1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "hw/irq.h" 21 #include "cpu.h" 22 23 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 24 { 25 ARMCPU *arm_cpu = ARM_CPU(cpu); 26 CPUARMState *env = &arm_cpu->env; 27 28 env->gicv3state = (void *)s; 29 }; 30 31 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 32 { 33 return env->gicv3state; 34 } 35 36 static bool gicv3_use_ns_bank(CPUARMState *env) 37 { 38 /* Return true if we should use the NonSecure bank for a banked GIC 39 * CPU interface register. Note that this differs from the 40 * access_secure_reg() function because GICv3 banked registers are 41 * banked even for AArch64, unlike the other CPU system registers. 42 */ 43 return !arm_is_secure_below_el3(env); 44 } 45 46 /* The minimum BPR for the virtual interface is a configurable property */ 47 static inline int icv_min_vbpr(GICv3CPUState *cs) 48 { 49 return 7 - cs->vprebits; 50 } 51 52 /* Simple accessor functions for LR fields */ 53 static uint32_t ich_lr_vintid(uint64_t lr) 54 { 55 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 56 } 57 58 static uint32_t ich_lr_pintid(uint64_t lr) 59 { 60 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 61 } 62 63 static uint32_t ich_lr_prio(uint64_t lr) 64 { 65 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 66 } 67 68 static int ich_lr_state(uint64_t lr) 69 { 70 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 71 } 72 73 static bool icv_access(CPUARMState *env, int hcr_flags) 74 { 75 /* Return true if this ICC_ register access should really be 76 * directed to an ICV_ access. hcr_flags is a mask of 77 * HCR_EL2 bits to check: we treat this as an ICV_ access 78 * if we are in NS EL1 and at least one of the specified 79 * HCR_EL2 bits is set. 80 * 81 * ICV registers fall into four categories: 82 * * access if NS EL1 and HCR_EL2.FMO == 1: 83 * all ICV regs with '0' in their name 84 * * access if NS EL1 and HCR_EL2.IMO == 1: 85 * all ICV regs with '1' in their name 86 * * access if NS EL1 and either IMO or FMO == 1: 87 * CTLR, DIR, PMR, RPR 88 */ 89 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 90 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 91 92 return flagmatch && arm_current_el(env) == 1 93 && !arm_is_secure_below_el3(env); 94 } 95 96 static int read_vbpr(GICv3CPUState *cs, int grp) 97 { 98 /* Read VBPR value out of the VMCR field (caller must handle 99 * VCBPR effects if required) 100 */ 101 if (grp == GICV3_G0) { 102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 103 ICH_VMCR_EL2_VBPR0_LENGTH); 104 } else { 105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 106 ICH_VMCR_EL2_VBPR1_LENGTH); 107 } 108 } 109 110 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 111 { 112 /* Write new VBPR1 value, handling the "writing a value less than 113 * the minimum sets it to the minimum" semantics. 114 */ 115 int min = icv_min_vbpr(cs); 116 117 if (grp != GICV3_G0) { 118 min++; 119 } 120 121 value = MAX(value, min); 122 123 if (grp == GICV3_G0) { 124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 125 ICH_VMCR_EL2_VBPR0_LENGTH, value); 126 } else { 127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 128 ICH_VMCR_EL2_VBPR1_LENGTH, value); 129 } 130 } 131 132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 133 { 134 /* Return a mask word which clears the unimplemented priority bits 135 * from a priority value for a virtual interrupt. (Not to be confused 136 * with the group priority, whose mask depends on the value of VBPR 137 * for the interrupt group.) 138 */ 139 return ~0U << (8 - cs->vpribits); 140 } 141 142 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 143 { 144 /* Calculate the current running priority based on the set bits 145 * in the ICH Active Priority Registers. 146 */ 147 int i; 148 int aprmax = 1 << (cs->vprebits - 5); 149 150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 151 152 for (i = 0; i < aprmax; i++) { 153 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 154 cs->ich_apr[GICV3_G1NS][i]; 155 156 if (!apr) { 157 continue; 158 } 159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 160 } 161 /* No current active interrupts: return idle priority */ 162 return 0xff; 163 } 164 165 static int hppvi_index(GICv3CPUState *cs) 166 { 167 /* Return the list register index of the highest priority pending 168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 169 * pseudocode. If no pending virtual interrupts, return -1. 170 */ 171 int idx = -1; 172 int i; 173 /* Note that a list register entry with a priority of 0xff will 174 * never be reported by this function; this is the architecturally 175 * correct behaviour. 176 */ 177 int prio = 0xff; 178 179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 180 /* Both groups disabled, definitely nothing to do */ 181 return idx; 182 } 183 184 for (i = 0; i < cs->num_list_regs; i++) { 185 uint64_t lr = cs->ich_lr_el2[i]; 186 int thisprio; 187 188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 189 /* Not Pending */ 190 continue; 191 } 192 193 /* Ignore interrupts if relevant group enable not set */ 194 if (lr & ICH_LR_EL2_GROUP) { 195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 196 continue; 197 } 198 } else { 199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 200 continue; 201 } 202 } 203 204 thisprio = ich_lr_prio(lr); 205 206 if (thisprio < prio) { 207 prio = thisprio; 208 idx = i; 209 } 210 } 211 212 return idx; 213 } 214 215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 216 { 217 /* Return a mask word which clears the subpriority bits from 218 * a priority value for a virtual interrupt in the specified group. 219 * This depends on the VBPR value. 220 * If using VBPR0 then: 221 * a BPR of 0 means the group priority bits are [7:1]; 222 * a BPR of 1 means they are [7:2], and so on down to 223 * a BPR of 7 meaning no group priority bits at all. 224 * If using VBPR1 then: 225 * a BPR of 0 is impossible (the minimum value is 1) 226 * a BPR of 1 means the group priority bits are [7:1]; 227 * a BPR of 2 means they are [7:2], and so on down to 228 * a BPR of 7 meaning the group priority is [7]. 229 * 230 * Which BPR to use depends on the group of the interrupt and 231 * the current ICH_VMCR_EL2.VCBPR settings. 232 * 233 * This corresponds to the VGroupBits() pseudocode. 234 */ 235 int bpr; 236 237 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 238 group = GICV3_G0; 239 } 240 241 bpr = read_vbpr(cs, group); 242 if (group == GICV3_G1NS) { 243 assert(bpr > 0); 244 bpr--; 245 } 246 247 return ~0U << (bpr + 1); 248 } 249 250 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 251 { 252 /* Return true if we can signal this virtual interrupt defined by 253 * the given list register value; see the pseudocode functions 254 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 255 * Compare also icc_hppi_can_preempt() which is the non-virtual 256 * equivalent of these checks. 257 */ 258 int grp; 259 uint32_t mask, prio, rprio, vpmr; 260 261 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 262 /* Virtual interface disabled */ 263 return false; 264 } 265 266 /* We don't need to check that this LR is in Pending state because 267 * that has already been done in hppvi_index(). 268 */ 269 270 prio = ich_lr_prio(lr); 271 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 272 ICH_VMCR_EL2_VPMR_LENGTH); 273 274 if (prio >= vpmr) { 275 /* Priority mask masks this interrupt */ 276 return false; 277 } 278 279 rprio = ich_highest_active_virt_prio(cs); 280 if (rprio == 0xff) { 281 /* No running interrupt so we can preempt */ 282 return true; 283 } 284 285 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 286 287 mask = icv_gprio_mask(cs, grp); 288 289 /* We only preempt a running interrupt if the pending interrupt's 290 * group priority is sufficient (the subpriorities are not considered). 291 */ 292 if ((prio & mask) < (rprio & mask)) { 293 return true; 294 } 295 296 return false; 297 } 298 299 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 300 uint32_t *misr) 301 { 302 /* Return a set of bits indicating the EOI maintenance interrupt status 303 * for each list register. The EOI maintenance interrupt status is 304 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 305 * (see the GICv3 spec for the ICH_EISR_EL2 register). 306 * If misr is not NULL then we should also collect the information 307 * about the MISR.EOI, MISR.NP and MISR.U bits. 308 */ 309 uint32_t value = 0; 310 int validcount = 0; 311 bool seenpending = false; 312 int i; 313 314 for (i = 0; i < cs->num_list_regs; i++) { 315 uint64_t lr = cs->ich_lr_el2[i]; 316 317 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 318 == ICH_LR_EL2_EOI) { 319 value |= (1 << i); 320 } 321 if ((lr & ICH_LR_EL2_STATE_MASK)) { 322 validcount++; 323 } 324 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 325 seenpending = true; 326 } 327 } 328 329 if (misr) { 330 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 331 *misr |= ICH_MISR_EL2_U; 332 } 333 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 334 *misr |= ICH_MISR_EL2_NP; 335 } 336 if (value) { 337 *misr |= ICH_MISR_EL2_EOI; 338 } 339 } 340 return value; 341 } 342 343 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 344 { 345 /* Return a set of bits indicating the maintenance interrupt status 346 * (as seen in the ICH_MISR_EL2 register). 347 */ 348 uint32_t value = 0; 349 350 /* Scan list registers and fill in the U, NP and EOI bits */ 351 eoi_maintenance_interrupt_state(cs, &value); 352 353 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 354 value |= ICH_MISR_EL2_LRENP; 355 } 356 357 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 358 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 359 value |= ICH_MISR_EL2_VGRP0E; 360 } 361 362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 363 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 364 value |= ICH_MISR_EL2_VGRP0D; 365 } 366 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 367 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 368 value |= ICH_MISR_EL2_VGRP1E; 369 } 370 371 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 372 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 373 value |= ICH_MISR_EL2_VGRP1D; 374 } 375 376 return value; 377 } 378 379 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 380 { 381 /* Tell the CPU about any pending virtual interrupts or 382 * maintenance interrupts, following a change to the state 383 * of the CPU interface relevant to virtual interrupts. 384 * 385 * CAUTION: this function will call qemu_set_irq() on the 386 * CPU maintenance IRQ line, which is typically wired up 387 * to the GIC as a per-CPU interrupt. This means that it 388 * will recursively call back into the GIC code via 389 * gicv3_redist_set_irq() and thus into the CPU interface code's 390 * gicv3_cpuif_update(). It is therefore important that this 391 * function is only called as the final action of a CPU interface 392 * register write implementation, after all the GIC state 393 * fields have been updated. gicv3_cpuif_update() also must 394 * not cause this function to be called, but that happens 395 * naturally as a result of there being no architectural 396 * linkage between the physical and virtual GIC logic. 397 */ 398 int idx; 399 int irqlevel = 0; 400 int fiqlevel = 0; 401 int maintlevel = 0; 402 ARMCPU *cpu = ARM_CPU(cs->cpu); 403 404 idx = hppvi_index(cs); 405 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 406 if (idx >= 0) { 407 uint64_t lr = cs->ich_lr_el2[idx]; 408 409 if (icv_hppi_can_preempt(cs, lr)) { 410 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 411 if (lr & ICH_LR_EL2_GROUP) { 412 irqlevel = 1; 413 } else { 414 fiqlevel = 1; 415 } 416 } 417 } 418 419 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 420 maintlevel = maintenance_interrupt_state(cs); 421 } 422 423 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 424 irqlevel, maintlevel); 425 426 qemu_set_irq(cs->parent_vfiq, fiqlevel); 427 qemu_set_irq(cs->parent_virq, irqlevel); 428 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 429 } 430 431 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 432 { 433 GICv3CPUState *cs = icc_cs_from_env(env); 434 int regno = ri->opc2 & 3; 435 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 436 uint64_t value = cs->ich_apr[grp][regno]; 437 438 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 439 return value; 440 } 441 442 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 443 uint64_t value) 444 { 445 GICv3CPUState *cs = icc_cs_from_env(env); 446 int regno = ri->opc2 & 3; 447 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 448 449 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 450 451 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 452 453 gicv3_cpuif_virt_update(cs); 454 return; 455 } 456 457 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 458 { 459 GICv3CPUState *cs = icc_cs_from_env(env); 460 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 461 uint64_t bpr; 462 bool satinc = false; 463 464 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 465 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 466 grp = GICV3_G0; 467 satinc = true; 468 } 469 470 bpr = read_vbpr(cs, grp); 471 472 if (satinc) { 473 bpr++; 474 bpr = MIN(bpr, 7); 475 } 476 477 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 478 479 return bpr; 480 } 481 482 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 483 uint64_t value) 484 { 485 GICv3CPUState *cs = icc_cs_from_env(env); 486 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 487 488 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 489 gicv3_redist_affid(cs), value); 490 491 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 492 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 493 return; 494 } 495 496 write_vbpr(cs, grp, value); 497 498 gicv3_cpuif_virt_update(cs); 499 } 500 501 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 502 { 503 GICv3CPUState *cs = icc_cs_from_env(env); 504 uint64_t value; 505 506 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 507 ICH_VMCR_EL2_VPMR_LENGTH); 508 509 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 510 return value; 511 } 512 513 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 514 uint64_t value) 515 { 516 GICv3CPUState *cs = icc_cs_from_env(env); 517 518 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 519 520 value &= icv_fullprio_mask(cs); 521 522 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 523 ICH_VMCR_EL2_VPMR_LENGTH, value); 524 525 gicv3_cpuif_virt_update(cs); 526 } 527 528 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 529 { 530 GICv3CPUState *cs = icc_cs_from_env(env); 531 int enbit; 532 uint64_t value; 533 534 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 535 value = extract64(cs->ich_vmcr_el2, enbit, 1); 536 537 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 538 gicv3_redist_affid(cs), value); 539 return value; 540 } 541 542 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 543 uint64_t value) 544 { 545 GICv3CPUState *cs = icc_cs_from_env(env); 546 int enbit; 547 548 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 549 gicv3_redist_affid(cs), value); 550 551 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 552 553 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 554 gicv3_cpuif_virt_update(cs); 555 } 556 557 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 558 { 559 GICv3CPUState *cs = icc_cs_from_env(env); 560 uint64_t value; 561 562 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 563 * should match the ones reported in ich_vtr_read(). 564 */ 565 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 566 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 567 568 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 569 value |= ICC_CTLR_EL1_EOIMODE; 570 } 571 572 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 573 value |= ICC_CTLR_EL1_CBPR; 574 } 575 576 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 577 return value; 578 } 579 580 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 581 uint64_t value) 582 { 583 GICv3CPUState *cs = icc_cs_from_env(env); 584 585 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 586 587 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 588 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 589 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 590 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 591 592 gicv3_cpuif_virt_update(cs); 593 } 594 595 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 596 { 597 GICv3CPUState *cs = icc_cs_from_env(env); 598 int prio = ich_highest_active_virt_prio(cs); 599 600 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 601 return prio; 602 } 603 604 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 605 { 606 GICv3CPUState *cs = icc_cs_from_env(env); 607 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 608 int idx = hppvi_index(cs); 609 uint64_t value = INTID_SPURIOUS; 610 611 if (idx >= 0) { 612 uint64_t lr = cs->ich_lr_el2[idx]; 613 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 614 615 if (grp == thisgrp) { 616 value = ich_lr_vintid(lr); 617 } 618 } 619 620 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 621 return value; 622 } 623 624 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 625 { 626 /* Activate the interrupt in the specified list register 627 * by moving it from Pending to Active state, and update the 628 * Active Priority Registers. 629 */ 630 uint32_t mask = icv_gprio_mask(cs, grp); 631 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 632 int aprbit = prio >> (8 - cs->vprebits); 633 int regno = aprbit / 32; 634 int regbit = aprbit % 32; 635 636 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 637 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 638 cs->ich_apr[grp][regno] |= (1 << regbit); 639 } 640 641 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 642 { 643 GICv3CPUState *cs = icc_cs_from_env(env); 644 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 645 int idx = hppvi_index(cs); 646 uint64_t intid = INTID_SPURIOUS; 647 648 if (idx >= 0) { 649 uint64_t lr = cs->ich_lr_el2[idx]; 650 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 651 652 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 653 intid = ich_lr_vintid(lr); 654 if (intid < INTID_SECURE) { 655 icv_activate_irq(cs, idx, grp); 656 } else { 657 /* Interrupt goes from Pending to Invalid */ 658 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 659 /* We will now return the (bogus) ID from the list register, 660 * as per the pseudocode. 661 */ 662 } 663 } 664 } 665 666 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 667 gicv3_redist_affid(cs), intid); 668 669 gicv3_cpuif_virt_update(cs); 670 671 return intid; 672 } 673 674 static int icc_highest_active_prio(GICv3CPUState *cs) 675 { 676 /* Calculate the current running priority based on the set bits 677 * in the Active Priority Registers. 678 */ 679 int i; 680 681 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 682 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 683 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 684 685 if (!apr) { 686 continue; 687 } 688 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 689 } 690 /* No current active interrupts: return idle priority */ 691 return 0xff; 692 } 693 694 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 695 { 696 /* Return a mask word which clears the subpriority bits from 697 * a priority value for an interrupt in the specified group. 698 * This depends on the BPR value. For CBPR0 (S or NS): 699 * a BPR of 0 means the group priority bits are [7:1]; 700 * a BPR of 1 means they are [7:2], and so on down to 701 * a BPR of 7 meaning no group priority bits at all. 702 * For CBPR1 NS: 703 * a BPR of 0 is impossible (the minimum value is 1) 704 * a BPR of 1 means the group priority bits are [7:1]; 705 * a BPR of 2 means they are [7:2], and so on down to 706 * a BPR of 7 meaning the group priority is [7]. 707 * 708 * Which BPR to use depends on the group of the interrupt and 709 * the current ICC_CTLR.CBPR settings. 710 * 711 * This corresponds to the GroupBits() pseudocode. 712 */ 713 int bpr; 714 715 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 716 (group == GICV3_G1NS && 717 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 718 group = GICV3_G0; 719 } 720 721 bpr = cs->icc_bpr[group] & 7; 722 723 if (group == GICV3_G1NS) { 724 assert(bpr > 0); 725 bpr--; 726 } 727 728 return ~0U << (bpr + 1); 729 } 730 731 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 732 { 733 /* Return true if there is no pending interrupt, or the 734 * highest priority pending interrupt is in a group which has been 735 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 736 */ 737 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 738 } 739 740 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 741 { 742 /* Return true if we have a pending interrupt of sufficient 743 * priority to preempt. 744 */ 745 int rprio; 746 uint32_t mask; 747 748 if (icc_no_enabled_hppi(cs)) { 749 return false; 750 } 751 752 if (cs->hppi.prio >= cs->icc_pmr_el1) { 753 /* Priority mask masks this interrupt */ 754 return false; 755 } 756 757 rprio = icc_highest_active_prio(cs); 758 if (rprio == 0xff) { 759 /* No currently running interrupt so we can preempt */ 760 return true; 761 } 762 763 mask = icc_gprio_mask(cs, cs->hppi.grp); 764 765 /* We only preempt a running interrupt if the pending interrupt's 766 * group priority is sufficient (the subpriorities are not considered). 767 */ 768 if ((cs->hppi.prio & mask) < (rprio & mask)) { 769 return true; 770 } 771 772 return false; 773 } 774 775 void gicv3_cpuif_update(GICv3CPUState *cs) 776 { 777 /* Tell the CPU about its highest priority pending interrupt */ 778 int irqlevel = 0; 779 int fiqlevel = 0; 780 ARMCPU *cpu = ARM_CPU(cs->cpu); 781 CPUARMState *env = &cpu->env; 782 783 g_assert(qemu_mutex_iothread_locked()); 784 785 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 786 cs->hppi.grp, cs->hppi.prio); 787 788 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 789 /* If a Security-enabled GIC sends a G1S interrupt to a 790 * Security-disabled CPU, we must treat it as if it were G0. 791 */ 792 cs->hppi.grp = GICV3_G0; 793 } 794 795 if (icc_hppi_can_preempt(cs)) { 796 /* We have an interrupt: should we signal it as IRQ or FIQ? 797 * This is described in the GICv3 spec section 4.6.2. 798 */ 799 bool isfiq; 800 801 switch (cs->hppi.grp) { 802 case GICV3_G0: 803 isfiq = true; 804 break; 805 case GICV3_G1: 806 isfiq = (!arm_is_secure(env) || 807 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 808 break; 809 case GICV3_G1NS: 810 isfiq = arm_is_secure(env); 811 break; 812 default: 813 g_assert_not_reached(); 814 } 815 816 if (isfiq) { 817 fiqlevel = 1; 818 } else { 819 irqlevel = 1; 820 } 821 } 822 823 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 824 825 qemu_set_irq(cs->parent_fiq, fiqlevel); 826 qemu_set_irq(cs->parent_irq, irqlevel); 827 } 828 829 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 830 { 831 GICv3CPUState *cs = icc_cs_from_env(env); 832 uint32_t value = cs->icc_pmr_el1; 833 834 if (icv_access(env, HCR_FMO | HCR_IMO)) { 835 return icv_pmr_read(env, ri); 836 } 837 838 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 839 (env->cp15.scr_el3 & SCR_FIQ)) { 840 /* NS access and Group 0 is inaccessible to NS: return the 841 * NS view of the current priority 842 */ 843 if ((value & 0x80) == 0) { 844 /* Secure priorities not visible to NS */ 845 value = 0; 846 } else if (value != 0xff) { 847 value = (value << 1) & 0xff; 848 } 849 } 850 851 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 852 853 return value; 854 } 855 856 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 857 uint64_t value) 858 { 859 GICv3CPUState *cs = icc_cs_from_env(env); 860 861 if (icv_access(env, HCR_FMO | HCR_IMO)) { 862 return icv_pmr_write(env, ri, value); 863 } 864 865 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 866 867 value &= 0xff; 868 869 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 870 (env->cp15.scr_el3 & SCR_FIQ)) { 871 /* NS access and Group 0 is inaccessible to NS: return the 872 * NS view of the current priority 873 */ 874 if (!(cs->icc_pmr_el1 & 0x80)) { 875 /* Current PMR in the secure range, don't allow NS to change it */ 876 return; 877 } 878 value = (value >> 1) | 0x80; 879 } 880 cs->icc_pmr_el1 = value; 881 gicv3_cpuif_update(cs); 882 } 883 884 static void icc_activate_irq(GICv3CPUState *cs, int irq) 885 { 886 /* Move the interrupt from the Pending state to Active, and update 887 * the Active Priority Registers 888 */ 889 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 890 int prio = cs->hppi.prio & mask; 891 int aprbit = prio >> 1; 892 int regno = aprbit / 32; 893 int regbit = aprbit % 32; 894 895 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 896 897 if (irq < GIC_INTERNAL) { 898 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 899 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 900 gicv3_redist_update(cs); 901 } else { 902 gicv3_gicd_active_set(cs->gic, irq); 903 gicv3_gicd_pending_clear(cs->gic, irq); 904 gicv3_update(cs->gic, irq, 1); 905 } 906 } 907 908 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 909 { 910 /* Return the highest priority pending interrupt register value 911 * for group 0. 912 */ 913 bool irq_is_secure; 914 915 if (cs->hppi.prio == 0xff) { 916 return INTID_SPURIOUS; 917 } 918 919 /* Check whether we can return the interrupt or if we should return 920 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 921 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 922 * is always zero.) 923 */ 924 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 925 (cs->hppi.grp != GICV3_G1NS)); 926 927 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 928 return INTID_SPURIOUS; 929 } 930 if (irq_is_secure && !arm_is_secure(env)) { 931 /* Secure interrupts not visible to Nonsecure */ 932 return INTID_SPURIOUS; 933 } 934 935 if (cs->hppi.grp != GICV3_G0) { 936 /* Indicate to EL3 that there's a Group 1 interrupt for the other 937 * state pending. 938 */ 939 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 940 } 941 942 return cs->hppi.irq; 943 } 944 945 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 946 { 947 /* Return the highest priority pending interrupt register value 948 * for group 1. 949 */ 950 bool irq_is_secure; 951 952 if (cs->hppi.prio == 0xff) { 953 return INTID_SPURIOUS; 954 } 955 956 /* Check whether we can return the interrupt or if we should return 957 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 958 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 959 * is always zero.) 960 */ 961 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 962 (cs->hppi.grp != GICV3_G1NS)); 963 964 if (cs->hppi.grp == GICV3_G0) { 965 /* Group 0 interrupts not visible via HPPIR1 */ 966 return INTID_SPURIOUS; 967 } 968 if (irq_is_secure) { 969 if (!arm_is_secure(env)) { 970 /* Secure interrupts not visible in Non-secure */ 971 return INTID_SPURIOUS; 972 } 973 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 974 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 975 return INTID_SPURIOUS; 976 } 977 978 return cs->hppi.irq; 979 } 980 981 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 982 { 983 GICv3CPUState *cs = icc_cs_from_env(env); 984 uint64_t intid; 985 986 if (icv_access(env, HCR_FMO)) { 987 return icv_iar_read(env, ri); 988 } 989 990 if (!icc_hppi_can_preempt(cs)) { 991 intid = INTID_SPURIOUS; 992 } else { 993 intid = icc_hppir0_value(cs, env); 994 } 995 996 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 997 icc_activate_irq(cs, intid); 998 } 999 1000 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1001 return intid; 1002 } 1003 1004 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1005 { 1006 GICv3CPUState *cs = icc_cs_from_env(env); 1007 uint64_t intid; 1008 1009 if (icv_access(env, HCR_IMO)) { 1010 return icv_iar_read(env, ri); 1011 } 1012 1013 if (!icc_hppi_can_preempt(cs)) { 1014 intid = INTID_SPURIOUS; 1015 } else { 1016 intid = icc_hppir1_value(cs, env); 1017 } 1018 1019 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 1020 icc_activate_irq(cs, intid); 1021 } 1022 1023 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1024 return intid; 1025 } 1026 1027 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1028 { 1029 /* Drop the priority of the currently active interrupt in 1030 * the specified group. 1031 * 1032 * Note that we can guarantee (because of the requirement to nest 1033 * ICC_IAR reads [which activate an interrupt and raise priority] 1034 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1035 * that the interrupt we're being called for is the highest priority 1036 * active interrupt, meaning that it has the lowest set bit in the 1037 * APR registers. 1038 * 1039 * If the guest does not honour the ordering constraints then the 1040 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1041 * the values of the APR registers might become incorrect and the 1042 * running priority will be wrong, so interrupts that should preempt 1043 * might not do so, and interrupts that should not preempt might do so. 1044 */ 1045 int i; 1046 1047 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1048 uint64_t *papr = &cs->icc_apr[grp][i]; 1049 1050 if (!*papr) { 1051 continue; 1052 } 1053 /* Clear the lowest set bit */ 1054 *papr &= *papr - 1; 1055 break; 1056 } 1057 1058 /* running priority change means we need an update for this cpu i/f */ 1059 gicv3_cpuif_update(cs); 1060 } 1061 1062 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1063 { 1064 /* Return true if we should split priority drop and interrupt 1065 * deactivation, ie whether the relevant EOIMode bit is set. 1066 */ 1067 if (arm_is_el3_or_mon(env)) { 1068 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1069 } 1070 if (arm_is_secure_below_el3(env)) { 1071 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1072 } else { 1073 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1074 } 1075 } 1076 1077 static int icc_highest_active_group(GICv3CPUState *cs) 1078 { 1079 /* Return the group with the highest priority active interrupt. 1080 * We can do this by just comparing the APRs to see which one 1081 * has the lowest set bit. 1082 * (If more than one group is active at the same priority then 1083 * we're in UNPREDICTABLE territory.) 1084 */ 1085 int i; 1086 1087 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1088 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1089 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1090 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1091 1092 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1093 return GICV3_G1NS; 1094 } 1095 if (g1ctz < g0ctz) { 1096 return GICV3_G1; 1097 } 1098 if (g0ctz < 32) { 1099 return GICV3_G0; 1100 } 1101 } 1102 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1103 * ignores the spurious EOI attempt. 1104 */ 1105 return -1; 1106 } 1107 1108 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1109 { 1110 if (irq < GIC_INTERNAL) { 1111 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1112 gicv3_redist_update(cs); 1113 } else { 1114 gicv3_gicd_active_clear(cs->gic, irq); 1115 gicv3_update(cs->gic, irq, 1); 1116 } 1117 } 1118 1119 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1120 { 1121 /* Return true if we should split priority drop and interrupt 1122 * deactivation, ie whether the virtual EOIMode bit is set. 1123 */ 1124 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1125 } 1126 1127 static int icv_find_active(GICv3CPUState *cs, int irq) 1128 { 1129 /* Given an interrupt number for an active interrupt, return the index 1130 * of the corresponding list register, or -1 if there is no match. 1131 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1132 */ 1133 int i; 1134 1135 for (i = 0; i < cs->num_list_regs; i++) { 1136 uint64_t lr = cs->ich_lr_el2[i]; 1137 1138 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1139 return i; 1140 } 1141 } 1142 1143 return -1; 1144 } 1145 1146 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1147 { 1148 /* Deactivate the interrupt in the specified list register index */ 1149 uint64_t lr = cs->ich_lr_el2[idx]; 1150 1151 if (lr & ICH_LR_EL2_HW) { 1152 /* Deactivate the associated physical interrupt */ 1153 int pirq = ich_lr_pintid(lr); 1154 1155 if (pirq < INTID_SECURE) { 1156 icc_deactivate_irq(cs, pirq); 1157 } 1158 } 1159 1160 /* Clear the 'active' part of the state, so ActivePending->Pending 1161 * and Active->Invalid. 1162 */ 1163 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1164 cs->ich_lr_el2[idx] = lr; 1165 } 1166 1167 static void icv_increment_eoicount(GICv3CPUState *cs) 1168 { 1169 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1170 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1171 ICH_HCR_EL2_EOICOUNT_LENGTH); 1172 1173 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1174 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1175 } 1176 1177 static int icv_drop_prio(GICv3CPUState *cs) 1178 { 1179 /* Drop the priority of the currently active virtual interrupt 1180 * (favouring group 0 if there is a set active bit at 1181 * the same priority for both group 0 and group 1). 1182 * Return the priority value for the bit we just cleared, 1183 * or 0xff if no bits were set in the AP registers at all. 1184 * Note that though the ich_apr[] are uint64_t only the low 1185 * 32 bits are actually relevant. 1186 */ 1187 int i; 1188 int aprmax = 1 << (cs->vprebits - 5); 1189 1190 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1191 1192 for (i = 0; i < aprmax; i++) { 1193 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1194 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1195 int apr0count, apr1count; 1196 1197 if (!*papr0 && !*papr1) { 1198 continue; 1199 } 1200 1201 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1202 * because we need to return the bit number we cleared so 1203 * it can be compared against the list register's priority field. 1204 */ 1205 apr0count = ctz32(*papr0); 1206 apr1count = ctz32(*papr1); 1207 1208 if (apr0count <= apr1count) { 1209 *papr0 &= *papr0 - 1; 1210 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1211 } else { 1212 *papr1 &= *papr1 - 1; 1213 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1214 } 1215 } 1216 return 0xff; 1217 } 1218 1219 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1220 uint64_t value) 1221 { 1222 /* Deactivate interrupt */ 1223 GICv3CPUState *cs = icc_cs_from_env(env); 1224 int idx; 1225 int irq = value & 0xffffff; 1226 1227 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1228 1229 if (irq >= cs->gic->num_irq) { 1230 /* Also catches special interrupt numbers and LPIs */ 1231 return; 1232 } 1233 1234 if (!icv_eoi_split(env, cs)) { 1235 return; 1236 } 1237 1238 idx = icv_find_active(cs, irq); 1239 1240 if (idx < 0) { 1241 /* No list register matching this, so increment the EOI count 1242 * (might trigger a maintenance interrupt) 1243 */ 1244 icv_increment_eoicount(cs); 1245 } else { 1246 icv_deactivate_irq(cs, idx); 1247 } 1248 1249 gicv3_cpuif_virt_update(cs); 1250 } 1251 1252 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1253 uint64_t value) 1254 { 1255 /* End of Interrupt */ 1256 GICv3CPUState *cs = icc_cs_from_env(env); 1257 int irq = value & 0xffffff; 1258 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1259 int idx, dropprio; 1260 1261 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1262 gicv3_redist_affid(cs), value); 1263 1264 if (irq >= cs->gic->num_irq) { 1265 /* Also catches special interrupt numbers and LPIs */ 1266 return; 1267 } 1268 1269 /* We implement the IMPDEF choice of "drop priority before doing 1270 * error checks" (because that lets us avoid scanning the AP 1271 * registers twice). 1272 */ 1273 dropprio = icv_drop_prio(cs); 1274 if (dropprio == 0xff) { 1275 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1276 * whether the list registers are checked in this 1277 * situation; we choose not to. 1278 */ 1279 return; 1280 } 1281 1282 idx = icv_find_active(cs, irq); 1283 1284 if (idx < 0) { 1285 /* No valid list register corresponding to EOI ID */ 1286 icv_increment_eoicount(cs); 1287 } else { 1288 uint64_t lr = cs->ich_lr_el2[idx]; 1289 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1290 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1291 1292 if (thisgrp == grp && lr_gprio == dropprio) { 1293 if (!icv_eoi_split(env, cs)) { 1294 /* Priority drop and deactivate not split: deactivate irq now */ 1295 icv_deactivate_irq(cs, idx); 1296 } 1297 } 1298 } 1299 1300 gicv3_cpuif_virt_update(cs); 1301 } 1302 1303 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1304 uint64_t value) 1305 { 1306 /* End of Interrupt */ 1307 GICv3CPUState *cs = icc_cs_from_env(env); 1308 int irq = value & 0xffffff; 1309 int grp; 1310 bool is_eoir0 = ri->crm == 8; 1311 1312 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1313 icv_eoir_write(env, ri, value); 1314 return; 1315 } 1316 1317 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1318 gicv3_redist_affid(cs), value); 1319 1320 if (irq >= cs->gic->num_irq) { 1321 /* This handles two cases: 1322 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1323 * to the GICC_EOIR, the GIC ignores that write. 1324 * 2. If software writes the number of a non-existent interrupt 1325 * this must be a subcase of "value written does not match the last 1326 * valid interrupt value read from the Interrupt Acknowledge 1327 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1328 */ 1329 return; 1330 } 1331 1332 grp = icc_highest_active_group(cs); 1333 switch (grp) { 1334 case GICV3_G0: 1335 if (!is_eoir0) { 1336 return; 1337 } 1338 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1339 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1340 return; 1341 } 1342 break; 1343 case GICV3_G1: 1344 if (is_eoir0) { 1345 return; 1346 } 1347 if (!arm_is_secure(env)) { 1348 return; 1349 } 1350 break; 1351 case GICV3_G1NS: 1352 if (is_eoir0) { 1353 return; 1354 } 1355 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1356 return; 1357 } 1358 break; 1359 default: 1360 g_assert_not_reached(); 1361 } 1362 1363 icc_drop_prio(cs, grp); 1364 1365 if (!icc_eoi_split(env, cs)) { 1366 /* Priority drop and deactivate not split: deactivate irq now */ 1367 icc_deactivate_irq(cs, irq); 1368 } 1369 } 1370 1371 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1372 { 1373 GICv3CPUState *cs = icc_cs_from_env(env); 1374 uint64_t value; 1375 1376 if (icv_access(env, HCR_FMO)) { 1377 return icv_hppir_read(env, ri); 1378 } 1379 1380 value = icc_hppir0_value(cs, env); 1381 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1382 return value; 1383 } 1384 1385 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1386 { 1387 GICv3CPUState *cs = icc_cs_from_env(env); 1388 uint64_t value; 1389 1390 if (icv_access(env, HCR_IMO)) { 1391 return icv_hppir_read(env, ri); 1392 } 1393 1394 value = icc_hppir1_value(cs, env); 1395 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1396 return value; 1397 } 1398 1399 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1400 { 1401 GICv3CPUState *cs = icc_cs_from_env(env); 1402 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1403 bool satinc = false; 1404 uint64_t bpr; 1405 1406 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1407 return icv_bpr_read(env, ri); 1408 } 1409 1410 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1411 grp = GICV3_G1NS; 1412 } 1413 1414 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1415 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1416 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1417 * modify BPR0 1418 */ 1419 grp = GICV3_G0; 1420 } 1421 1422 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1423 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1424 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1425 grp = GICV3_G0; 1426 satinc = true; 1427 } 1428 1429 bpr = cs->icc_bpr[grp]; 1430 if (satinc) { 1431 bpr++; 1432 bpr = MIN(bpr, 7); 1433 } 1434 1435 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1436 1437 return bpr; 1438 } 1439 1440 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1441 uint64_t value) 1442 { 1443 GICv3CPUState *cs = icc_cs_from_env(env); 1444 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1445 uint64_t minval; 1446 1447 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1448 icv_bpr_write(env, ri, value); 1449 return; 1450 } 1451 1452 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1453 gicv3_redist_affid(cs), value); 1454 1455 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1456 grp = GICV3_G1NS; 1457 } 1458 1459 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1460 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1461 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1462 * modify BPR0 1463 */ 1464 grp = GICV3_G0; 1465 } 1466 1467 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1468 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1469 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1470 return; 1471 } 1472 1473 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1474 if (value < minval) { 1475 value = minval; 1476 } 1477 1478 cs->icc_bpr[grp] = value & 7; 1479 gicv3_cpuif_update(cs); 1480 } 1481 1482 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1483 { 1484 GICv3CPUState *cs = icc_cs_from_env(env); 1485 uint64_t value; 1486 1487 int regno = ri->opc2 & 3; 1488 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1489 1490 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1491 return icv_ap_read(env, ri); 1492 } 1493 1494 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1495 grp = GICV3_G1NS; 1496 } 1497 1498 value = cs->icc_apr[grp][regno]; 1499 1500 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1501 return value; 1502 } 1503 1504 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1505 uint64_t value) 1506 { 1507 GICv3CPUState *cs = icc_cs_from_env(env); 1508 1509 int regno = ri->opc2 & 3; 1510 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1511 1512 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1513 icv_ap_write(env, ri, value); 1514 return; 1515 } 1516 1517 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1518 1519 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1520 grp = GICV3_G1NS; 1521 } 1522 1523 /* It's not possible to claim that a Non-secure interrupt is active 1524 * at a priority outside the Non-secure range (128..255), since this 1525 * would otherwise allow malicious NS code to block delivery of S interrupts 1526 * by writing a bad value to these registers. 1527 */ 1528 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1529 return; 1530 } 1531 1532 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1533 gicv3_cpuif_update(cs); 1534 } 1535 1536 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1537 uint64_t value) 1538 { 1539 /* Deactivate interrupt */ 1540 GICv3CPUState *cs = icc_cs_from_env(env); 1541 int irq = value & 0xffffff; 1542 bool irq_is_secure, single_sec_state, irq_is_grp0; 1543 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1544 1545 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1546 icv_dir_write(env, ri, value); 1547 return; 1548 } 1549 1550 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1551 1552 if (irq >= cs->gic->num_irq) { 1553 /* Also catches special interrupt numbers and LPIs */ 1554 return; 1555 } 1556 1557 if (!icc_eoi_split(env, cs)) { 1558 return; 1559 } 1560 1561 int grp = gicv3_irq_group(cs->gic, cs, irq); 1562 1563 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1564 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1565 irq_is_grp0 = grp == GICV3_G0; 1566 1567 /* Check whether we're allowed to deactivate this interrupt based 1568 * on its group and the current CPU state. 1569 * These checks are laid out to correspond to the spec's pseudocode. 1570 */ 1571 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1572 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1573 /* No need to include !IsSecure in route_*_to_el2 as it's only 1574 * tested in cases where we know !IsSecure is true. 1575 */ 1576 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1577 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1578 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1579 1580 switch (arm_current_el(env)) { 1581 case 3: 1582 break; 1583 case 2: 1584 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1585 break; 1586 } 1587 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1588 break; 1589 } 1590 return; 1591 case 1: 1592 if (!arm_is_secure_below_el3(env)) { 1593 if (single_sec_state && irq_is_grp0 && 1594 !route_fiq_to_el3 && !route_fiq_to_el2) { 1595 break; 1596 } 1597 if (!irq_is_secure && !irq_is_grp0 && 1598 !route_irq_to_el3 && !route_irq_to_el2) { 1599 break; 1600 } 1601 } else { 1602 if (irq_is_grp0 && !route_fiq_to_el3) { 1603 break; 1604 } 1605 if (!irq_is_grp0 && 1606 (!irq_is_secure || !single_sec_state) && 1607 !route_irq_to_el3) { 1608 break; 1609 } 1610 } 1611 return; 1612 default: 1613 g_assert_not_reached(); 1614 } 1615 1616 icc_deactivate_irq(cs, irq); 1617 } 1618 1619 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1620 { 1621 GICv3CPUState *cs = icc_cs_from_env(env); 1622 int prio; 1623 1624 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1625 return icv_rpr_read(env, ri); 1626 } 1627 1628 prio = icc_highest_active_prio(cs); 1629 1630 if (arm_feature(env, ARM_FEATURE_EL3) && 1631 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1632 /* NS GIC access and Group 0 is inaccessible to NS */ 1633 if ((prio & 0x80) == 0) { 1634 /* NS mustn't see priorities in the Secure half of the range */ 1635 prio = 0; 1636 } else if (prio != 0xff) { 1637 /* Non-idle priority: show the Non-secure view of it */ 1638 prio = (prio << 1) & 0xff; 1639 } 1640 } 1641 1642 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1643 return prio; 1644 } 1645 1646 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1647 uint64_t value, int grp, bool ns) 1648 { 1649 GICv3State *s = cs->gic; 1650 1651 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1652 uint64_t aff = extract64(value, 48, 8) << 16 | 1653 extract64(value, 32, 8) << 8 | 1654 extract64(value, 16, 8); 1655 uint32_t targetlist = extract64(value, 0, 16); 1656 uint32_t irq = extract64(value, 24, 4); 1657 bool irm = extract64(value, 40, 1); 1658 int i; 1659 1660 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1661 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1662 * interrupts as Group 0 interrupts and must send Secure Group 0 1663 * interrupts to the target CPUs. 1664 */ 1665 grp = GICV3_G0; 1666 } 1667 1668 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1669 aff, targetlist); 1670 1671 for (i = 0; i < s->num_cpu; i++) { 1672 GICv3CPUState *ocs = &s->cpu[i]; 1673 1674 if (irm) { 1675 /* IRM == 1 : route to all CPUs except self */ 1676 if (cs == ocs) { 1677 continue; 1678 } 1679 } else { 1680 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1681 * where the corresponding bit is set in targetlist 1682 */ 1683 int aff0; 1684 1685 if (ocs->gicr_typer >> 40 != aff) { 1686 continue; 1687 } 1688 aff0 = extract64(ocs->gicr_typer, 32, 8); 1689 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1690 continue; 1691 } 1692 } 1693 1694 /* The redistributor will check against its own GICR_NSACR as needed */ 1695 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1696 } 1697 } 1698 1699 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1700 uint64_t value) 1701 { 1702 /* Generate Secure Group 0 SGI. */ 1703 GICv3CPUState *cs = icc_cs_from_env(env); 1704 bool ns = !arm_is_secure(env); 1705 1706 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1707 } 1708 1709 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1710 uint64_t value) 1711 { 1712 /* Generate Group 1 SGI for the current Security state */ 1713 GICv3CPUState *cs = icc_cs_from_env(env); 1714 int grp; 1715 bool ns = !arm_is_secure(env); 1716 1717 grp = ns ? GICV3_G1NS : GICV3_G1; 1718 icc_generate_sgi(env, cs, value, grp, ns); 1719 } 1720 1721 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1722 uint64_t value) 1723 { 1724 /* Generate Group 1 SGI for the Security state that is not 1725 * the current state 1726 */ 1727 GICv3CPUState *cs = icc_cs_from_env(env); 1728 int grp; 1729 bool ns = !arm_is_secure(env); 1730 1731 grp = ns ? GICV3_G1 : GICV3_G1NS; 1732 icc_generate_sgi(env, cs, value, grp, ns); 1733 } 1734 1735 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1736 { 1737 GICv3CPUState *cs = icc_cs_from_env(env); 1738 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1739 uint64_t value; 1740 1741 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1742 return icv_igrpen_read(env, ri); 1743 } 1744 1745 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1746 grp = GICV3_G1NS; 1747 } 1748 1749 value = cs->icc_igrpen[grp]; 1750 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1751 gicv3_redist_affid(cs), value); 1752 return value; 1753 } 1754 1755 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 uint64_t value) 1757 { 1758 GICv3CPUState *cs = icc_cs_from_env(env); 1759 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1760 1761 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1762 icv_igrpen_write(env, ri, value); 1763 return; 1764 } 1765 1766 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1767 gicv3_redist_affid(cs), value); 1768 1769 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1770 grp = GICV3_G1NS; 1771 } 1772 1773 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1774 gicv3_cpuif_update(cs); 1775 } 1776 1777 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1778 { 1779 GICv3CPUState *cs = icc_cs_from_env(env); 1780 uint64_t value; 1781 1782 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1783 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1784 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1785 return value; 1786 } 1787 1788 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1789 uint64_t value) 1790 { 1791 GICv3CPUState *cs = icc_cs_from_env(env); 1792 1793 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1794 1795 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1796 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1797 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1798 gicv3_cpuif_update(cs); 1799 } 1800 1801 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1802 { 1803 GICv3CPUState *cs = icc_cs_from_env(env); 1804 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1805 uint64_t value; 1806 1807 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1808 return icv_ctlr_read(env, ri); 1809 } 1810 1811 value = cs->icc_ctlr_el1[bank]; 1812 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1813 return value; 1814 } 1815 1816 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1817 uint64_t value) 1818 { 1819 GICv3CPUState *cs = icc_cs_from_env(env); 1820 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1821 uint64_t mask; 1822 1823 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1824 icv_ctlr_write(env, ri, value); 1825 return; 1826 } 1827 1828 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1829 1830 /* Only CBPR and EOIMODE can be RW; 1831 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1832 * the asseciated priority-based routing of them); 1833 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1834 */ 1835 if (arm_feature(env, ARM_FEATURE_EL3) && 1836 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1837 mask = ICC_CTLR_EL1_EOIMODE; 1838 } else { 1839 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1840 } 1841 1842 cs->icc_ctlr_el1[bank] &= ~mask; 1843 cs->icc_ctlr_el1[bank] |= (value & mask); 1844 gicv3_cpuif_update(cs); 1845 } 1846 1847 1848 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1849 { 1850 GICv3CPUState *cs = icc_cs_from_env(env); 1851 uint64_t value; 1852 1853 value = cs->icc_ctlr_el3; 1854 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1855 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1856 } 1857 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1858 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1859 } 1860 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1861 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1862 } 1863 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1864 value |= ICC_CTLR_EL3_CBPR_EL1S; 1865 } 1866 1867 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1868 return value; 1869 } 1870 1871 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1872 uint64_t value) 1873 { 1874 GICv3CPUState *cs = icc_cs_from_env(env); 1875 uint64_t mask; 1876 1877 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1878 1879 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1880 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1881 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1882 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1883 } 1884 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1885 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1886 } 1887 1888 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1889 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1890 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1891 } 1892 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1893 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1894 } 1895 1896 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1897 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1898 1899 cs->icc_ctlr_el3 &= ~mask; 1900 cs->icc_ctlr_el3 |= (value & mask); 1901 gicv3_cpuif_update(cs); 1902 } 1903 1904 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1905 const ARMCPRegInfo *ri, bool isread) 1906 { 1907 CPAccessResult r = CP_ACCESS_OK; 1908 GICv3CPUState *cs = icc_cs_from_env(env); 1909 int el = arm_current_el(env); 1910 1911 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1912 el == 1 && !arm_is_secure_below_el3(env)) { 1913 /* Takes priority over a possible EL3 trap */ 1914 return CP_ACCESS_TRAP_EL2; 1915 } 1916 1917 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1918 switch (el) { 1919 case 1: 1920 /* Note that arm_hcr_el2_eff takes secure state into account. */ 1921 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 1922 r = CP_ACCESS_TRAP_EL3; 1923 } 1924 break; 1925 case 2: 1926 r = CP_ACCESS_TRAP_EL3; 1927 break; 1928 case 3: 1929 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1930 r = CP_ACCESS_TRAP_EL3; 1931 } 1932 break; 1933 default: 1934 g_assert_not_reached(); 1935 } 1936 } 1937 1938 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1939 r = CP_ACCESS_TRAP; 1940 } 1941 return r; 1942 } 1943 1944 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1945 const ARMCPRegInfo *ri, bool isread) 1946 { 1947 GICv3CPUState *cs = icc_cs_from_env(env); 1948 1949 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1950 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1951 /* Takes priority over a possible EL3 trap */ 1952 return CP_ACCESS_TRAP_EL2; 1953 } 1954 1955 return gicv3_irqfiq_access(env, ri, isread); 1956 } 1957 1958 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1959 const ARMCPRegInfo *ri, bool isread) 1960 { 1961 if (arm_current_el(env) == 1 && 1962 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 1963 /* Takes priority over a possible EL3 trap */ 1964 return CP_ACCESS_TRAP_EL2; 1965 } 1966 1967 return gicv3_irqfiq_access(env, ri, isread); 1968 } 1969 1970 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1971 const ARMCPRegInfo *ri, bool isread) 1972 { 1973 CPAccessResult r = CP_ACCESS_OK; 1974 GICv3CPUState *cs = icc_cs_from_env(env); 1975 int el = arm_current_el(env); 1976 1977 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1978 el == 1 && !arm_is_secure_below_el3(env)) { 1979 /* Takes priority over a possible EL3 trap */ 1980 return CP_ACCESS_TRAP_EL2; 1981 } 1982 1983 if (env->cp15.scr_el3 & SCR_FIQ) { 1984 switch (el) { 1985 case 1: 1986 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 1987 r = CP_ACCESS_TRAP_EL3; 1988 } 1989 break; 1990 case 2: 1991 r = CP_ACCESS_TRAP_EL3; 1992 break; 1993 case 3: 1994 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1995 r = CP_ACCESS_TRAP_EL3; 1996 } 1997 break; 1998 default: 1999 g_assert_not_reached(); 2000 } 2001 } 2002 2003 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2004 r = CP_ACCESS_TRAP; 2005 } 2006 return r; 2007 } 2008 2009 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2010 const ARMCPRegInfo *ri, bool isread) 2011 { 2012 CPAccessResult r = CP_ACCESS_OK; 2013 GICv3CPUState *cs = icc_cs_from_env(env); 2014 int el = arm_current_el(env); 2015 2016 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2017 el == 1 && !arm_is_secure_below_el3(env)) { 2018 /* Takes priority over a possible EL3 trap */ 2019 return CP_ACCESS_TRAP_EL2; 2020 } 2021 2022 if (env->cp15.scr_el3 & SCR_IRQ) { 2023 switch (el) { 2024 case 1: 2025 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2026 r = CP_ACCESS_TRAP_EL3; 2027 } 2028 break; 2029 case 2: 2030 r = CP_ACCESS_TRAP_EL3; 2031 break; 2032 case 3: 2033 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2034 r = CP_ACCESS_TRAP_EL3; 2035 } 2036 break; 2037 default: 2038 g_assert_not_reached(); 2039 } 2040 } 2041 2042 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2043 r = CP_ACCESS_TRAP; 2044 } 2045 return r; 2046 } 2047 2048 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2049 { 2050 GICv3CPUState *cs = icc_cs_from_env(env); 2051 2052 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2053 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2054 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2055 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2056 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2057 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2058 cs->icc_pmr_el1 = 0; 2059 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2060 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2061 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2062 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2063 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2064 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2065 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2066 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2067 2068 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2069 cs->ich_hcr_el2 = 0; 2070 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2071 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2072 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2073 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2074 } 2075 2076 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2077 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2078 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2079 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2080 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2081 .readfn = icc_pmr_read, 2082 .writefn = icc_pmr_write, 2083 /* We hang the whole cpu interface reset routine off here 2084 * rather than parcelling it out into one little function 2085 * per register 2086 */ 2087 .resetfn = icc_reset, 2088 }, 2089 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2090 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2091 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2092 .access = PL1_R, .accessfn = gicv3_fiq_access, 2093 .readfn = icc_iar0_read, 2094 }, 2095 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2096 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2097 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2098 .access = PL1_W, .accessfn = gicv3_fiq_access, 2099 .writefn = icc_eoir_write, 2100 }, 2101 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2102 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2103 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2104 .access = PL1_R, .accessfn = gicv3_fiq_access, 2105 .readfn = icc_hppir0_read, 2106 }, 2107 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2108 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2109 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2110 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2111 .readfn = icc_bpr_read, 2112 .writefn = icc_bpr_write, 2113 }, 2114 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2115 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2116 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2117 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2118 .readfn = icc_ap_read, 2119 .writefn = icc_ap_write, 2120 }, 2121 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2122 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2123 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2124 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2125 .readfn = icc_ap_read, 2126 .writefn = icc_ap_write, 2127 }, 2128 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2130 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2131 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2132 .readfn = icc_ap_read, 2133 .writefn = icc_ap_write, 2134 }, 2135 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2136 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2137 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2138 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2139 .readfn = icc_ap_read, 2140 .writefn = icc_ap_write, 2141 }, 2142 /* All the ICC_AP1R*_EL1 registers are banked */ 2143 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2144 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2145 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2146 .access = PL1_RW, .accessfn = gicv3_irq_access, 2147 .readfn = icc_ap_read, 2148 .writefn = icc_ap_write, 2149 }, 2150 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2151 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2152 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2153 .access = PL1_RW, .accessfn = gicv3_irq_access, 2154 .readfn = icc_ap_read, 2155 .writefn = icc_ap_write, 2156 }, 2157 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2158 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2159 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2160 .access = PL1_RW, .accessfn = gicv3_irq_access, 2161 .readfn = icc_ap_read, 2162 .writefn = icc_ap_write, 2163 }, 2164 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2165 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2166 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2167 .access = PL1_RW, .accessfn = gicv3_irq_access, 2168 .readfn = icc_ap_read, 2169 .writefn = icc_ap_write, 2170 }, 2171 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2172 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2173 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2174 .access = PL1_W, .accessfn = gicv3_dir_access, 2175 .writefn = icc_dir_write, 2176 }, 2177 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2178 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2179 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2180 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2181 .readfn = icc_rpr_read, 2182 }, 2183 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2184 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2185 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2186 .access = PL1_W, .accessfn = gicv3_sgi_access, 2187 .writefn = icc_sgi1r_write, 2188 }, 2189 { .name = "ICC_SGI1R", 2190 .cp = 15, .opc1 = 0, .crm = 12, 2191 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2192 .access = PL1_W, .accessfn = gicv3_sgi_access, 2193 .writefn = icc_sgi1r_write, 2194 }, 2195 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2196 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2197 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2198 .access = PL1_W, .accessfn = gicv3_sgi_access, 2199 .writefn = icc_asgi1r_write, 2200 }, 2201 { .name = "ICC_ASGI1R", 2202 .cp = 15, .opc1 = 1, .crm = 12, 2203 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2204 .access = PL1_W, .accessfn = gicv3_sgi_access, 2205 .writefn = icc_asgi1r_write, 2206 }, 2207 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2208 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2209 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2210 .access = PL1_W, .accessfn = gicv3_sgi_access, 2211 .writefn = icc_sgi0r_write, 2212 }, 2213 { .name = "ICC_SGI0R", 2214 .cp = 15, .opc1 = 2, .crm = 12, 2215 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2216 .access = PL1_W, .accessfn = gicv3_sgi_access, 2217 .writefn = icc_sgi0r_write, 2218 }, 2219 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2220 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2221 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2222 .access = PL1_R, .accessfn = gicv3_irq_access, 2223 .readfn = icc_iar1_read, 2224 }, 2225 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2226 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2227 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2228 .access = PL1_W, .accessfn = gicv3_irq_access, 2229 .writefn = icc_eoir_write, 2230 }, 2231 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2232 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2233 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2234 .access = PL1_R, .accessfn = gicv3_irq_access, 2235 .readfn = icc_hppir1_read, 2236 }, 2237 /* This register is banked */ 2238 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2239 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2240 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2241 .access = PL1_RW, .accessfn = gicv3_irq_access, 2242 .readfn = icc_bpr_read, 2243 .writefn = icc_bpr_write, 2244 }, 2245 /* This register is banked */ 2246 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2247 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2248 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2249 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2250 .readfn = icc_ctlr_el1_read, 2251 .writefn = icc_ctlr_el1_write, 2252 }, 2253 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2254 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2255 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2256 .access = PL1_RW, 2257 /* We don't support IRQ/FIQ bypass and system registers are 2258 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2259 * This register is banked but since it's constant we don't 2260 * need to do anything special. 2261 */ 2262 .resetvalue = 0x7, 2263 }, 2264 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2265 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2266 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2267 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2268 .readfn = icc_igrpen_read, 2269 .writefn = icc_igrpen_write, 2270 }, 2271 /* This register is banked */ 2272 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2274 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2275 .access = PL1_RW, .accessfn = gicv3_irq_access, 2276 .readfn = icc_igrpen_read, 2277 .writefn = icc_igrpen_write, 2278 }, 2279 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2280 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2281 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2282 .access = PL2_RW, 2283 /* We don't support IRQ/FIQ bypass and system registers are 2284 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2285 */ 2286 .resetvalue = 0xf, 2287 }, 2288 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2289 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2290 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2291 .access = PL3_RW, 2292 .readfn = icc_ctlr_el3_read, 2293 .writefn = icc_ctlr_el3_write, 2294 }, 2295 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2296 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2297 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2298 .access = PL3_RW, 2299 /* We don't support IRQ/FIQ bypass and system registers are 2300 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2301 */ 2302 .resetvalue = 0xf, 2303 }, 2304 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2305 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2306 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2307 .access = PL3_RW, 2308 .readfn = icc_igrpen1_el3_read, 2309 .writefn = icc_igrpen1_el3_write, 2310 }, 2311 REGINFO_SENTINEL 2312 }; 2313 2314 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2315 { 2316 GICv3CPUState *cs = icc_cs_from_env(env); 2317 int regno = ri->opc2 & 3; 2318 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2319 uint64_t value; 2320 2321 value = cs->ich_apr[grp][regno]; 2322 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2323 return value; 2324 } 2325 2326 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2327 uint64_t value) 2328 { 2329 GICv3CPUState *cs = icc_cs_from_env(env); 2330 int regno = ri->opc2 & 3; 2331 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2332 2333 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2334 2335 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2336 gicv3_cpuif_virt_update(cs); 2337 } 2338 2339 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2340 { 2341 GICv3CPUState *cs = icc_cs_from_env(env); 2342 uint64_t value = cs->ich_hcr_el2; 2343 2344 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2345 return value; 2346 } 2347 2348 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2349 uint64_t value) 2350 { 2351 GICv3CPUState *cs = icc_cs_from_env(env); 2352 2353 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2354 2355 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2356 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2357 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2358 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2359 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2360 2361 cs->ich_hcr_el2 = value; 2362 gicv3_cpuif_virt_update(cs); 2363 } 2364 2365 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2366 { 2367 GICv3CPUState *cs = icc_cs_from_env(env); 2368 uint64_t value = cs->ich_vmcr_el2; 2369 2370 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2371 return value; 2372 } 2373 2374 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2375 uint64_t value) 2376 { 2377 GICv3CPUState *cs = icc_cs_from_env(env); 2378 2379 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2380 2381 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2382 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2383 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2384 value |= ICH_VMCR_EL2_VFIQEN; 2385 2386 cs->ich_vmcr_el2 = value; 2387 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2388 * by reading and writing back the fields. 2389 */ 2390 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2391 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2392 2393 gicv3_cpuif_virt_update(cs); 2394 } 2395 2396 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2397 { 2398 GICv3CPUState *cs = icc_cs_from_env(env); 2399 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2400 uint64_t value; 2401 2402 /* This read function handles all of: 2403 * 64-bit reads of the whole LR 2404 * 32-bit reads of the low half of the LR 2405 * 32-bit reads of the high half of the LR 2406 */ 2407 if (ri->state == ARM_CP_STATE_AA32) { 2408 if (ri->crm >= 14) { 2409 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2410 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2411 } else { 2412 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2413 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2414 } 2415 } else { 2416 value = cs->ich_lr_el2[regno]; 2417 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2418 } 2419 2420 return value; 2421 } 2422 2423 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2424 uint64_t value) 2425 { 2426 GICv3CPUState *cs = icc_cs_from_env(env); 2427 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2428 2429 /* This write function handles all of: 2430 * 64-bit writes to the whole LR 2431 * 32-bit writes to the low half of the LR 2432 * 32-bit writes to the high half of the LR 2433 */ 2434 if (ri->state == ARM_CP_STATE_AA32) { 2435 if (ri->crm >= 14) { 2436 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2437 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2438 } else { 2439 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2440 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2441 } 2442 } else { 2443 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2444 } 2445 2446 /* Enforce RES0 bits in priority field */ 2447 if (cs->vpribits < 8) { 2448 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2449 8 - cs->vpribits, 0); 2450 } 2451 2452 cs->ich_lr_el2[regno] = value; 2453 gicv3_cpuif_virt_update(cs); 2454 } 2455 2456 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2457 { 2458 GICv3CPUState *cs = icc_cs_from_env(env); 2459 uint64_t value; 2460 2461 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2462 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2463 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2464 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2465 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2466 2467 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2468 return value; 2469 } 2470 2471 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2472 { 2473 GICv3CPUState *cs = icc_cs_from_env(env); 2474 uint64_t value = maintenance_interrupt_state(cs); 2475 2476 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2477 return value; 2478 } 2479 2480 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2481 { 2482 GICv3CPUState *cs = icc_cs_from_env(env); 2483 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2484 2485 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2486 return value; 2487 } 2488 2489 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2490 { 2491 GICv3CPUState *cs = icc_cs_from_env(env); 2492 uint64_t value = 0; 2493 int i; 2494 2495 for (i = 0; i < cs->num_list_regs; i++) { 2496 uint64_t lr = cs->ich_lr_el2[i]; 2497 2498 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2499 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2500 value |= (1 << i); 2501 } 2502 } 2503 2504 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2505 return value; 2506 } 2507 2508 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2509 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2510 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2511 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2512 .access = PL2_RW, 2513 .readfn = ich_ap_read, 2514 .writefn = ich_ap_write, 2515 }, 2516 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2517 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2518 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2519 .access = PL2_RW, 2520 .readfn = ich_ap_read, 2521 .writefn = ich_ap_write, 2522 }, 2523 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2524 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2525 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2526 .access = PL2_RW, 2527 .readfn = ich_hcr_read, 2528 .writefn = ich_hcr_write, 2529 }, 2530 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2531 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2532 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2533 .access = PL2_R, 2534 .readfn = ich_vtr_read, 2535 }, 2536 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2537 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2538 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2539 .access = PL2_R, 2540 .readfn = ich_misr_read, 2541 }, 2542 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2543 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2544 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2545 .access = PL2_R, 2546 .readfn = ich_eisr_read, 2547 }, 2548 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2549 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2550 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2551 .access = PL2_R, 2552 .readfn = ich_elrsr_read, 2553 }, 2554 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2555 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2556 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2557 .access = PL2_RW, 2558 .readfn = ich_vmcr_read, 2559 .writefn = ich_vmcr_write, 2560 }, 2561 REGINFO_SENTINEL 2562 }; 2563 2564 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2565 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2566 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2567 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2568 .access = PL2_RW, 2569 .readfn = ich_ap_read, 2570 .writefn = ich_ap_write, 2571 }, 2572 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2573 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2574 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2575 .access = PL2_RW, 2576 .readfn = ich_ap_read, 2577 .writefn = ich_ap_write, 2578 }, 2579 REGINFO_SENTINEL 2580 }; 2581 2582 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2583 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2584 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2585 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2586 .access = PL2_RW, 2587 .readfn = ich_ap_read, 2588 .writefn = ich_ap_write, 2589 }, 2590 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2591 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2592 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2593 .access = PL2_RW, 2594 .readfn = ich_ap_read, 2595 .writefn = ich_ap_write, 2596 }, 2597 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2598 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2599 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2600 .access = PL2_RW, 2601 .readfn = ich_ap_read, 2602 .writefn = ich_ap_write, 2603 }, 2604 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2605 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2606 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2607 .access = PL2_RW, 2608 .readfn = ich_ap_read, 2609 .writefn = ich_ap_write, 2610 }, 2611 REGINFO_SENTINEL 2612 }; 2613 2614 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2615 { 2616 GICv3CPUState *cs = opaque; 2617 2618 gicv3_cpuif_update(cs); 2619 } 2620 2621 void gicv3_init_cpuif(GICv3State *s) 2622 { 2623 /* Called from the GICv3 realize function; register our system 2624 * registers with the CPU 2625 */ 2626 int i; 2627 2628 for (i = 0; i < s->num_cpu; i++) { 2629 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2630 GICv3CPUState *cs = &s->cpu[i]; 2631 2632 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2633 * in define_arm_cp_regs_with_opaque(), because when we're called back 2634 * it might be with code translated by CPU 0 but run by CPU 1, in 2635 * which case we'd get the wrong value. 2636 * So instead we define the regs with no ri->opaque info, and 2637 * get back to the GICv3CPUState from the CPUARMState. 2638 */ 2639 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2640 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2641 && cpu->gic_num_lrs) { 2642 int j; 2643 2644 cs->num_list_regs = cpu->gic_num_lrs; 2645 cs->vpribits = cpu->gic_vpribits; 2646 cs->vprebits = cpu->gic_vprebits; 2647 2648 /* Check against architectural constraints: getting these 2649 * wrong would be a bug in the CPU code defining these, 2650 * and the implementation relies on them holding. 2651 */ 2652 g_assert(cs->vprebits <= cs->vpribits); 2653 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2654 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2655 2656 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2657 2658 for (j = 0; j < cs->num_list_regs; j++) { 2659 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2660 * are split into two cp15 regs, LR (the low part, with the 2661 * same encoding as the AArch64 LR) and LRC (the high part). 2662 */ 2663 ARMCPRegInfo lr_regset[] = { 2664 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2665 .opc0 = 3, .opc1 = 4, .crn = 12, 2666 .crm = 12 + (j >> 3), .opc2 = j & 7, 2667 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2668 .access = PL2_RW, 2669 .readfn = ich_lr_read, 2670 .writefn = ich_lr_write, 2671 }, 2672 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2673 .cp = 15, .opc1 = 4, .crn = 12, 2674 .crm = 14 + (j >> 3), .opc2 = j & 7, 2675 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2676 .access = PL2_RW, 2677 .readfn = ich_lr_read, 2678 .writefn = ich_lr_write, 2679 }, 2680 REGINFO_SENTINEL 2681 }; 2682 define_arm_cp_regs(cpu, lr_regset); 2683 } 2684 if (cs->vprebits >= 6) { 2685 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2686 } 2687 if (cs->vprebits == 7) { 2688 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2689 } 2690 } 2691 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2692 } 2693 } 2694