1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 24 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 25 { 26 return env->gicv3state; 27 } 28 29 static bool gicv3_use_ns_bank(CPUARMState *env) 30 { 31 /* Return true if we should use the NonSecure bank for a banked GIC 32 * CPU interface register. Note that this differs from the 33 * access_secure_reg() function because GICv3 banked registers are 34 * banked even for AArch64, unlike the other CPU system registers. 35 */ 36 return !arm_is_secure_below_el3(env); 37 } 38 39 /* The minimum BPR for the virtual interface is a configurable property */ 40 static inline int icv_min_vbpr(GICv3CPUState *cs) 41 { 42 return 7 - cs->vprebits; 43 } 44 45 /* Simple accessor functions for LR fields */ 46 static uint32_t ich_lr_vintid(uint64_t lr) 47 { 48 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 49 } 50 51 static uint32_t ich_lr_pintid(uint64_t lr) 52 { 53 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 54 } 55 56 static uint32_t ich_lr_prio(uint64_t lr) 57 { 58 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 59 } 60 61 static int ich_lr_state(uint64_t lr) 62 { 63 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 64 } 65 66 static bool icv_access(CPUARMState *env, int hcr_flags) 67 { 68 /* Return true if this ICC_ register access should really be 69 * directed to an ICV_ access. hcr_flags is a mask of 70 * HCR_EL2 bits to check: we treat this as an ICV_ access 71 * if we are in NS EL1 and at least one of the specified 72 * HCR_EL2 bits is set. 73 * 74 * ICV registers fall into four categories: 75 * * access if NS EL1 and HCR_EL2.FMO == 1: 76 * all ICV regs with '0' in their name 77 * * access if NS EL1 and HCR_EL2.IMO == 1: 78 * all ICV regs with '1' in their name 79 * * access if NS EL1 and either IMO or FMO == 1: 80 * CTLR, DIR, PMR, RPR 81 */ 82 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 83 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 84 85 return flagmatch && arm_current_el(env) == 1 86 && !arm_is_secure_below_el3(env); 87 } 88 89 static int read_vbpr(GICv3CPUState *cs, int grp) 90 { 91 /* Read VBPR value out of the VMCR field (caller must handle 92 * VCBPR effects if required) 93 */ 94 if (grp == GICV3_G0) { 95 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 96 ICH_VMCR_EL2_VBPR0_LENGTH); 97 } else { 98 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 99 ICH_VMCR_EL2_VBPR1_LENGTH); 100 } 101 } 102 103 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 104 { 105 /* Write new VBPR1 value, handling the "writing a value less than 106 * the minimum sets it to the minimum" semantics. 107 */ 108 int min = icv_min_vbpr(cs); 109 110 if (grp != GICV3_G0) { 111 min++; 112 } 113 114 value = MAX(value, min); 115 116 if (grp == GICV3_G0) { 117 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 118 ICH_VMCR_EL2_VBPR0_LENGTH, value); 119 } else { 120 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 121 ICH_VMCR_EL2_VBPR1_LENGTH, value); 122 } 123 } 124 125 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 126 { 127 /* Return a mask word which clears the unimplemented priority bits 128 * from a priority value for a virtual interrupt. (Not to be confused 129 * with the group priority, whose mask depends on the value of VBPR 130 * for the interrupt group.) 131 */ 132 return ~0U << (8 - cs->vpribits); 133 } 134 135 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 136 { 137 /* Calculate the current running priority based on the set bits 138 * in the ICH Active Priority Registers. 139 */ 140 int i; 141 int aprmax = 1 << (cs->vprebits - 5); 142 143 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 144 145 for (i = 0; i < aprmax; i++) { 146 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 147 cs->ich_apr[GICV3_G1NS][i]; 148 149 if (!apr) { 150 continue; 151 } 152 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 153 } 154 /* No current active interrupts: return idle priority */ 155 return 0xff; 156 } 157 158 static int hppvi_index(GICv3CPUState *cs) 159 { 160 /* Return the list register index of the highest priority pending 161 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 162 * pseudocode. If no pending virtual interrupts, return -1. 163 */ 164 int idx = -1; 165 int i; 166 /* Note that a list register entry with a priority of 0xff will 167 * never be reported by this function; this is the architecturally 168 * correct behaviour. 169 */ 170 int prio = 0xff; 171 172 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 173 /* Both groups disabled, definitely nothing to do */ 174 return idx; 175 } 176 177 for (i = 0; i < cs->num_list_regs; i++) { 178 uint64_t lr = cs->ich_lr_el2[i]; 179 int thisprio; 180 181 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 182 /* Not Pending */ 183 continue; 184 } 185 186 /* Ignore interrupts if relevant group enable not set */ 187 if (lr & ICH_LR_EL2_GROUP) { 188 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 189 continue; 190 } 191 } else { 192 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 193 continue; 194 } 195 } 196 197 thisprio = ich_lr_prio(lr); 198 199 if (thisprio < prio) { 200 prio = thisprio; 201 idx = i; 202 } 203 } 204 205 return idx; 206 } 207 208 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 209 { 210 /* Return a mask word which clears the subpriority bits from 211 * a priority value for a virtual interrupt in the specified group. 212 * This depends on the VBPR value. 213 * If using VBPR0 then: 214 * a BPR of 0 means the group priority bits are [7:1]; 215 * a BPR of 1 means they are [7:2], and so on down to 216 * a BPR of 7 meaning no group priority bits at all. 217 * If using VBPR1 then: 218 * a BPR of 0 is impossible (the minimum value is 1) 219 * a BPR of 1 means the group priority bits are [7:1]; 220 * a BPR of 2 means they are [7:2], and so on down to 221 * a BPR of 7 meaning the group priority is [7]. 222 * 223 * Which BPR to use depends on the group of the interrupt and 224 * the current ICH_VMCR_EL2.VCBPR settings. 225 * 226 * This corresponds to the VGroupBits() pseudocode. 227 */ 228 int bpr; 229 230 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 231 group = GICV3_G0; 232 } 233 234 bpr = read_vbpr(cs, group); 235 if (group == GICV3_G1NS) { 236 assert(bpr > 0); 237 bpr--; 238 } 239 240 return ~0U << (bpr + 1); 241 } 242 243 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 244 { 245 /* Return true if we can signal this virtual interrupt defined by 246 * the given list register value; see the pseudocode functions 247 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 248 * Compare also icc_hppi_can_preempt() which is the non-virtual 249 * equivalent of these checks. 250 */ 251 int grp; 252 uint32_t mask, prio, rprio, vpmr; 253 254 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 255 /* Virtual interface disabled */ 256 return false; 257 } 258 259 /* We don't need to check that this LR is in Pending state because 260 * that has already been done in hppvi_index(). 261 */ 262 263 prio = ich_lr_prio(lr); 264 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 265 ICH_VMCR_EL2_VPMR_LENGTH); 266 267 if (prio >= vpmr) { 268 /* Priority mask masks this interrupt */ 269 return false; 270 } 271 272 rprio = ich_highest_active_virt_prio(cs); 273 if (rprio == 0xff) { 274 /* No running interrupt so we can preempt */ 275 return true; 276 } 277 278 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 279 280 mask = icv_gprio_mask(cs, grp); 281 282 /* We only preempt a running interrupt if the pending interrupt's 283 * group priority is sufficient (the subpriorities are not considered). 284 */ 285 if ((prio & mask) < (rprio & mask)) { 286 return true; 287 } 288 289 return false; 290 } 291 292 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 293 uint32_t *misr) 294 { 295 /* Return a set of bits indicating the EOI maintenance interrupt status 296 * for each list register. The EOI maintenance interrupt status is 297 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 298 * (see the GICv3 spec for the ICH_EISR_EL2 register). 299 * If misr is not NULL then we should also collect the information 300 * about the MISR.EOI, MISR.NP and MISR.U bits. 301 */ 302 uint32_t value = 0; 303 int validcount = 0; 304 bool seenpending = false; 305 int i; 306 307 for (i = 0; i < cs->num_list_regs; i++) { 308 uint64_t lr = cs->ich_lr_el2[i]; 309 310 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 311 == ICH_LR_EL2_EOI) { 312 value |= (1 << i); 313 } 314 if ((lr & ICH_LR_EL2_STATE_MASK)) { 315 validcount++; 316 } 317 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 318 seenpending = true; 319 } 320 } 321 322 if (misr) { 323 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 324 *misr |= ICH_MISR_EL2_U; 325 } 326 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 327 *misr |= ICH_MISR_EL2_NP; 328 } 329 if (value) { 330 *misr |= ICH_MISR_EL2_EOI; 331 } 332 } 333 return value; 334 } 335 336 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 337 { 338 /* Return a set of bits indicating the maintenance interrupt status 339 * (as seen in the ICH_MISR_EL2 register). 340 */ 341 uint32_t value = 0; 342 343 /* Scan list registers and fill in the U, NP and EOI bits */ 344 eoi_maintenance_interrupt_state(cs, &value); 345 346 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 347 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 348 value |= ICH_MISR_EL2_LRENP; 349 } 350 351 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 352 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 353 value |= ICH_MISR_EL2_VGRP0E; 354 } 355 356 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 357 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 358 value |= ICH_MISR_EL2_VGRP0D; 359 } 360 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 361 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 362 value |= ICH_MISR_EL2_VGRP1E; 363 } 364 365 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 366 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 367 value |= ICH_MISR_EL2_VGRP1D; 368 } 369 370 return value; 371 } 372 373 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 374 { 375 /* Tell the CPU about any pending virtual interrupts or 376 * maintenance interrupts, following a change to the state 377 * of the CPU interface relevant to virtual interrupts. 378 * 379 * CAUTION: this function will call qemu_set_irq() on the 380 * CPU maintenance IRQ line, which is typically wired up 381 * to the GIC as a per-CPU interrupt. This means that it 382 * will recursively call back into the GIC code via 383 * gicv3_redist_set_irq() and thus into the CPU interface code's 384 * gicv3_cpuif_update(). It is therefore important that this 385 * function is only called as the final action of a CPU interface 386 * register write implementation, after all the GIC state 387 * fields have been updated. gicv3_cpuif_update() also must 388 * not cause this function to be called, but that happens 389 * naturally as a result of there being no architectural 390 * linkage between the physical and virtual GIC logic. 391 */ 392 int idx; 393 int irqlevel = 0; 394 int fiqlevel = 0; 395 int maintlevel = 0; 396 ARMCPU *cpu = ARM_CPU(cs->cpu); 397 398 idx = hppvi_index(cs); 399 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 400 if (idx >= 0) { 401 uint64_t lr = cs->ich_lr_el2[idx]; 402 403 if (icv_hppi_can_preempt(cs, lr)) { 404 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 405 if (lr & ICH_LR_EL2_GROUP) { 406 irqlevel = 1; 407 } else { 408 fiqlevel = 1; 409 } 410 } 411 } 412 413 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 414 maintenance_interrupt_state(cs) != 0) { 415 maintlevel = 1; 416 } 417 418 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 419 irqlevel, maintlevel); 420 421 qemu_set_irq(cs->parent_vfiq, fiqlevel); 422 qemu_set_irq(cs->parent_virq, irqlevel); 423 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 424 } 425 426 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 427 { 428 GICv3CPUState *cs = icc_cs_from_env(env); 429 int regno = ri->opc2 & 3; 430 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 431 uint64_t value = cs->ich_apr[grp][regno]; 432 433 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 434 return value; 435 } 436 437 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 438 uint64_t value) 439 { 440 GICv3CPUState *cs = icc_cs_from_env(env); 441 int regno = ri->opc2 & 3; 442 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 443 444 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 445 446 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 447 448 gicv3_cpuif_virt_update(cs); 449 return; 450 } 451 452 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 453 { 454 GICv3CPUState *cs = icc_cs_from_env(env); 455 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 456 uint64_t bpr; 457 bool satinc = false; 458 459 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 460 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 461 grp = GICV3_G0; 462 satinc = true; 463 } 464 465 bpr = read_vbpr(cs, grp); 466 467 if (satinc) { 468 bpr++; 469 bpr = MIN(bpr, 7); 470 } 471 472 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 473 474 return bpr; 475 } 476 477 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 478 uint64_t value) 479 { 480 GICv3CPUState *cs = icc_cs_from_env(env); 481 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 482 483 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 484 gicv3_redist_affid(cs), value); 485 486 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 487 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 488 return; 489 } 490 491 write_vbpr(cs, grp, value); 492 493 gicv3_cpuif_virt_update(cs); 494 } 495 496 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 497 { 498 GICv3CPUState *cs = icc_cs_from_env(env); 499 uint64_t value; 500 501 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 502 ICH_VMCR_EL2_VPMR_LENGTH); 503 504 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 505 return value; 506 } 507 508 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 GICv3CPUState *cs = icc_cs_from_env(env); 512 513 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 514 515 value &= icv_fullprio_mask(cs); 516 517 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 518 ICH_VMCR_EL2_VPMR_LENGTH, value); 519 520 gicv3_cpuif_virt_update(cs); 521 } 522 523 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 524 { 525 GICv3CPUState *cs = icc_cs_from_env(env); 526 int enbit; 527 uint64_t value; 528 529 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 530 value = extract64(cs->ich_vmcr_el2, enbit, 1); 531 532 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 533 gicv3_redist_affid(cs), value); 534 return value; 535 } 536 537 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 GICv3CPUState *cs = icc_cs_from_env(env); 541 int enbit; 542 543 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 544 gicv3_redist_affid(cs), value); 545 546 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 547 548 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 549 gicv3_cpuif_virt_update(cs); 550 } 551 552 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 553 { 554 GICv3CPUState *cs = icc_cs_from_env(env); 555 uint64_t value; 556 557 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 558 * should match the ones reported in ich_vtr_read(). 559 */ 560 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 561 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 562 563 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 564 value |= ICC_CTLR_EL1_EOIMODE; 565 } 566 567 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 568 value |= ICC_CTLR_EL1_CBPR; 569 } 570 571 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 572 return value; 573 } 574 575 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 576 uint64_t value) 577 { 578 GICv3CPUState *cs = icc_cs_from_env(env); 579 580 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 581 582 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 583 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 584 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 585 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 586 587 gicv3_cpuif_virt_update(cs); 588 } 589 590 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 591 { 592 GICv3CPUState *cs = icc_cs_from_env(env); 593 int prio = ich_highest_active_virt_prio(cs); 594 595 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 596 return prio; 597 } 598 599 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 600 { 601 GICv3CPUState *cs = icc_cs_from_env(env); 602 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 603 int idx = hppvi_index(cs); 604 uint64_t value = INTID_SPURIOUS; 605 606 if (idx >= 0) { 607 uint64_t lr = cs->ich_lr_el2[idx]; 608 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 609 610 if (grp == thisgrp) { 611 value = ich_lr_vintid(lr); 612 } 613 } 614 615 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 616 return value; 617 } 618 619 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 620 { 621 /* Activate the interrupt in the specified list register 622 * by moving it from Pending to Active state, and update the 623 * Active Priority Registers. 624 */ 625 uint32_t mask = icv_gprio_mask(cs, grp); 626 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 627 int aprbit = prio >> (8 - cs->vprebits); 628 int regno = aprbit / 32; 629 int regbit = aprbit % 32; 630 631 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 632 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 633 cs->ich_apr[grp][regno] |= (1 << regbit); 634 } 635 636 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 637 { 638 GICv3CPUState *cs = icc_cs_from_env(env); 639 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 640 int idx = hppvi_index(cs); 641 uint64_t intid = INTID_SPURIOUS; 642 643 if (idx >= 0) { 644 uint64_t lr = cs->ich_lr_el2[idx]; 645 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 646 647 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 648 intid = ich_lr_vintid(lr); 649 if (!gicv3_intid_is_special(intid)) { 650 icv_activate_irq(cs, idx, grp); 651 } else { 652 /* Interrupt goes from Pending to Invalid */ 653 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 654 /* We will now return the (bogus) ID from the list register, 655 * as per the pseudocode. 656 */ 657 } 658 } 659 } 660 661 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 662 gicv3_redist_affid(cs), intid); 663 664 gicv3_cpuif_virt_update(cs); 665 666 return intid; 667 } 668 669 static int icc_highest_active_prio(GICv3CPUState *cs) 670 { 671 /* Calculate the current running priority based on the set bits 672 * in the Active Priority Registers. 673 */ 674 int i; 675 676 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 677 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 678 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 679 680 if (!apr) { 681 continue; 682 } 683 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 684 } 685 /* No current active interrupts: return idle priority */ 686 return 0xff; 687 } 688 689 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 690 { 691 /* Return a mask word which clears the subpriority bits from 692 * a priority value for an interrupt in the specified group. 693 * This depends on the BPR value. For CBPR0 (S or NS): 694 * a BPR of 0 means the group priority bits are [7:1]; 695 * a BPR of 1 means they are [7:2], and so on down to 696 * a BPR of 7 meaning no group priority bits at all. 697 * For CBPR1 NS: 698 * a BPR of 0 is impossible (the minimum value is 1) 699 * a BPR of 1 means the group priority bits are [7:1]; 700 * a BPR of 2 means they are [7:2], and so on down to 701 * a BPR of 7 meaning the group priority is [7]. 702 * 703 * Which BPR to use depends on the group of the interrupt and 704 * the current ICC_CTLR.CBPR settings. 705 * 706 * This corresponds to the GroupBits() pseudocode. 707 */ 708 int bpr; 709 710 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 711 (group == GICV3_G1NS && 712 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 713 group = GICV3_G0; 714 } 715 716 bpr = cs->icc_bpr[group] & 7; 717 718 if (group == GICV3_G1NS) { 719 assert(bpr > 0); 720 bpr--; 721 } 722 723 return ~0U << (bpr + 1); 724 } 725 726 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 727 { 728 /* Return true if there is no pending interrupt, or the 729 * highest priority pending interrupt is in a group which has been 730 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 731 */ 732 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 733 } 734 735 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 736 { 737 /* Return true if we have a pending interrupt of sufficient 738 * priority to preempt. 739 */ 740 int rprio; 741 uint32_t mask; 742 743 if (icc_no_enabled_hppi(cs)) { 744 return false; 745 } 746 747 if (cs->hppi.prio >= cs->icc_pmr_el1) { 748 /* Priority mask masks this interrupt */ 749 return false; 750 } 751 752 rprio = icc_highest_active_prio(cs); 753 if (rprio == 0xff) { 754 /* No currently running interrupt so we can preempt */ 755 return true; 756 } 757 758 mask = icc_gprio_mask(cs, cs->hppi.grp); 759 760 /* We only preempt a running interrupt if the pending interrupt's 761 * group priority is sufficient (the subpriorities are not considered). 762 */ 763 if ((cs->hppi.prio & mask) < (rprio & mask)) { 764 return true; 765 } 766 767 return false; 768 } 769 770 void gicv3_cpuif_update(GICv3CPUState *cs) 771 { 772 /* Tell the CPU about its highest priority pending interrupt */ 773 int irqlevel = 0; 774 int fiqlevel = 0; 775 ARMCPU *cpu = ARM_CPU(cs->cpu); 776 CPUARMState *env = &cpu->env; 777 778 g_assert(qemu_mutex_iothread_locked()); 779 780 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 781 cs->hppi.grp, cs->hppi.prio); 782 783 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 784 /* If a Security-enabled GIC sends a G1S interrupt to a 785 * Security-disabled CPU, we must treat it as if it were G0. 786 */ 787 cs->hppi.grp = GICV3_G0; 788 } 789 790 if (icc_hppi_can_preempt(cs)) { 791 /* We have an interrupt: should we signal it as IRQ or FIQ? 792 * This is described in the GICv3 spec section 4.6.2. 793 */ 794 bool isfiq; 795 796 switch (cs->hppi.grp) { 797 case GICV3_G0: 798 isfiq = true; 799 break; 800 case GICV3_G1: 801 isfiq = (!arm_is_secure(env) || 802 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 803 break; 804 case GICV3_G1NS: 805 isfiq = arm_is_secure(env); 806 break; 807 default: 808 g_assert_not_reached(); 809 } 810 811 if (isfiq) { 812 fiqlevel = 1; 813 } else { 814 irqlevel = 1; 815 } 816 } 817 818 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 819 820 qemu_set_irq(cs->parent_fiq, fiqlevel); 821 qemu_set_irq(cs->parent_irq, irqlevel); 822 } 823 824 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 825 { 826 GICv3CPUState *cs = icc_cs_from_env(env); 827 uint32_t value = cs->icc_pmr_el1; 828 829 if (icv_access(env, HCR_FMO | HCR_IMO)) { 830 return icv_pmr_read(env, ri); 831 } 832 833 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 834 (env->cp15.scr_el3 & SCR_FIQ)) { 835 /* NS access and Group 0 is inaccessible to NS: return the 836 * NS view of the current priority 837 */ 838 if ((value & 0x80) == 0) { 839 /* Secure priorities not visible to NS */ 840 value = 0; 841 } else if (value != 0xff) { 842 value = (value << 1) & 0xff; 843 } 844 } 845 846 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 847 848 return value; 849 } 850 851 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 852 uint64_t value) 853 { 854 GICv3CPUState *cs = icc_cs_from_env(env); 855 856 if (icv_access(env, HCR_FMO | HCR_IMO)) { 857 return icv_pmr_write(env, ri, value); 858 } 859 860 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 861 862 value &= 0xff; 863 864 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 865 (env->cp15.scr_el3 & SCR_FIQ)) { 866 /* NS access and Group 0 is inaccessible to NS: return the 867 * NS view of the current priority 868 */ 869 if (!(cs->icc_pmr_el1 & 0x80)) { 870 /* Current PMR in the secure range, don't allow NS to change it */ 871 return; 872 } 873 value = (value >> 1) | 0x80; 874 } 875 cs->icc_pmr_el1 = value; 876 gicv3_cpuif_update(cs); 877 } 878 879 static void icc_activate_irq(GICv3CPUState *cs, int irq) 880 { 881 /* Move the interrupt from the Pending state to Active, and update 882 * the Active Priority Registers 883 */ 884 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 885 int prio = cs->hppi.prio & mask; 886 int aprbit = prio >> 1; 887 int regno = aprbit / 32; 888 int regbit = aprbit % 32; 889 890 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 891 892 if (irq < GIC_INTERNAL) { 893 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 894 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 895 gicv3_redist_update(cs); 896 } else if (irq < GICV3_LPI_INTID_START) { 897 gicv3_gicd_active_set(cs->gic, irq); 898 gicv3_gicd_pending_clear(cs->gic, irq); 899 gicv3_update(cs->gic, irq, 1); 900 } else { 901 gicv3_redist_lpi_pending(cs, irq, 0); 902 } 903 } 904 905 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 906 { 907 /* Return the highest priority pending interrupt register value 908 * for group 0. 909 */ 910 bool irq_is_secure; 911 912 if (cs->hppi.prio == 0xff) { 913 return INTID_SPURIOUS; 914 } 915 916 /* Check whether we can return the interrupt or if we should return 917 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 918 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 919 * is always zero.) 920 */ 921 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 922 (cs->hppi.grp != GICV3_G1NS)); 923 924 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 925 return INTID_SPURIOUS; 926 } 927 if (irq_is_secure && !arm_is_secure(env)) { 928 /* Secure interrupts not visible to Nonsecure */ 929 return INTID_SPURIOUS; 930 } 931 932 if (cs->hppi.grp != GICV3_G0) { 933 /* Indicate to EL3 that there's a Group 1 interrupt for the other 934 * state pending. 935 */ 936 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 937 } 938 939 return cs->hppi.irq; 940 } 941 942 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 943 { 944 /* Return the highest priority pending interrupt register value 945 * for group 1. 946 */ 947 bool irq_is_secure; 948 949 if (cs->hppi.prio == 0xff) { 950 return INTID_SPURIOUS; 951 } 952 953 /* Check whether we can return the interrupt or if we should return 954 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 955 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 956 * is always zero.) 957 */ 958 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 959 (cs->hppi.grp != GICV3_G1NS)); 960 961 if (cs->hppi.grp == GICV3_G0) { 962 /* Group 0 interrupts not visible via HPPIR1 */ 963 return INTID_SPURIOUS; 964 } 965 if (irq_is_secure) { 966 if (!arm_is_secure(env)) { 967 /* Secure interrupts not visible in Non-secure */ 968 return INTID_SPURIOUS; 969 } 970 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 971 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 972 return INTID_SPURIOUS; 973 } 974 975 return cs->hppi.irq; 976 } 977 978 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 979 { 980 GICv3CPUState *cs = icc_cs_from_env(env); 981 uint64_t intid; 982 983 if (icv_access(env, HCR_FMO)) { 984 return icv_iar_read(env, ri); 985 } 986 987 if (!icc_hppi_can_preempt(cs)) { 988 intid = INTID_SPURIOUS; 989 } else { 990 intid = icc_hppir0_value(cs, env); 991 } 992 993 if (!gicv3_intid_is_special(intid)) { 994 icc_activate_irq(cs, intid); 995 } 996 997 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 998 return intid; 999 } 1000 1001 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1002 { 1003 GICv3CPUState *cs = icc_cs_from_env(env); 1004 uint64_t intid; 1005 1006 if (icv_access(env, HCR_IMO)) { 1007 return icv_iar_read(env, ri); 1008 } 1009 1010 if (!icc_hppi_can_preempt(cs)) { 1011 intid = INTID_SPURIOUS; 1012 } else { 1013 intid = icc_hppir1_value(cs, env); 1014 } 1015 1016 if (!gicv3_intid_is_special(intid)) { 1017 icc_activate_irq(cs, intid); 1018 } 1019 1020 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1021 return intid; 1022 } 1023 1024 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1025 { 1026 /* Drop the priority of the currently active interrupt in 1027 * the specified group. 1028 * 1029 * Note that we can guarantee (because of the requirement to nest 1030 * ICC_IAR reads [which activate an interrupt and raise priority] 1031 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1032 * that the interrupt we're being called for is the highest priority 1033 * active interrupt, meaning that it has the lowest set bit in the 1034 * APR registers. 1035 * 1036 * If the guest does not honour the ordering constraints then the 1037 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1038 * the values of the APR registers might become incorrect and the 1039 * running priority will be wrong, so interrupts that should preempt 1040 * might not do so, and interrupts that should not preempt might do so. 1041 */ 1042 int i; 1043 1044 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1045 uint64_t *papr = &cs->icc_apr[grp][i]; 1046 1047 if (!*papr) { 1048 continue; 1049 } 1050 /* Clear the lowest set bit */ 1051 *papr &= *papr - 1; 1052 break; 1053 } 1054 1055 /* running priority change means we need an update for this cpu i/f */ 1056 gicv3_cpuif_update(cs); 1057 } 1058 1059 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1060 { 1061 /* Return true if we should split priority drop and interrupt 1062 * deactivation, ie whether the relevant EOIMode bit is set. 1063 */ 1064 if (arm_is_el3_or_mon(env)) { 1065 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1066 } 1067 if (arm_is_secure_below_el3(env)) { 1068 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1069 } else { 1070 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1071 } 1072 } 1073 1074 static int icc_highest_active_group(GICv3CPUState *cs) 1075 { 1076 /* Return the group with the highest priority active interrupt. 1077 * We can do this by just comparing the APRs to see which one 1078 * has the lowest set bit. 1079 * (If more than one group is active at the same priority then 1080 * we're in UNPREDICTABLE territory.) 1081 */ 1082 int i; 1083 1084 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1085 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1086 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1087 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1088 1089 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1090 return GICV3_G1NS; 1091 } 1092 if (g1ctz < g0ctz) { 1093 return GICV3_G1; 1094 } 1095 if (g0ctz < 32) { 1096 return GICV3_G0; 1097 } 1098 } 1099 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1100 * ignores the spurious EOI attempt. 1101 */ 1102 return -1; 1103 } 1104 1105 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1106 { 1107 if (irq < GIC_INTERNAL) { 1108 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1109 gicv3_redist_update(cs); 1110 } else { 1111 gicv3_gicd_active_clear(cs->gic, irq); 1112 gicv3_update(cs->gic, irq, 1); 1113 } 1114 } 1115 1116 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1117 { 1118 /* Return true if we should split priority drop and interrupt 1119 * deactivation, ie whether the virtual EOIMode bit is set. 1120 */ 1121 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1122 } 1123 1124 static int icv_find_active(GICv3CPUState *cs, int irq) 1125 { 1126 /* Given an interrupt number for an active interrupt, return the index 1127 * of the corresponding list register, or -1 if there is no match. 1128 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1129 */ 1130 int i; 1131 1132 for (i = 0; i < cs->num_list_regs; i++) { 1133 uint64_t lr = cs->ich_lr_el2[i]; 1134 1135 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1136 return i; 1137 } 1138 } 1139 1140 return -1; 1141 } 1142 1143 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1144 { 1145 /* Deactivate the interrupt in the specified list register index */ 1146 uint64_t lr = cs->ich_lr_el2[idx]; 1147 1148 if (lr & ICH_LR_EL2_HW) { 1149 /* Deactivate the associated physical interrupt */ 1150 int pirq = ich_lr_pintid(lr); 1151 1152 if (pirq < INTID_SECURE) { 1153 icc_deactivate_irq(cs, pirq); 1154 } 1155 } 1156 1157 /* Clear the 'active' part of the state, so ActivePending->Pending 1158 * and Active->Invalid. 1159 */ 1160 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1161 cs->ich_lr_el2[idx] = lr; 1162 } 1163 1164 static void icv_increment_eoicount(GICv3CPUState *cs) 1165 { 1166 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1167 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1168 ICH_HCR_EL2_EOICOUNT_LENGTH); 1169 1170 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1171 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1172 } 1173 1174 static int icv_drop_prio(GICv3CPUState *cs) 1175 { 1176 /* Drop the priority of the currently active virtual interrupt 1177 * (favouring group 0 if there is a set active bit at 1178 * the same priority for both group 0 and group 1). 1179 * Return the priority value for the bit we just cleared, 1180 * or 0xff if no bits were set in the AP registers at all. 1181 * Note that though the ich_apr[] are uint64_t only the low 1182 * 32 bits are actually relevant. 1183 */ 1184 int i; 1185 int aprmax = 1 << (cs->vprebits - 5); 1186 1187 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1188 1189 for (i = 0; i < aprmax; i++) { 1190 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1191 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1192 int apr0count, apr1count; 1193 1194 if (!*papr0 && !*papr1) { 1195 continue; 1196 } 1197 1198 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1199 * because we need to return the bit number we cleared so 1200 * it can be compared against the list register's priority field. 1201 */ 1202 apr0count = ctz32(*papr0); 1203 apr1count = ctz32(*papr1); 1204 1205 if (apr0count <= apr1count) { 1206 *papr0 &= *papr0 - 1; 1207 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1208 } else { 1209 *papr1 &= *papr1 - 1; 1210 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1211 } 1212 } 1213 return 0xff; 1214 } 1215 1216 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1217 uint64_t value) 1218 { 1219 /* Deactivate interrupt */ 1220 GICv3CPUState *cs = icc_cs_from_env(env); 1221 int idx; 1222 int irq = value & 0xffffff; 1223 1224 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1225 1226 if (irq >= GICV3_MAXIRQ) { 1227 /* Also catches special interrupt numbers and LPIs */ 1228 return; 1229 } 1230 1231 if (!icv_eoi_split(env, cs)) { 1232 return; 1233 } 1234 1235 idx = icv_find_active(cs, irq); 1236 1237 if (idx < 0) { 1238 /* No list register matching this, so increment the EOI count 1239 * (might trigger a maintenance interrupt) 1240 */ 1241 icv_increment_eoicount(cs); 1242 } else { 1243 icv_deactivate_irq(cs, idx); 1244 } 1245 1246 gicv3_cpuif_virt_update(cs); 1247 } 1248 1249 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1250 uint64_t value) 1251 { 1252 /* End of Interrupt */ 1253 GICv3CPUState *cs = icc_cs_from_env(env); 1254 int irq = value & 0xffffff; 1255 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1256 int idx, dropprio; 1257 1258 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1259 gicv3_redist_affid(cs), value); 1260 1261 if (gicv3_intid_is_special(irq)) { 1262 return; 1263 } 1264 1265 /* We implement the IMPDEF choice of "drop priority before doing 1266 * error checks" (because that lets us avoid scanning the AP 1267 * registers twice). 1268 */ 1269 dropprio = icv_drop_prio(cs); 1270 if (dropprio == 0xff) { 1271 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1272 * whether the list registers are checked in this 1273 * situation; we choose not to. 1274 */ 1275 return; 1276 } 1277 1278 idx = icv_find_active(cs, irq); 1279 1280 if (idx < 0) { 1281 /* No valid list register corresponding to EOI ID */ 1282 icv_increment_eoicount(cs); 1283 } else { 1284 uint64_t lr = cs->ich_lr_el2[idx]; 1285 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1286 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1287 1288 if (thisgrp == grp && lr_gprio == dropprio) { 1289 if (!icv_eoi_split(env, cs)) { 1290 /* Priority drop and deactivate not split: deactivate irq now */ 1291 icv_deactivate_irq(cs, idx); 1292 } 1293 } 1294 } 1295 1296 gicv3_cpuif_virt_update(cs); 1297 } 1298 1299 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1300 uint64_t value) 1301 { 1302 /* End of Interrupt */ 1303 GICv3CPUState *cs = icc_cs_from_env(env); 1304 int irq = value & 0xffffff; 1305 int grp; 1306 bool is_eoir0 = ri->crm == 8; 1307 1308 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1309 icv_eoir_write(env, ri, value); 1310 return; 1311 } 1312 1313 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1314 gicv3_redist_affid(cs), value); 1315 1316 if ((irq >= cs->gic->num_irq) && 1317 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1318 /* This handles two cases: 1319 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1320 * to the GICC_EOIR, the GIC ignores that write. 1321 * 2. If software writes the number of a non-existent interrupt 1322 * this must be a subcase of "value written does not match the last 1323 * valid interrupt value read from the Interrupt Acknowledge 1324 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1325 */ 1326 return; 1327 } 1328 1329 grp = icc_highest_active_group(cs); 1330 switch (grp) { 1331 case GICV3_G0: 1332 if (!is_eoir0) { 1333 return; 1334 } 1335 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1336 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1337 return; 1338 } 1339 break; 1340 case GICV3_G1: 1341 if (is_eoir0) { 1342 return; 1343 } 1344 if (!arm_is_secure(env)) { 1345 return; 1346 } 1347 break; 1348 case GICV3_G1NS: 1349 if (is_eoir0) { 1350 return; 1351 } 1352 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1353 return; 1354 } 1355 break; 1356 default: 1357 qemu_log_mask(LOG_GUEST_ERROR, 1358 "%s: IRQ %d isn't active\n", __func__, irq); 1359 return; 1360 } 1361 1362 icc_drop_prio(cs, grp); 1363 1364 if (!icc_eoi_split(env, cs)) { 1365 /* Priority drop and deactivate not split: deactivate irq now */ 1366 icc_deactivate_irq(cs, irq); 1367 } 1368 } 1369 1370 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1371 { 1372 GICv3CPUState *cs = icc_cs_from_env(env); 1373 uint64_t value; 1374 1375 if (icv_access(env, HCR_FMO)) { 1376 return icv_hppir_read(env, ri); 1377 } 1378 1379 value = icc_hppir0_value(cs, env); 1380 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1381 return value; 1382 } 1383 1384 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1385 { 1386 GICv3CPUState *cs = icc_cs_from_env(env); 1387 uint64_t value; 1388 1389 if (icv_access(env, HCR_IMO)) { 1390 return icv_hppir_read(env, ri); 1391 } 1392 1393 value = icc_hppir1_value(cs, env); 1394 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1395 return value; 1396 } 1397 1398 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1399 { 1400 GICv3CPUState *cs = icc_cs_from_env(env); 1401 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1402 bool satinc = false; 1403 uint64_t bpr; 1404 1405 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1406 return icv_bpr_read(env, ri); 1407 } 1408 1409 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1410 grp = GICV3_G1NS; 1411 } 1412 1413 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1414 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1415 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1416 * modify BPR0 1417 */ 1418 grp = GICV3_G0; 1419 } 1420 1421 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1422 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1423 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1424 grp = GICV3_G0; 1425 satinc = true; 1426 } 1427 1428 bpr = cs->icc_bpr[grp]; 1429 if (satinc) { 1430 bpr++; 1431 bpr = MIN(bpr, 7); 1432 } 1433 1434 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1435 1436 return bpr; 1437 } 1438 1439 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1440 uint64_t value) 1441 { 1442 GICv3CPUState *cs = icc_cs_from_env(env); 1443 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1444 uint64_t minval; 1445 1446 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1447 icv_bpr_write(env, ri, value); 1448 return; 1449 } 1450 1451 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1452 gicv3_redist_affid(cs), value); 1453 1454 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1455 grp = GICV3_G1NS; 1456 } 1457 1458 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1459 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1460 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1461 * modify BPR0 1462 */ 1463 grp = GICV3_G0; 1464 } 1465 1466 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1467 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1468 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1469 return; 1470 } 1471 1472 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1473 if (value < minval) { 1474 value = minval; 1475 } 1476 1477 cs->icc_bpr[grp] = value & 7; 1478 gicv3_cpuif_update(cs); 1479 } 1480 1481 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1482 { 1483 GICv3CPUState *cs = icc_cs_from_env(env); 1484 uint64_t value; 1485 1486 int regno = ri->opc2 & 3; 1487 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1488 1489 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1490 return icv_ap_read(env, ri); 1491 } 1492 1493 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1494 grp = GICV3_G1NS; 1495 } 1496 1497 value = cs->icc_apr[grp][regno]; 1498 1499 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1500 return value; 1501 } 1502 1503 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1504 uint64_t value) 1505 { 1506 GICv3CPUState *cs = icc_cs_from_env(env); 1507 1508 int regno = ri->opc2 & 3; 1509 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1510 1511 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1512 icv_ap_write(env, ri, value); 1513 return; 1514 } 1515 1516 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1517 1518 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1519 grp = GICV3_G1NS; 1520 } 1521 1522 /* It's not possible to claim that a Non-secure interrupt is active 1523 * at a priority outside the Non-secure range (128..255), since this 1524 * would otherwise allow malicious NS code to block delivery of S interrupts 1525 * by writing a bad value to these registers. 1526 */ 1527 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1528 return; 1529 } 1530 1531 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1532 gicv3_cpuif_update(cs); 1533 } 1534 1535 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1536 uint64_t value) 1537 { 1538 /* Deactivate interrupt */ 1539 GICv3CPUState *cs = icc_cs_from_env(env); 1540 int irq = value & 0xffffff; 1541 bool irq_is_secure, single_sec_state, irq_is_grp0; 1542 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1543 1544 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1545 icv_dir_write(env, ri, value); 1546 return; 1547 } 1548 1549 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1550 1551 if (irq >= cs->gic->num_irq) { 1552 /* Also catches special interrupt numbers and LPIs */ 1553 return; 1554 } 1555 1556 if (!icc_eoi_split(env, cs)) { 1557 return; 1558 } 1559 1560 int grp = gicv3_irq_group(cs->gic, cs, irq); 1561 1562 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1563 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1564 irq_is_grp0 = grp == GICV3_G0; 1565 1566 /* Check whether we're allowed to deactivate this interrupt based 1567 * on its group and the current CPU state. 1568 * These checks are laid out to correspond to the spec's pseudocode. 1569 */ 1570 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1571 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1572 /* No need to include !IsSecure in route_*_to_el2 as it's only 1573 * tested in cases where we know !IsSecure is true. 1574 */ 1575 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1576 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1577 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1578 1579 switch (arm_current_el(env)) { 1580 case 3: 1581 break; 1582 case 2: 1583 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1584 break; 1585 } 1586 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1587 break; 1588 } 1589 return; 1590 case 1: 1591 if (!arm_is_secure_below_el3(env)) { 1592 if (single_sec_state && irq_is_grp0 && 1593 !route_fiq_to_el3 && !route_fiq_to_el2) { 1594 break; 1595 } 1596 if (!irq_is_secure && !irq_is_grp0 && 1597 !route_irq_to_el3 && !route_irq_to_el2) { 1598 break; 1599 } 1600 } else { 1601 if (irq_is_grp0 && !route_fiq_to_el3) { 1602 break; 1603 } 1604 if (!irq_is_grp0 && 1605 (!irq_is_secure || !single_sec_state) && 1606 !route_irq_to_el3) { 1607 break; 1608 } 1609 } 1610 return; 1611 default: 1612 g_assert_not_reached(); 1613 } 1614 1615 icc_deactivate_irq(cs, irq); 1616 } 1617 1618 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1619 { 1620 GICv3CPUState *cs = icc_cs_from_env(env); 1621 int prio; 1622 1623 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1624 return icv_rpr_read(env, ri); 1625 } 1626 1627 prio = icc_highest_active_prio(cs); 1628 1629 if (arm_feature(env, ARM_FEATURE_EL3) && 1630 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1631 /* NS GIC access and Group 0 is inaccessible to NS */ 1632 if ((prio & 0x80) == 0) { 1633 /* NS mustn't see priorities in the Secure half of the range */ 1634 prio = 0; 1635 } else if (prio != 0xff) { 1636 /* Non-idle priority: show the Non-secure view of it */ 1637 prio = (prio << 1) & 0xff; 1638 } 1639 } 1640 1641 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1642 return prio; 1643 } 1644 1645 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1646 uint64_t value, int grp, bool ns) 1647 { 1648 GICv3State *s = cs->gic; 1649 1650 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1651 uint64_t aff = extract64(value, 48, 8) << 16 | 1652 extract64(value, 32, 8) << 8 | 1653 extract64(value, 16, 8); 1654 uint32_t targetlist = extract64(value, 0, 16); 1655 uint32_t irq = extract64(value, 24, 4); 1656 bool irm = extract64(value, 40, 1); 1657 int i; 1658 1659 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1660 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1661 * interrupts as Group 0 interrupts and must send Secure Group 0 1662 * interrupts to the target CPUs. 1663 */ 1664 grp = GICV3_G0; 1665 } 1666 1667 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1668 aff, targetlist); 1669 1670 for (i = 0; i < s->num_cpu; i++) { 1671 GICv3CPUState *ocs = &s->cpu[i]; 1672 1673 if (irm) { 1674 /* IRM == 1 : route to all CPUs except self */ 1675 if (cs == ocs) { 1676 continue; 1677 } 1678 } else { 1679 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1680 * where the corresponding bit is set in targetlist 1681 */ 1682 int aff0; 1683 1684 if (ocs->gicr_typer >> 40 != aff) { 1685 continue; 1686 } 1687 aff0 = extract64(ocs->gicr_typer, 32, 8); 1688 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1689 continue; 1690 } 1691 } 1692 1693 /* The redistributor will check against its own GICR_NSACR as needed */ 1694 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1695 } 1696 } 1697 1698 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1699 uint64_t value) 1700 { 1701 /* Generate Secure Group 0 SGI. */ 1702 GICv3CPUState *cs = icc_cs_from_env(env); 1703 bool ns = !arm_is_secure(env); 1704 1705 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1706 } 1707 1708 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1709 uint64_t value) 1710 { 1711 /* Generate Group 1 SGI for the current Security state */ 1712 GICv3CPUState *cs = icc_cs_from_env(env); 1713 int grp; 1714 bool ns = !arm_is_secure(env); 1715 1716 grp = ns ? GICV3_G1NS : GICV3_G1; 1717 icc_generate_sgi(env, cs, value, grp, ns); 1718 } 1719 1720 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1721 uint64_t value) 1722 { 1723 /* Generate Group 1 SGI for the Security state that is not 1724 * the current state 1725 */ 1726 GICv3CPUState *cs = icc_cs_from_env(env); 1727 int grp; 1728 bool ns = !arm_is_secure(env); 1729 1730 grp = ns ? GICV3_G1 : GICV3_G1NS; 1731 icc_generate_sgi(env, cs, value, grp, ns); 1732 } 1733 1734 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1735 { 1736 GICv3CPUState *cs = icc_cs_from_env(env); 1737 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1738 uint64_t value; 1739 1740 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1741 return icv_igrpen_read(env, ri); 1742 } 1743 1744 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1745 grp = GICV3_G1NS; 1746 } 1747 1748 value = cs->icc_igrpen[grp]; 1749 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1750 gicv3_redist_affid(cs), value); 1751 return value; 1752 } 1753 1754 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1755 uint64_t value) 1756 { 1757 GICv3CPUState *cs = icc_cs_from_env(env); 1758 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1759 1760 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1761 icv_igrpen_write(env, ri, value); 1762 return; 1763 } 1764 1765 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1766 gicv3_redist_affid(cs), value); 1767 1768 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1769 grp = GICV3_G1NS; 1770 } 1771 1772 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1773 gicv3_cpuif_update(cs); 1774 } 1775 1776 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1777 { 1778 GICv3CPUState *cs = icc_cs_from_env(env); 1779 uint64_t value; 1780 1781 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1782 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1783 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1784 return value; 1785 } 1786 1787 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1788 uint64_t value) 1789 { 1790 GICv3CPUState *cs = icc_cs_from_env(env); 1791 1792 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1793 1794 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1795 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1796 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1797 gicv3_cpuif_update(cs); 1798 } 1799 1800 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1801 { 1802 GICv3CPUState *cs = icc_cs_from_env(env); 1803 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1804 uint64_t value; 1805 1806 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1807 return icv_ctlr_read(env, ri); 1808 } 1809 1810 value = cs->icc_ctlr_el1[bank]; 1811 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1812 return value; 1813 } 1814 1815 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1816 uint64_t value) 1817 { 1818 GICv3CPUState *cs = icc_cs_from_env(env); 1819 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1820 uint64_t mask; 1821 1822 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1823 icv_ctlr_write(env, ri, value); 1824 return; 1825 } 1826 1827 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1828 1829 /* Only CBPR and EOIMODE can be RW; 1830 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1831 * the asseciated priority-based routing of them); 1832 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1833 */ 1834 if (arm_feature(env, ARM_FEATURE_EL3) && 1835 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1836 mask = ICC_CTLR_EL1_EOIMODE; 1837 } else { 1838 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1839 } 1840 1841 cs->icc_ctlr_el1[bank] &= ~mask; 1842 cs->icc_ctlr_el1[bank] |= (value & mask); 1843 gicv3_cpuif_update(cs); 1844 } 1845 1846 1847 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1848 { 1849 GICv3CPUState *cs = icc_cs_from_env(env); 1850 uint64_t value; 1851 1852 value = cs->icc_ctlr_el3; 1853 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1854 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1855 } 1856 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1857 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1858 } 1859 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1860 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1861 } 1862 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1863 value |= ICC_CTLR_EL3_CBPR_EL1S; 1864 } 1865 1866 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1867 return value; 1868 } 1869 1870 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1871 uint64_t value) 1872 { 1873 GICv3CPUState *cs = icc_cs_from_env(env); 1874 uint64_t mask; 1875 1876 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1877 1878 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1879 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1880 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1881 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1882 } 1883 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1884 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1885 } 1886 1887 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1888 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1889 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1890 } 1891 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1892 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1893 } 1894 1895 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1896 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1897 1898 cs->icc_ctlr_el3 &= ~mask; 1899 cs->icc_ctlr_el3 |= (value & mask); 1900 gicv3_cpuif_update(cs); 1901 } 1902 1903 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1904 const ARMCPRegInfo *ri, bool isread) 1905 { 1906 CPAccessResult r = CP_ACCESS_OK; 1907 GICv3CPUState *cs = icc_cs_from_env(env); 1908 int el = arm_current_el(env); 1909 1910 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1911 el == 1 && !arm_is_secure_below_el3(env)) { 1912 /* Takes priority over a possible EL3 trap */ 1913 return CP_ACCESS_TRAP_EL2; 1914 } 1915 1916 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1917 switch (el) { 1918 case 1: 1919 /* Note that arm_hcr_el2_eff takes secure state into account. */ 1920 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 1921 r = CP_ACCESS_TRAP_EL3; 1922 } 1923 break; 1924 case 2: 1925 r = CP_ACCESS_TRAP_EL3; 1926 break; 1927 case 3: 1928 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1929 r = CP_ACCESS_TRAP_EL3; 1930 } 1931 break; 1932 default: 1933 g_assert_not_reached(); 1934 } 1935 } 1936 1937 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1938 r = CP_ACCESS_TRAP; 1939 } 1940 return r; 1941 } 1942 1943 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1944 const ARMCPRegInfo *ri, bool isread) 1945 { 1946 GICv3CPUState *cs = icc_cs_from_env(env); 1947 1948 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1949 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1950 /* Takes priority over a possible EL3 trap */ 1951 return CP_ACCESS_TRAP_EL2; 1952 } 1953 1954 return gicv3_irqfiq_access(env, ri, isread); 1955 } 1956 1957 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1958 const ARMCPRegInfo *ri, bool isread) 1959 { 1960 if (arm_current_el(env) == 1 && 1961 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 1962 /* Takes priority over a possible EL3 trap */ 1963 return CP_ACCESS_TRAP_EL2; 1964 } 1965 1966 return gicv3_irqfiq_access(env, ri, isread); 1967 } 1968 1969 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1970 const ARMCPRegInfo *ri, bool isread) 1971 { 1972 CPAccessResult r = CP_ACCESS_OK; 1973 GICv3CPUState *cs = icc_cs_from_env(env); 1974 int el = arm_current_el(env); 1975 1976 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1977 el == 1 && !arm_is_secure_below_el3(env)) { 1978 /* Takes priority over a possible EL3 trap */ 1979 return CP_ACCESS_TRAP_EL2; 1980 } 1981 1982 if (env->cp15.scr_el3 & SCR_FIQ) { 1983 switch (el) { 1984 case 1: 1985 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 1986 r = CP_ACCESS_TRAP_EL3; 1987 } 1988 break; 1989 case 2: 1990 r = CP_ACCESS_TRAP_EL3; 1991 break; 1992 case 3: 1993 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1994 r = CP_ACCESS_TRAP_EL3; 1995 } 1996 break; 1997 default: 1998 g_assert_not_reached(); 1999 } 2000 } 2001 2002 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2003 r = CP_ACCESS_TRAP; 2004 } 2005 return r; 2006 } 2007 2008 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2009 const ARMCPRegInfo *ri, bool isread) 2010 { 2011 CPAccessResult r = CP_ACCESS_OK; 2012 GICv3CPUState *cs = icc_cs_from_env(env); 2013 int el = arm_current_el(env); 2014 2015 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2016 el == 1 && !arm_is_secure_below_el3(env)) { 2017 /* Takes priority over a possible EL3 trap */ 2018 return CP_ACCESS_TRAP_EL2; 2019 } 2020 2021 if (env->cp15.scr_el3 & SCR_IRQ) { 2022 switch (el) { 2023 case 1: 2024 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2025 r = CP_ACCESS_TRAP_EL3; 2026 } 2027 break; 2028 case 2: 2029 r = CP_ACCESS_TRAP_EL3; 2030 break; 2031 case 3: 2032 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2033 r = CP_ACCESS_TRAP_EL3; 2034 } 2035 break; 2036 default: 2037 g_assert_not_reached(); 2038 } 2039 } 2040 2041 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2042 r = CP_ACCESS_TRAP; 2043 } 2044 return r; 2045 } 2046 2047 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2048 { 2049 GICv3CPUState *cs = icc_cs_from_env(env); 2050 2051 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2052 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2053 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2054 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2055 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2056 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2057 cs->icc_pmr_el1 = 0; 2058 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2059 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2060 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2061 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2062 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2063 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2064 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2065 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2066 2067 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2068 cs->ich_hcr_el2 = 0; 2069 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2070 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2071 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2072 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2073 } 2074 2075 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2076 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2077 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2078 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2079 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2080 .readfn = icc_pmr_read, 2081 .writefn = icc_pmr_write, 2082 /* We hang the whole cpu interface reset routine off here 2083 * rather than parcelling it out into one little function 2084 * per register 2085 */ 2086 .resetfn = icc_reset, 2087 }, 2088 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2089 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2090 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2091 .access = PL1_R, .accessfn = gicv3_fiq_access, 2092 .readfn = icc_iar0_read, 2093 }, 2094 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2095 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2096 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2097 .access = PL1_W, .accessfn = gicv3_fiq_access, 2098 .writefn = icc_eoir_write, 2099 }, 2100 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2101 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2102 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2103 .access = PL1_R, .accessfn = gicv3_fiq_access, 2104 .readfn = icc_hppir0_read, 2105 }, 2106 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2108 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2109 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2110 .readfn = icc_bpr_read, 2111 .writefn = icc_bpr_write, 2112 }, 2113 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2114 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2115 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2116 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2117 .readfn = icc_ap_read, 2118 .writefn = icc_ap_write, 2119 }, 2120 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2121 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2122 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2123 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2124 .readfn = icc_ap_read, 2125 .writefn = icc_ap_write, 2126 }, 2127 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2128 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2129 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2130 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2131 .readfn = icc_ap_read, 2132 .writefn = icc_ap_write, 2133 }, 2134 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2136 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2137 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2138 .readfn = icc_ap_read, 2139 .writefn = icc_ap_write, 2140 }, 2141 /* All the ICC_AP1R*_EL1 registers are banked */ 2142 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2143 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2144 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2145 .access = PL1_RW, .accessfn = gicv3_irq_access, 2146 .readfn = icc_ap_read, 2147 .writefn = icc_ap_write, 2148 }, 2149 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2150 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2151 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2152 .access = PL1_RW, .accessfn = gicv3_irq_access, 2153 .readfn = icc_ap_read, 2154 .writefn = icc_ap_write, 2155 }, 2156 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2157 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2158 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2159 .access = PL1_RW, .accessfn = gicv3_irq_access, 2160 .readfn = icc_ap_read, 2161 .writefn = icc_ap_write, 2162 }, 2163 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2164 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2165 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2166 .access = PL1_RW, .accessfn = gicv3_irq_access, 2167 .readfn = icc_ap_read, 2168 .writefn = icc_ap_write, 2169 }, 2170 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2171 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2172 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2173 .access = PL1_W, .accessfn = gicv3_dir_access, 2174 .writefn = icc_dir_write, 2175 }, 2176 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2178 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2179 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2180 .readfn = icc_rpr_read, 2181 }, 2182 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2183 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2184 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2185 .access = PL1_W, .accessfn = gicv3_sgi_access, 2186 .writefn = icc_sgi1r_write, 2187 }, 2188 { .name = "ICC_SGI1R", 2189 .cp = 15, .opc1 = 0, .crm = 12, 2190 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2191 .access = PL1_W, .accessfn = gicv3_sgi_access, 2192 .writefn = icc_sgi1r_write, 2193 }, 2194 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2195 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2196 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2197 .access = PL1_W, .accessfn = gicv3_sgi_access, 2198 .writefn = icc_asgi1r_write, 2199 }, 2200 { .name = "ICC_ASGI1R", 2201 .cp = 15, .opc1 = 1, .crm = 12, 2202 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2203 .access = PL1_W, .accessfn = gicv3_sgi_access, 2204 .writefn = icc_asgi1r_write, 2205 }, 2206 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2207 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2208 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2209 .access = PL1_W, .accessfn = gicv3_sgi_access, 2210 .writefn = icc_sgi0r_write, 2211 }, 2212 { .name = "ICC_SGI0R", 2213 .cp = 15, .opc1 = 2, .crm = 12, 2214 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2215 .access = PL1_W, .accessfn = gicv3_sgi_access, 2216 .writefn = icc_sgi0r_write, 2217 }, 2218 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2219 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2220 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2221 .access = PL1_R, .accessfn = gicv3_irq_access, 2222 .readfn = icc_iar1_read, 2223 }, 2224 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2225 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2226 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2227 .access = PL1_W, .accessfn = gicv3_irq_access, 2228 .writefn = icc_eoir_write, 2229 }, 2230 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2232 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2233 .access = PL1_R, .accessfn = gicv3_irq_access, 2234 .readfn = icc_hppir1_read, 2235 }, 2236 /* This register is banked */ 2237 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2238 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2239 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2240 .access = PL1_RW, .accessfn = gicv3_irq_access, 2241 .readfn = icc_bpr_read, 2242 .writefn = icc_bpr_write, 2243 }, 2244 /* This register is banked */ 2245 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2246 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2247 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2248 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2249 .readfn = icc_ctlr_el1_read, 2250 .writefn = icc_ctlr_el1_write, 2251 }, 2252 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2253 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2254 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2255 .access = PL1_RW, 2256 /* We don't support IRQ/FIQ bypass and system registers are 2257 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2258 * This register is banked but since it's constant we don't 2259 * need to do anything special. 2260 */ 2261 .resetvalue = 0x7, 2262 }, 2263 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2264 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2265 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2266 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2267 .readfn = icc_igrpen_read, 2268 .writefn = icc_igrpen_write, 2269 }, 2270 /* This register is banked */ 2271 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2272 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2273 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2274 .access = PL1_RW, .accessfn = gicv3_irq_access, 2275 .readfn = icc_igrpen_read, 2276 .writefn = icc_igrpen_write, 2277 }, 2278 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2279 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2280 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2281 .access = PL2_RW, 2282 /* We don't support IRQ/FIQ bypass and system registers are 2283 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2284 */ 2285 .resetvalue = 0xf, 2286 }, 2287 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2288 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2289 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2290 .access = PL3_RW, 2291 .readfn = icc_ctlr_el3_read, 2292 .writefn = icc_ctlr_el3_write, 2293 }, 2294 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2295 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2296 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2297 .access = PL3_RW, 2298 /* We don't support IRQ/FIQ bypass and system registers are 2299 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2300 */ 2301 .resetvalue = 0xf, 2302 }, 2303 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2304 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2305 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2306 .access = PL3_RW, 2307 .readfn = icc_igrpen1_el3_read, 2308 .writefn = icc_igrpen1_el3_write, 2309 }, 2310 REGINFO_SENTINEL 2311 }; 2312 2313 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2314 { 2315 GICv3CPUState *cs = icc_cs_from_env(env); 2316 int regno = ri->opc2 & 3; 2317 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2318 uint64_t value; 2319 2320 value = cs->ich_apr[grp][regno]; 2321 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2322 return value; 2323 } 2324 2325 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2326 uint64_t value) 2327 { 2328 GICv3CPUState *cs = icc_cs_from_env(env); 2329 int regno = ri->opc2 & 3; 2330 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2331 2332 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2333 2334 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2335 gicv3_cpuif_virt_update(cs); 2336 } 2337 2338 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2339 { 2340 GICv3CPUState *cs = icc_cs_from_env(env); 2341 uint64_t value = cs->ich_hcr_el2; 2342 2343 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2344 return value; 2345 } 2346 2347 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2348 uint64_t value) 2349 { 2350 GICv3CPUState *cs = icc_cs_from_env(env); 2351 2352 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2353 2354 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2355 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2356 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2357 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2358 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2359 2360 cs->ich_hcr_el2 = value; 2361 gicv3_cpuif_virt_update(cs); 2362 } 2363 2364 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2365 { 2366 GICv3CPUState *cs = icc_cs_from_env(env); 2367 uint64_t value = cs->ich_vmcr_el2; 2368 2369 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2370 return value; 2371 } 2372 2373 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2374 uint64_t value) 2375 { 2376 GICv3CPUState *cs = icc_cs_from_env(env); 2377 2378 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2379 2380 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2381 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2382 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2383 value |= ICH_VMCR_EL2_VFIQEN; 2384 2385 cs->ich_vmcr_el2 = value; 2386 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2387 * by reading and writing back the fields. 2388 */ 2389 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2390 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2391 2392 gicv3_cpuif_virt_update(cs); 2393 } 2394 2395 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2396 { 2397 GICv3CPUState *cs = icc_cs_from_env(env); 2398 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2399 uint64_t value; 2400 2401 /* This read function handles all of: 2402 * 64-bit reads of the whole LR 2403 * 32-bit reads of the low half of the LR 2404 * 32-bit reads of the high half of the LR 2405 */ 2406 if (ri->state == ARM_CP_STATE_AA32) { 2407 if (ri->crm >= 14) { 2408 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2409 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2410 } else { 2411 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2412 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2413 } 2414 } else { 2415 value = cs->ich_lr_el2[regno]; 2416 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2417 } 2418 2419 return value; 2420 } 2421 2422 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2423 uint64_t value) 2424 { 2425 GICv3CPUState *cs = icc_cs_from_env(env); 2426 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2427 2428 /* This write function handles all of: 2429 * 64-bit writes to the whole LR 2430 * 32-bit writes to the low half of the LR 2431 * 32-bit writes to the high half of the LR 2432 */ 2433 if (ri->state == ARM_CP_STATE_AA32) { 2434 if (ri->crm >= 14) { 2435 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2436 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2437 } else { 2438 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2439 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2440 } 2441 } else { 2442 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2443 } 2444 2445 /* Enforce RES0 bits in priority field */ 2446 if (cs->vpribits < 8) { 2447 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2448 8 - cs->vpribits, 0); 2449 } 2450 2451 cs->ich_lr_el2[regno] = value; 2452 gicv3_cpuif_virt_update(cs); 2453 } 2454 2455 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2456 { 2457 GICv3CPUState *cs = icc_cs_from_env(env); 2458 uint64_t value; 2459 2460 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2461 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2462 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2463 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2464 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2465 2466 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2467 return value; 2468 } 2469 2470 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2471 { 2472 GICv3CPUState *cs = icc_cs_from_env(env); 2473 uint64_t value = maintenance_interrupt_state(cs); 2474 2475 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2476 return value; 2477 } 2478 2479 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2480 { 2481 GICv3CPUState *cs = icc_cs_from_env(env); 2482 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2483 2484 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2485 return value; 2486 } 2487 2488 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2489 { 2490 GICv3CPUState *cs = icc_cs_from_env(env); 2491 uint64_t value = 0; 2492 int i; 2493 2494 for (i = 0; i < cs->num_list_regs; i++) { 2495 uint64_t lr = cs->ich_lr_el2[i]; 2496 2497 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2498 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2499 value |= (1 << i); 2500 } 2501 } 2502 2503 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2504 return value; 2505 } 2506 2507 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2508 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2509 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2510 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2511 .access = PL2_RW, 2512 .readfn = ich_ap_read, 2513 .writefn = ich_ap_write, 2514 }, 2515 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2516 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2517 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2518 .access = PL2_RW, 2519 .readfn = ich_ap_read, 2520 .writefn = ich_ap_write, 2521 }, 2522 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2523 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2524 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2525 .access = PL2_RW, 2526 .readfn = ich_hcr_read, 2527 .writefn = ich_hcr_write, 2528 }, 2529 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2530 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2531 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2532 .access = PL2_R, 2533 .readfn = ich_vtr_read, 2534 }, 2535 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2536 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2537 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2538 .access = PL2_R, 2539 .readfn = ich_misr_read, 2540 }, 2541 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2542 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2543 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2544 .access = PL2_R, 2545 .readfn = ich_eisr_read, 2546 }, 2547 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2548 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2549 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2550 .access = PL2_R, 2551 .readfn = ich_elrsr_read, 2552 }, 2553 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2554 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2555 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2556 .access = PL2_RW, 2557 .readfn = ich_vmcr_read, 2558 .writefn = ich_vmcr_write, 2559 }, 2560 REGINFO_SENTINEL 2561 }; 2562 2563 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2564 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2565 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2566 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2567 .access = PL2_RW, 2568 .readfn = ich_ap_read, 2569 .writefn = ich_ap_write, 2570 }, 2571 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2572 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2573 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2574 .access = PL2_RW, 2575 .readfn = ich_ap_read, 2576 .writefn = ich_ap_write, 2577 }, 2578 REGINFO_SENTINEL 2579 }; 2580 2581 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2582 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2583 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2584 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2585 .access = PL2_RW, 2586 .readfn = ich_ap_read, 2587 .writefn = ich_ap_write, 2588 }, 2589 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2590 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2591 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2592 .access = PL2_RW, 2593 .readfn = ich_ap_read, 2594 .writefn = ich_ap_write, 2595 }, 2596 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2597 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2598 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2599 .access = PL2_RW, 2600 .readfn = ich_ap_read, 2601 .writefn = ich_ap_write, 2602 }, 2603 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2604 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2605 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2606 .access = PL2_RW, 2607 .readfn = ich_ap_read, 2608 .writefn = ich_ap_write, 2609 }, 2610 REGINFO_SENTINEL 2611 }; 2612 2613 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2614 { 2615 GICv3CPUState *cs = opaque; 2616 2617 gicv3_cpuif_update(cs); 2618 } 2619 2620 void gicv3_init_cpuif(GICv3State *s) 2621 { 2622 /* Called from the GICv3 realize function; register our system 2623 * registers with the CPU 2624 */ 2625 int i; 2626 2627 for (i = 0; i < s->num_cpu; i++) { 2628 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2629 GICv3CPUState *cs = &s->cpu[i]; 2630 2631 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2632 * in define_arm_cp_regs_with_opaque(), because when we're called back 2633 * it might be with code translated by CPU 0 but run by CPU 1, in 2634 * which case we'd get the wrong value. 2635 * So instead we define the regs with no ri->opaque info, and 2636 * get back to the GICv3CPUState from the CPUARMState. 2637 */ 2638 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2639 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2640 && cpu->gic_num_lrs) { 2641 int j; 2642 2643 cs->num_list_regs = cpu->gic_num_lrs; 2644 cs->vpribits = cpu->gic_vpribits; 2645 cs->vprebits = cpu->gic_vprebits; 2646 2647 /* Check against architectural constraints: getting these 2648 * wrong would be a bug in the CPU code defining these, 2649 * and the implementation relies on them holding. 2650 */ 2651 g_assert(cs->vprebits <= cs->vpribits); 2652 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2653 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2654 2655 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2656 2657 for (j = 0; j < cs->num_list_regs; j++) { 2658 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2659 * are split into two cp15 regs, LR (the low part, with the 2660 * same encoding as the AArch64 LR) and LRC (the high part). 2661 */ 2662 ARMCPRegInfo lr_regset[] = { 2663 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2664 .opc0 = 3, .opc1 = 4, .crn = 12, 2665 .crm = 12 + (j >> 3), .opc2 = j & 7, 2666 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2667 .access = PL2_RW, 2668 .readfn = ich_lr_read, 2669 .writefn = ich_lr_write, 2670 }, 2671 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2672 .cp = 15, .opc1 = 4, .crn = 12, 2673 .crm = 14 + (j >> 3), .opc2 = j & 7, 2674 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2675 .access = PL2_RW, 2676 .readfn = ich_lr_read, 2677 .writefn = ich_lr_write, 2678 }, 2679 REGINFO_SENTINEL 2680 }; 2681 define_arm_cp_regs(cpu, lr_regset); 2682 } 2683 if (cs->vprebits >= 6) { 2684 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2685 } 2686 if (cs->vprebits == 7) { 2687 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2688 } 2689 } 2690 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2691 } 2692 } 2693