1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "trace.h" 18 #include "gicv3_internal.h" 19 #include "cpu.h" 20 21 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 22 { 23 /* Given the CPU, find the right GICv3CPUState struct. 24 * Since we registered the CPU interface with the EL change hook as 25 * the opaque pointer, we can just directly get from the CPU to it. 26 */ 27 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env)); 28 } 29 30 static bool gicv3_use_ns_bank(CPUARMState *env) 31 { 32 /* Return true if we should use the NonSecure bank for a banked GIC 33 * CPU interface register. Note that this differs from the 34 * access_secure_reg() function because GICv3 banked registers are 35 * banked even for AArch64, unlike the other CPU system registers. 36 */ 37 return !arm_is_secure_below_el3(env); 38 } 39 40 /* The minimum BPR for the virtual interface is a configurable property */ 41 static inline int icv_min_vbpr(GICv3CPUState *cs) 42 { 43 return 7 - cs->vprebits; 44 } 45 46 /* Simple accessor functions for LR fields */ 47 static uint32_t ich_lr_vintid(uint64_t lr) 48 { 49 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 50 } 51 52 static uint32_t ich_lr_pintid(uint64_t lr) 53 { 54 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 55 } 56 57 static uint32_t ich_lr_prio(uint64_t lr) 58 { 59 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 60 } 61 62 static int ich_lr_state(uint64_t lr) 63 { 64 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 65 } 66 67 static bool icv_access(CPUARMState *env, int hcr_flags) 68 { 69 /* Return true if this ICC_ register access should really be 70 * directed to an ICV_ access. hcr_flags is a mask of 71 * HCR_EL2 bits to check: we treat this as an ICV_ access 72 * if we are in NS EL1 and at least one of the specified 73 * HCR_EL2 bits is set. 74 * 75 * ICV registers fall into four categories: 76 * * access if NS EL1 and HCR_EL2.FMO == 1: 77 * all ICV regs with '0' in their name 78 * * access if NS EL1 and HCR_EL2.IMO == 1: 79 * all ICV regs with '1' in their name 80 * * access if NS EL1 and either IMO or FMO == 1: 81 * CTLR, DIR, PMR, RPR 82 */ 83 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 84 && !arm_is_secure_below_el3(env); 85 } 86 87 static int read_vbpr(GICv3CPUState *cs, int grp) 88 { 89 /* Read VBPR value out of the VMCR field (caller must handle 90 * VCBPR effects if required) 91 */ 92 if (grp == GICV3_G0) { 93 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 94 ICH_VMCR_EL2_VBPR0_LENGTH); 95 } else { 96 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 97 ICH_VMCR_EL2_VBPR1_LENGTH); 98 } 99 } 100 101 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 102 { 103 /* Write new VBPR1 value, handling the "writing a value less than 104 * the minimum sets it to the minimum" semantics. 105 */ 106 int min = icv_min_vbpr(cs); 107 108 if (grp != GICV3_G0) { 109 min++; 110 } 111 112 value = MAX(value, min); 113 114 if (grp == GICV3_G0) { 115 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 116 ICH_VMCR_EL2_VBPR0_LENGTH, value); 117 } else { 118 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 119 ICH_VMCR_EL2_VBPR1_LENGTH, value); 120 } 121 } 122 123 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 124 { 125 /* Return a mask word which clears the unimplemented priority bits 126 * from a priority value for a virtual interrupt. (Not to be confused 127 * with the group priority, whose mask depends on the value of VBPR 128 * for the interrupt group.) 129 */ 130 return ~0U << (8 - cs->vpribits); 131 } 132 133 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 134 { 135 /* Calculate the current running priority based on the set bits 136 * in the ICH Active Priority Registers. 137 */ 138 int i; 139 int aprmax = 1 << (cs->vprebits - 5); 140 141 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 142 143 for (i = 0; i < aprmax; i++) { 144 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 145 cs->ich_apr[GICV3_G1NS][i]; 146 147 if (!apr) { 148 continue; 149 } 150 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 151 } 152 /* No current active interrupts: return idle priority */ 153 return 0xff; 154 } 155 156 static int hppvi_index(GICv3CPUState *cs) 157 { 158 /* Return the list register index of the highest priority pending 159 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 160 * pseudocode. If no pending virtual interrupts, return -1. 161 */ 162 int idx = -1; 163 int i; 164 /* Note that a list register entry with a priority of 0xff will 165 * never be reported by this function; this is the architecturally 166 * correct behaviour. 167 */ 168 int prio = 0xff; 169 170 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 171 /* Both groups disabled, definitely nothing to do */ 172 return idx; 173 } 174 175 for (i = 0; i < cs->num_list_regs; i++) { 176 uint64_t lr = cs->ich_lr_el2[i]; 177 int thisprio; 178 179 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 180 /* Not Pending */ 181 continue; 182 } 183 184 /* Ignore interrupts if relevant group enable not set */ 185 if (lr & ICH_LR_EL2_GROUP) { 186 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 187 continue; 188 } 189 } else { 190 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 191 continue; 192 } 193 } 194 195 thisprio = ich_lr_prio(lr); 196 197 if (thisprio < prio) { 198 prio = thisprio; 199 idx = i; 200 } 201 } 202 203 return idx; 204 } 205 206 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 207 { 208 /* Return a mask word which clears the subpriority bits from 209 * a priority value for a virtual interrupt in the specified group. 210 * This depends on the VBPR value: 211 * a BPR of 0 means the group priority bits are [7:1]; 212 * a BPR of 1 means they are [7:2], and so on down to 213 * a BPR of 7 meaning no group priority bits at all. 214 * Which BPR to use depends on the group of the interrupt and 215 * the current ICH_VMCR_EL2.VCBPR settings. 216 */ 217 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 218 group = GICV3_G0; 219 } 220 221 return ~0U << (read_vbpr(cs, group) + 1); 222 } 223 224 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 225 { 226 /* Return true if we can signal this virtual interrupt defined by 227 * the given list register value; see the pseudocode functions 228 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 229 * Compare also icc_hppi_can_preempt() which is the non-virtual 230 * equivalent of these checks. 231 */ 232 int grp; 233 uint32_t mask, prio, rprio, vpmr; 234 235 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 236 /* Virtual interface disabled */ 237 return false; 238 } 239 240 /* We don't need to check that this LR is in Pending state because 241 * that has already been done in hppvi_index(). 242 */ 243 244 prio = ich_lr_prio(lr); 245 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 246 ICH_VMCR_EL2_VPMR_LENGTH); 247 248 if (prio >= vpmr) { 249 /* Priority mask masks this interrupt */ 250 return false; 251 } 252 253 rprio = ich_highest_active_virt_prio(cs); 254 if (rprio == 0xff) { 255 /* No running interrupt so we can preempt */ 256 return true; 257 } 258 259 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 260 261 mask = icv_gprio_mask(cs, grp); 262 263 /* We only preempt a running interrupt if the pending interrupt's 264 * group priority is sufficient (the subpriorities are not considered). 265 */ 266 if ((prio & mask) < (rprio & mask)) { 267 return true; 268 } 269 270 return false; 271 } 272 273 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 274 uint32_t *misr) 275 { 276 /* Return a set of bits indicating the EOI maintenance interrupt status 277 * for each list register. The EOI maintenance interrupt status is 278 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 279 * (see the GICv3 spec for the ICH_EISR_EL2 register). 280 * If misr is not NULL then we should also collect the information 281 * about the MISR.EOI, MISR.NP and MISR.U bits. 282 */ 283 uint32_t value = 0; 284 int validcount = 0; 285 bool seenpending = false; 286 int i; 287 288 for (i = 0; i < cs->num_list_regs; i++) { 289 uint64_t lr = cs->ich_lr_el2[i]; 290 291 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 292 == ICH_LR_EL2_EOI) { 293 value |= (1 << i); 294 } 295 if ((lr & ICH_LR_EL2_STATE_MASK)) { 296 validcount++; 297 } 298 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 299 seenpending = true; 300 } 301 } 302 303 if (misr) { 304 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 305 *misr |= ICH_MISR_EL2_U; 306 } 307 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 308 *misr |= ICH_MISR_EL2_NP; 309 } 310 if (value) { 311 *misr |= ICH_MISR_EL2_EOI; 312 } 313 } 314 return value; 315 } 316 317 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 318 { 319 /* Return a set of bits indicating the maintenance interrupt status 320 * (as seen in the ICH_MISR_EL2 register). 321 */ 322 uint32_t value = 0; 323 324 /* Scan list registers and fill in the U, NP and EOI bits */ 325 eoi_maintenance_interrupt_state(cs, &value); 326 327 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 328 value |= ICH_MISR_EL2_LRENP; 329 } 330 331 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 332 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 333 value |= ICH_MISR_EL2_VGRP0E; 334 } 335 336 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 337 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 338 value |= ICH_MISR_EL2_VGRP0D; 339 } 340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 341 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 342 value |= ICH_MISR_EL2_VGRP1E; 343 } 344 345 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 346 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 347 value |= ICH_MISR_EL2_VGRP1D; 348 } 349 350 return value; 351 } 352 353 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 354 { 355 /* Tell the CPU about any pending virtual interrupts or 356 * maintenance interrupts, following a change to the state 357 * of the CPU interface relevant to virtual interrupts. 358 * 359 * CAUTION: this function will call qemu_set_irq() on the 360 * CPU maintenance IRQ line, which is typically wired up 361 * to the GIC as a per-CPU interrupt. This means that it 362 * will recursively call back into the GIC code via 363 * gicv3_redist_set_irq() and thus into the CPU interface code's 364 * gicv3_cpuif_update(). It is therefore important that this 365 * function is only called as the final action of a CPU interface 366 * register write implementation, after all the GIC state 367 * fields have been updated. gicv3_cpuif_update() also must 368 * not cause this function to be called, but that happens 369 * naturally as a result of there being no architectural 370 * linkage between the physical and virtual GIC logic. 371 */ 372 int idx; 373 int irqlevel = 0; 374 int fiqlevel = 0; 375 int maintlevel = 0; 376 377 idx = hppvi_index(cs); 378 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 379 if (idx >= 0) { 380 uint64_t lr = cs->ich_lr_el2[idx]; 381 382 if (icv_hppi_can_preempt(cs, lr)) { 383 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 384 if (lr & ICH_LR_EL2_GROUP) { 385 irqlevel = 1; 386 } else { 387 fiqlevel = 1; 388 } 389 } 390 } 391 392 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 393 maintlevel = maintenance_interrupt_state(cs); 394 } 395 396 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 397 irqlevel, maintlevel); 398 399 qemu_set_irq(cs->parent_vfiq, fiqlevel); 400 qemu_set_irq(cs->parent_virq, irqlevel); 401 qemu_set_irq(cs->maintenance_irq, maintlevel); 402 } 403 404 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 405 { 406 GICv3CPUState *cs = icc_cs_from_env(env); 407 int regno = ri->opc2 & 3; 408 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 409 uint64_t value = cs->ich_apr[grp][regno]; 410 411 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 412 return value; 413 } 414 415 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 416 uint64_t value) 417 { 418 GICv3CPUState *cs = icc_cs_from_env(env); 419 int regno = ri->opc2 & 3; 420 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 421 422 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 423 424 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 425 426 gicv3_cpuif_virt_update(cs); 427 return; 428 } 429 430 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 431 { 432 GICv3CPUState *cs = icc_cs_from_env(env); 433 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 434 uint64_t bpr; 435 bool satinc = false; 436 437 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 438 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 439 grp = GICV3_G0; 440 satinc = true; 441 } 442 443 bpr = read_vbpr(cs, grp); 444 445 if (satinc) { 446 bpr++; 447 bpr = MIN(bpr, 7); 448 } 449 450 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 451 452 return bpr; 453 } 454 455 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 456 uint64_t value) 457 { 458 GICv3CPUState *cs = icc_cs_from_env(env); 459 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 460 461 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 462 gicv3_redist_affid(cs), value); 463 464 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 465 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 466 return; 467 } 468 469 write_vbpr(cs, grp, value); 470 471 gicv3_cpuif_virt_update(cs); 472 } 473 474 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 475 { 476 GICv3CPUState *cs = icc_cs_from_env(env); 477 uint64_t value; 478 479 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 480 ICH_VMCR_EL2_VPMR_LENGTH); 481 482 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 483 return value; 484 } 485 486 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 487 uint64_t value) 488 { 489 GICv3CPUState *cs = icc_cs_from_env(env); 490 491 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 492 493 value &= icv_fullprio_mask(cs); 494 495 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 496 ICH_VMCR_EL2_VPMR_LENGTH, value); 497 498 gicv3_cpuif_virt_update(cs); 499 } 500 501 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 502 { 503 GICv3CPUState *cs = icc_cs_from_env(env); 504 int enbit; 505 uint64_t value; 506 507 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 508 value = extract64(cs->ich_vmcr_el2, enbit, 1); 509 510 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 511 gicv3_redist_affid(cs), value); 512 return value; 513 } 514 515 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 516 uint64_t value) 517 { 518 GICv3CPUState *cs = icc_cs_from_env(env); 519 int enbit; 520 521 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 522 gicv3_redist_affid(cs), value); 523 524 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 525 526 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 527 gicv3_cpuif_virt_update(cs); 528 } 529 530 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 531 { 532 GICv3CPUState *cs = icc_cs_from_env(env); 533 uint64_t value; 534 535 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 536 * should match the ones reported in ich_vtr_read(). 537 */ 538 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 539 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 540 541 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 542 value |= ICC_CTLR_EL1_EOIMODE; 543 } 544 545 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 546 value |= ICC_CTLR_EL1_CBPR; 547 } 548 549 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 550 return value; 551 } 552 553 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 554 uint64_t value) 555 { 556 GICv3CPUState *cs = icc_cs_from_env(env); 557 558 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 559 560 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 561 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 562 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 563 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 564 565 gicv3_cpuif_virt_update(cs); 566 } 567 568 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 569 { 570 GICv3CPUState *cs = icc_cs_from_env(env); 571 int prio = ich_highest_active_virt_prio(cs); 572 573 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 574 return prio; 575 } 576 577 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 578 { 579 GICv3CPUState *cs = icc_cs_from_env(env); 580 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 581 int idx = hppvi_index(cs); 582 uint64_t value = INTID_SPURIOUS; 583 584 if (idx >= 0) { 585 uint64_t lr = cs->ich_lr_el2[idx]; 586 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 587 588 if (grp == thisgrp) { 589 value = ich_lr_vintid(lr); 590 } 591 } 592 593 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 594 return value; 595 } 596 597 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 598 { 599 /* Activate the interrupt in the specified list register 600 * by moving it from Pending to Active state, and update the 601 * Active Priority Registers. 602 */ 603 uint32_t mask = icv_gprio_mask(cs, grp); 604 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 605 int aprbit = prio >> (8 - cs->vprebits); 606 int regno = aprbit / 32; 607 int regbit = aprbit % 32; 608 609 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 610 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 611 cs->ich_apr[grp][regno] |= (1 << regbit); 612 } 613 614 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 615 { 616 GICv3CPUState *cs = icc_cs_from_env(env); 617 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 618 int idx = hppvi_index(cs); 619 uint64_t intid = INTID_SPURIOUS; 620 621 if (idx >= 0) { 622 uint64_t lr = cs->ich_lr_el2[idx]; 623 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 624 625 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 626 intid = ich_lr_vintid(lr); 627 if (intid < INTID_SECURE) { 628 icv_activate_irq(cs, idx, grp); 629 } else { 630 /* Interrupt goes from Pending to Invalid */ 631 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 632 /* We will now return the (bogus) ID from the list register, 633 * as per the pseudocode. 634 */ 635 } 636 } 637 } 638 639 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 640 gicv3_redist_affid(cs), intid); 641 return intid; 642 } 643 644 static int icc_highest_active_prio(GICv3CPUState *cs) 645 { 646 /* Calculate the current running priority based on the set bits 647 * in the Active Priority Registers. 648 */ 649 int i; 650 651 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 652 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 653 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 654 655 if (!apr) { 656 continue; 657 } 658 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 659 } 660 /* No current active interrupts: return idle priority */ 661 return 0xff; 662 } 663 664 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 665 { 666 /* Return a mask word which clears the subpriority bits from 667 * a priority value for an interrupt in the specified group. 668 * This depends on the BPR value: 669 * a BPR of 0 means the group priority bits are [7:1]; 670 * a BPR of 1 means they are [7:2], and so on down to 671 * a BPR of 7 meaning no group priority bits at all. 672 * Which BPR to use depends on the group of the interrupt and 673 * the current ICC_CTLR.CBPR settings. 674 */ 675 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 676 (group == GICV3_G1NS && 677 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 678 group = GICV3_G0; 679 } 680 681 return ~0U << ((cs->icc_bpr[group] & 7) + 1); 682 } 683 684 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 685 { 686 /* Return true if there is no pending interrupt, or the 687 * highest priority pending interrupt is in a group which has been 688 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 689 */ 690 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 691 } 692 693 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 694 { 695 /* Return true if we have a pending interrupt of sufficient 696 * priority to preempt. 697 */ 698 int rprio; 699 uint32_t mask; 700 701 if (icc_no_enabled_hppi(cs)) { 702 return false; 703 } 704 705 if (cs->hppi.prio >= cs->icc_pmr_el1) { 706 /* Priority mask masks this interrupt */ 707 return false; 708 } 709 710 rprio = icc_highest_active_prio(cs); 711 if (rprio == 0xff) { 712 /* No currently running interrupt so we can preempt */ 713 return true; 714 } 715 716 mask = icc_gprio_mask(cs, cs->hppi.grp); 717 718 /* We only preempt a running interrupt if the pending interrupt's 719 * group priority is sufficient (the subpriorities are not considered). 720 */ 721 if ((cs->hppi.prio & mask) < (rprio & mask)) { 722 return true; 723 } 724 725 return false; 726 } 727 728 void gicv3_cpuif_update(GICv3CPUState *cs) 729 { 730 /* Tell the CPU about its highest priority pending interrupt */ 731 int irqlevel = 0; 732 int fiqlevel = 0; 733 ARMCPU *cpu = ARM_CPU(cs->cpu); 734 CPUARMState *env = &cpu->env; 735 736 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 737 cs->hppi.grp, cs->hppi.prio); 738 739 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 740 /* If a Security-enabled GIC sends a G1S interrupt to a 741 * Security-disabled CPU, we must treat it as if it were G0. 742 */ 743 cs->hppi.grp = GICV3_G0; 744 } 745 746 if (icc_hppi_can_preempt(cs)) { 747 /* We have an interrupt: should we signal it as IRQ or FIQ? 748 * This is described in the GICv3 spec section 4.6.2. 749 */ 750 bool isfiq; 751 752 switch (cs->hppi.grp) { 753 case GICV3_G0: 754 isfiq = true; 755 break; 756 case GICV3_G1: 757 isfiq = (!arm_is_secure(env) || 758 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 759 break; 760 case GICV3_G1NS: 761 isfiq = arm_is_secure(env); 762 break; 763 default: 764 g_assert_not_reached(); 765 } 766 767 if (isfiq) { 768 fiqlevel = 1; 769 } else { 770 irqlevel = 1; 771 } 772 } 773 774 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 775 776 qemu_set_irq(cs->parent_fiq, fiqlevel); 777 qemu_set_irq(cs->parent_irq, irqlevel); 778 } 779 780 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 781 { 782 GICv3CPUState *cs = icc_cs_from_env(env); 783 uint32_t value = cs->icc_pmr_el1; 784 785 if (icv_access(env, HCR_FMO | HCR_IMO)) { 786 return icv_pmr_read(env, ri); 787 } 788 789 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 790 (env->cp15.scr_el3 & SCR_FIQ)) { 791 /* NS access and Group 0 is inaccessible to NS: return the 792 * NS view of the current priority 793 */ 794 if (value & 0x80) { 795 /* Secure priorities not visible to NS */ 796 value = 0; 797 } else if (value != 0xff) { 798 value = (value << 1) & 0xff; 799 } 800 } 801 802 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 803 804 return value; 805 } 806 807 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 808 uint64_t value) 809 { 810 GICv3CPUState *cs = icc_cs_from_env(env); 811 812 if (icv_access(env, HCR_FMO | HCR_IMO)) { 813 return icv_pmr_write(env, ri, value); 814 } 815 816 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 817 818 value &= 0xff; 819 820 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 821 (env->cp15.scr_el3 & SCR_FIQ)) { 822 /* NS access and Group 0 is inaccessible to NS: return the 823 * NS view of the current priority 824 */ 825 if (!(cs->icc_pmr_el1 & 0x80)) { 826 /* Current PMR in the secure range, don't allow NS to change it */ 827 return; 828 } 829 value = (value >> 1) & 0x80; 830 } 831 cs->icc_pmr_el1 = value; 832 gicv3_cpuif_update(cs); 833 } 834 835 static void icc_activate_irq(GICv3CPUState *cs, int irq) 836 { 837 /* Move the interrupt from the Pending state to Active, and update 838 * the Active Priority Registers 839 */ 840 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 841 int prio = cs->hppi.prio & mask; 842 int aprbit = prio >> 1; 843 int regno = aprbit / 32; 844 int regbit = aprbit % 32; 845 846 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 847 848 if (irq < GIC_INTERNAL) { 849 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 850 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 851 gicv3_redist_update(cs); 852 } else { 853 gicv3_gicd_active_set(cs->gic, irq); 854 gicv3_gicd_pending_clear(cs->gic, irq); 855 gicv3_update(cs->gic, irq, 1); 856 } 857 } 858 859 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 860 { 861 /* Return the highest priority pending interrupt register value 862 * for group 0. 863 */ 864 bool irq_is_secure; 865 866 if (cs->hppi.prio == 0xff) { 867 return INTID_SPURIOUS; 868 } 869 870 /* Check whether we can return the interrupt or if we should return 871 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 872 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 873 * is always zero.) 874 */ 875 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 876 (cs->hppi.grp != GICV3_G1NS)); 877 878 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 879 return INTID_SPURIOUS; 880 } 881 if (irq_is_secure && !arm_is_secure(env)) { 882 /* Secure interrupts not visible to Nonsecure */ 883 return INTID_SPURIOUS; 884 } 885 886 if (cs->hppi.grp != GICV3_G0) { 887 /* Indicate to EL3 that there's a Group 1 interrupt for the other 888 * state pending. 889 */ 890 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 891 } 892 893 return cs->hppi.irq; 894 } 895 896 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 897 { 898 /* Return the highest priority pending interrupt register value 899 * for group 1. 900 */ 901 bool irq_is_secure; 902 903 if (cs->hppi.prio == 0xff) { 904 return INTID_SPURIOUS; 905 } 906 907 /* Check whether we can return the interrupt or if we should return 908 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 909 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 910 * is always zero.) 911 */ 912 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 913 (cs->hppi.grp != GICV3_G1NS)); 914 915 if (cs->hppi.grp == GICV3_G0) { 916 /* Group 0 interrupts not visible via HPPIR1 */ 917 return INTID_SPURIOUS; 918 } 919 if (irq_is_secure) { 920 if (!arm_is_secure(env)) { 921 /* Secure interrupts not visible in Non-secure */ 922 return INTID_SPURIOUS; 923 } 924 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 925 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 926 return INTID_SPURIOUS; 927 } 928 929 return cs->hppi.irq; 930 } 931 932 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 933 { 934 GICv3CPUState *cs = icc_cs_from_env(env); 935 uint64_t intid; 936 937 if (icv_access(env, HCR_FMO)) { 938 return icv_iar_read(env, ri); 939 } 940 941 if (!icc_hppi_can_preempt(cs)) { 942 intid = INTID_SPURIOUS; 943 } else { 944 intid = icc_hppir0_value(cs, env); 945 } 946 947 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 948 icc_activate_irq(cs, intid); 949 } 950 951 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 952 return intid; 953 } 954 955 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 956 { 957 GICv3CPUState *cs = icc_cs_from_env(env); 958 uint64_t intid; 959 960 if (icv_access(env, HCR_IMO)) { 961 return icv_iar_read(env, ri); 962 } 963 964 if (!icc_hppi_can_preempt(cs)) { 965 intid = INTID_SPURIOUS; 966 } else { 967 intid = icc_hppir1_value(cs, env); 968 } 969 970 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 971 icc_activate_irq(cs, intid); 972 } 973 974 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 975 return intid; 976 } 977 978 static void icc_drop_prio(GICv3CPUState *cs, int grp) 979 { 980 /* Drop the priority of the currently active interrupt in 981 * the specified group. 982 * 983 * Note that we can guarantee (because of the requirement to nest 984 * ICC_IAR reads [which activate an interrupt and raise priority] 985 * with ICC_EOIR writes [which drop the priority for the interrupt]) 986 * that the interrupt we're being called for is the highest priority 987 * active interrupt, meaning that it has the lowest set bit in the 988 * APR registers. 989 * 990 * If the guest does not honour the ordering constraints then the 991 * behaviour of the GIC is UNPREDICTABLE, which for us means that 992 * the values of the APR registers might become incorrect and the 993 * running priority will be wrong, so interrupts that should preempt 994 * might not do so, and interrupts that should not preempt might do so. 995 */ 996 int i; 997 998 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 999 uint64_t *papr = &cs->icc_apr[grp][i]; 1000 1001 if (!*papr) { 1002 continue; 1003 } 1004 /* Clear the lowest set bit */ 1005 *papr &= *papr - 1; 1006 break; 1007 } 1008 1009 /* running priority change means we need an update for this cpu i/f */ 1010 gicv3_cpuif_update(cs); 1011 } 1012 1013 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1014 { 1015 /* Return true if we should split priority drop and interrupt 1016 * deactivation, ie whether the relevant EOIMode bit is set. 1017 */ 1018 if (arm_is_el3_or_mon(env)) { 1019 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1020 } 1021 if (arm_is_secure_below_el3(env)) { 1022 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1023 } else { 1024 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1025 } 1026 } 1027 1028 static int icc_highest_active_group(GICv3CPUState *cs) 1029 { 1030 /* Return the group with the highest priority active interrupt. 1031 * We can do this by just comparing the APRs to see which one 1032 * has the lowest set bit. 1033 * (If more than one group is active at the same priority then 1034 * we're in UNPREDICTABLE territory.) 1035 */ 1036 int i; 1037 1038 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1039 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1040 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1041 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1042 1043 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1044 return GICV3_G1NS; 1045 } 1046 if (g1ctz < g0ctz) { 1047 return GICV3_G1; 1048 } 1049 if (g0ctz < 32) { 1050 return GICV3_G0; 1051 } 1052 } 1053 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1054 * ignores the spurious EOI attempt. 1055 */ 1056 return -1; 1057 } 1058 1059 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1060 { 1061 if (irq < GIC_INTERNAL) { 1062 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1063 gicv3_redist_update(cs); 1064 } else { 1065 gicv3_gicd_active_clear(cs->gic, irq); 1066 gicv3_update(cs->gic, irq, 1); 1067 } 1068 } 1069 1070 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1071 { 1072 /* Return true if we should split priority drop and interrupt 1073 * deactivation, ie whether the virtual EOIMode bit is set. 1074 */ 1075 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1076 } 1077 1078 static int icv_find_active(GICv3CPUState *cs, int irq) 1079 { 1080 /* Given an interrupt number for an active interrupt, return the index 1081 * of the corresponding list register, or -1 if there is no match. 1082 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1083 */ 1084 int i; 1085 1086 for (i = 0; i < cs->num_list_regs; i++) { 1087 uint64_t lr = cs->ich_lr_el2[i]; 1088 1089 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1090 return i; 1091 } 1092 } 1093 1094 return -1; 1095 } 1096 1097 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1098 { 1099 /* Deactivate the interrupt in the specified list register index */ 1100 uint64_t lr = cs->ich_lr_el2[idx]; 1101 1102 if (lr & ICH_LR_EL2_HW) { 1103 /* Deactivate the associated physical interrupt */ 1104 int pirq = ich_lr_pintid(lr); 1105 1106 if (pirq < INTID_SECURE) { 1107 icc_deactivate_irq(cs, pirq); 1108 } 1109 } 1110 1111 /* Clear the 'active' part of the state, so ActivePending->Pending 1112 * and Active->Invalid. 1113 */ 1114 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1115 cs->ich_lr_el2[idx] = lr; 1116 } 1117 1118 static void icv_increment_eoicount(GICv3CPUState *cs) 1119 { 1120 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1121 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1122 ICH_HCR_EL2_EOICOUNT_LENGTH); 1123 1124 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1125 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1126 } 1127 1128 static int icv_drop_prio(GICv3CPUState *cs) 1129 { 1130 /* Drop the priority of the currently active virtual interrupt 1131 * (favouring group 0 if there is a set active bit at 1132 * the same priority for both group 0 and group 1). 1133 * Return the priority value for the bit we just cleared, 1134 * or 0xff if no bits were set in the AP registers at all. 1135 * Note that though the ich_apr[] are uint64_t only the low 1136 * 32 bits are actually relevant. 1137 */ 1138 int i; 1139 int aprmax = 1 << (cs->vprebits - 5); 1140 1141 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1142 1143 for (i = 0; i < aprmax; i++) { 1144 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1145 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1146 int apr0count, apr1count; 1147 1148 if (!*papr0 && !*papr1) { 1149 continue; 1150 } 1151 1152 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1153 * because we need to return the bit number we cleared so 1154 * it can be compared against the list register's priority field. 1155 */ 1156 apr0count = ctz32(*papr0); 1157 apr1count = ctz32(*papr1); 1158 1159 if (apr0count <= apr1count) { 1160 *papr0 &= *papr0 - 1; 1161 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1162 } else { 1163 *papr1 &= *papr1 - 1; 1164 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1165 } 1166 } 1167 return 0xff; 1168 } 1169 1170 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1171 uint64_t value) 1172 { 1173 /* Deactivate interrupt */ 1174 GICv3CPUState *cs = icc_cs_from_env(env); 1175 int idx; 1176 int irq = value & 0xffffff; 1177 1178 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1179 1180 if (irq >= cs->gic->num_irq) { 1181 /* Also catches special interrupt numbers and LPIs */ 1182 return; 1183 } 1184 1185 if (!icv_eoi_split(env, cs)) { 1186 return; 1187 } 1188 1189 idx = icv_find_active(cs, irq); 1190 1191 if (idx < 0) { 1192 /* No list register matching this, so increment the EOI count 1193 * (might trigger a maintenance interrupt) 1194 */ 1195 icv_increment_eoicount(cs); 1196 } else { 1197 icv_deactivate_irq(cs, idx); 1198 } 1199 1200 gicv3_cpuif_virt_update(cs); 1201 } 1202 1203 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1204 uint64_t value) 1205 { 1206 /* End of Interrupt */ 1207 GICv3CPUState *cs = icc_cs_from_env(env); 1208 int irq = value & 0xffffff; 1209 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1210 int idx, dropprio; 1211 1212 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1213 gicv3_redist_affid(cs), value); 1214 1215 if (irq >= cs->gic->num_irq) { 1216 /* Also catches special interrupt numbers and LPIs */ 1217 return; 1218 } 1219 1220 /* We implement the IMPDEF choice of "drop priority before doing 1221 * error checks" (because that lets us avoid scanning the AP 1222 * registers twice). 1223 */ 1224 dropprio = icv_drop_prio(cs); 1225 if (dropprio == 0xff) { 1226 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1227 * whether the list registers are checked in this 1228 * situation; we choose not to. 1229 */ 1230 return; 1231 } 1232 1233 idx = icv_find_active(cs, irq); 1234 1235 if (idx < 0) { 1236 /* No valid list register corresponding to EOI ID */ 1237 icv_increment_eoicount(cs); 1238 } else { 1239 uint64_t lr = cs->ich_lr_el2[idx]; 1240 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1241 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1242 1243 if (thisgrp == grp && lr_gprio == dropprio) { 1244 if (!icv_eoi_split(env, cs)) { 1245 /* Priority drop and deactivate not split: deactivate irq now */ 1246 icv_deactivate_irq(cs, idx); 1247 } 1248 } 1249 } 1250 1251 gicv3_cpuif_virt_update(cs); 1252 } 1253 1254 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1255 uint64_t value) 1256 { 1257 /* End of Interrupt */ 1258 GICv3CPUState *cs = icc_cs_from_env(env); 1259 int irq = value & 0xffffff; 1260 int grp; 1261 1262 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1263 icv_eoir_write(env, ri, value); 1264 return; 1265 } 1266 1267 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1268 gicv3_redist_affid(cs), value); 1269 1270 if (ri->crm == 8) { 1271 /* EOIR0 */ 1272 grp = GICV3_G0; 1273 } else { 1274 /* EOIR1 */ 1275 if (arm_is_secure(env)) { 1276 grp = GICV3_G1; 1277 } else { 1278 grp = GICV3_G1NS; 1279 } 1280 } 1281 1282 if (irq >= cs->gic->num_irq) { 1283 /* This handles two cases: 1284 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1285 * to the GICC_EOIR, the GIC ignores that write. 1286 * 2. If software writes the number of a non-existent interrupt 1287 * this must be a subcase of "value written does not match the last 1288 * valid interrupt value read from the Interrupt Acknowledge 1289 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1290 */ 1291 return; 1292 } 1293 1294 if (icc_highest_active_group(cs) != grp) { 1295 return; 1296 } 1297 1298 icc_drop_prio(cs, grp); 1299 1300 if (!icc_eoi_split(env, cs)) { 1301 /* Priority drop and deactivate not split: deactivate irq now */ 1302 icc_deactivate_irq(cs, irq); 1303 } 1304 } 1305 1306 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1307 { 1308 GICv3CPUState *cs = icc_cs_from_env(env); 1309 uint64_t value; 1310 1311 if (icv_access(env, HCR_FMO)) { 1312 return icv_hppir_read(env, ri); 1313 } 1314 1315 value = icc_hppir0_value(cs, env); 1316 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1317 return value; 1318 } 1319 1320 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1321 { 1322 GICv3CPUState *cs = icc_cs_from_env(env); 1323 uint64_t value; 1324 1325 if (icv_access(env, HCR_IMO)) { 1326 return icv_hppir_read(env, ri); 1327 } 1328 1329 value = icc_hppir1_value(cs, env); 1330 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1331 return value; 1332 } 1333 1334 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1335 { 1336 GICv3CPUState *cs = icc_cs_from_env(env); 1337 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1338 bool satinc = false; 1339 uint64_t bpr; 1340 1341 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1342 return icv_bpr_read(env, ri); 1343 } 1344 1345 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1346 grp = GICV3_G1NS; 1347 } 1348 1349 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1350 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1351 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1352 * modify BPR0 1353 */ 1354 grp = GICV3_G0; 1355 } 1356 1357 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1358 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1359 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1360 grp = GICV3_G0; 1361 satinc = true; 1362 } 1363 1364 bpr = cs->icc_bpr[grp]; 1365 if (satinc) { 1366 bpr++; 1367 bpr = MIN(bpr, 7); 1368 } 1369 1370 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1371 1372 return bpr; 1373 } 1374 1375 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1376 uint64_t value) 1377 { 1378 GICv3CPUState *cs = icc_cs_from_env(env); 1379 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1380 1381 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1382 icv_bpr_write(env, ri, value); 1383 return; 1384 } 1385 1386 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1387 gicv3_redist_affid(cs), value); 1388 1389 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1390 grp = GICV3_G1NS; 1391 } 1392 1393 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1394 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1395 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1396 * modify BPR0 1397 */ 1398 grp = GICV3_G0; 1399 } 1400 1401 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1402 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1403 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1404 return; 1405 } 1406 1407 cs->icc_bpr[grp] = value & 7; 1408 gicv3_cpuif_update(cs); 1409 } 1410 1411 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1412 { 1413 GICv3CPUState *cs = icc_cs_from_env(env); 1414 uint64_t value; 1415 1416 int regno = ri->opc2 & 3; 1417 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1418 1419 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1420 return icv_ap_read(env, ri); 1421 } 1422 1423 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1424 grp = GICV3_G1NS; 1425 } 1426 1427 value = cs->icc_apr[grp][regno]; 1428 1429 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1430 return value; 1431 } 1432 1433 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1434 uint64_t value) 1435 { 1436 GICv3CPUState *cs = icc_cs_from_env(env); 1437 1438 int regno = ri->opc2 & 3; 1439 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1440 1441 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1442 icv_ap_write(env, ri, value); 1443 return; 1444 } 1445 1446 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1447 1448 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1449 grp = GICV3_G1NS; 1450 } 1451 1452 /* It's not possible to claim that a Non-secure interrupt is active 1453 * at a priority outside the Non-secure range (128..255), since this 1454 * would otherwise allow malicious NS code to block delivery of S interrupts 1455 * by writing a bad value to these registers. 1456 */ 1457 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1458 return; 1459 } 1460 1461 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1462 gicv3_cpuif_update(cs); 1463 } 1464 1465 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1466 uint64_t value) 1467 { 1468 /* Deactivate interrupt */ 1469 GICv3CPUState *cs = icc_cs_from_env(env); 1470 int irq = value & 0xffffff; 1471 bool irq_is_secure, single_sec_state, irq_is_grp0; 1472 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1473 1474 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1475 icv_dir_write(env, ri, value); 1476 return; 1477 } 1478 1479 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1480 1481 if (irq >= cs->gic->num_irq) { 1482 /* Also catches special interrupt numbers and LPIs */ 1483 return; 1484 } 1485 1486 if (!icc_eoi_split(env, cs)) { 1487 return; 1488 } 1489 1490 int grp = gicv3_irq_group(cs->gic, cs, irq); 1491 1492 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1493 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1494 irq_is_grp0 = grp == GICV3_G0; 1495 1496 /* Check whether we're allowed to deactivate this interrupt based 1497 * on its group and the current CPU state. 1498 * These checks are laid out to correspond to the spec's pseudocode. 1499 */ 1500 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1501 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1502 /* No need to include !IsSecure in route_*_to_el2 as it's only 1503 * tested in cases where we know !IsSecure is true. 1504 */ 1505 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1506 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1507 1508 switch (arm_current_el(env)) { 1509 case 3: 1510 break; 1511 case 2: 1512 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1513 break; 1514 } 1515 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1516 break; 1517 } 1518 return; 1519 case 1: 1520 if (!arm_is_secure_below_el3(env)) { 1521 if (single_sec_state && irq_is_grp0 && 1522 !route_fiq_to_el3 && !route_fiq_to_el2) { 1523 break; 1524 } 1525 if (!irq_is_secure && !irq_is_grp0 && 1526 !route_irq_to_el3 && !route_irq_to_el2) { 1527 break; 1528 } 1529 } else { 1530 if (irq_is_grp0 && !route_fiq_to_el3) { 1531 break; 1532 } 1533 if (!irq_is_grp0 && 1534 (!irq_is_secure || !single_sec_state) && 1535 !route_irq_to_el3) { 1536 break; 1537 } 1538 } 1539 return; 1540 default: 1541 g_assert_not_reached(); 1542 } 1543 1544 icc_deactivate_irq(cs, irq); 1545 } 1546 1547 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1548 { 1549 GICv3CPUState *cs = icc_cs_from_env(env); 1550 int prio; 1551 1552 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1553 return icv_rpr_read(env, ri); 1554 } 1555 1556 prio = icc_highest_active_prio(cs); 1557 1558 if (arm_feature(env, ARM_FEATURE_EL3) && 1559 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1560 /* NS GIC access and Group 0 is inaccessible to NS */ 1561 if (prio & 0x80) { 1562 /* NS mustn't see priorities in the Secure half of the range */ 1563 prio = 0; 1564 } else if (prio != 0xff) { 1565 /* Non-idle priority: show the Non-secure view of it */ 1566 prio = (prio << 1) & 0xff; 1567 } 1568 } 1569 1570 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1571 return prio; 1572 } 1573 1574 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1575 uint64_t value, int grp, bool ns) 1576 { 1577 GICv3State *s = cs->gic; 1578 1579 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1580 uint64_t aff = extract64(value, 48, 8) << 16 | 1581 extract64(value, 32, 8) << 8 | 1582 extract64(value, 16, 8); 1583 uint32_t targetlist = extract64(value, 0, 16); 1584 uint32_t irq = extract64(value, 24, 4); 1585 bool irm = extract64(value, 40, 1); 1586 int i; 1587 1588 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1589 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1590 * interrupts as Group 0 interrupts and must send Secure Group 0 1591 * interrupts to the target CPUs. 1592 */ 1593 grp = GICV3_G0; 1594 } 1595 1596 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1597 aff, targetlist); 1598 1599 for (i = 0; i < s->num_cpu; i++) { 1600 GICv3CPUState *ocs = &s->cpu[i]; 1601 1602 if (irm) { 1603 /* IRM == 1 : route to all CPUs except self */ 1604 if (cs == ocs) { 1605 continue; 1606 } 1607 } else { 1608 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1609 * where the corresponding bit is set in targetlist 1610 */ 1611 int aff0; 1612 1613 if (ocs->gicr_typer >> 40 != aff) { 1614 continue; 1615 } 1616 aff0 = extract64(ocs->gicr_typer, 32, 8); 1617 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1618 continue; 1619 } 1620 } 1621 1622 /* The redistributor will check against its own GICR_NSACR as needed */ 1623 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1624 } 1625 } 1626 1627 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1628 uint64_t value) 1629 { 1630 /* Generate Secure Group 0 SGI. */ 1631 GICv3CPUState *cs = icc_cs_from_env(env); 1632 bool ns = !arm_is_secure(env); 1633 1634 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1635 } 1636 1637 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1638 uint64_t value) 1639 { 1640 /* Generate Group 1 SGI for the current Security state */ 1641 GICv3CPUState *cs = icc_cs_from_env(env); 1642 int grp; 1643 bool ns = !arm_is_secure(env); 1644 1645 grp = ns ? GICV3_G1NS : GICV3_G1; 1646 icc_generate_sgi(env, cs, value, grp, ns); 1647 } 1648 1649 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1650 uint64_t value) 1651 { 1652 /* Generate Group 1 SGI for the Security state that is not 1653 * the current state 1654 */ 1655 GICv3CPUState *cs = icc_cs_from_env(env); 1656 int grp; 1657 bool ns = !arm_is_secure(env); 1658 1659 grp = ns ? GICV3_G1 : GICV3_G1NS; 1660 icc_generate_sgi(env, cs, value, grp, ns); 1661 } 1662 1663 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1664 { 1665 GICv3CPUState *cs = icc_cs_from_env(env); 1666 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1667 uint64_t value; 1668 1669 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1670 return icv_igrpen_read(env, ri); 1671 } 1672 1673 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1674 grp = GICV3_G1NS; 1675 } 1676 1677 value = cs->icc_igrpen[grp]; 1678 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1679 gicv3_redist_affid(cs), value); 1680 return value; 1681 } 1682 1683 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1684 uint64_t value) 1685 { 1686 GICv3CPUState *cs = icc_cs_from_env(env); 1687 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1688 1689 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1690 icv_igrpen_write(env, ri, value); 1691 return; 1692 } 1693 1694 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1695 gicv3_redist_affid(cs), value); 1696 1697 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1698 grp = GICV3_G1NS; 1699 } 1700 1701 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1702 gicv3_cpuif_update(cs); 1703 } 1704 1705 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1706 { 1707 GICv3CPUState *cs = icc_cs_from_env(env); 1708 uint64_t value; 1709 1710 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1711 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1712 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1713 return value; 1714 } 1715 1716 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1717 uint64_t value) 1718 { 1719 GICv3CPUState *cs = icc_cs_from_env(env); 1720 1721 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1722 1723 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1724 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1725 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1726 gicv3_cpuif_update(cs); 1727 } 1728 1729 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1730 { 1731 GICv3CPUState *cs = icc_cs_from_env(env); 1732 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1733 uint64_t value; 1734 1735 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1736 return icv_ctlr_read(env, ri); 1737 } 1738 1739 value = cs->icc_ctlr_el1[bank]; 1740 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1741 return value; 1742 } 1743 1744 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1745 uint64_t value) 1746 { 1747 GICv3CPUState *cs = icc_cs_from_env(env); 1748 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1749 uint64_t mask; 1750 1751 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1752 icv_ctlr_write(env, ri, value); 1753 return; 1754 } 1755 1756 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1757 1758 /* Only CBPR and EOIMODE can be RW; 1759 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1760 * the asseciated priority-based routing of them); 1761 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1762 */ 1763 if (arm_feature(env, ARM_FEATURE_EL3) && 1764 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1765 mask = ICC_CTLR_EL1_EOIMODE; 1766 } else { 1767 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1768 } 1769 1770 cs->icc_ctlr_el1[bank] &= ~mask; 1771 cs->icc_ctlr_el1[bank] |= (value & mask); 1772 gicv3_cpuif_update(cs); 1773 } 1774 1775 1776 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1777 { 1778 GICv3CPUState *cs = icc_cs_from_env(env); 1779 uint64_t value; 1780 1781 value = cs->icc_ctlr_el3; 1782 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1783 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1784 } 1785 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1786 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1787 } 1788 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1789 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1790 } 1791 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1792 value |= ICC_CTLR_EL3_CBPR_EL1S; 1793 } 1794 1795 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1796 return value; 1797 } 1798 1799 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1800 uint64_t value) 1801 { 1802 GICv3CPUState *cs = icc_cs_from_env(env); 1803 uint64_t mask; 1804 1805 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1806 1807 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1808 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1809 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1810 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1811 } 1812 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1813 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1814 } 1815 1816 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1817 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1818 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1819 } 1820 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1821 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1822 } 1823 1824 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1825 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1826 1827 cs->icc_ctlr_el3 &= ~mask; 1828 cs->icc_ctlr_el3 |= (value & mask); 1829 gicv3_cpuif_update(cs); 1830 } 1831 1832 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1833 const ARMCPRegInfo *ri, bool isread) 1834 { 1835 CPAccessResult r = CP_ACCESS_OK; 1836 GICv3CPUState *cs = icc_cs_from_env(env); 1837 int el = arm_current_el(env); 1838 1839 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1840 el == 1 && !arm_is_secure_below_el3(env)) { 1841 /* Takes priority over a possible EL3 trap */ 1842 return CP_ACCESS_TRAP_EL2; 1843 } 1844 1845 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1846 switch (el) { 1847 case 1: 1848 if (arm_is_secure_below_el3(env) || 1849 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { 1850 r = CP_ACCESS_TRAP_EL3; 1851 } 1852 break; 1853 case 2: 1854 r = CP_ACCESS_TRAP_EL3; 1855 break; 1856 case 3: 1857 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1858 r = CP_ACCESS_TRAP_EL3; 1859 } 1860 break; 1861 default: 1862 g_assert_not_reached(); 1863 } 1864 } 1865 1866 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1867 r = CP_ACCESS_TRAP; 1868 } 1869 return r; 1870 } 1871 1872 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1873 const ARMCPRegInfo *ri, bool isread) 1874 { 1875 GICv3CPUState *cs = icc_cs_from_env(env); 1876 1877 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1878 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1879 /* Takes priority over a possible EL3 trap */ 1880 return CP_ACCESS_TRAP_EL2; 1881 } 1882 1883 return gicv3_irqfiq_access(env, ri, isread); 1884 } 1885 1886 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1887 const ARMCPRegInfo *ri, bool isread) 1888 { 1889 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && 1890 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1891 /* Takes priority over a possible EL3 trap */ 1892 return CP_ACCESS_TRAP_EL2; 1893 } 1894 1895 return gicv3_irqfiq_access(env, ri, isread); 1896 } 1897 1898 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1899 const ARMCPRegInfo *ri, bool isread) 1900 { 1901 CPAccessResult r = CP_ACCESS_OK; 1902 GICv3CPUState *cs = icc_cs_from_env(env); 1903 int el = arm_current_el(env); 1904 1905 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1906 el == 1 && !arm_is_secure_below_el3(env)) { 1907 /* Takes priority over a possible EL3 trap */ 1908 return CP_ACCESS_TRAP_EL2; 1909 } 1910 1911 if (env->cp15.scr_el3 & SCR_FIQ) { 1912 switch (el) { 1913 case 1: 1914 if (arm_is_secure_below_el3(env) || 1915 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { 1916 r = CP_ACCESS_TRAP_EL3; 1917 } 1918 break; 1919 case 2: 1920 r = CP_ACCESS_TRAP_EL3; 1921 break; 1922 case 3: 1923 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1924 r = CP_ACCESS_TRAP_EL3; 1925 } 1926 break; 1927 default: 1928 g_assert_not_reached(); 1929 } 1930 } 1931 1932 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1933 r = CP_ACCESS_TRAP; 1934 } 1935 return r; 1936 } 1937 1938 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1939 const ARMCPRegInfo *ri, bool isread) 1940 { 1941 CPAccessResult r = CP_ACCESS_OK; 1942 GICv3CPUState *cs = icc_cs_from_env(env); 1943 int el = arm_current_el(env); 1944 1945 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 1946 el == 1 && !arm_is_secure_below_el3(env)) { 1947 /* Takes priority over a possible EL3 trap */ 1948 return CP_ACCESS_TRAP_EL2; 1949 } 1950 1951 if (env->cp15.scr_el3 & SCR_IRQ) { 1952 switch (el) { 1953 case 1: 1954 if (arm_is_secure_below_el3(env) || 1955 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { 1956 r = CP_ACCESS_TRAP_EL3; 1957 } 1958 break; 1959 case 2: 1960 r = CP_ACCESS_TRAP_EL3; 1961 break; 1962 case 3: 1963 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1964 r = CP_ACCESS_TRAP_EL3; 1965 } 1966 break; 1967 default: 1968 g_assert_not_reached(); 1969 } 1970 } 1971 1972 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1973 r = CP_ACCESS_TRAP; 1974 } 1975 return r; 1976 } 1977 1978 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1979 { 1980 GICv3CPUState *cs = icc_cs_from_env(env); 1981 1982 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 1983 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 1984 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 1985 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 1986 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 1987 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 1988 cs->icc_pmr_el1 = 0; 1989 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 1990 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 1991 if (arm_feature(env, ARM_FEATURE_EL3)) { 1992 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 1993 } else { 1994 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; 1995 } 1996 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 1997 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 1998 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 1999 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2000 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2001 2002 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2003 cs->ich_hcr_el2 = 0; 2004 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2005 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2006 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2007 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2008 } 2009 2010 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2011 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2012 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2013 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2014 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2015 .readfn = icc_pmr_read, 2016 .writefn = icc_pmr_write, 2017 /* We hang the whole cpu interface reset routine off here 2018 * rather than parcelling it out into one little function 2019 * per register 2020 */ 2021 .resetfn = icc_reset, 2022 }, 2023 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2024 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2025 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2026 .access = PL1_R, .accessfn = gicv3_fiq_access, 2027 .readfn = icc_iar0_read, 2028 }, 2029 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2030 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2031 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2032 .access = PL1_W, .accessfn = gicv3_fiq_access, 2033 .writefn = icc_eoir_write, 2034 }, 2035 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2036 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2037 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2038 .access = PL1_R, .accessfn = gicv3_fiq_access, 2039 .readfn = icc_hppir0_read, 2040 }, 2041 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2042 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2043 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2044 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2045 .readfn = icc_bpr_read, 2046 .writefn = icc_bpr_write, 2047 }, 2048 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2049 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2050 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2051 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2052 .readfn = icc_ap_read, 2053 .writefn = icc_ap_write, 2054 }, 2055 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2057 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2058 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2059 .readfn = icc_ap_read, 2060 .writefn = icc_ap_write, 2061 }, 2062 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2063 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2064 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2065 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2066 .readfn = icc_ap_read, 2067 .writefn = icc_ap_write, 2068 }, 2069 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2070 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2071 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2072 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2073 .readfn = icc_ap_read, 2074 .writefn = icc_ap_write, 2075 }, 2076 /* All the ICC_AP1R*_EL1 registers are banked */ 2077 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2078 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2079 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2080 .access = PL1_RW, .accessfn = gicv3_irq_access, 2081 .readfn = icc_ap_read, 2082 .writefn = icc_ap_write, 2083 }, 2084 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2086 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2087 .access = PL1_RW, .accessfn = gicv3_irq_access, 2088 .readfn = icc_ap_read, 2089 .writefn = icc_ap_write, 2090 }, 2091 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2092 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2093 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2094 .access = PL1_RW, .accessfn = gicv3_irq_access, 2095 .readfn = icc_ap_read, 2096 .writefn = icc_ap_write, 2097 }, 2098 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2100 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2101 .access = PL1_RW, .accessfn = gicv3_irq_access, 2102 .readfn = icc_ap_read, 2103 .writefn = icc_ap_write, 2104 }, 2105 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2107 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2108 .access = PL1_W, .accessfn = gicv3_dir_access, 2109 .writefn = icc_dir_write, 2110 }, 2111 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2112 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2113 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2114 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2115 .readfn = icc_rpr_read, 2116 }, 2117 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2118 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2119 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2120 .access = PL1_W, .accessfn = gicv3_sgi_access, 2121 .writefn = icc_sgi1r_write, 2122 }, 2123 { .name = "ICC_SGI1R", 2124 .cp = 15, .opc1 = 0, .crm = 12, 2125 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2126 .access = PL1_W, .accessfn = gicv3_sgi_access, 2127 .writefn = icc_sgi1r_write, 2128 }, 2129 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2130 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2131 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2132 .access = PL1_W, .accessfn = gicv3_sgi_access, 2133 .writefn = icc_asgi1r_write, 2134 }, 2135 { .name = "ICC_ASGI1R", 2136 .cp = 15, .opc1 = 1, .crm = 12, 2137 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2138 .access = PL1_W, .accessfn = gicv3_sgi_access, 2139 .writefn = icc_asgi1r_write, 2140 }, 2141 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2143 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2144 .access = PL1_W, .accessfn = gicv3_sgi_access, 2145 .writefn = icc_sgi0r_write, 2146 }, 2147 { .name = "ICC_SGI0R", 2148 .cp = 15, .opc1 = 2, .crm = 12, 2149 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2150 .access = PL1_W, .accessfn = gicv3_sgi_access, 2151 .writefn = icc_sgi0r_write, 2152 }, 2153 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2154 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2155 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2156 .access = PL1_R, .accessfn = gicv3_irq_access, 2157 .readfn = icc_iar1_read, 2158 }, 2159 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2160 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2161 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2162 .access = PL1_W, .accessfn = gicv3_irq_access, 2163 .writefn = icc_eoir_write, 2164 }, 2165 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2166 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2167 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2168 .access = PL1_R, .accessfn = gicv3_irq_access, 2169 .readfn = icc_hppir1_read, 2170 }, 2171 /* This register is banked */ 2172 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2173 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2174 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2175 .access = PL1_RW, .accessfn = gicv3_irq_access, 2176 .readfn = icc_bpr_read, 2177 .writefn = icc_bpr_write, 2178 }, 2179 /* This register is banked */ 2180 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2182 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2183 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2184 .readfn = icc_ctlr_el1_read, 2185 .writefn = icc_ctlr_el1_write, 2186 }, 2187 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2188 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2189 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2190 .access = PL1_RW, 2191 /* We don't support IRQ/FIQ bypass and system registers are 2192 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2193 * This register is banked but since it's constant we don't 2194 * need to do anything special. 2195 */ 2196 .resetvalue = 0x7, 2197 }, 2198 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2200 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2201 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2202 .readfn = icc_igrpen_read, 2203 .writefn = icc_igrpen_write, 2204 }, 2205 /* This register is banked */ 2206 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2207 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2208 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2209 .access = PL1_RW, .accessfn = gicv3_irq_access, 2210 .readfn = icc_igrpen_read, 2211 .writefn = icc_igrpen_write, 2212 }, 2213 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2214 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2215 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2216 .access = PL2_RW, 2217 /* We don't support IRQ/FIQ bypass and system registers are 2218 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2219 */ 2220 .resetvalue = 0xf, 2221 }, 2222 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2223 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2224 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2225 .access = PL3_RW, 2226 .readfn = icc_ctlr_el3_read, 2227 .writefn = icc_ctlr_el3_write, 2228 }, 2229 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2230 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2231 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2232 .access = PL3_RW, 2233 /* We don't support IRQ/FIQ bypass and system registers are 2234 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2235 */ 2236 .resetvalue = 0xf, 2237 }, 2238 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2239 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2240 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2241 .access = PL3_RW, 2242 .readfn = icc_igrpen1_el3_read, 2243 .writefn = icc_igrpen1_el3_write, 2244 }, 2245 REGINFO_SENTINEL 2246 }; 2247 2248 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2249 { 2250 GICv3CPUState *cs = icc_cs_from_env(env); 2251 int regno = ri->opc2 & 3; 2252 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2253 uint64_t value; 2254 2255 value = cs->ich_apr[grp][regno]; 2256 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2257 return value; 2258 } 2259 2260 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2261 uint64_t value) 2262 { 2263 GICv3CPUState *cs = icc_cs_from_env(env); 2264 int regno = ri->opc2 & 3; 2265 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2266 2267 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2268 2269 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2270 gicv3_cpuif_virt_update(cs); 2271 } 2272 2273 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2274 { 2275 GICv3CPUState *cs = icc_cs_from_env(env); 2276 uint64_t value = cs->ich_hcr_el2; 2277 2278 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2279 return value; 2280 } 2281 2282 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2283 uint64_t value) 2284 { 2285 GICv3CPUState *cs = icc_cs_from_env(env); 2286 2287 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2288 2289 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2290 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2291 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2292 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2293 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2294 2295 cs->ich_hcr_el2 = value; 2296 gicv3_cpuif_virt_update(cs); 2297 } 2298 2299 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2300 { 2301 GICv3CPUState *cs = icc_cs_from_env(env); 2302 uint64_t value = cs->ich_vmcr_el2; 2303 2304 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2305 return value; 2306 } 2307 2308 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2309 uint64_t value) 2310 { 2311 GICv3CPUState *cs = icc_cs_from_env(env); 2312 2313 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2314 2315 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2316 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2317 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2318 value |= ICH_VMCR_EL2_VFIQEN; 2319 2320 cs->ich_vmcr_el2 = value; 2321 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2322 * by reading and writing back the fields. 2323 */ 2324 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); 2325 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2326 2327 gicv3_cpuif_virt_update(cs); 2328 } 2329 2330 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2331 { 2332 GICv3CPUState *cs = icc_cs_from_env(env); 2333 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2334 uint64_t value; 2335 2336 /* This read function handles all of: 2337 * 64-bit reads of the whole LR 2338 * 32-bit reads of the low half of the LR 2339 * 32-bit reads of the high half of the LR 2340 */ 2341 if (ri->state == ARM_CP_STATE_AA32) { 2342 if (ri->crm >= 14) { 2343 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2344 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2345 } else { 2346 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2347 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2348 } 2349 } else { 2350 value = cs->ich_lr_el2[regno]; 2351 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2352 } 2353 2354 return value; 2355 } 2356 2357 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2358 uint64_t value) 2359 { 2360 GICv3CPUState *cs = icc_cs_from_env(env); 2361 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2362 2363 /* This write function handles all of: 2364 * 64-bit writes to the whole LR 2365 * 32-bit writes to the low half of the LR 2366 * 32-bit writes to the high half of the LR 2367 */ 2368 if (ri->state == ARM_CP_STATE_AA32) { 2369 if (ri->crm >= 14) { 2370 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2371 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2372 } else { 2373 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2374 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2375 } 2376 } else { 2377 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2378 } 2379 2380 /* Enforce RES0 bits in priority field */ 2381 if (cs->vpribits < 8) { 2382 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2383 8 - cs->vpribits, 0); 2384 } 2385 2386 cs->ich_lr_el2[regno] = value; 2387 gicv3_cpuif_virt_update(cs); 2388 } 2389 2390 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2391 { 2392 GICv3CPUState *cs = icc_cs_from_env(env); 2393 uint64_t value; 2394 2395 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2396 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2397 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2398 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2399 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2400 2401 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2402 return value; 2403 } 2404 2405 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2406 { 2407 GICv3CPUState *cs = icc_cs_from_env(env); 2408 uint64_t value = maintenance_interrupt_state(cs); 2409 2410 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2411 return value; 2412 } 2413 2414 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2415 { 2416 GICv3CPUState *cs = icc_cs_from_env(env); 2417 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2418 2419 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2420 return value; 2421 } 2422 2423 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2424 { 2425 GICv3CPUState *cs = icc_cs_from_env(env); 2426 uint64_t value = 0; 2427 int i; 2428 2429 for (i = 0; i < cs->num_list_regs; i++) { 2430 uint64_t lr = cs->ich_lr_el2[i]; 2431 2432 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2433 ((lr & ICH_LR_EL2_HW) == 1 || (lr & ICH_LR_EL2_EOI) == 0)) { 2434 value |= (1 << i); 2435 } 2436 } 2437 2438 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2439 return value; 2440 } 2441 2442 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2443 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2444 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2445 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2446 .access = PL2_RW, 2447 .readfn = ich_ap_read, 2448 .writefn = ich_ap_write, 2449 }, 2450 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2451 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2452 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2453 .access = PL2_RW, 2454 .readfn = ich_ap_read, 2455 .writefn = ich_ap_write, 2456 }, 2457 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2458 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2459 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2460 .access = PL2_RW, 2461 .readfn = ich_hcr_read, 2462 .writefn = ich_hcr_write, 2463 }, 2464 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2465 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2466 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2467 .access = PL2_R, 2468 .readfn = ich_vtr_read, 2469 }, 2470 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2471 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2472 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2473 .access = PL2_R, 2474 .readfn = ich_misr_read, 2475 }, 2476 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2477 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2478 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2479 .access = PL2_R, 2480 .readfn = ich_eisr_read, 2481 }, 2482 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2483 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2484 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2485 .access = PL2_R, 2486 .readfn = ich_elrsr_read, 2487 }, 2488 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2489 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2490 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2491 .access = PL2_RW, 2492 .readfn = ich_vmcr_read, 2493 .writefn = ich_vmcr_write, 2494 }, 2495 REGINFO_SENTINEL 2496 }; 2497 2498 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2499 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2501 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2502 .access = PL2_RW, 2503 .readfn = ich_ap_read, 2504 .writefn = ich_ap_write, 2505 }, 2506 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2507 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2508 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2509 .access = PL2_RW, 2510 .readfn = ich_ap_read, 2511 .writefn = ich_ap_write, 2512 }, 2513 REGINFO_SENTINEL 2514 }; 2515 2516 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2517 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2518 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2519 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2520 .access = PL2_RW, 2521 .readfn = ich_ap_read, 2522 .writefn = ich_ap_write, 2523 }, 2524 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2525 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2526 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2527 .access = PL2_RW, 2528 .readfn = ich_ap_read, 2529 .writefn = ich_ap_write, 2530 }, 2531 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2532 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2533 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2534 .access = PL2_RW, 2535 .readfn = ich_ap_read, 2536 .writefn = ich_ap_write, 2537 }, 2538 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2539 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2540 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2541 .access = PL2_RW, 2542 .readfn = ich_ap_read, 2543 .writefn = ich_ap_write, 2544 }, 2545 REGINFO_SENTINEL 2546 }; 2547 2548 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2549 { 2550 GICv3CPUState *cs = opaque; 2551 2552 gicv3_cpuif_update(cs); 2553 } 2554 2555 void gicv3_init_cpuif(GICv3State *s) 2556 { 2557 /* Called from the GICv3 realize function; register our system 2558 * registers with the CPU 2559 */ 2560 int i; 2561 2562 for (i = 0; i < s->num_cpu; i++) { 2563 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2564 GICv3CPUState *cs = &s->cpu[i]; 2565 2566 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2567 * in define_arm_cp_regs_with_opaque(), because when we're called back 2568 * it might be with code translated by CPU 0 but run by CPU 1, in 2569 * which case we'd get the wrong value. 2570 * So instead we define the regs with no ri->opaque info, and 2571 * get back to the GICv3CPUState from the ARMCPU by reading back 2572 * the opaque pointer from the el_change_hook, which we're going 2573 * to need to register anyway. 2574 */ 2575 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2576 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2577 && cpu->gic_num_lrs) { 2578 int j; 2579 2580 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; 2581 2582 cs->num_list_regs = cpu->gic_num_lrs; 2583 cs->vpribits = cpu->gic_vpribits; 2584 cs->vprebits = cpu->gic_vprebits; 2585 2586 /* Check against architectural constraints: getting these 2587 * wrong would be a bug in the CPU code defining these, 2588 * and the implementation relies on them holding. 2589 */ 2590 g_assert(cs->vprebits <= cs->vpribits); 2591 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2592 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2593 2594 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2595 2596 for (j = 0; j < cs->num_list_regs; j++) { 2597 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2598 * are split into two cp15 regs, LR (the low part, with the 2599 * same encoding as the AArch64 LR) and LRC (the high part). 2600 */ 2601 ARMCPRegInfo lr_regset[] = { 2602 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2603 .opc0 = 3, .opc1 = 4, .crn = 12, 2604 .crm = 12 + (j >> 3), .opc2 = j & 7, 2605 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2606 .access = PL2_RW, 2607 .readfn = ich_lr_read, 2608 .writefn = ich_lr_write, 2609 }, 2610 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2611 .cp = 15, .opc1 = 4, .crn = 12, 2612 .crm = 14 + (j >> 3), .opc2 = j & 7, 2613 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2614 .access = PL2_RW, 2615 .readfn = ich_lr_read, 2616 .writefn = ich_lr_write, 2617 }, 2618 REGINFO_SENTINEL 2619 }; 2620 define_arm_cp_regs(cpu, lr_regset); 2621 } 2622 if (cs->vprebits >= 6) { 2623 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2624 } 2625 if (cs->vprebits == 7) { 2626 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2627 } 2628 } 2629 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2630 } 2631 } 2632