRs to see which one 1043 * has the lowest set bit. 1044 * (If more than one group is active at the same priority then 1045 * we're in UNPREDICTABLE territory.) 1046 */ 1047 int i; 1048 1049 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1050 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1051 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1052 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1053 1054 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1055 return GICV3_G1NS; 1056 } 1057 if (g1ctz < g0ctz) { 1058 return GICV3_G1; 1059 } 1060 if (g0ctz < 32) { 1061 return GICV3_G0; 1062 } 1063 } 1064 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1065 * ignores the spurious EOI attempt. 1066 */ 1067 return -1; 1068 } 1069 1070 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1071 { 1072 if (irq < GIC_INTERNAL) { 1073 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1074 gicv3_redist_update(cs); 1075 } else { 1076 gicv3_gicd_active_clear(cs->gic, irq); 1077 gicv3_update(cs->gic, irq, 1); 1078 } 1079 } 1080 1081 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1082 { 1083 /* Return true if we should split priority drop and interrupt 1084 * deactivation, ie whether the virtual EOIMode bit is set. 1085 */ 1086 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1087 } 1088 1089 static int icv_find_active(GICv3CPUState *cs, int irq) 1090 { 1091 /* Given an interrupt number for an active interrupt, return the index 1092 * of the corresponding list register, or -1 if there is no match. 1093 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1094 */ 1095 int i; 1096 1097 for (i = 0; i < cs->num_list_regs; i++) { 1098 uint64_t lr = cs->ich_lr_el2[i]; 1099 1100 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1101 return i; 1102 } 1103 } 1104 1105 return -1; 1106 } 1107 1108 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1109 { 1110 /* Deactivate the interrupt in the specified list register index */ 1111 uint64_t lr = cs->ich_lr_el2[idx]; 1112 1113 if (lr & ICH_LR_EL2_HW) { 1114 /* Deactivate the associated physical interrupt */ 1115 int pirq = ich_lr_pintid(lr); 1116 1117 if (pirq < INTID_SECURE) { 1118 icc_deactivate_irq(cs, pirq); 1119 } 1120 } 1121 1122 /* Clear the 'active' part of the state, so ActivePending->Pending 1123 * and Active->Invalid. 1124 */ 1125 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1126 cs->ich_lr_el2[idx] = lr; 1127 } 1128 1129 static void icv_increment_eoicount(GICv3CPUState *cs) 1130 { 1131 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1132 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1133 ICH_HCR_EL2_EOICOUNT_LENGTH); 1134 1135 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1136 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1137 } 1138 1139 static int icv_drop_prio(GICv3CPUState *cs) 1140 { 1141 /* Drop the priority of the currently active virtual interrupt 1142 * (favouring group 0 if there is a set active bit at 1143 * the same priority for both group 0 and group 1). 1144 * Return the priority value for the bit we just cleared, 1145 * or 0xff if no bits were set in the AP registers at all. 1146 * Note that though the ich_apr[] are uint64_t only the low 1147 * 32 bits are actually relevant. 1148 */ 1149 int i; 1150 int aprmax = 1 << (cs->vprebits - 5); 1151 1152 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1153 1154 for (i = 0; i < aprmax; i++) { 1155 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1156 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1157 int apr0count, apr1count; 1158 1159 if (!*papr0 && !*papr1) { 1160 continue; 1161 } 1162 1163 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1164 * because we need to return the bit number we cleared so 1165 * it can be compared against the list register's priority field. 1166 */ 1167 apr0count = ctz32(*papr0); 1168 apr1count = ctz32(*papr1); 1169 1170 if (apr0count <= apr1count) { 1171 *papr0 &= *papr0 - 1; 1172 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1173 } else { 1174 *papr1 &= *papr1 - 1; 1175 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1176 } 1177 } 1178 return 0xff; 1179 } 1180 1181 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1182 uint64_t value) 1183 { 1184 /* Deactivate interrupt */ 1185 GICv3CPUState *cs = icc_cs_from_env(env); 1186 int idx; 1187 int irq = value & 0xffffff; 1188 1189 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1190 1191 if (irq >= cs->gic->num_irq) { 1192 /* Also catches special interrupt numbers and LPIs */ 1193 return; 1194 } 1195 1196 if (!icv_eoi_split(env, cs)) { 1197 return; 1198 } 1199 1200 idx = icv_find_active(cs, irq); 1201 1202 if (idx < 0) { 1203 /* No list register matching this, so increment the EOI count 1204 * (might trigger a maintenance interrupt) 1205 */ 1206 icv_increment_eoicount(cs); 1207 } else { 1208 icv_deactivate_irq(cs, idx); 1209 } 1210 1211 gicv3_cpuif_virt_update(cs); 1212 } 1213 1214 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1215 uint64_t value) 1216 { 1217 /* End of Interrupt */ 1218 GICv3CPUState *cs = icc_cs_from_env(env); 1219 int irq = value & 0xffffff; 1220 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1221 int idx, dropprio; 1222 1223 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1224 gicv3_redist_affid(cs), value); 1225 1226 if (irq >= cs->gic->num_irq) { 1227 /* Also catches special interrupt numbers and LPIs */ 1228 return; 1229 } 1230 1231 /* We implement the IMPDEF choice of "drop priority before doing 1232 * error checks" (because that lets us avoid scanning the AP 1233 * registers twice). 1234 */ 1235 dropprio = icv_drop_prio(cs); 1236 if (dropprio == 0xff) { 1237 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1238 * whether the list registers are checked in this 1239 * situation; we choose not to. 1240 */ 1241 return; 1242 } 1243 1244 idx = icv_find_active(cs, irq); 1245 1246 if (idx < 0) { 1247 /* No valid list register corresponding to EOI ID */ 1248 icv_increment_eoicount(cs); 1249 } else { 1250 uint64_t lr = cs->ich_lr_el2[idx]; 1251 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1252 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1253 1254 if (thisgrp == grp && lr_gprio == dropprio) { 1255 if (!icv_eoi_split(env, cs)) { 1256 /* Priority drop and deactivate not split: deactivate irq now */ 1257 icv_deactivate_irq(cs, idx); 1258 } 1259 } 1260 } 1261 1262 gicv3_cpuif_virt_update(cs); 1263 } 1264 1265 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1266 uint64_t value) 1267 { 1268 /* End of Interrupt */ 1269 GICv3CPUState *cs = icc_cs_from_env(env); 1270 int irq = value & 0xffffff; 1271 int grp; 1272 1273 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1274 icv_eoir_write(env, ri, value); 1275 return; 1276 } 1277 1278 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1279 gicv3_redist_affid(cs), value); 1280 1281 if (ri->crm == 8) { 1282 /* EOIR0 */ 1283 grp = GICV3_G0; 1284 } else { 1285 /* EOIR1 */ 1286 if (arm_is_secure(env)) { 1287 grp = GICV3_G1; 1288 } else { 1289 grp = GICV3_G1NS; 1290 } 1291 } 1292 1293 if (irq >= cs->gic->num_irq) { 1294 /* This handles two cases: 1295 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1296 * to the GICC_EOIR, the GIC ignores that write. 1297 * 2. If software writes the number of a non-existent interrupt 1298 * this must be a subcase of "value written does not match the last 1299 * valid interrupt value read from the Interrupt Acknowledge 1300 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1301 */ 1302 return; 1303 } 1304 1305 if (icc_highest_active_group(cs) != grp) { 1306 return; 1307 } 1308 1309 icc_drop_prio(cs, grp); 1310 1311 if (!icc_eoi_split(env, cs)) { 1312 /* Priority drop and deactivate not split: deactivate irq now */ 1313 icc_deactivate_irq(cs, irq); 1314 } 1315 } 1316 1317 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1318 { 1319 GICv3CPUState *cs = icc_cs_from_env(env); 1320 uint64_t value; 1321 1322 if (icv_access(env, HCR_FMO)) { 1323 return icv_hppir_read(env, ri); 1324 } 1325 1326 value = icc_hppir0_value(cs, env); 1327 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1328 return value; 1329 } 1330 1331 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1332 { 1333 GICv3CPUState *cs = icc_cs_from_env(env); 1334 uint64_t value; 1335 1336 if (icv_access(env, HCR_IMO)) { 1337 return icv_hppir_read(env, ri); 1338 } 1339 1340 value = icc_hppir1_value(cs, env); 1341 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1342 return value; 1343 } 1344 1345 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1346 { 1347 GICv3CPUState *cs = icc_cs_from_env(env); 1348 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1349 bool satinc = false; 1350 uint64_t bpr; 1351 1352 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1353 return icv_bpr_read(env, ri); 1354 } 1355 1356 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1357 grp = GICV3_G1NS; 1358 } 1359 1360 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1361 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1362 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1363 * modify BPR0 1364 */ 1365 grp = GICV3_G0; 1366 } 1367 1368 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1369 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1370 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1371 grp = GICV3_G0; 1372 satinc = true; 1373 } 1374 1375 bpr = cs->icc_bpr[grp]; 1376 if (satinc) { 1377 bpr++; 1378 bpr = MIN(bpr, 7); 1379 } 1380 1381 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1382 1383 return bpr; 1384 } 1385 1386 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1387 uint64_t value) 1388 { 1389 GICv3CPUState *cs = icc_cs_from_env(env); 1390 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1391 uint64_t minval; 1392 1393 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1394 icv_bpr_write(env, ri, value); 1395 return; 1396 } 1397 1398 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1399 gicv3_redist_affid(cs), value); 1400 1401 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1402 grp = GICV3_G1NS; 1403 } 1404 1405 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1406 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1407 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1408 * modify BPR0 1409 */ 1410 grp = GICV3_G0; 1411 } 1412 1413 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1414 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1415 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1416 return; 1417 } 1418 1419 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1420 if (value < minval) { 1421 value = minval; 1422 } 1423 1424 cs->icc_bpr[grp] = value & 7; 1425 gicv3_cpuif_update(cs); 1426 } 1427 1428 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1429 { 1430 GICv3CPUState *cs = icc_cs_from_env(env); 1431 uint64_t value; 1432 1433 int regno = ri->opc2 & 3; 1434 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1435 1436 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1437 return icv_ap_read(env, ri); 1438 } 1439 1440 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1441 grp = GICV3_G1NS; 1442 } 1443 1444 value = cs->icc_apr[grp][regno]; 1445 1446 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1447 return value; 1448 } 1449 1450 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1451 uint64_t value) 1452 { 1453 GICv3CPUState *cs = icc_cs_from_env(env); 1454 1455 int regno = ri->opc2 & 3; 1456 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1457 1458 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1459 icv_ap_write(env, ri, value); 1460 return; 1461 } 1462 1463 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1464 1465 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1466 grp = GICV3_G1NS; 1467 } 1468 1469 /* It's not possible to claim that a Non-secure interrupt is active 1470 * at a priority outside the Non-secure range (128..255), since this 1471 * would otherwise allow malicious NS code to block delivery of S interrupts 1472 * by writing a bad value to these registers. 1473 */ 1474 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1475 return; 1476 } 1477 1478 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1479 gicv3_cpuif_update(cs); 1480 } 1481 1482 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1483 uint64_t value) 1484 { 1485 /* Deactivate interrupt */ 1486 GICv3CPUState *cs = icc_cs_from_env(env); 1487 int irq = value & 0xffffff; 1488 bool irq_is_secure, single_sec_state, irq_is_grp0; 1489 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1490 1491 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1492 icv_dir_write(env, ri, value); 1493 return; 1494 } 1495 1496 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1497 1498 if (irq >= cs->gic->num_irq) { 1499 /* Also catches special interrupt numbers and LPIs */ 1500 return; 1501 } 1502 1503 if (!icc_eoi_split(env, cs)) { 1504 return; 1505 } 1506 1507 int grp = gicv3_irq_group(cs->gic, cs, irq); 1508 1509 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1510 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1511 irq_is_grp0 = grp == GICV3_G0; 1512 1513 /* Check whether we're allowed to deactivate this interrupt based 1514 * on its group and the current CPU state. 1515 * These checks are laid out to correspond to the spec's pseudocode. 1516 */ 1517 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1518 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1519 /* No need to include !IsSecure in route_*_to_el2 as it's only 1520 * tested in cases where we know !IsSecure is true. 1521 */ 1522 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1523 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1524 1525 switch (arm_current_el(env)) { 1526 case 3: 1527 break; 1528 case 2: 1529 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1530 break; 1531 } 1532 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1533 break; 1534 } 1535 return; 1536 case 1: 1537 if (!arm_is_secure_below_el3(env)) { 1538 if (single_sec_state && irq_is_grp0 && 1539 !route_fiq_to_el3 && !route_fiq_to_el2) { 1540 break; 1541 } 1542 if (!irq_is_secure && !irq_is_grp0 && 1543 !route_irq_to_el3 && !route_irq_to_el2) { 1544 break; 1545 } 1546 } else { 1547 if (irq_is_grp0 && !route_fiq_to_el3) { 1548 break; 1549 } 1550 if (!irq_is_grp0 && 1551 (!irq_is_secure || !single_sec_state) && 1552 !route_irq_to_el3) { 1553 break; 1554 } 1555 } 1556 return; 1557 default: 1558 g_assert_not_reached(); 1559 } 1560 1561 icc_deactivate_irq(cs, irq); 1562 } 1563 1564 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1565 { 1566 GICv3CPUState *cs = icc_cs_from_env(env); 1567 int prio; 1568 1569 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1570 return icv_rpr_read(env, ri); 1571 } 1572 1573 prio = icc_highest_active_prio(cs); 1574 1575 if (arm_feature(env, ARM_FEATURE_EL3) && 1576 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1577 /* NS GIC access and Group 0 is inaccessible to NS */ 1578 if (prio & 0x80) { 1579 /* NS mustn't see priorities in the Secure half of the range */ 1580 prio = 0; 1581 } else if (prio != 0xff) { 1582 /* Non-idle priority: show the Non-secure view of it */ 1583 prio = (prio << 1) & 0xff; 1584 } 1585 } 1586 1587 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1588 return prio; 1589 } 1590 1591 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1592 uint64_t value, int grp, bool ns) 1593 { 1594 GICv3State *s = cs->gic; 1595 1596 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1597 uint64_t aff = extract64(value, 48, 8) << 16 | 1598 extract64(value, 32, 8) << 8 | 1599 extract64(value, 16, 8); 1600 uint32_t targetlist = extract64(value, 0, 16); 1601 uint32_t irq = extract64(value, 24, 4); 1602 bool irm = extract64(value, 40, 1); 1603 int i; 1604 1605 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1606 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1607 * interrupts as Group 0 interrupts and must send Secure Group 0 1608 * interrupts to the target CPUs. 1609 */ 1610 grp = GICV3_G0; 1611 } 1612 1613 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1614 aff, targetlist); 1615 1616 for (i = 0; i < s->num_cpu; i++) { 1617 GICv3CPUState *ocs = &s->cpu[i]; 1618 1619 if (irm) { 1620 /* IRM == 1 : route to all CPUs except self */ 1621 if (cs == ocs) { 1622 continue; 1623 } 1624 } else { 1625 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1626 * where the corresponding bit is set in targetlist 1627 */ 1628 int aff0; 1629 1630 if (ocs->gicr_typer >> 40 != aff) { 1631 continue; 1632 } 1633 aff0 = extract64(ocs->gicr_typer, 32, 8); 1634 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1635 continue; 1636 } 1637 } 1638 1639 /* The redistributor will check against its own GICR_NSACR as needed */ 1640 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1641 } 1642 } 1643 1644 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1645 uint64_t value) 1646 { 1647 /* Generate Secure Group 0 SGI. */ 1648 GICv3CPUState *cs = icc_cs_from_env(env); 1649 bool ns = !arm_is_secure(env); 1650 1651 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1652 } 1653 1654 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1655 uint64_t value) 1656 { 1657 /* Generate Group 1 SGI for the current Security state */ 1658 GICv3CPUState *cs = icc_cs_from_env(env); 1659 int grp; 1660 bool ns = !arm_is_secure(env); 1661 1662 grp = ns ? GICV3_G1NS : GICV3_G1; 1663 icc_generate_sgi(env, cs, value, grp, ns); 1664 } 1665 1666 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1667 uint64_t value) 1668 { 1669 /* Generate Group 1 SGI for the Security state that is not 1670 * the current state 1671 */ 1672 GICv3CPUState *cs = icc_cs_from_env(env); 1673 int grp; 1674 bool ns = !arm_is_secure(env); 1675 1676 grp = ns ? GICV3_G1 : GICV3_G1NS; 1677 icc_generate_sgi(env, cs, value, grp, ns); 1678 } 1679 1680 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1681 { 1682 GICv3CPUState *cs = icc_cs_from_env(env); 1683 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1684 uint64_t value; 1685 1686 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1687 return icv_igrpen_read(env, ri); 1688 } 1689 1690 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1691 grp = GICV3_G1NS; 1692 } 1693 1694 value = cs->icc_igrpen[grp]; 1695 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1696 gicv3_redist_affid(cs), value); 1697 return value; 1698 } 1699 1700 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1701 uint64_t value) 1702 { 1703 GICv3CPUState *cs = icc_cs_from_env(env); 1704 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1705 1706 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1707 icv_igrpen_write(env, ri, value); 1708 return; 1709 } 1710 1711 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1712 gicv3_redist_affid(cs), value); 1713 1714 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1715 grp = GICV3_G1NS; 1716 } 1717 1718 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1719 gicv3_cpuif_update(cs); 1720 } 1721 1722 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1723 { 1724 GICv3CPUState *cs = icc_cs_from_env(env); 1725 uint64_t value; 1726 1727 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1728 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1729 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1730 return value; 1731 } 1732 1733 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 GICv3CPUState *cs = icc_cs_from_env(env); 1737 1738 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1739 1740 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1741 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1742 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1743 gicv3_cpuif_update(cs); 1744 } 1745 1746 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1747 { 1748 GICv3CPUState *cs = icc_cs_from_env(env); 1749 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1750 uint64_t value; 1751 1752 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1753 return icv_ctlr_read(env, ri); 1754 } 1755 1756 value = cs->icc_ctlr_el1[bank]; 1757 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1758 return value; 1759 } 1760 1761 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1762 uint64_t value) 1763 { 1764 GICv3CPUState *cs = icc_cs_from_env(env); 1765 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1766 uint64_t mask; 1767 1768 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1769 icv_ctlr_write(env, ri, value); 1770 return; 1771 } 1772 1773 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1774 1775 /* Only CBPR and EOIMODE can be RW; 1776 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1777 * the asseciated priority-based routing of them); 1778 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1779 */ 1780 if (arm_feature(env, ARM_FEATURE_EL3) && 1781 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1782 mask = ICC_CTLR_EL1_EOIMODE; 1783 } else { 1784 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1785 } 1786 1787 cs->icc_ctlr_el1[bank] &= ~mask; 1788 cs->icc_ctlr_el1[bank] |= (value & mask); 1789 gicv3_cpuif_update(cs); 1790 } 1791 1792 1793 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1794 { 1795 GICv3CPUState *cs = icc_cs_from_env(env); 1796 uint64_t value; 1797 1798 value = cs->icc_ctlr_el3; 1799 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1800 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1801 } 1802 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1803 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1804 } 1805 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1806 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1807 } 1808 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1809 value |= ICC_CTLR_EL3_CBPR_EL1S; 1810 } 1811 1812 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1813 return value; 1814 } 1815 1816 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1817 uint64_t value) 1818 { 1819 GICv3CPUState *cs = icc_cs_from_env(env); 1820 uint64_t mask; 1821 1822 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1823 1824 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1825 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1826 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1827 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1828 } 1829 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1830 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1831 } 1832 1833 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1834 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1835 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1836 } 1837 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1838 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1839 } 1840 1841 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1842 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1843 1844 cs->icc_ctlr_el3 &= ~mask; 1845 cs->icc_ctlr_el3 |= (value & mask); 1846 gicv3_cpuif_update(cs); 1847 } 1848 1849 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1850 const ARMCPRegInfo *ri, bool isread) 1851 { 1852 CPAccessResult r = CP_ACCESS_OK; 1853 GICv3CPUState *cs = icc_cs_from_env(env); 1854 int el = arm_current_el(env); 1855 1856 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1857 el == 1 && !arm_is_secure_below_el3(env)) { 1858 /* Takes priority over a possible EL3 trap */ 1859 return CP_ACCESS_TRAP_EL2; 1860 } 1861 1862 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1863 switch (el) { 1864 case 1: 1865 if (arm_is_secure_below_el3(env) || 1866 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { 1867 r = CP_ACCESS_TRAP_EL3; 1868 } 1869 break; 1870 case 2: 1871 r = CP_ACCESS_TRAP_EL3; 1872 break; 1873 case 3: 1874 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1875 r = CP_ACCESS_TRAP_EL3; 1876 } 1877 break; 1878 default: 1879 g_assert_not_reached(); 1880 } 1881 } 1882 1883 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1884 r = CP_ACCESS_TRAP; 1885 } 1886 return r; 1887 } 1888 1889 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1890 const ARMCPRegInfo *ri, bool isread) 1891 { 1892 GICv3CPUState *cs = icc_cs_from_env(env); 1893 1894 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1895 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1896 /* Takes priority over a possible EL3 trap */ 1897 return CP_ACCESS_TRAP_EL2; 1898 } 1899 1900 return gicv3_irqfiq_access(env, ri, isread); 1901 } 1902 1903 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1904 const ARMCPRegInfo *ri, bool isread) 1905 { 1906 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && 1907 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1908 /* Takes priority over a possible EL3 trap */ 1909 return CP_ACCESS_TRAP_EL2; 1910 } 1911 1912 return gicv3_irqfiq_access(env, ri, isread); 1913 } 1914 1915 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1916 const ARMCPRegInfo *ri, bool isread) 1917 { 1918 CPAccessResult r = CP_ACCESS_OK; 1919 GICv3CPUState *cs = icc_cs_from_env(env); 1920 int el = arm_current_el(env); 1921 1922 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1923 el == 1 && !arm_is_secure_below_el3(env)) { 1924 /* Takes priority over a possible EL3 trap */ 1925 return CP_ACCESS_TRAP_EL2; 1926 } 1927 1928 if (env->cp15.scr_el3 & SCR_FIQ) { 1929 switch (el) { 1930 case 1: 1931 if (arm_is_secure_below_el3(env) || 1932 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { 1933 r = CP_ACCESS_TRAP_EL3; 1934 } 1935 break; 1936 case 2: 1937 r = CP_ACCESS_TRAP_EL3; 1938 break; 1939 case 3: 1940 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1941 r = CP_ACCESS_TRAP_EL3; 1942 } 1943 break; 1944 default: 1945 g_assert_not_reached(); 1946 } 1947 } 1948 1949 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1950 r = CP_ACCESS_TRAP; 1951 } 1952 return r; 1953 } 1954 1955 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1956 const ARMCPRegInfo *ri, bool isread) 1957 { 1958 CPAccessResult r = CP_ACCESS_OK; 1959 GICv3CPUState *cs = icc_cs_from_env(env); 1960 int el = arm_current_el(env); 1961 1962 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 1963 el == 1 && !arm_is_secure_below_el3(env)) { 1964 /* Takes priority over a possible EL3 trap */ 1965 return CP_ACCESS_TRAP_EL2; 1966 } 1967 1968 if (env->cp15.scr_el3 & SCR_IRQ) { 1969 switch (el) { 1970 case 1: 1971 if (arm_is_secure_below_el3(env) || 1972 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { 1973 r = CP_ACCESS_TRAP_EL3; 1974 } 1975 break; 1976 case 2: 1977 r = CP_ACCESS_TRAP_EL3; 1978 break; 1979 case 3: 1980 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1981 r = CP_ACCESS_TRAP_EL3; 1982 } 1983 break; 1984 default: 1985 g_assert_not_reached(); 1986 } 1987 } 1988 1989 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1990 r = CP_ACCESS_TRAP; 1991 } 1992 return r; 1993 } 1994 1995 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1996 { 1997 GICv3CPUState *cs = icc_cs_from_env(env); 1998 1999 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2000 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2001 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2002 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2003 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2004 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2005 cs->icc_pmr_el1 = 0; 2006 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2007 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2008 if (arm_feature(env, ARM_FEATURE_EL3)) { 2009 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2010 } else { 2011 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; 2012 } 2013 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2014 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2015 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2016 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2017 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2018 2019 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2020 cs->ich_hcr_el2 = 0; 2021 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2022 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2023 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2024 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2025 } 2026 2027 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2028 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2029 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2030 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2031 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2032 .readfn = icc_pmr_read, 2033 .writefn = icc_pmr_write, 2034 /* We hang the whole cpu interface reset routine off here 2035 * rather than parcelling it out into one little function 2036 * per register 2037 */ 2038 .resetfn = icc_reset, 2039 }, 2040 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2042 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2043 .access = PL1_R, .accessfn = gicv3_fiq_access, 2044 .readfn = icc_iar0_read, 2045 }, 2046 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2048 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2049 .access = PL1_W, .accessfn = gicv3_fiq_access, 2050 .writefn = icc_eoir_write, 2051 }, 2052 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2053 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2054 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2055 .access = PL1_R, .accessfn = gicv3_fiq_access, 2056 .readfn = icc_hppir0_read, 2057 }, 2058 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2059 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2060 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2061 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2062 .readfn = icc_bpr_read, 2063 .writefn = icc_bpr_write, 2064 }, 2065 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2066 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2067 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2068 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2069 .readfn = icc_ap_read, 2070 .writefn = icc_ap_write, 2071 }, 2072 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2074 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2075 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2076 .readfn = icc_ap_read, 2077 .writefn = icc_ap_write, 2078 }, 2079 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2080 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2081 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2082 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2083 .readfn = icc_ap_read, 2084 .writefn = icc_ap_write, 2085 }, 2086 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2087 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2088 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2089 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2090 .readfn = icc_ap_read, 2091 .writefn = icc_ap_write, 2092 }, 2093 /* All the ICC_AP1R*_EL1 registers are banked */ 2094 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2095 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2096 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2097 .access = PL1_RW, .accessfn = gicv3_irq_access, 2098 .readfn = icc_ap_read, 2099 .writefn = icc_ap_write, 2100 }, 2101 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2103 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2104 .access = PL1_RW, .accessfn = gicv3_irq_access, 2105 .readfn = icc_ap_read, 2106 .writefn = icc_ap_write, 2107 }, 2108 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2109 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2110 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2111 .access = PL1_RW, .accessfn = gicv3_irq_access, 2112 .readfn = icc_ap_read, 2113 .writefn = icc_ap_write, 2114 }, 2115 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2116 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2117 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2118 .access = PL1_RW, .accessfn = gicv3_irq_access, 2119 .readfn = icc_ap_read, 2120 .writefn = icc_ap_write, 2121 }, 2122 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2124 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2125 .access = PL1_W, .accessfn = gicv3_dir_access, 2126 .writefn = icc_dir_write, 2127 }, 2128 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2130 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2131 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2132 .readfn = icc_rpr_read, 2133 }, 2134 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2136 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2137 .access = PL1_W, .accessfn = gicv3_sgi_access, 2138 .writefn = icc_sgi1r_write, 2139 }, 2140 { .name = "ICC_SGI1R", 2141 .cp = 15, .opc1 = 0, .crm = 12, 2142 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2143 .access = PL1_W, .accessfn = gicv3_sgi_access, 2144 .writefn = icc_sgi1r_write, 2145 }, 2146 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2147 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2148 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2149 .access = PL1_W, .accessfn = gicv3_sgi_access, 2150 .writefn = icc_asgi1r_write, 2151 }, 2152 { .name = "ICC_ASGI1R", 2153 .cp = 15, .opc1 = 1, .crm = 12, 2154 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2155 .access = PL1_W, .accessfn = gicv3_sgi_access, 2156 .writefn = icc_asgi1r_write, 2157 }, 2158 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2160 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2161 .access = PL1_W, .accessfn = gicv3_sgi_access, 2162 .writefn = icc_sgi0r_write, 2163 }, 2164 { .name = "ICC_SGI0R", 2165 .cp = 15, .opc1 = 2, .crm = 12, 2166 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2167 .access = PL1_W, .accessfn = gicv3_sgi_access, 2168 .writefn = icc_sgi0r_write, 2169 }, 2170 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2171 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2172 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2173 .access = PL1_R, .accessfn = gicv3_irq_access, 2174 .readfn = icc_iar1_read, 2175 }, 2176 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2178 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2179 .access = PL1_W, .accessfn = gicv3_irq_access, 2180 .writefn = icc_eoir_write, 2181 }, 2182 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2183 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2184 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2185 .access = PL1_R, .accessfn = gicv3_irq_access, 2186 .readfn = icc_hppir1_read, 2187 }, 2188 /* This register is banked */ 2189 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2190 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2191 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2192 .access = PL1_RW, .accessfn = gicv3_irq_access, 2193 .readfn = icc_bpr_read, 2194 .writefn = icc_bpr_write, 2195 }, 2196 /* This register is banked */ 2197 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2198 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2199 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2200 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2201 .readfn = icc_ctlr_el1_read, 2202 .writefn = icc_ctlr_el1_write, 2203 }, 2204 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2205 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2206 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2207 .access = PL1_RW, 2208 /* We don't support IRQ/FIQ bypass and system registers are 2209 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2210 * This register is banked but since it's constant we don't 2211 * need to do anything special. 2212 */ 2213 .resetvalue = 0x7, 2214 }, 2215 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2217 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2218 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2219 .readfn = icc_igrpen_read, 2220 .writefn = icc_igrpen_write, 2221 }, 2222 /* This register is banked */ 2223 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2224 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2225 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2226 .access = PL1_RW, .accessfn = gicv3_irq_access, 2227 .readfn = icc_igrpen_read, 2228 .writefn = icc_igrpen_write, 2229 }, 2230 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2231 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2232 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2233 .access = PL2_RW, 2234 /* We don't support IRQ/FIQ bypass and system registers are 2235 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2236 */ 2237 .resetvalue = 0xf, 2238 }, 2239 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2240 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2241 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2242 .access = PL3_RW, 2243 .readfn = icc_ctlr_el3_read, 2244 .writefn = icc_ctlr_el3_write, 2245 }, 2246 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2247 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2248 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2249 .access = PL3_RW, 2250 /* We don't support IRQ/FIQ bypass and system registers are 2251 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2252 */ 2253 .resetvalue = 0xf, 2254 }, 2255 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2256 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2257 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2258 .access = PL3_RW, 2259 .readfn = icc_igrpen1_el3_read, 2260 .writefn = icc_igrpen1_el3_write, 2261 }, 2262 REGINFO_SENTINEL 2263 }; 2264 2265 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2266 { 2267 GICv3CPUState *cs = icc_cs_from_env(env); 2268 int regno = ri->opc2 & 3; 2269 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2270 uint64_t value; 2271 2272 value = cs->ich_apr[grp][regno]; 2273 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2274 return value; 2275 } 2276 2277 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2278 uint64_t value) 2279 { 2280 GICv3CPUState *cs = icc_cs_from_env(env); 2281 int regno = ri->opc2 & 3; 2282 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2283 2284 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2285 2286 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2287 gicv3_cpuif_virt_update(cs); 2288 } 2289 2290 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2291 { 2292 GICv3CPUState *cs = icc_cs_from_env(env); 2293 uint64_t value = cs->ich_hcr_el2; 2294 2295 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2296 return value; 2297 } 2298 2299 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2300 uint64_t value) 2301 { 2302 GICv3CPUState *cs = icc_cs_from_env(env); 2303 2304 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2305 2306 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2307 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2308 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2309 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2310 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2311 2312 cs->ich_hcr_el2 = value; 2313 gicv3_cpuif_virt_update(cs); 2314 } 2315 2316 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2317 { 2318 GICv3CPUState *cs = icc_cs_from_env(env); 2319 uint64_t value = cs->ich_vmcr_el2; 2320 2321 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2322 return value; 2323 } 2324 2325 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2326 uint64_t value) 2327 { 2328 GICv3CPUState *cs = icc_cs_from_env(env); 2329 2330 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2331 2332 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2333 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2334 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2335 value |= ICH_VMCR_EL2_VFIQEN; 2336 2337 cs->ich_vmcr_el2 = value; 2338 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2339 * by reading and writing back the fields. 2340 */ 2341 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); 2342 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2343 2344 gicv3_cpuif_virt_update(cs); 2345 } 2346 2347 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2348 { 2349 GICv3CPUState *cs = icc_cs_from_env(env); 2350 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2351 uint64_t value; 2352 2353 /* This read function handles all of: 2354 * 64-bit reads of the whole LR 2355 * 32-bit reads of the low half of the LR 2356 * 32-bit reads of the high half of the LR 2357 */ 2358 if (ri->state == ARM_CP_STATE_AA32) { 2359 if (ri->crm >= 14) { 2360 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2361 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2362 } else { 2363 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2364 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2365 } 2366 } else { 2367 value = cs->ich_lr_el2[regno]; 2368 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2369 } 2370 2371 return value; 2372 } 2373 2374 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2375 uint64_t value) 2376 { 2377 GICv3CPUState *cs = icc_cs_from_env(env); 2378 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2379 2380 /* This write function handles all of: 2381 * 64-bit writes to the whole LR 2382 * 32-bit writes to the low half of the LR 2383 * 32-bit writes to the high half of the LR 2384 */ 2385 if (ri->state == ARM_CP_STATE_AA32) { 2386 if (ri->crm >= 14) { 2387 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2388 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2389 } else { 2390 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2391 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2392 } 2393 } else { 2394 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2395 } 2396 2397 /* Enforce RES0 bits in priority field */ 2398 if (cs->vpribits < 8) { 2399 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2400 8 - cs->vpribits, 0); 2401 } 2402 2403 cs->ich_lr_el2[regno] = value; 2404 gicv3_cpuif_virt_update(cs); 2405 } 2406 2407 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2408 { 2409 GICv3CPUState *cs = icc_cs_from_env(env); 2410 uint64_t value; 2411 2412 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2413 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2414 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2415 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2416 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2417 2418 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2419 return value; 2420 } 2421 2422 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2423 { 2424 GICv3CPUState *cs = icc_cs_from_env(env); 2425 uint64_t value = maintenance_interrupt_state(cs); 2426 2427 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2428 return value; 2429 } 2430 2431 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2432 { 2433 GICv3CPUState *cs = icc_cs_from_env(env); 2434 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2435 2436 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2437 return value; 2438 } 2439 2440 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2441 { 2442 GICv3CPUState *cs = icc_cs_from_env(env); 2443 uint64_t value = 0; 2444 int i; 2445 2446 for (i = 0; i < cs->num_list_regs; i++) { 2447 uint64_t lr = cs->ich_lr_el2[i]; 2448 2449 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2450 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2451 value |= (1 << i); 2452 } 2453 } 2454 2455 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2456 return value; 2457 } 2458 2459 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2460 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2461 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2462 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2463 .access = PL2_RW, 2464 .readfn = ich_ap_read, 2465 .writefn = ich_ap_write, 2466 }, 2467 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2468 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2469 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2470 .access = PL2_RW, 2471 .readfn = ich_ap_read, 2472 .writefn = ich_ap_write, 2473 }, 2474 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2475 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2476 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2477 .access = PL2_RW, 2478 .readfn = ich_hcr_read, 2479 .writefn = ich_hcr_write, 2480 }, 2481 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2482 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2483 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2484 .access = PL2_R, 2485 .readfn = ich_vtr_read, 2486 }, 2487 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2489 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2490 .access = PL2_R, 2491 .readfn = ich_misr_read, 2492 }, 2493 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2495 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2496 .access = PL2_R, 2497 .readfn = ich_eisr_read, 2498 }, 2499 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2501 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2502 .access = PL2_R, 2503 .readfn = ich_elrsr_read, 2504 }, 2505 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2506 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2507 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2508 .access = PL2_RW, 2509 .readfn = ich_vmcr_read, 2510 .writefn = ich_vmcr_write, 2511 }, 2512 REGINFO_SENTINEL 2513 }; 2514 2515 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2516 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2517 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2518 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2519 .access = PL2_RW, 2520 .readfn = ich_ap_read, 2521 .writefn = ich_ap_write, 2522 }, 2523 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2525 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2526 .access = PL2_RW, 2527 .readfn = ich_ap_read, 2528 .writefn = ich_ap_write, 2529 }, 2530 REGINFO_SENTINEL 2531 }; 2532 2533 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2534 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2535 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2536 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2537 .access = PL2_RW, 2538 .readfn = ich_ap_read, 2539 .writefn = ich_ap_write, 2540 }, 2541 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2542 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2543 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2544 .access = PL2_RW, 2545 .readfn = ich_ap_read, 2546 .writefn = ich_ap_write, 2547 }, 2548 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2549 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2550 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2551 .access = PL2_RW, 2552 .readfn = ich_ap_read, 2553 .writefn = ich_ap_write, 2554 }, 2555 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2556 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2557 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2558 .access = PL2_RW, 2559 .readfn = ich_ap_read, 2560 .writefn = ich_ap_write, 2561 }, 2562 REGINFO_SENTINEL 2563 }; 2564 2565 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2566 { 2567 GICv3CPUState *cs = opaque; 2568 2569 gicv3_cpuif_update(cs); 2570 } 2571 2572 void gicv3_init_cpuif(GICv3State *s) 2573 { 2574 /* Called from the GICv3 realize function; register our system 2575 * registers with the CPU 2576 */ 2577 int i; 2578 2579 for (i = 0; i < s->num_cpu; i++) { 2580 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2581 GICv3CPUState *cs = &s->cpu[i]; 2582 2583 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2584 * in define_arm_cp_regs_with_opaque(), because when we're called back 2585 * it might be with code translated by CPU 0 but run by CPU 1, in 2586 * which case we'd get the wrong value. 2587 * So instead we define the regs with no ri->opaque info, and 2588 * get back to the GICv3CPUState from the ARMCPU by reading back 2589 * the opaque pointer from the el_change_hook, which we're going 2590 * to need to register anyway. 2591 */ 2592 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2593 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2594 && cpu->gic_num_lrs) { 2595 int j; 2596 2597 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; 2598 2599 cs->num_list_regs = cpu->gic_num_lrs; 2600 cs->vpribits = cpu->gic_vpribits; 2601 cs->vprebits = cpu->gic_vprebits; 2602 2603 /* Check against architectural constraints: getting these 2604 * wrong would be a bug in the CPU code defining these, 2605 * and the implementation relies on them holding. 2606 */ 2607 g_assert(cs->vprebits <= cs->vpribits); 2608 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2609 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2610 2611 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2612 2613 for (j = 0; j < cs->num_list_regs; j++) { 2614 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2615 * are split into two cp15 regs, LR (the low part, with the 2616 * same encoding as the AArch64 LR) and LRC (the high part). 2617 */ 2618 ARMCPRegInfo lr_regset[] = { 2619 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2620 .opc0 = 3, .opc1 = 4, .crn = 12, 2621 .crm = 12 + (j >> 3), .opc2 = j & 7, 2622 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2623 .access = PL2_RW, 2624 .readfn = ich_lr_read, 2625 .writefn = ich_lr_write, 2626 }, 2627 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2628 .cp = 15, .opc1 = 4, .crn = 12, 2629 .crm = 14 + (j >> 3), .opc2 = j & 7, 2630 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2631 .access = PL2_RW, 2632 .readfn = ich_lr_read, 2633 .writefn = ich_lr_write, 2634 }, 2635 REGINFO_SENTINEL 2636 }; 2637 define_arm_cp_regs(cpu, lr_regset); 2638 } 2639 if (cs->vprebits >= 6) { 2640 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2641 } 2642 if (cs->vprebits == 7) { 2643 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2644 } 2645 } 2646 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2647 } 2648 } 2649