xref: /openbmc/qemu/hw/intc/arm_gicv3_cpuif.c (revision 764a6ee9)
1 /*
2  * ARM Generic Interrupt Controller v3 (emulation)
3  *
4  * Copyright (c) 2016 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This code is licensed under the GPL, version 2 or (at your option)
8  * any later version.
9  */
10 
11 /* This file contains the code for the system register interface
12  * portions of the GICv3.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 #include "target/arm/cpregs.h"
24 #include "target/arm/cpu-features.h"
25 #include "sysemu/tcg.h"
26 #include "sysemu/qtest.h"
27 
28 /*
29  * Special case return value from hppvi_index(); must be larger than
30  * the architecturally maximum possible list register index (which is 15)
31  */
32 #define HPPVI_INDEX_VLPI 16
33 
34 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
35 {
36     return env->gicv3state;
37 }
38 
39 static bool gicv3_use_ns_bank(CPUARMState *env)
40 {
41     /* Return true if we should use the NonSecure bank for a banked GIC
42      * CPU interface register. Note that this differs from the
43      * access_secure_reg() function because GICv3 banked registers are
44      * banked even for AArch64, unlike the other CPU system registers.
45      */
46     return !arm_is_secure_below_el3(env);
47 }
48 
49 /* The minimum BPR for the virtual interface is a configurable property */
50 static inline int icv_min_vbpr(GICv3CPUState *cs)
51 {
52     return 7 - cs->vprebits;
53 }
54 
55 static inline int ich_num_aprs(GICv3CPUState *cs)
56 {
57     /* Return the number of virtual APR registers (1, 2, or 4) */
58     int aprmax = 1 << (cs->vprebits - 5);
59     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
60     return aprmax;
61 }
62 
63 /* Simple accessor functions for LR fields */
64 static uint32_t ich_lr_vintid(uint64_t lr)
65 {
66     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
67 }
68 
69 static uint32_t ich_lr_pintid(uint64_t lr)
70 {
71     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
72 }
73 
74 static uint32_t ich_lr_prio(uint64_t lr)
75 {
76     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
77 }
78 
79 static int ich_lr_state(uint64_t lr)
80 {
81     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
82 }
83 
84 static bool icv_access(CPUARMState *env, int hcr_flags)
85 {
86     /* Return true if this ICC_ register access should really be
87      * directed to an ICV_ access. hcr_flags is a mask of
88      * HCR_EL2 bits to check: we treat this as an ICV_ access
89      * if we are in NS EL1 and at least one of the specified
90      * HCR_EL2 bits is set.
91      *
92      * ICV registers fall into four categories:
93      *  * access if NS EL1 and HCR_EL2.FMO == 1:
94      *    all ICV regs with '0' in their name
95      *  * access if NS EL1 and HCR_EL2.IMO == 1:
96      *    all ICV regs with '1' in their name
97      *  * access if NS EL1 and either IMO or FMO == 1:
98      *    CTLR, DIR, PMR, RPR
99      */
100     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
101     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
102 
103     return flagmatch && arm_current_el(env) == 1
104         && !arm_is_secure_below_el3(env);
105 }
106 
107 static int read_vbpr(GICv3CPUState *cs, int grp)
108 {
109     /* Read VBPR value out of the VMCR field (caller must handle
110      * VCBPR effects if required)
111      */
112     if (grp == GICV3_G0) {
113         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
114                      ICH_VMCR_EL2_VBPR0_LENGTH);
115     } else {
116         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
117                          ICH_VMCR_EL2_VBPR1_LENGTH);
118     }
119 }
120 
121 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
122 {
123     /* Write new VBPR1 value, handling the "writing a value less than
124      * the minimum sets it to the minimum" semantics.
125      */
126     int min = icv_min_vbpr(cs);
127 
128     if (grp != GICV3_G0) {
129         min++;
130     }
131 
132     value = MAX(value, min);
133 
134     if (grp == GICV3_G0) {
135         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
136                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
137     } else {
138         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
139                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
140     }
141 }
142 
143 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
144 {
145     /* Return a mask word which clears the unimplemented priority bits
146      * from a priority value for a virtual interrupt. (Not to be confused
147      * with the group priority, whose mask depends on the value of VBPR
148      * for the interrupt group.)
149      */
150     return (~0U << (8 - cs->vpribits)) & 0xff;
151 }
152 
153 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
154 {
155     /* Calculate the current running priority based on the set bits
156      * in the ICH Active Priority Registers.
157      */
158     int i;
159     int aprmax = ich_num_aprs(cs);
160 
161     if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) {
162         return 0x0;
163     }
164 
165     for (i = 0; i < aprmax; i++) {
166         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
167             cs->ich_apr[GICV3_G1NS][i];
168 
169         if (!apr) {
170             continue;
171         }
172         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
173     }
174     /* No current active interrupts: return idle priority */
175     return 0xff;
176 }
177 
178 static int hppvi_index(GICv3CPUState *cs)
179 {
180     /*
181      * Return the list register index of the highest priority pending
182      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
183      * pseudocode. If no pending virtual interrupts, return -1.
184      * If the highest priority pending virtual interrupt is a vLPI,
185      * return HPPVI_INDEX_VLPI.
186      * (The pseudocode handles checking whether the vLPI is higher
187      * priority than the highest priority list register at every
188      * callsite of HighestPriorityVirtualInterrupt; we check it here.)
189      */
190     ARMCPU *cpu = ARM_CPU(cs->cpu);
191     CPUARMState *env = &cpu->env;
192     int idx = -1;
193     int i;
194     /* Note that a list register entry with a priority of 0xff will
195      * never be reported by this function; this is the architecturally
196      * correct behaviour.
197      */
198     int prio = 0xff;
199     bool nmi = false;
200 
201     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
202         /* Both groups disabled, definitely nothing to do */
203         return idx;
204     }
205 
206     for (i = 0; i < cs->num_list_regs; i++) {
207         uint64_t lr = cs->ich_lr_el2[i];
208         bool thisnmi;
209         int thisprio;
210 
211         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
212             /* Not Pending */
213             continue;
214         }
215 
216         /* Ignore interrupts if relevant group enable not set */
217         if (lr & ICH_LR_EL2_GROUP) {
218             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
219                 continue;
220             }
221         } else {
222             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
223                 continue;
224             }
225         }
226 
227         thisnmi = lr & ICH_LR_EL2_NMI;
228         thisprio = ich_lr_prio(lr);
229 
230         if ((thisprio < prio) || ((thisprio == prio) && (thisnmi & (!nmi)))) {
231             prio = thisprio;
232             nmi = thisnmi;
233             idx = i;
234         }
235     }
236 
237     /*
238      * "no pending vLPI" is indicated with prio = 0xff, which always
239      * fails the priority check here. vLPIs are only considered
240      * when we are in Non-Secure state.
241      */
242     if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
243         if (cs->hppvlpi.grp == GICV3_G0) {
244             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
245                 return HPPVI_INDEX_VLPI;
246             }
247         } else {
248             if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
249                 return HPPVI_INDEX_VLPI;
250             }
251         }
252     }
253 
254     return idx;
255 }
256 
257 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
258 {
259     /* Return a mask word which clears the subpriority bits from
260      * a priority value for a virtual interrupt in the specified group.
261      * This depends on the VBPR value.
262      * If using VBPR0 then:
263      *  a BPR of 0 means the group priority bits are [7:1];
264      *  a BPR of 1 means they are [7:2], and so on down to
265      *  a BPR of 7 meaning no group priority bits at all.
266      * If using VBPR1 then:
267      *  a BPR of 0 is impossible (the minimum value is 1)
268      *  a BPR of 1 means the group priority bits are [7:1];
269      *  a BPR of 2 means they are [7:2], and so on down to
270      *  a BPR of 7 meaning the group priority is [7].
271      *
272      * Which BPR to use depends on the group of the interrupt and
273      * the current ICH_VMCR_EL2.VCBPR settings.
274      *
275      * This corresponds to the VGroupBits() pseudocode.
276      */
277     int bpr;
278 
279     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
280         group = GICV3_G0;
281     }
282 
283     bpr = read_vbpr(cs, group);
284     if (group == GICV3_G1NS) {
285         assert(bpr > 0);
286         bpr--;
287     }
288 
289     return ~0U << (bpr + 1);
290 }
291 
292 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
293 {
294     /* Return true if we can signal this virtual interrupt defined by
295      * the given list register value; see the pseudocode functions
296      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
297      * Compare also icc_hppi_can_preempt() which is the non-virtual
298      * equivalent of these checks.
299      */
300     int grp;
301     bool is_nmi;
302     uint32_t mask, prio, rprio, vpmr;
303 
304     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
305         /* Virtual interface disabled */
306         return false;
307     }
308 
309     /* We don't need to check that this LR is in Pending state because
310      * that has already been done in hppvi_index().
311      */
312 
313     prio = ich_lr_prio(lr);
314     is_nmi = lr & ICH_LR_EL2_NMI;
315     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
316                      ICH_VMCR_EL2_VPMR_LENGTH);
317 
318     if (!is_nmi && prio >= vpmr) {
319         /* Priority mask masks this interrupt */
320         return false;
321     }
322 
323     rprio = ich_highest_active_virt_prio(cs);
324     if (rprio == 0xff) {
325         /* No running interrupt so we can preempt */
326         return true;
327     }
328 
329     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
330 
331     mask = icv_gprio_mask(cs, grp);
332 
333     /* We only preempt a running interrupt if the pending interrupt's
334      * group priority is sufficient (the subpriorities are not considered).
335      */
336     if ((prio & mask) < (rprio & mask)) {
337         return true;
338     }
339 
340     if ((prio & mask) == (rprio & mask) && is_nmi &&
341         !(cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI)) {
342         return true;
343     }
344 
345     return false;
346 }
347 
348 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
349 {
350     /*
351      * Return true if we can signal the highest priority pending vLPI.
352      * We can assume we're Non-secure because hppvi_index() already
353      * tested for that.
354      */
355     uint32_t mask, rprio, vpmr;
356 
357     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
358         /* Virtual interface disabled */
359         return false;
360     }
361 
362     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
363                      ICH_VMCR_EL2_VPMR_LENGTH);
364 
365     if (cs->hppvlpi.prio >= vpmr) {
366         /* Priority mask masks this interrupt */
367         return false;
368     }
369 
370     rprio = ich_highest_active_virt_prio(cs);
371     if (rprio == 0xff) {
372         /* No running interrupt so we can preempt */
373         return true;
374     }
375 
376     mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
377 
378     /*
379      * We only preempt a running interrupt if the pending interrupt's
380      * group priority is sufficient (the subpriorities are not considered).
381      */
382     if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
383         return true;
384     }
385 
386     return false;
387 }
388 
389 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
390                                                 uint32_t *misr)
391 {
392     /* Return a set of bits indicating the EOI maintenance interrupt status
393      * for each list register. The EOI maintenance interrupt status is
394      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
395      * (see the GICv3 spec for the ICH_EISR_EL2 register).
396      * If misr is not NULL then we should also collect the information
397      * about the MISR.EOI, MISR.NP and MISR.U bits.
398      */
399     uint32_t value = 0;
400     int validcount = 0;
401     bool seenpending = false;
402     int i;
403 
404     for (i = 0; i < cs->num_list_regs; i++) {
405         uint64_t lr = cs->ich_lr_el2[i];
406 
407         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
408             == ICH_LR_EL2_EOI) {
409             value |= (1 << i);
410         }
411         if ((lr & ICH_LR_EL2_STATE_MASK)) {
412             validcount++;
413         }
414         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
415             seenpending = true;
416         }
417     }
418 
419     if (misr) {
420         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
421             *misr |= ICH_MISR_EL2_U;
422         }
423         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
424             *misr |= ICH_MISR_EL2_NP;
425         }
426         if (value) {
427             *misr |= ICH_MISR_EL2_EOI;
428         }
429     }
430     return value;
431 }
432 
433 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
434 {
435     /* Return a set of bits indicating the maintenance interrupt status
436      * (as seen in the ICH_MISR_EL2 register).
437      */
438     uint32_t value = 0;
439 
440     /* Scan list registers and fill in the U, NP and EOI bits */
441     eoi_maintenance_interrupt_state(cs, &value);
442 
443     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
444         (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
445         value |= ICH_MISR_EL2_LRENP;
446     }
447 
448     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
449         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
450         value |= ICH_MISR_EL2_VGRP0E;
451     }
452 
453     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
454         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
455         value |= ICH_MISR_EL2_VGRP0D;
456     }
457     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
458         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
459         value |= ICH_MISR_EL2_VGRP1E;
460     }
461 
462     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
463         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
464         value |= ICH_MISR_EL2_VGRP1D;
465     }
466 
467     return value;
468 }
469 
470 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
471 {
472     /*
473      * Tell the CPU about any pending virtual interrupts.
474      * This should only be called for changes that affect the
475      * vIRQ and vFIQ status and do not change the maintenance
476      * interrupt status. This means that unlike gicv3_cpuif_virt_update()
477      * this function won't recursively call back into the GIC code.
478      * The main use of this is when the redistributor has changed the
479      * highest priority pending virtual LPI.
480      */
481     int idx;
482     int irqlevel = 0;
483     int fiqlevel = 0;
484     int nmilevel = 0;
485 
486     idx = hppvi_index(cs);
487     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
488                                   cs->hppvlpi.irq, cs->hppvlpi.grp,
489                                   cs->hppvlpi.prio);
490     if (idx == HPPVI_INDEX_VLPI) {
491         if (icv_hppvlpi_can_preempt(cs)) {
492             if (cs->hppvlpi.grp == GICV3_G0) {
493                 fiqlevel = 1;
494             } else {
495                 irqlevel = 1;
496             }
497         }
498     } else if (idx >= 0) {
499         uint64_t lr = cs->ich_lr_el2[idx];
500 
501         if (icv_hppi_can_preempt(cs, lr)) {
502             /*
503              * Virtual interrupts are simple: G0 are always FIQ, and G1 are
504              * IRQ or NMI which depends on the ICH_LR<n>_EL2.NMI to have
505              * non-maskable property.
506              */
507             if (lr & ICH_LR_EL2_GROUP) {
508                 if (lr & ICH_LR_EL2_NMI) {
509                     nmilevel = 1;
510                 } else {
511                     irqlevel = 1;
512                 }
513             } else {
514                 fiqlevel = 1;
515             }
516         }
517     }
518 
519     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
520     qemu_set_irq(cs->parent_vfiq, fiqlevel);
521     qemu_set_irq(cs->parent_virq, irqlevel);
522     qemu_set_irq(cs->parent_vnmi, nmilevel);
523 }
524 
525 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
526 {
527     /*
528      * Tell the CPU about any pending virtual interrupts or
529      * maintenance interrupts, following a change to the state
530      * of the CPU interface relevant to virtual interrupts.
531      *
532      * CAUTION: this function will call qemu_set_irq() on the
533      * CPU maintenance IRQ line, which is typically wired up
534      * to the GIC as a per-CPU interrupt. This means that it
535      * will recursively call back into the GIC code via
536      * gicv3_redist_set_irq() and thus into the CPU interface code's
537      * gicv3_cpuif_update(). It is therefore important that this
538      * function is only called as the final action of a CPU interface
539      * register write implementation, after all the GIC state
540      * fields have been updated. gicv3_cpuif_update() also must
541      * not cause this function to be called, but that happens
542      * naturally as a result of there being no architectural
543      * linkage between the physical and virtual GIC logic.
544      */
545     ARMCPU *cpu = ARM_CPU(cs->cpu);
546     int maintlevel = 0;
547 
548     gicv3_cpuif_virt_irq_fiq_update(cs);
549 
550     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
551         maintenance_interrupt_state(cs) != 0) {
552         maintlevel = 1;
553     }
554 
555     trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
556     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
557 }
558 
559 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
560 {
561     GICv3CPUState *cs = icc_cs_from_env(env);
562     int regno = ri->opc2 & 3;
563     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
564     uint64_t value = cs->ich_apr[grp][regno];
565 
566     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
567     return value;
568 }
569 
570 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
571                          uint64_t value)
572 {
573     GICv3CPUState *cs = icc_cs_from_env(env);
574     int regno = ri->opc2 & 3;
575     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
576 
577     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
578 
579     if (cs->nmi_support) {
580         cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI);
581     } else {
582         cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
583     }
584 
585     gicv3_cpuif_virt_irq_fiq_update(cs);
586     return;
587 }
588 
589 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
590 {
591     GICv3CPUState *cs = icc_cs_from_env(env);
592     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
593     uint64_t bpr;
594     bool satinc = false;
595 
596     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
597         /* reads return bpr0 + 1 saturated to 7, writes ignored */
598         grp = GICV3_G0;
599         satinc = true;
600     }
601 
602     bpr = read_vbpr(cs, grp);
603 
604     if (satinc) {
605         bpr++;
606         bpr = MIN(bpr, 7);
607     }
608 
609     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
610 
611     return bpr;
612 }
613 
614 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
615                           uint64_t value)
616 {
617     GICv3CPUState *cs = icc_cs_from_env(env);
618     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
619 
620     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
621                               gicv3_redist_affid(cs), value);
622 
623     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
624         /* reads return bpr0 + 1 saturated to 7, writes ignored */
625         return;
626     }
627 
628     write_vbpr(cs, grp, value);
629 
630     gicv3_cpuif_virt_irq_fiq_update(cs);
631 }
632 
633 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
634 {
635     GICv3CPUState *cs = icc_cs_from_env(env);
636     uint64_t value;
637 
638     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
639                       ICH_VMCR_EL2_VPMR_LENGTH);
640 
641     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
642     return value;
643 }
644 
645 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
646                           uint64_t value)
647 {
648     GICv3CPUState *cs = icc_cs_from_env(env);
649 
650     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
651 
652     value &= icv_fullprio_mask(cs);
653 
654     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
655                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
656 
657     gicv3_cpuif_virt_irq_fiq_update(cs);
658 }
659 
660 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
661 {
662     GICv3CPUState *cs = icc_cs_from_env(env);
663     int enbit;
664     uint64_t value;
665 
666     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
667     value = extract64(cs->ich_vmcr_el2, enbit, 1);
668 
669     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
670                                 gicv3_redist_affid(cs), value);
671     return value;
672 }
673 
674 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
675                              uint64_t value)
676 {
677     GICv3CPUState *cs = icc_cs_from_env(env);
678     int enbit;
679 
680     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
681                                  gicv3_redist_affid(cs), value);
682 
683     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
684 
685     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
686     gicv3_cpuif_virt_update(cs);
687 }
688 
689 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
690 {
691     GICv3CPUState *cs = icc_cs_from_env(env);
692     uint64_t value;
693 
694     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
695      * should match the ones reported in ich_vtr_read().
696      */
697     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
698         ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
699 
700     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
701         value |= ICC_CTLR_EL1_EOIMODE;
702     }
703 
704     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
705         value |= ICC_CTLR_EL1_CBPR;
706     }
707 
708     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
709     return value;
710 }
711 
712 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
713                                uint64_t value)
714 {
715     GICv3CPUState *cs = icc_cs_from_env(env);
716 
717     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
718 
719     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
720                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
721     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
722                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
723 
724     gicv3_cpuif_virt_irq_fiq_update(cs);
725 }
726 
727 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
728 {
729     GICv3CPUState *cs = icc_cs_from_env(env);
730     uint64_t prio = ich_highest_active_virt_prio(cs);
731 
732     if (cs->ich_apr[GICV3_G1NS][0] & ICV_AP1R_EL1_NMI) {
733         prio |= ICV_RPR_EL1_NMI;
734     }
735 
736     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
737     return prio;
738 }
739 
740 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
741 {
742     GICv3CPUState *cs = icc_cs_from_env(env);
743     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
744     int idx = hppvi_index(cs);
745     uint64_t value = INTID_SPURIOUS;
746 
747     if (idx == HPPVI_INDEX_VLPI) {
748         if (cs->hppvlpi.grp == grp) {
749             value = cs->hppvlpi.irq;
750         }
751     } else if (idx >= 0) {
752         uint64_t lr = cs->ich_lr_el2[idx];
753         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
754 
755         if (grp == thisgrp) {
756             value = ich_lr_vintid(lr);
757         }
758     }
759 
760     trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
761                                gicv3_redist_affid(cs), value);
762     return value;
763 }
764 
765 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
766 {
767     /* Activate the interrupt in the specified list register
768      * by moving it from Pending to Active state, and update the
769      * Active Priority Registers.
770      */
771     uint32_t mask = icv_gprio_mask(cs, grp);
772     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
773     bool nmi = cs->ich_lr_el2[idx] & ICH_LR_EL2_NMI;
774     int aprbit = prio >> (8 - cs->vprebits);
775     int regno = aprbit / 32;
776     int regbit = aprbit % 32;
777 
778     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
779     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
780 
781     if (nmi) {
782         cs->ich_apr[grp][regno] |= ICV_AP1R_EL1_NMI;
783     } else {
784         cs->ich_apr[grp][regno] |= (1 << regbit);
785     }
786 }
787 
788 static void icv_activate_vlpi(GICv3CPUState *cs)
789 {
790     uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
791     int prio = cs->hppvlpi.prio & mask;
792     int aprbit = prio >> (8 - cs->vprebits);
793     int regno = aprbit / 32;
794     int regbit = aprbit % 32;
795 
796     cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
797     gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
798 }
799 
800 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
801 {
802     GICv3CPUState *cs = icc_cs_from_env(env);
803     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
804     int idx = hppvi_index(cs);
805     uint64_t intid = INTID_SPURIOUS;
806     int el = arm_current_el(env);
807 
808     if (idx == HPPVI_INDEX_VLPI) {
809         if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
810             intid = cs->hppvlpi.irq;
811             icv_activate_vlpi(cs);
812         }
813     } else if (idx >= 0) {
814         uint64_t lr = cs->ich_lr_el2[idx];
815         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
816         bool nmi = env->cp15.sctlr_el[el] & SCTLR_NMI && lr & ICH_LR_EL2_NMI;
817 
818         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
819             intid = ich_lr_vintid(lr);
820             if (!gicv3_intid_is_special(intid)) {
821                 if (!nmi) {
822                     icv_activate_irq(cs, idx, grp);
823                 } else {
824                     intid = INTID_NMI;
825                 }
826             } else {
827                 /* Interrupt goes from Pending to Invalid */
828                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
829                 /* We will now return the (bogus) ID from the list register,
830                  * as per the pseudocode.
831                  */
832             }
833         }
834     }
835 
836     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
837                              gicv3_redist_affid(cs), intid);
838 
839     gicv3_cpuif_virt_update(cs);
840 
841     return intid;
842 }
843 
844 static uint64_t icv_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
845 {
846     GICv3CPUState *cs = icc_cs_from_env(env);
847     int idx = hppvi_index(cs);
848     uint64_t intid = INTID_SPURIOUS;
849 
850     if (idx >= 0 && idx != HPPVI_INDEX_VLPI) {
851         uint64_t lr = cs->ich_lr_el2[idx];
852         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
853 
854         if ((thisgrp == GICV3_G1NS) && icv_hppi_can_preempt(cs, lr)) {
855             intid = ich_lr_vintid(lr);
856             if (!gicv3_intid_is_special(intid)) {
857                 if (lr & ICH_LR_EL2_NMI) {
858                     icv_activate_irq(cs, idx, GICV3_G1NS);
859                 } else {
860                     intid = INTID_SPURIOUS;
861                 }
862             } else {
863                 /* Interrupt goes from Pending to Invalid */
864                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
865                 /*
866                  * We will now return the (bogus) ID from the list register,
867                  * as per the pseudocode.
868                  */
869             }
870         }
871     }
872 
873     trace_gicv3_icv_nmiar1_read(gicv3_redist_affid(cs), intid);
874 
875     gicv3_cpuif_virt_update(cs);
876 
877     return intid;
878 }
879 
880 static uint32_t icc_fullprio_mask(GICv3CPUState *cs)
881 {
882     /*
883      * Return a mask word which clears the unimplemented priority bits
884      * from a priority value for a physical interrupt. (Not to be confused
885      * with the group priority, whose mask depends on the value of BPR
886      * for the interrupt group.)
887      */
888     return (~0U << (8 - cs->pribits)) & 0xff;
889 }
890 
891 static inline int icc_min_bpr(GICv3CPUState *cs)
892 {
893     /* The minimum BPR for the physical interface. */
894     return 7 - cs->prebits;
895 }
896 
897 static inline int icc_min_bpr_ns(GICv3CPUState *cs)
898 {
899     return icc_min_bpr(cs) + 1;
900 }
901 
902 static inline int icc_num_aprs(GICv3CPUState *cs)
903 {
904     /* Return the number of APR registers (1, 2, or 4) */
905     int aprmax = 1 << MAX(cs->prebits - 5, 0);
906     assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0]));
907     return aprmax;
908 }
909 
910 static int icc_highest_active_prio(GICv3CPUState *cs)
911 {
912     /* Calculate the current running priority based on the set bits
913      * in the Active Priority Registers.
914      */
915     int i;
916 
917     if (cs->nmi_support) {
918         /*
919          * If an NMI is active this takes precedence over anything else
920          * for priority purposes; the NMI bit is only in the AP1R0 bit.
921          * We return here the effective priority of the NMI, which is
922          * either 0x0 or 0x80. Callers will need to check NMI again for
923          * purposes of either setting the RPR register bits or for
924          * prioritization of NMI vs non-NMI.
925          */
926         if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) {
927             return 0;
928         }
929         if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
930             return (cs->gic->gicd_ctlr & GICD_CTLR_DS) ? 0 : 0x80;
931         }
932     }
933 
934     for (i = 0; i < icc_num_aprs(cs); i++) {
935         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
936             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
937 
938         if (!apr) {
939             continue;
940         }
941         return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1);
942     }
943     /* No current active interrupts: return idle priority */
944     return 0xff;
945 }
946 
947 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
948 {
949     /* Return a mask word which clears the subpriority bits from
950      * a priority value for an interrupt in the specified group.
951      * This depends on the BPR value. For CBPR0 (S or NS):
952      *  a BPR of 0 means the group priority bits are [7:1];
953      *  a BPR of 1 means they are [7:2], and so on down to
954      *  a BPR of 7 meaning no group priority bits at all.
955      * For CBPR1 NS:
956      *  a BPR of 0 is impossible (the minimum value is 1)
957      *  a BPR of 1 means the group priority bits are [7:1];
958      *  a BPR of 2 means they are [7:2], and so on down to
959      *  a BPR of 7 meaning the group priority is [7].
960      *
961      * Which BPR to use depends on the group of the interrupt and
962      * the current ICC_CTLR.CBPR settings.
963      *
964      * This corresponds to the GroupBits() pseudocode.
965      */
966     int bpr;
967 
968     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
969         (group == GICV3_G1NS &&
970          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
971         group = GICV3_G0;
972     }
973 
974     bpr = cs->icc_bpr[group] & 7;
975 
976     if (group == GICV3_G1NS) {
977         assert(bpr > 0);
978         bpr--;
979     }
980 
981     return ~0U << (bpr + 1);
982 }
983 
984 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
985 {
986     /* Return true if there is no pending interrupt, or the
987      * highest priority pending interrupt is in a group which has been
988      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
989      */
990     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
991 }
992 
993 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
994 {
995     /* Return true if we have a pending interrupt of sufficient
996      * priority to preempt.
997      */
998     int rprio;
999     uint32_t mask;
1000     ARMCPU *cpu = ARM_CPU(cs->cpu);
1001     CPUARMState *env = &cpu->env;
1002 
1003     if (icc_no_enabled_hppi(cs)) {
1004         return false;
1005     }
1006 
1007     if (cs->hppi.nmi) {
1008         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1009             cs->hppi.grp == GICV3_G1NS) {
1010             if (cs->icc_pmr_el1 < 0x80) {
1011                 return false;
1012             }
1013             if (arm_is_secure(env) && cs->icc_pmr_el1 == 0x80) {
1014                 return false;
1015             }
1016         }
1017     } else if (cs->hppi.prio >= cs->icc_pmr_el1) {
1018         /* Priority mask masks this interrupt */
1019         return false;
1020     }
1021 
1022     rprio = icc_highest_active_prio(cs);
1023     if (rprio == 0xff) {
1024         /* No currently running interrupt so we can preempt */
1025         return true;
1026     }
1027 
1028     mask = icc_gprio_mask(cs, cs->hppi.grp);
1029 
1030     /* We only preempt a running interrupt if the pending interrupt's
1031      * group priority is sufficient (the subpriorities are not considered).
1032      */
1033     if ((cs->hppi.prio & mask) < (rprio & mask)) {
1034         return true;
1035     }
1036 
1037     if (cs->hppi.nmi && (cs->hppi.prio & mask) == (rprio & mask)) {
1038         if (!(cs->icc_apr[cs->hppi.grp][0] & ICC_AP1R_EL1_NMI)) {
1039             return true;
1040         }
1041     }
1042 
1043     return false;
1044 }
1045 
1046 void gicv3_cpuif_update(GICv3CPUState *cs)
1047 {
1048     /* Tell the CPU about its highest priority pending interrupt */
1049     int irqlevel = 0;
1050     int fiqlevel = 0;
1051     int nmilevel = 0;
1052     ARMCPU *cpu = ARM_CPU(cs->cpu);
1053     CPUARMState *env = &cpu->env;
1054 
1055     g_assert(bql_locked());
1056 
1057     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
1058                              cs->hppi.grp, cs->hppi.prio);
1059 
1060     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
1061         /* If a Security-enabled GIC sends a G1S interrupt to a
1062          * Security-disabled CPU, we must treat it as if it were G0.
1063          */
1064         cs->hppi.grp = GICV3_G0;
1065     }
1066 
1067     if (icc_hppi_can_preempt(cs)) {
1068         /* We have an interrupt: should we signal it as IRQ or FIQ?
1069          * This is described in the GICv3 spec section 4.6.2.
1070          */
1071         bool isfiq;
1072 
1073         switch (cs->hppi.grp) {
1074         case GICV3_G0:
1075             isfiq = true;
1076             break;
1077         case GICV3_G1:
1078             isfiq = (!arm_is_secure(env) ||
1079                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
1080             break;
1081         case GICV3_G1NS:
1082             isfiq = arm_is_secure(env);
1083             break;
1084         default:
1085             g_assert_not_reached();
1086         }
1087 
1088         if (isfiq) {
1089             fiqlevel = 1;
1090         } else if (cs->hppi.nmi) {
1091             nmilevel = 1;
1092         } else {
1093             irqlevel = 1;
1094         }
1095     }
1096 
1097     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
1098 
1099     qemu_set_irq(cs->parent_fiq, fiqlevel);
1100     qemu_set_irq(cs->parent_irq, irqlevel);
1101     qemu_set_irq(cs->parent_nmi, nmilevel);
1102 }
1103 
1104 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1105 {
1106     GICv3CPUState *cs = icc_cs_from_env(env);
1107     uint32_t value = cs->icc_pmr_el1;
1108 
1109     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1110         return icv_pmr_read(env, ri);
1111     }
1112 
1113     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1114         (env->cp15.scr_el3 & SCR_FIQ)) {
1115         /* NS access and Group 0 is inaccessible to NS: return the
1116          * NS view of the current priority
1117          */
1118         if ((value & 0x80) == 0) {
1119             /* Secure priorities not visible to NS */
1120             value = 0;
1121         } else if (value != 0xff) {
1122             value = (value << 1) & 0xff;
1123         }
1124     }
1125 
1126     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
1127 
1128     return value;
1129 }
1130 
1131 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1132                           uint64_t value)
1133 {
1134     GICv3CPUState *cs = icc_cs_from_env(env);
1135 
1136     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1137         return icv_pmr_write(env, ri, value);
1138     }
1139 
1140     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
1141 
1142     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
1143         (env->cp15.scr_el3 & SCR_FIQ)) {
1144         /* NS access and Group 0 is inaccessible to NS: return the
1145          * NS view of the current priority
1146          */
1147         if (!(cs->icc_pmr_el1 & 0x80)) {
1148             /* Current PMR in the secure range, don't allow NS to change it */
1149             return;
1150         }
1151         value = (value >> 1) | 0x80;
1152     }
1153     value &= icc_fullprio_mask(cs);
1154     cs->icc_pmr_el1 = value;
1155     gicv3_cpuif_update(cs);
1156 }
1157 
1158 static void icc_activate_irq(GICv3CPUState *cs, int irq)
1159 {
1160     /* Move the interrupt from the Pending state to Active, and update
1161      * the Active Priority Registers
1162      */
1163     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1164     int prio = cs->hppi.prio & mask;
1165     int aprbit = prio >> (8 - cs->prebits);
1166     int regno = aprbit / 32;
1167     int regbit = aprbit % 32;
1168     bool nmi = cs->hppi.nmi;
1169 
1170     if (nmi) {
1171         cs->icc_apr[cs->hppi.grp][regno] |= ICC_AP1R_EL1_NMI;
1172     } else {
1173         cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1174     }
1175 
1176     if (irq < GIC_INTERNAL) {
1177         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1178         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1179         gicv3_redist_update(cs);
1180     } else if (irq < GICV3_LPI_INTID_START) {
1181         gicv3_gicd_active_set(cs->gic, irq);
1182         gicv3_gicd_pending_clear(cs->gic, irq);
1183         gicv3_update(cs->gic, irq, 1);
1184     } else {
1185         gicv3_redist_lpi_pending(cs, irq, 0);
1186     }
1187 }
1188 
1189 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1190 {
1191     /* Return the highest priority pending interrupt register value
1192      * for group 0.
1193      */
1194     bool irq_is_secure;
1195 
1196     if (icc_no_enabled_hppi(cs)) {
1197         return INTID_SPURIOUS;
1198     }
1199 
1200     /* Check whether we can return the interrupt or if we should return
1201      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1202      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1203      * is always zero.)
1204      */
1205     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1206                      (cs->hppi.grp != GICV3_G1NS));
1207 
1208     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1209         return INTID_SPURIOUS;
1210     }
1211     if (irq_is_secure && !arm_is_secure(env)) {
1212         /* Secure interrupts not visible to Nonsecure */
1213         return INTID_SPURIOUS;
1214     }
1215 
1216     if (cs->hppi.grp != GICV3_G0) {
1217         /* Indicate to EL3 that there's a Group 1 interrupt for the other
1218          * state pending.
1219          */
1220         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1221     }
1222 
1223     return cs->hppi.irq;
1224 }
1225 
1226 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1227 {
1228     /* Return the highest priority pending interrupt register value
1229      * for group 1.
1230      */
1231     bool irq_is_secure;
1232 
1233     if (icc_no_enabled_hppi(cs)) {
1234         return INTID_SPURIOUS;
1235     }
1236 
1237     /* Check whether we can return the interrupt or if we should return
1238      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1239      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1240      * is always zero.)
1241      */
1242     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1243                      (cs->hppi.grp != GICV3_G1NS));
1244 
1245     if (cs->hppi.grp == GICV3_G0) {
1246         /* Group 0 interrupts not visible via HPPIR1 */
1247         return INTID_SPURIOUS;
1248     }
1249     if (irq_is_secure) {
1250         if (!arm_is_secure(env)) {
1251             /* Secure interrupts not visible in Non-secure */
1252             return INTID_SPURIOUS;
1253         }
1254     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1255         /* Group 1 non-secure interrupts not visible in Secure EL1 */
1256         return INTID_SPURIOUS;
1257     }
1258 
1259     return cs->hppi.irq;
1260 }
1261 
1262 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1263 {
1264     GICv3CPUState *cs = icc_cs_from_env(env);
1265     uint64_t intid;
1266 
1267     if (icv_access(env, HCR_FMO)) {
1268         return icv_iar_read(env, ri);
1269     }
1270 
1271     if (!icc_hppi_can_preempt(cs)) {
1272         intid = INTID_SPURIOUS;
1273     } else {
1274         intid = icc_hppir0_value(cs, env);
1275     }
1276 
1277     if (!gicv3_intid_is_special(intid)) {
1278         icc_activate_irq(cs, intid);
1279     }
1280 
1281     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1282     return intid;
1283 }
1284 
1285 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1286 {
1287     GICv3CPUState *cs = icc_cs_from_env(env);
1288     int el = arm_current_el(env);
1289     uint64_t intid;
1290 
1291     if (icv_access(env, HCR_IMO)) {
1292         return icv_iar_read(env, ri);
1293     }
1294 
1295     if (!icc_hppi_can_preempt(cs)) {
1296         intid = INTID_SPURIOUS;
1297     } else {
1298         intid = icc_hppir1_value(cs, env);
1299     }
1300 
1301     if (!gicv3_intid_is_special(intid)) {
1302         if (cs->hppi.nmi && env->cp15.sctlr_el[el] & SCTLR_NMI) {
1303             intid = INTID_NMI;
1304         } else {
1305             icc_activate_irq(cs, intid);
1306         }
1307     }
1308 
1309     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1310     return intid;
1311 }
1312 
1313 static uint64_t icc_nmiar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1314 {
1315     GICv3CPUState *cs = icc_cs_from_env(env);
1316     uint64_t intid;
1317 
1318     if (icv_access(env, HCR_IMO)) {
1319         return icv_nmiar1_read(env, ri);
1320     }
1321 
1322     if (!icc_hppi_can_preempt(cs)) {
1323         intid = INTID_SPURIOUS;
1324     } else {
1325         intid = icc_hppir1_value(cs, env);
1326     }
1327 
1328     if (!gicv3_intid_is_special(intid)) {
1329         if (!cs->hppi.nmi) {
1330             intid = INTID_SPURIOUS;
1331         } else {
1332             icc_activate_irq(cs, intid);
1333         }
1334     }
1335 
1336     trace_gicv3_icc_nmiar1_read(gicv3_redist_affid(cs), intid);
1337     return intid;
1338 }
1339 
1340 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1341 {
1342     /* Drop the priority of the currently active interrupt in
1343      * the specified group.
1344      *
1345      * Note that we can guarantee (because of the requirement to nest
1346      * ICC_IAR reads [which activate an interrupt and raise priority]
1347      * with ICC_EOIR writes [which drop the priority for the interrupt])
1348      * that the interrupt we're being called for is the highest priority
1349      * active interrupt, meaning that it has the lowest set bit in the
1350      * APR registers.
1351      *
1352      * If the guest does not honour the ordering constraints then the
1353      * behaviour of the GIC is UNPREDICTABLE, which for us means that
1354      * the values of the APR registers might become incorrect and the
1355      * running priority will be wrong, so interrupts that should preempt
1356      * might not do so, and interrupts that should not preempt might do so.
1357      */
1358     int i;
1359 
1360     for (i = 0; i < icc_num_aprs(cs); i++) {
1361         uint64_t *papr = &cs->icc_apr[grp][i];
1362 
1363         if (!*papr) {
1364             continue;
1365         }
1366 
1367         if (i == 0 && cs->nmi_support && (*papr & ICC_AP1R_EL1_NMI)) {
1368             *papr &= (~ICC_AP1R_EL1_NMI);
1369             break;
1370         }
1371 
1372         /* Clear the lowest set bit */
1373         *papr &= *papr - 1;
1374         break;
1375     }
1376 
1377     /* running priority change means we need an update for this cpu i/f */
1378     gicv3_cpuif_update(cs);
1379 }
1380 
1381 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1382 {
1383     /* Return true if we should split priority drop and interrupt
1384      * deactivation, ie whether the relevant EOIMode bit is set.
1385      */
1386     if (arm_is_el3_or_mon(env)) {
1387         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1388     }
1389     if (arm_is_secure_below_el3(env)) {
1390         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1391     } else {
1392         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1393     }
1394 }
1395 
1396 static int icc_highest_active_group(GICv3CPUState *cs)
1397 {
1398     /* Return the group with the highest priority active interrupt.
1399      * We can do this by just comparing the APRs to see which one
1400      * has the lowest set bit.
1401      * (If more than one group is active at the same priority then
1402      * we're in UNPREDICTABLE territory.)
1403      */
1404     int i;
1405 
1406     if (cs->nmi_support) {
1407         if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) {
1408             return GICV3_G1;
1409         }
1410         if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
1411             return GICV3_G1NS;
1412         }
1413     }
1414 
1415     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1416         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1417         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1418         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1419 
1420         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1421             return GICV3_G1NS;
1422         }
1423         if (g1ctz < g0ctz) {
1424             return GICV3_G1;
1425         }
1426         if (g0ctz < 32) {
1427             return GICV3_G0;
1428         }
1429     }
1430     /* No set active bits? UNPREDICTABLE; return -1 so the caller
1431      * ignores the spurious EOI attempt.
1432      */
1433     return -1;
1434 }
1435 
1436 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1437 {
1438     if (irq < GIC_INTERNAL) {
1439         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1440         gicv3_redist_update(cs);
1441     } else {
1442         gicv3_gicd_active_clear(cs->gic, irq);
1443         gicv3_update(cs->gic, irq, 1);
1444     }
1445 }
1446 
1447 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1448 {
1449     /* Return true if we should split priority drop and interrupt
1450      * deactivation, ie whether the virtual EOIMode bit is set.
1451      */
1452     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1453 }
1454 
1455 static int icv_find_active(GICv3CPUState *cs, int irq)
1456 {
1457     /* Given an interrupt number for an active interrupt, return the index
1458      * of the corresponding list register, or -1 if there is no match.
1459      * Corresponds to FindActiveVirtualInterrupt pseudocode.
1460      */
1461     int i;
1462 
1463     for (i = 0; i < cs->num_list_regs; i++) {
1464         uint64_t lr = cs->ich_lr_el2[i];
1465 
1466         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1467             return i;
1468         }
1469     }
1470 
1471     return -1;
1472 }
1473 
1474 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1475 {
1476     /* Deactivate the interrupt in the specified list register index */
1477     uint64_t lr = cs->ich_lr_el2[idx];
1478 
1479     if (lr & ICH_LR_EL2_HW) {
1480         /* Deactivate the associated physical interrupt */
1481         int pirq = ich_lr_pintid(lr);
1482 
1483         if (pirq < INTID_SECURE) {
1484             icc_deactivate_irq(cs, pirq);
1485         }
1486     }
1487 
1488     /* Clear the 'active' part of the state, so ActivePending->Pending
1489      * and Active->Invalid.
1490      */
1491     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1492     cs->ich_lr_el2[idx] = lr;
1493 }
1494 
1495 static void icv_increment_eoicount(GICv3CPUState *cs)
1496 {
1497     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1498     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1499                              ICH_HCR_EL2_EOICOUNT_LENGTH);
1500 
1501     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1502                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1503 }
1504 
1505 static int icv_drop_prio(GICv3CPUState *cs, bool *nmi)
1506 {
1507     /* Drop the priority of the currently active virtual interrupt
1508      * (favouring group 0 if there is a set active bit at
1509      * the same priority for both group 0 and group 1).
1510      * Return the priority value for the bit we just cleared,
1511      * or 0xff if no bits were set in the AP registers at all.
1512      * Note that though the ich_apr[] are uint64_t only the low
1513      * 32 bits are actually relevant.
1514      */
1515     int i;
1516     int aprmax = ich_num_aprs(cs);
1517 
1518     for (i = 0; i < aprmax; i++) {
1519         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1520         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1521         int apr0count, apr1count;
1522 
1523         if (!*papr0 && !*papr1) {
1524             continue;
1525         }
1526 
1527         if (i == 0 && cs->nmi_support && (*papr1 & ICV_AP1R_EL1_NMI)) {
1528             *papr1 &= (~ICV_AP1R_EL1_NMI);
1529             *nmi = true;
1530             return 0xff;
1531         }
1532 
1533         /* We can't just use the bit-twiddling hack icc_drop_prio() does
1534          * because we need to return the bit number we cleared so
1535          * it can be compared against the list register's priority field.
1536          */
1537         apr0count = ctz32(*papr0);
1538         apr1count = ctz32(*papr1);
1539 
1540         if (apr0count <= apr1count) {
1541             *papr0 &= *papr0 - 1;
1542             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1543         } else {
1544             *papr1 &= *papr1 - 1;
1545             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1546         }
1547     }
1548     return 0xff;
1549 }
1550 
1551 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1552                           uint64_t value)
1553 {
1554     /* Deactivate interrupt */
1555     GICv3CPUState *cs = icc_cs_from_env(env);
1556     int idx;
1557     int irq = value & 0xffffff;
1558 
1559     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1560 
1561     if (irq >= GICV3_MAXIRQ) {
1562         /* Also catches special interrupt numbers and LPIs */
1563         return;
1564     }
1565 
1566     if (!icv_eoi_split(env, cs)) {
1567         return;
1568     }
1569 
1570     idx = icv_find_active(cs, irq);
1571 
1572     if (idx < 0) {
1573         /* No list register matching this, so increment the EOI count
1574          * (might trigger a maintenance interrupt)
1575          */
1576         icv_increment_eoicount(cs);
1577     } else {
1578         icv_deactivate_irq(cs, idx);
1579     }
1580 
1581     gicv3_cpuif_virt_update(cs);
1582 }
1583 
1584 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1585                            uint64_t value)
1586 {
1587     /* End of Interrupt */
1588     GICv3CPUState *cs = icc_cs_from_env(env);
1589     int irq = value & 0xffffff;
1590     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1591     int idx, dropprio;
1592     bool nmi = false;
1593 
1594     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1595                                gicv3_redist_affid(cs), value);
1596 
1597     if (gicv3_intid_is_special(irq)) {
1598         return;
1599     }
1600 
1601     /* We implement the IMPDEF choice of "drop priority before doing
1602      * error checks" (because that lets us avoid scanning the AP
1603      * registers twice).
1604      */
1605     dropprio = icv_drop_prio(cs, &nmi);
1606     if (dropprio == 0xff && !nmi) {
1607         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1608          * whether the list registers are checked in this
1609          * situation; we choose not to.
1610          */
1611         return;
1612     }
1613 
1614     idx = icv_find_active(cs, irq);
1615 
1616     if (idx < 0) {
1617         /*
1618          * No valid list register corresponding to EOI ID; if this is a vLPI
1619          * not in the list regs then do nothing; otherwise increment EOI count
1620          */
1621         if (irq < GICV3_LPI_INTID_START) {
1622             icv_increment_eoicount(cs);
1623         }
1624     } else {
1625         uint64_t lr = cs->ich_lr_el2[idx];
1626         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1627         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1628         bool thisnmi = lr & ICH_LR_EL2_NMI;
1629 
1630         if (thisgrp == grp && (lr_gprio == dropprio || (thisnmi & nmi))) {
1631             if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) {
1632                 /*
1633                  * Priority drop and deactivate not split: deactivate irq now.
1634                  * LPIs always get their active state cleared immediately
1635                  * because no separate deactivate is expected.
1636                  */
1637                 icv_deactivate_irq(cs, idx);
1638             }
1639         }
1640     }
1641 
1642     gicv3_cpuif_virt_update(cs);
1643 }
1644 
1645 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1646                            uint64_t value)
1647 {
1648     /* End of Interrupt */
1649     GICv3CPUState *cs = icc_cs_from_env(env);
1650     int irq = value & 0xffffff;
1651     int grp;
1652     bool is_eoir0 = ri->crm == 8;
1653 
1654     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1655         icv_eoir_write(env, ri, value);
1656         return;
1657     }
1658 
1659     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1660                                gicv3_redist_affid(cs), value);
1661 
1662     if ((irq >= cs->gic->num_irq) &&
1663         !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1664         /* This handles two cases:
1665          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1666          * to the GICC_EOIR, the GIC ignores that write.
1667          * 2. If software writes the number of a non-existent interrupt
1668          * this must be a subcase of "value written does not match the last
1669          * valid interrupt value read from the Interrupt Acknowledge
1670          * register" and so this is UNPREDICTABLE. We choose to ignore it.
1671          */
1672         return;
1673     }
1674 
1675     grp = icc_highest_active_group(cs);
1676     switch (grp) {
1677     case GICV3_G0:
1678         if (!is_eoir0) {
1679             return;
1680         }
1681         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1682             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1683             return;
1684         }
1685         break;
1686     case GICV3_G1:
1687         if (is_eoir0) {
1688             return;
1689         }
1690         if (!arm_is_secure(env)) {
1691             return;
1692         }
1693         break;
1694     case GICV3_G1NS:
1695         if (is_eoir0) {
1696             return;
1697         }
1698         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1699             return;
1700         }
1701         break;
1702     default:
1703         qemu_log_mask(LOG_GUEST_ERROR,
1704                       "%s: IRQ %d isn't active\n", __func__, irq);
1705         return;
1706     }
1707 
1708     icc_drop_prio(cs, grp);
1709 
1710     if (!icc_eoi_split(env, cs)) {
1711         /* Priority drop and deactivate not split: deactivate irq now */
1712         icc_deactivate_irq(cs, irq);
1713     }
1714 }
1715 
1716 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1717 {
1718     GICv3CPUState *cs = icc_cs_from_env(env);
1719     uint64_t value;
1720 
1721     if (icv_access(env, HCR_FMO)) {
1722         return icv_hppir_read(env, ri);
1723     }
1724 
1725     value = icc_hppir0_value(cs, env);
1726     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1727     return value;
1728 }
1729 
1730 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1731 {
1732     GICv3CPUState *cs = icc_cs_from_env(env);
1733     uint64_t value;
1734 
1735     if (icv_access(env, HCR_IMO)) {
1736         return icv_hppir_read(env, ri);
1737     }
1738 
1739     value = icc_hppir1_value(cs, env);
1740     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1741     return value;
1742 }
1743 
1744 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1745 {
1746     GICv3CPUState *cs = icc_cs_from_env(env);
1747     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1748     bool satinc = false;
1749     uint64_t bpr;
1750 
1751     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1752         return icv_bpr_read(env, ri);
1753     }
1754 
1755     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1756         grp = GICV3_G1NS;
1757     }
1758 
1759     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1760         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1761         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1762          * modify BPR0
1763          */
1764         grp = GICV3_G0;
1765     }
1766 
1767     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1768         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1769         /* reads return bpr0 + 1 sat to 7, writes ignored */
1770         grp = GICV3_G0;
1771         satinc = true;
1772     }
1773 
1774     bpr = cs->icc_bpr[grp];
1775     if (satinc) {
1776         bpr++;
1777         bpr = MIN(bpr, 7);
1778     }
1779 
1780     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1781 
1782     return bpr;
1783 }
1784 
1785 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1786                           uint64_t value)
1787 {
1788     GICv3CPUState *cs = icc_cs_from_env(env);
1789     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1790     uint64_t minval;
1791 
1792     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1793         icv_bpr_write(env, ri, value);
1794         return;
1795     }
1796 
1797     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1798                               gicv3_redist_affid(cs), value);
1799 
1800     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1801         grp = GICV3_G1NS;
1802     }
1803 
1804     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1805         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1806         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1807          * modify BPR0
1808          */
1809         grp = GICV3_G0;
1810     }
1811 
1812     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1813         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1814         /* reads return bpr0 + 1 sat to 7, writes ignored */
1815         return;
1816     }
1817 
1818     minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs);
1819     if (value < minval) {
1820         value = minval;
1821     }
1822 
1823     cs->icc_bpr[grp] = value & 7;
1824     gicv3_cpuif_update(cs);
1825 }
1826 
1827 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1828 {
1829     GICv3CPUState *cs = icc_cs_from_env(env);
1830     uint64_t value;
1831 
1832     int regno = ri->opc2 & 3;
1833     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1834 
1835     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1836         return icv_ap_read(env, ri);
1837     }
1838 
1839     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1840         grp = GICV3_G1NS;
1841     }
1842 
1843     value = cs->icc_apr[grp][regno];
1844 
1845     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1846     return value;
1847 }
1848 
1849 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1850                          uint64_t value)
1851 {
1852     GICv3CPUState *cs = icc_cs_from_env(env);
1853 
1854     int regno = ri->opc2 & 3;
1855     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1856 
1857     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1858         icv_ap_write(env, ri, value);
1859         return;
1860     }
1861 
1862     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1863 
1864     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1865         grp = GICV3_G1NS;
1866     }
1867 
1868     /* It's not possible to claim that a Non-secure interrupt is active
1869      * at a priority outside the Non-secure range (128..255), since this
1870      * would otherwise allow malicious NS code to block delivery of S interrupts
1871      * by writing a bad value to these registers.
1872      */
1873     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1874         return;
1875     }
1876 
1877     if (cs->nmi_support) {
1878         cs->icc_apr[grp][regno] = value & (0xFFFFFFFFU | ICC_AP1R_EL1_NMI);
1879     } else {
1880         cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1881     }
1882     gicv3_cpuif_update(cs);
1883 }
1884 
1885 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1886                           uint64_t value)
1887 {
1888     /* Deactivate interrupt */
1889     GICv3CPUState *cs = icc_cs_from_env(env);
1890     int irq = value & 0xffffff;
1891     bool irq_is_secure, single_sec_state, irq_is_grp0;
1892     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1893 
1894     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1895         icv_dir_write(env, ri, value);
1896         return;
1897     }
1898 
1899     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1900 
1901     if (irq >= cs->gic->num_irq) {
1902         /* Also catches special interrupt numbers and LPIs */
1903         return;
1904     }
1905 
1906     if (!icc_eoi_split(env, cs)) {
1907         return;
1908     }
1909 
1910     int grp = gicv3_irq_group(cs->gic, cs, irq);
1911 
1912     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1913     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1914     irq_is_grp0 = grp == GICV3_G0;
1915 
1916     /* Check whether we're allowed to deactivate this interrupt based
1917      * on its group and the current CPU state.
1918      * These checks are laid out to correspond to the spec's pseudocode.
1919      */
1920     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1921     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1922     /* No need to include !IsSecure in route_*_to_el2 as it's only
1923      * tested in cases where we know !IsSecure is true.
1924      */
1925     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1926     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1927     route_irq_to_el2 = hcr_el2 & HCR_IMO;
1928 
1929     switch (arm_current_el(env)) {
1930     case 3:
1931         break;
1932     case 2:
1933         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1934             break;
1935         }
1936         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1937             break;
1938         }
1939         return;
1940     case 1:
1941         if (!arm_is_secure_below_el3(env)) {
1942             if (single_sec_state && irq_is_grp0 &&
1943                 !route_fiq_to_el3 && !route_fiq_to_el2) {
1944                 break;
1945             }
1946             if (!irq_is_secure && !irq_is_grp0 &&
1947                 !route_irq_to_el3 && !route_irq_to_el2) {
1948                 break;
1949             }
1950         } else {
1951             if (irq_is_grp0 && !route_fiq_to_el3) {
1952                 break;
1953             }
1954             if (!irq_is_grp0 &&
1955                 (!irq_is_secure || !single_sec_state) &&
1956                 !route_irq_to_el3) {
1957                 break;
1958             }
1959         }
1960         return;
1961     default:
1962         g_assert_not_reached();
1963     }
1964 
1965     icc_deactivate_irq(cs, irq);
1966 }
1967 
1968 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1969 {
1970     GICv3CPUState *cs = icc_cs_from_env(env);
1971     uint64_t prio;
1972 
1973     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1974         return icv_rpr_read(env, ri);
1975     }
1976 
1977     prio = icc_highest_active_prio(cs);
1978 
1979     if (arm_feature(env, ARM_FEATURE_EL3) &&
1980         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1981         /* NS GIC access and Group 0 is inaccessible to NS */
1982         if ((prio & 0x80) == 0) {
1983             /* NS mustn't see priorities in the Secure half of the range */
1984             prio = 0;
1985         } else if (prio != 0xff) {
1986             /* Non-idle priority: show the Non-secure view of it */
1987             prio = (prio << 1) & 0xff;
1988         }
1989     }
1990 
1991     if (cs->nmi_support) {
1992         /* NMI info is reported in the high bits of RPR */
1993         if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1994             if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
1995                 prio |= ICC_RPR_EL1_NMI;
1996             }
1997         } else {
1998             if (cs->icc_apr[GICV3_G1NS][0] & ICC_AP1R_EL1_NMI) {
1999                 prio |= ICC_RPR_EL1_NSNMI;
2000             }
2001             if (cs->icc_apr[GICV3_G1][0] & ICC_AP1R_EL1_NMI) {
2002                 prio |= ICC_RPR_EL1_NMI;
2003             }
2004         }
2005     }
2006 
2007     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
2008     return prio;
2009 }
2010 
2011 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
2012                              uint64_t value, int grp, bool ns)
2013 {
2014     GICv3State *s = cs->gic;
2015 
2016     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
2017     uint64_t aff = extract64(value, 48, 8) << 16 |
2018         extract64(value, 32, 8) << 8 |
2019         extract64(value, 16, 8);
2020     uint32_t targetlist = extract64(value, 0, 16);
2021     uint32_t irq = extract64(value, 24, 4);
2022     bool irm = extract64(value, 40, 1);
2023     int i;
2024 
2025     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
2026         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
2027          * interrupts as Group 0 interrupts and must send Secure Group 0
2028          * interrupts to the target CPUs.
2029          */
2030         grp = GICV3_G0;
2031     }
2032 
2033     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
2034                                  aff, targetlist);
2035 
2036     for (i = 0; i < s->num_cpu; i++) {
2037         GICv3CPUState *ocs = &s->cpu[i];
2038 
2039         if (irm) {
2040             /* IRM == 1 : route to all CPUs except self */
2041             if (cs == ocs) {
2042                 continue;
2043             }
2044         } else {
2045             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
2046              * where the corresponding bit is set in targetlist
2047              */
2048             int aff0;
2049 
2050             if (ocs->gicr_typer >> 40 != aff) {
2051                 continue;
2052             }
2053             aff0 = extract64(ocs->gicr_typer, 32, 8);
2054             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
2055                 continue;
2056             }
2057         }
2058 
2059         /* The redistributor will check against its own GICR_NSACR as needed */
2060         gicv3_redist_send_sgi(ocs, grp, irq, ns);
2061     }
2062 }
2063 
2064 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
2065                            uint64_t value)
2066 {
2067     /* Generate Secure Group 0 SGI. */
2068     GICv3CPUState *cs = icc_cs_from_env(env);
2069     bool ns = !arm_is_secure(env);
2070 
2071     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
2072 }
2073 
2074 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
2075                            uint64_t value)
2076 {
2077     /* Generate Group 1 SGI for the current Security state */
2078     GICv3CPUState *cs = icc_cs_from_env(env);
2079     int grp;
2080     bool ns = !arm_is_secure(env);
2081 
2082     grp = ns ? GICV3_G1NS : GICV3_G1;
2083     icc_generate_sgi(env, cs, value, grp, ns);
2084 }
2085 
2086 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
2087                              uint64_t value)
2088 {
2089     /* Generate Group 1 SGI for the Security state that is not
2090      * the current state
2091      */
2092     GICv3CPUState *cs = icc_cs_from_env(env);
2093     int grp;
2094     bool ns = !arm_is_secure(env);
2095 
2096     grp = ns ? GICV3_G1 : GICV3_G1NS;
2097     icc_generate_sgi(env, cs, value, grp, ns);
2098 }
2099 
2100 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
2101 {
2102     GICv3CPUState *cs = icc_cs_from_env(env);
2103     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
2104     uint64_t value;
2105 
2106     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
2107         return icv_igrpen_read(env, ri);
2108     }
2109 
2110     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
2111         grp = GICV3_G1NS;
2112     }
2113 
2114     value = cs->icc_igrpen[grp];
2115     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
2116                                 gicv3_redist_affid(cs), value);
2117     return value;
2118 }
2119 
2120 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
2121                              uint64_t value)
2122 {
2123     GICv3CPUState *cs = icc_cs_from_env(env);
2124     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
2125 
2126     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
2127         icv_igrpen_write(env, ri, value);
2128         return;
2129     }
2130 
2131     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
2132                                  gicv3_redist_affid(cs), value);
2133 
2134     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
2135         grp = GICV3_G1NS;
2136     }
2137 
2138     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
2139     gicv3_cpuif_update(cs);
2140 }
2141 
2142 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2143 {
2144     GICv3CPUState *cs = icc_cs_from_env(env);
2145     uint64_t value;
2146 
2147     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
2148     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
2149     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
2150     return value;
2151 }
2152 
2153 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2154                                   uint64_t value)
2155 {
2156     GICv3CPUState *cs = icc_cs_from_env(env);
2157 
2158     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
2159 
2160     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
2161     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
2162     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
2163     gicv3_cpuif_update(cs);
2164 }
2165 
2166 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
2167 {
2168     GICv3CPUState *cs = icc_cs_from_env(env);
2169     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
2170     uint64_t value;
2171 
2172     if (icv_access(env, HCR_FMO | HCR_IMO)) {
2173         return icv_ctlr_read(env, ri);
2174     }
2175 
2176     value = cs->icc_ctlr_el1[bank];
2177     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
2178     return value;
2179 }
2180 
2181 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
2182                                uint64_t value)
2183 {
2184     GICv3CPUState *cs = icc_cs_from_env(env);
2185     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
2186     uint64_t mask;
2187 
2188     if (icv_access(env, HCR_FMO | HCR_IMO)) {
2189         icv_ctlr_write(env, ri, value);
2190         return;
2191     }
2192 
2193     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
2194 
2195     /* Only CBPR and EOIMODE can be RW;
2196      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
2197      * the asseciated priority-based routing of them);
2198      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
2199      */
2200     if (arm_feature(env, ARM_FEATURE_EL3) &&
2201         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
2202         mask = ICC_CTLR_EL1_EOIMODE;
2203     } else {
2204         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
2205     }
2206 
2207     cs->icc_ctlr_el1[bank] &= ~mask;
2208     cs->icc_ctlr_el1[bank] |= (value & mask);
2209     gicv3_cpuif_update(cs);
2210 }
2211 
2212 
2213 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
2214 {
2215     GICv3CPUState *cs = icc_cs_from_env(env);
2216     uint64_t value;
2217 
2218     value = cs->icc_ctlr_el3;
2219     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2220         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
2221     }
2222     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2223         value |= ICC_CTLR_EL3_CBPR_EL1NS;
2224     }
2225     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
2226         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
2227     }
2228     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
2229         value |= ICC_CTLR_EL3_CBPR_EL1S;
2230     }
2231 
2232     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
2233     return value;
2234 }
2235 
2236 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
2237                                uint64_t value)
2238 {
2239     GICv3CPUState *cs = icc_cs_from_env(env);
2240     uint64_t mask;
2241 
2242     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
2243 
2244     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
2245     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2246     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2247         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2248     }
2249     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2250         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2251     }
2252 
2253     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
2254     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2255         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2256     }
2257     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2258         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2259     }
2260 
2261     /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */
2262     mask = ICC_CTLR_EL3_EOIMODE_EL3;
2263 
2264     cs->icc_ctlr_el3 &= ~mask;
2265     cs->icc_ctlr_el3 |= (value & mask);
2266     gicv3_cpuif_update(cs);
2267 }
2268 
2269 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2270                                           const ARMCPRegInfo *ri, bool isread)
2271 {
2272     CPAccessResult r = CP_ACCESS_OK;
2273     GICv3CPUState *cs = icc_cs_from_env(env);
2274     int el = arm_current_el(env);
2275 
2276     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2277         el == 1 && !arm_is_secure_below_el3(env)) {
2278         /* Takes priority over a possible EL3 trap */
2279         return CP_ACCESS_TRAP_EL2;
2280     }
2281 
2282     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
2283         switch (el) {
2284         case 1:
2285             /* Note that arm_hcr_el2_eff takes secure state into account.  */
2286             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
2287                 r = CP_ACCESS_TRAP_EL3;
2288             }
2289             break;
2290         case 2:
2291             r = CP_ACCESS_TRAP_EL3;
2292             break;
2293         case 3:
2294             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2295                 r = CP_ACCESS_TRAP_EL3;
2296             }
2297             break;
2298         default:
2299             g_assert_not_reached();
2300         }
2301     }
2302 
2303     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2304         r = CP_ACCESS_TRAP;
2305     }
2306     return r;
2307 }
2308 
2309 static CPAccessResult gicv3_dir_access(CPUARMState *env,
2310                                        const ARMCPRegInfo *ri, bool isread)
2311 {
2312     GICv3CPUState *cs = icc_cs_from_env(env);
2313 
2314     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2315         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2316         /* Takes priority over a possible EL3 trap */
2317         return CP_ACCESS_TRAP_EL2;
2318     }
2319 
2320     return gicv3_irqfiq_access(env, ri, isread);
2321 }
2322 
2323 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2324                                        const ARMCPRegInfo *ri, bool isread)
2325 {
2326     if (arm_current_el(env) == 1 &&
2327         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
2328         /* Takes priority over a possible EL3 trap */
2329         return CP_ACCESS_TRAP_EL2;
2330     }
2331 
2332     return gicv3_irqfiq_access(env, ri, isread);
2333 }
2334 
2335 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2336                                        const ARMCPRegInfo *ri, bool isread)
2337 {
2338     CPAccessResult r = CP_ACCESS_OK;
2339     GICv3CPUState *cs = icc_cs_from_env(env);
2340     int el = arm_current_el(env);
2341 
2342     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2343         el == 1 && !arm_is_secure_below_el3(env)) {
2344         /* Takes priority over a possible EL3 trap */
2345         return CP_ACCESS_TRAP_EL2;
2346     }
2347 
2348     if (env->cp15.scr_el3 & SCR_FIQ) {
2349         switch (el) {
2350         case 1:
2351             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2352                 r = CP_ACCESS_TRAP_EL3;
2353             }
2354             break;
2355         case 2:
2356             r = CP_ACCESS_TRAP_EL3;
2357             break;
2358         case 3:
2359             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2360                 r = CP_ACCESS_TRAP_EL3;
2361             }
2362             break;
2363         default:
2364             g_assert_not_reached();
2365         }
2366     }
2367 
2368     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2369         r = CP_ACCESS_TRAP;
2370     }
2371     return r;
2372 }
2373 
2374 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2375                                        const ARMCPRegInfo *ri, bool isread)
2376 {
2377     CPAccessResult r = CP_ACCESS_OK;
2378     GICv3CPUState *cs = icc_cs_from_env(env);
2379     int el = arm_current_el(env);
2380 
2381     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2382         el == 1 && !arm_is_secure_below_el3(env)) {
2383         /* Takes priority over a possible EL3 trap */
2384         return CP_ACCESS_TRAP_EL2;
2385     }
2386 
2387     if (env->cp15.scr_el3 & SCR_IRQ) {
2388         switch (el) {
2389         case 1:
2390             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2391                 r = CP_ACCESS_TRAP_EL3;
2392             }
2393             break;
2394         case 2:
2395             r = CP_ACCESS_TRAP_EL3;
2396             break;
2397         case 3:
2398             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2399                 r = CP_ACCESS_TRAP_EL3;
2400             }
2401             break;
2402         default:
2403             g_assert_not_reached();
2404         }
2405     }
2406 
2407     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2408         r = CP_ACCESS_TRAP;
2409     }
2410     return r;
2411 }
2412 
2413 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2414 {
2415     GICv3CPUState *cs = icc_cs_from_env(env);
2416 
2417     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2418         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2419         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2420     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2421         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2422         ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT);
2423     cs->icc_pmr_el1 = 0;
2424     cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs);
2425     cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs);
2426     cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs);
2427     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2428     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2429     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2430         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2431         ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT);
2432 
2433     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2434     cs->ich_hcr_el2 = 0;
2435     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2436     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2437         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2438         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2439 }
2440 
2441 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2442     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2443       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2444       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2445       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2446       .readfn = icc_pmr_read,
2447       .writefn = icc_pmr_write,
2448       /* We hang the whole cpu interface reset routine off here
2449        * rather than parcelling it out into one little function
2450        * per register
2451        */
2452       .resetfn = icc_reset,
2453     },
2454     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2455       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2456       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2457       .access = PL1_R, .accessfn = gicv3_fiq_access,
2458       .readfn = icc_iar0_read,
2459     },
2460     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2461       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2462       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2463       .access = PL1_W, .accessfn = gicv3_fiq_access,
2464       .writefn = icc_eoir_write,
2465     },
2466     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2467       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2468       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2469       .access = PL1_R, .accessfn = gicv3_fiq_access,
2470       .readfn = icc_hppir0_read,
2471     },
2472     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2473       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2474       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2475       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2476       .readfn = icc_bpr_read,
2477       .writefn = icc_bpr_write,
2478     },
2479     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2480       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2481       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2482       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2483       .readfn = icc_ap_read,
2484       .writefn = icc_ap_write,
2485     },
2486     /* All the ICC_AP1R*_EL1 registers are banked */
2487     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2488       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2489       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2490       .access = PL1_RW, .accessfn = gicv3_irq_access,
2491       .readfn = icc_ap_read,
2492       .writefn = icc_ap_write,
2493     },
2494     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2495       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2496       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2497       .access = PL1_W, .accessfn = gicv3_dir_access,
2498       .writefn = icc_dir_write,
2499     },
2500     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2501       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2502       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2503       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2504       .readfn = icc_rpr_read,
2505     },
2506     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2507       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2508       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2509       .access = PL1_W, .accessfn = gicv3_sgi_access,
2510       .writefn = icc_sgi1r_write,
2511     },
2512     { .name = "ICC_SGI1R",
2513       .cp = 15, .opc1 = 0, .crm = 12,
2514       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2515       .access = PL1_W, .accessfn = gicv3_sgi_access,
2516       .writefn = icc_sgi1r_write,
2517     },
2518     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2519       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2520       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2521       .access = PL1_W, .accessfn = gicv3_sgi_access,
2522       .writefn = icc_asgi1r_write,
2523     },
2524     { .name = "ICC_ASGI1R",
2525       .cp = 15, .opc1 = 1, .crm = 12,
2526       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2527       .access = PL1_W, .accessfn = gicv3_sgi_access,
2528       .writefn = icc_asgi1r_write,
2529     },
2530     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2531       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2532       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2533       .access = PL1_W, .accessfn = gicv3_sgi_access,
2534       .writefn = icc_sgi0r_write,
2535     },
2536     { .name = "ICC_SGI0R",
2537       .cp = 15, .opc1 = 2, .crm = 12,
2538       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2539       .access = PL1_W, .accessfn = gicv3_sgi_access,
2540       .writefn = icc_sgi0r_write,
2541     },
2542     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2543       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2544       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2545       .access = PL1_R, .accessfn = gicv3_irq_access,
2546       .readfn = icc_iar1_read,
2547     },
2548     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2549       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2550       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2551       .access = PL1_W, .accessfn = gicv3_irq_access,
2552       .writefn = icc_eoir_write,
2553     },
2554     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2555       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2556       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2557       .access = PL1_R, .accessfn = gicv3_irq_access,
2558       .readfn = icc_hppir1_read,
2559     },
2560     /* This register is banked */
2561     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2562       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2563       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2564       .access = PL1_RW, .accessfn = gicv3_irq_access,
2565       .readfn = icc_bpr_read,
2566       .writefn = icc_bpr_write,
2567     },
2568     /* This register is banked */
2569     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2570       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2571       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2572       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2573       .readfn = icc_ctlr_el1_read,
2574       .writefn = icc_ctlr_el1_write,
2575     },
2576     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2577       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2578       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2579       .access = PL1_RW,
2580       /* We don't support IRQ/FIQ bypass and system registers are
2581        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2582        * This register is banked but since it's constant we don't
2583        * need to do anything special.
2584        */
2585       .resetvalue = 0x7,
2586     },
2587     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2588       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2589       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2590       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2591       .fgt = FGT_ICC_IGRPENN_EL1,
2592       .readfn = icc_igrpen_read,
2593       .writefn = icc_igrpen_write,
2594     },
2595     /* This register is banked */
2596     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2597       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2598       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2599       .access = PL1_RW, .accessfn = gicv3_irq_access,
2600       .fgt = FGT_ICC_IGRPENN_EL1,
2601       .readfn = icc_igrpen_read,
2602       .writefn = icc_igrpen_write,
2603     },
2604     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2605       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2606       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2607       .access = PL2_RW,
2608       /* We don't support IRQ/FIQ bypass and system registers are
2609        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2610        */
2611       .resetvalue = 0xf,
2612     },
2613     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2614       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2615       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2616       .access = PL3_RW,
2617       .readfn = icc_ctlr_el3_read,
2618       .writefn = icc_ctlr_el3_write,
2619     },
2620     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2621       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2622       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2623       .access = PL3_RW,
2624       /* We don't support IRQ/FIQ bypass and system registers are
2625        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2626        */
2627       .resetvalue = 0xf,
2628     },
2629     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2630       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2631       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2632       .access = PL3_RW,
2633       .readfn = icc_igrpen1_el3_read,
2634       .writefn = icc_igrpen1_el3_write,
2635     },
2636 };
2637 
2638 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = {
2639     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2640       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2641       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2642       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2643       .readfn = icc_ap_read,
2644       .writefn = icc_ap_write,
2645     },
2646     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2647       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2648       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2649       .access = PL1_RW, .accessfn = gicv3_irq_access,
2650       .readfn = icc_ap_read,
2651       .writefn = icc_ap_write,
2652     },
2653 };
2654 
2655 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = {
2656     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2657       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2658       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2659       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2660       .readfn = icc_ap_read,
2661       .writefn = icc_ap_write,
2662     },
2663     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2664       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2665       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2666       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2667       .readfn = icc_ap_read,
2668       .writefn = icc_ap_write,
2669     },
2670     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2671       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2672       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2673       .access = PL1_RW, .accessfn = gicv3_irq_access,
2674       .readfn = icc_ap_read,
2675       .writefn = icc_ap_write,
2676     },
2677     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2678       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2679       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2680       .access = PL1_RW, .accessfn = gicv3_irq_access,
2681       .readfn = icc_ap_read,
2682       .writefn = icc_ap_write,
2683     },
2684 };
2685 
2686 static const ARMCPRegInfo gicv3_cpuif_gicv3_nmi_reginfo[] = {
2687     { .name = "ICC_NMIAR1_EL1", .state = ARM_CP_STATE_BOTH,
2688       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 5,
2689       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2690       .access = PL1_R, .accessfn = gicv3_irq_access,
2691       .readfn = icc_nmiar1_read,
2692     },
2693 };
2694 
2695 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2696 {
2697     GICv3CPUState *cs = icc_cs_from_env(env);
2698     int regno = ri->opc2 & 3;
2699     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2700     uint64_t value;
2701 
2702     value = cs->ich_apr[grp][regno];
2703     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2704     return value;
2705 }
2706 
2707 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2708                          uint64_t value)
2709 {
2710     GICv3CPUState *cs = icc_cs_from_env(env);
2711     int regno = ri->opc2 & 3;
2712     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2713 
2714     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2715 
2716     if (cs->nmi_support) {
2717         cs->ich_apr[grp][regno] = value & (0xFFFFFFFFU | ICV_AP1R_EL1_NMI);
2718     } else {
2719         cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2720     }
2721     gicv3_cpuif_virt_irq_fiq_update(cs);
2722 }
2723 
2724 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2725 {
2726     GICv3CPUState *cs = icc_cs_from_env(env);
2727     uint64_t value = cs->ich_hcr_el2;
2728 
2729     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2730     return value;
2731 }
2732 
2733 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2734                           uint64_t value)
2735 {
2736     GICv3CPUState *cs = icc_cs_from_env(env);
2737 
2738     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2739 
2740     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2741         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2742         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2743         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2744         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2745 
2746     cs->ich_hcr_el2 = value;
2747     gicv3_cpuif_virt_update(cs);
2748 }
2749 
2750 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2751 {
2752     GICv3CPUState *cs = icc_cs_from_env(env);
2753     uint64_t value = cs->ich_vmcr_el2;
2754 
2755     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2756     return value;
2757 }
2758 
2759 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2760                          uint64_t value)
2761 {
2762     GICv3CPUState *cs = icc_cs_from_env(env);
2763 
2764     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2765 
2766     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2767         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2768         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2769     value |= ICH_VMCR_EL2_VFIQEN;
2770 
2771     cs->ich_vmcr_el2 = value;
2772     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2773      * by reading and writing back the fields.
2774      */
2775     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2776     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2777 
2778     gicv3_cpuif_virt_update(cs);
2779 }
2780 
2781 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2782 {
2783     GICv3CPUState *cs = icc_cs_from_env(env);
2784     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2785     uint64_t value;
2786 
2787     /* This read function handles all of:
2788      * 64-bit reads of the whole LR
2789      * 32-bit reads of the low half of the LR
2790      * 32-bit reads of the high half of the LR
2791      */
2792     if (ri->state == ARM_CP_STATE_AA32) {
2793         if (ri->crm >= 14) {
2794             value = extract64(cs->ich_lr_el2[regno], 32, 32);
2795             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2796         } else {
2797             value = extract64(cs->ich_lr_el2[regno], 0, 32);
2798             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2799         }
2800     } else {
2801         value = cs->ich_lr_el2[regno];
2802         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2803     }
2804 
2805     return value;
2806 }
2807 
2808 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2809                          uint64_t value)
2810 {
2811     GICv3CPUState *cs = icc_cs_from_env(env);
2812     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2813 
2814     /* This write function handles all of:
2815      * 64-bit writes to the whole LR
2816      * 32-bit writes to the low half of the LR
2817      * 32-bit writes to the high half of the LR
2818      */
2819     if (ri->state == ARM_CP_STATE_AA32) {
2820         if (ri->crm >= 14) {
2821             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2822             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2823         } else {
2824             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2825             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2826         }
2827     } else {
2828         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2829     }
2830 
2831     /* Enforce RES0 bits in priority field */
2832     if (cs->vpribits < 8) {
2833         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2834                           8 - cs->vpribits, 0);
2835     }
2836 
2837     /* Enforce RES0 bit in NMI field when FEAT_GICv3_NMI is not implemented */
2838     if (!cs->nmi_support) {
2839         value &= ~ICH_LR_EL2_NMI;
2840     }
2841 
2842     cs->ich_lr_el2[regno] = value;
2843     gicv3_cpuif_virt_update(cs);
2844 }
2845 
2846 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2847 {
2848     GICv3CPUState *cs = icc_cs_from_env(env);
2849     uint64_t value;
2850 
2851     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2852         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V
2853         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2854         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2855         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2856 
2857     if (cs->gic->revision < 4) {
2858         value |= ICH_VTR_EL2_NV4;
2859     }
2860 
2861     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2862     return value;
2863 }
2864 
2865 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2866 {
2867     GICv3CPUState *cs = icc_cs_from_env(env);
2868     uint64_t value = maintenance_interrupt_state(cs);
2869 
2870     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2871     return value;
2872 }
2873 
2874 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2875 {
2876     GICv3CPUState *cs = icc_cs_from_env(env);
2877     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2878 
2879     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2880     return value;
2881 }
2882 
2883 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2884 {
2885     GICv3CPUState *cs = icc_cs_from_env(env);
2886     uint64_t value = 0;
2887     int i;
2888 
2889     for (i = 0; i < cs->num_list_regs; i++) {
2890         uint64_t lr = cs->ich_lr_el2[i];
2891 
2892         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2893             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2894             value |= (1 << i);
2895         }
2896     }
2897 
2898     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2899     return value;
2900 }
2901 
2902 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2903     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2904       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2905       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2906       .nv2_redirect_offset = 0x480,
2907       .access = PL2_RW,
2908       .readfn = ich_ap_read,
2909       .writefn = ich_ap_write,
2910     },
2911     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2912       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2913       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2914       .nv2_redirect_offset = 0x4a0,
2915       .access = PL2_RW,
2916       .readfn = ich_ap_read,
2917       .writefn = ich_ap_write,
2918     },
2919     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2920       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2921       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2922       .nv2_redirect_offset = 0x4c0,
2923       .access = PL2_RW,
2924       .readfn = ich_hcr_read,
2925       .writefn = ich_hcr_write,
2926     },
2927     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2928       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2929       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2930       .access = PL2_R,
2931       .readfn = ich_vtr_read,
2932     },
2933     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2934       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2935       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2936       .access = PL2_R,
2937       .readfn = ich_misr_read,
2938     },
2939     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2940       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2941       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2942       .access = PL2_R,
2943       .readfn = ich_eisr_read,
2944     },
2945     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2946       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2947       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2948       .access = PL2_R,
2949       .readfn = ich_elrsr_read,
2950     },
2951     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2952       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2953       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2954       .nv2_redirect_offset = 0x4c8,
2955       .access = PL2_RW,
2956       .readfn = ich_vmcr_read,
2957       .writefn = ich_vmcr_write,
2958     },
2959 };
2960 
2961 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2962     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2963       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2964       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2965       .nv2_redirect_offset = 0x488,
2966       .access = PL2_RW,
2967       .readfn = ich_ap_read,
2968       .writefn = ich_ap_write,
2969     },
2970     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2971       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2972       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2973       .nv2_redirect_offset = 0x4a8,
2974       .access = PL2_RW,
2975       .readfn = ich_ap_read,
2976       .writefn = ich_ap_write,
2977     },
2978 };
2979 
2980 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2981     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2982       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2983       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2984       .nv2_redirect_offset = 0x490,
2985       .access = PL2_RW,
2986       .readfn = ich_ap_read,
2987       .writefn = ich_ap_write,
2988     },
2989     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2990       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2991       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2992       .nv2_redirect_offset = 0x498,
2993       .access = PL2_RW,
2994       .readfn = ich_ap_read,
2995       .writefn = ich_ap_write,
2996     },
2997     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2998       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2999       .type = ARM_CP_IO | ARM_CP_NO_RAW,
3000       .nv2_redirect_offset = 0x4b0,
3001       .access = PL2_RW,
3002       .readfn = ich_ap_read,
3003       .writefn = ich_ap_write,
3004     },
3005     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
3006       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
3007       .type = ARM_CP_IO | ARM_CP_NO_RAW,
3008       .nv2_redirect_offset = 0x4b8,
3009       .access = PL2_RW,
3010       .readfn = ich_ap_read,
3011       .writefn = ich_ap_write,
3012     },
3013 };
3014 
3015 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
3016 {
3017     GICv3CPUState *cs = opaque;
3018 
3019     gicv3_cpuif_update(cs);
3020     /*
3021      * Because vLPIs are only pending in NonSecure state,
3022      * an EL change can change the VIRQ/VFIQ status (but
3023      * cannot affect the maintenance interrupt state)
3024      */
3025     gicv3_cpuif_virt_irq_fiq_update(cs);
3026 }
3027 
3028 void gicv3_init_cpuif(GICv3State *s)
3029 {
3030     /* Called from the GICv3 realize function; register our system
3031      * registers with the CPU
3032      */
3033     int i;
3034 
3035     for (i = 0; i < s->num_cpu; i++) {
3036         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
3037         GICv3CPUState *cs = &s->cpu[i];
3038 
3039         /*
3040          * If the CPU doesn't define a GICv3 configuration, probably because
3041          * in real hardware it doesn't have one, then we use default values
3042          * matching the one used by most Arm CPUs. This applies to:
3043          *  cpu->gic_num_lrs
3044          *  cpu->gic_vpribits
3045          *  cpu->gic_vprebits
3046          *  cpu->gic_pribits
3047          */
3048 
3049         /* Note that we can't just use the GICv3CPUState as an opaque pointer
3050          * in define_arm_cp_regs_with_opaque(), because when we're called back
3051          * it might be with code translated by CPU 0 but run by CPU 1, in
3052          * which case we'd get the wrong value.
3053          * So instead we define the regs with no ri->opaque info, and
3054          * get back to the GICv3CPUState from the CPUARMState.
3055          *
3056          * These CP regs callbacks can be called from either TCG or HVF code.
3057          */
3058         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
3059 
3060         /*
3061          * If the CPU implements FEAT_NMI and FEAT_GICv3 it must also
3062          * implement FEAT_GICv3_NMI, which is the CPU interface part
3063          * of NMI support. This is distinct from whether the GIC proper
3064          * (redistributors and distributor) have NMI support. In QEMU
3065          * that is a property of the GIC device in s->nmi_support;
3066          * cs->nmi_support indicates the CPU interface's support.
3067          */
3068         if (cpu_isar_feature(aa64_nmi, cpu)) {
3069             cs->nmi_support = true;
3070             define_arm_cp_regs(cpu, gicv3_cpuif_gicv3_nmi_reginfo);
3071         }
3072 
3073         /*
3074          * The CPU implementation specifies the number of supported
3075          * bits of physical priority. For backwards compatibility
3076          * of migration, we have a compat property that forces use
3077          * of 8 priority bits regardless of what the CPU really has.
3078          */
3079         if (s->force_8bit_prio) {
3080             cs->pribits = 8;
3081         } else {
3082             cs->pribits = cpu->gic_pribits ?: 5;
3083         }
3084 
3085         /*
3086          * The GICv3 has separate ID register fields for virtual priority
3087          * and preemption bit values, but only a single ID register field
3088          * for the physical priority bits. The preemption bit count is
3089          * always the same as the priority bit count, except that 8 bits
3090          * of priority means 7 preemption bits. We precalculate the
3091          * preemption bits because it simplifies the code and makes the
3092          * parallels between the virtual and physical bits of the GIC
3093          * a bit clearer.
3094          */
3095         cs->prebits = cs->pribits;
3096         if (cs->prebits == 8) {
3097             cs->prebits--;
3098         }
3099         /*
3100          * Check that CPU code defining pribits didn't violate
3101          * architectural constraints our implementation relies on.
3102          */
3103         g_assert(cs->pribits >= 4 && cs->pribits <= 8);
3104 
3105         /*
3106          * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions
3107          * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them.
3108          */
3109         if (cs->prebits >= 6) {
3110             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo);
3111         }
3112         if (cs->prebits == 7) {
3113             define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo);
3114         }
3115 
3116         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
3117             int j;
3118 
3119             cs->num_list_regs = cpu->gic_num_lrs ?: 4;
3120             cs->vpribits = cpu->gic_vpribits ?: 5;
3121             cs->vprebits = cpu->gic_vprebits ?: 5;
3122 
3123             /* Check against architectural constraints: getting these
3124              * wrong would be a bug in the CPU code defining these,
3125              * and the implementation relies on them holding.
3126              */
3127             g_assert(cs->vprebits <= cs->vpribits);
3128             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
3129             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
3130 
3131             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
3132 
3133             for (j = 0; j < cs->num_list_regs; j++) {
3134                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
3135                  * are split into two cp15 regs, LR (the low part, with the
3136                  * same encoding as the AArch64 LR) and LRC (the high part).
3137                  */
3138                 ARMCPRegInfo lr_regset[] = {
3139                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
3140                       .opc0 = 3, .opc1 = 4, .crn = 12,
3141                       .crm = 12 + (j >> 3), .opc2 = j & 7,
3142                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
3143                       .nv2_redirect_offset = 0x400 + 8 * j,
3144                       .access = PL2_RW,
3145                       .readfn = ich_lr_read,
3146                       .writefn = ich_lr_write,
3147                     },
3148                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
3149                       .cp = 15, .opc1 = 4, .crn = 12,
3150                       .crm = 14 + (j >> 3), .opc2 = j & 7,
3151                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
3152                       .access = PL2_RW,
3153                       .readfn = ich_lr_read,
3154                       .writefn = ich_lr_write,
3155                     },
3156                 };
3157                 define_arm_cp_regs(cpu, lr_regset);
3158             }
3159             if (cs->vprebits >= 6) {
3160                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
3161             }
3162             if (cs->vprebits == 7) {
3163                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
3164             }
3165         }
3166         if (tcg_enabled() || qtest_enabled()) {
3167             /*
3168              * We can only trap EL changes with TCG. However the GIC interrupt
3169              * state only changes on EL changes involving EL2 or EL3, so for
3170              * the non-TCG case this is OK, as EL2 and EL3 can't exist.
3171              */
3172             arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
3173         } else {
3174             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2));
3175             assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3));
3176         }
3177     }
3178 }
3179