1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "trace.h" 17 #include "gicv3_internal.h" 18 #include "cpu.h" 19 20 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 21 { 22 /* Given the CPU, find the right GICv3CPUState struct. 23 * Since we registered the CPU interface with the EL change hook as 24 * the opaque pointer, we can just directly get from the CPU to it. 25 */ 26 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env)); 27 } 28 29 static bool gicv3_use_ns_bank(CPUARMState *env) 30 { 31 /* Return true if we should use the NonSecure bank for a banked GIC 32 * CPU interface register. Note that this differs from the 33 * access_secure_reg() function because GICv3 banked registers are 34 * banked even for AArch64, unlike the other CPU system registers. 35 */ 36 return !arm_is_secure_below_el3(env); 37 } 38 39 /* The minimum BPR for the virtual interface is a configurable property */ 40 static inline int icv_min_vbpr(GICv3CPUState *cs) 41 { 42 return 7 - cs->vprebits; 43 } 44 45 static int icc_highest_active_prio(GICv3CPUState *cs) 46 { 47 /* Calculate the current running priority based on the set bits 48 * in the Active Priority Registers. 49 */ 50 int i; 51 52 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 53 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 54 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 55 56 if (!apr) { 57 continue; 58 } 59 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 60 } 61 /* No current active interrupts: return idle priority */ 62 return 0xff; 63 } 64 65 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 66 { 67 /* Return a mask word which clears the subpriority bits from 68 * a priority value for an interrupt in the specified group. 69 * This depends on the BPR value: 70 * a BPR of 0 means the group priority bits are [7:1]; 71 * a BPR of 1 means they are [7:2], and so on down to 72 * a BPR of 7 meaning no group priority bits at all. 73 * Which BPR to use depends on the group of the interrupt and 74 * the current ICC_CTLR.CBPR settings. 75 */ 76 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 77 (group == GICV3_G1NS && 78 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 79 group = GICV3_G0; 80 } 81 82 return ~0U << ((cs->icc_bpr[group] & 7) + 1); 83 } 84 85 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 86 { 87 /* Return true if there is no pending interrupt, or the 88 * highest priority pending interrupt is in a group which has been 89 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 90 */ 91 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 92 } 93 94 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 95 { 96 /* Return true if we have a pending interrupt of sufficient 97 * priority to preempt. 98 */ 99 int rprio; 100 uint32_t mask; 101 102 if (icc_no_enabled_hppi(cs)) { 103 return false; 104 } 105 106 if (cs->hppi.prio >= cs->icc_pmr_el1) { 107 /* Priority mask masks this interrupt */ 108 return false; 109 } 110 111 rprio = icc_highest_active_prio(cs); 112 if (rprio == 0xff) { 113 /* No currently running interrupt so we can preempt */ 114 return true; 115 } 116 117 mask = icc_gprio_mask(cs, cs->hppi.grp); 118 119 /* We only preempt a running interrupt if the pending interrupt's 120 * group priority is sufficient (the subpriorities are not considered). 121 */ 122 if ((cs->hppi.prio & mask) < (rprio & mask)) { 123 return true; 124 } 125 126 return false; 127 } 128 129 void gicv3_cpuif_update(GICv3CPUState *cs) 130 { 131 /* Tell the CPU about its highest priority pending interrupt */ 132 int irqlevel = 0; 133 int fiqlevel = 0; 134 ARMCPU *cpu = ARM_CPU(cs->cpu); 135 CPUARMState *env = &cpu->env; 136 137 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 138 cs->hppi.grp, cs->hppi.prio); 139 140 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 141 /* If a Security-enabled GIC sends a G1S interrupt to a 142 * Security-disabled CPU, we must treat it as if it were G0. 143 */ 144 cs->hppi.grp = GICV3_G0; 145 } 146 147 if (icc_hppi_can_preempt(cs)) { 148 /* We have an interrupt: should we signal it as IRQ or FIQ? 149 * This is described in the GICv3 spec section 4.6.2. 150 */ 151 bool isfiq; 152 153 switch (cs->hppi.grp) { 154 case GICV3_G0: 155 isfiq = true; 156 break; 157 case GICV3_G1: 158 isfiq = (!arm_is_secure(env) || 159 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 160 break; 161 case GICV3_G1NS: 162 isfiq = arm_is_secure(env); 163 break; 164 default: 165 g_assert_not_reached(); 166 } 167 168 if (isfiq) { 169 fiqlevel = 1; 170 } else { 171 irqlevel = 1; 172 } 173 } 174 175 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 176 177 qemu_set_irq(cs->parent_fiq, fiqlevel); 178 qemu_set_irq(cs->parent_irq, irqlevel); 179 } 180 181 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 182 { 183 GICv3CPUState *cs = icc_cs_from_env(env); 184 uint32_t value = cs->icc_pmr_el1; 185 186 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 187 (env->cp15.scr_el3 & SCR_FIQ)) { 188 /* NS access and Group 0 is inaccessible to NS: return the 189 * NS view of the current priority 190 */ 191 if (value & 0x80) { 192 /* Secure priorities not visible to NS */ 193 value = 0; 194 } else if (value != 0xff) { 195 value = (value << 1) & 0xff; 196 } 197 } 198 199 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 200 201 return value; 202 } 203 204 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 205 uint64_t value) 206 { 207 GICv3CPUState *cs = icc_cs_from_env(env); 208 209 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 210 211 value &= 0xff; 212 213 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 214 (env->cp15.scr_el3 & SCR_FIQ)) { 215 /* NS access and Group 0 is inaccessible to NS: return the 216 * NS view of the current priority 217 */ 218 if (!(cs->icc_pmr_el1 & 0x80)) { 219 /* Current PMR in the secure range, don't allow NS to change it */ 220 return; 221 } 222 value = (value >> 1) & 0x80; 223 } 224 cs->icc_pmr_el1 = value; 225 gicv3_cpuif_update(cs); 226 } 227 228 static void icc_activate_irq(GICv3CPUState *cs, int irq) 229 { 230 /* Move the interrupt from the Pending state to Active, and update 231 * the Active Priority Registers 232 */ 233 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 234 int prio = cs->hppi.prio & mask; 235 int aprbit = prio >> 1; 236 int regno = aprbit / 32; 237 int regbit = aprbit % 32; 238 239 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 240 241 if (irq < GIC_INTERNAL) { 242 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 243 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 244 gicv3_redist_update(cs); 245 } else { 246 gicv3_gicd_active_set(cs->gic, irq); 247 gicv3_gicd_pending_clear(cs->gic, irq); 248 gicv3_update(cs->gic, irq, 1); 249 } 250 } 251 252 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 253 { 254 /* Return the highest priority pending interrupt register value 255 * for group 0. 256 */ 257 bool irq_is_secure; 258 259 if (cs->hppi.prio == 0xff) { 260 return INTID_SPURIOUS; 261 } 262 263 /* Check whether we can return the interrupt or if we should return 264 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 265 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 266 * is always zero.) 267 */ 268 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 269 (cs->hppi.grp != GICV3_G1NS)); 270 271 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 272 return INTID_SPURIOUS; 273 } 274 if (irq_is_secure && !arm_is_secure(env)) { 275 /* Secure interrupts not visible to Nonsecure */ 276 return INTID_SPURIOUS; 277 } 278 279 if (cs->hppi.grp != GICV3_G0) { 280 /* Indicate to EL3 that there's a Group 1 interrupt for the other 281 * state pending. 282 */ 283 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 284 } 285 286 return cs->hppi.irq; 287 } 288 289 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 290 { 291 /* Return the highest priority pending interrupt register value 292 * for group 1. 293 */ 294 bool irq_is_secure; 295 296 if (cs->hppi.prio == 0xff) { 297 return INTID_SPURIOUS; 298 } 299 300 /* Check whether we can return the interrupt or if we should return 301 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 302 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 303 * is always zero.) 304 */ 305 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 306 (cs->hppi.grp != GICV3_G1NS)); 307 308 if (cs->hppi.grp == GICV3_G0) { 309 /* Group 0 interrupts not visible via HPPIR1 */ 310 return INTID_SPURIOUS; 311 } 312 if (irq_is_secure) { 313 if (!arm_is_secure(env)) { 314 /* Secure interrupts not visible in Non-secure */ 315 return INTID_SPURIOUS; 316 } 317 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 318 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 319 return INTID_SPURIOUS; 320 } 321 322 return cs->hppi.irq; 323 } 324 325 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 326 { 327 GICv3CPUState *cs = icc_cs_from_env(env); 328 uint64_t intid; 329 330 if (!icc_hppi_can_preempt(cs)) { 331 intid = INTID_SPURIOUS; 332 } else { 333 intid = icc_hppir0_value(cs, env); 334 } 335 336 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 337 icc_activate_irq(cs, intid); 338 } 339 340 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 341 return intid; 342 } 343 344 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 345 { 346 GICv3CPUState *cs = icc_cs_from_env(env); 347 uint64_t intid; 348 349 if (!icc_hppi_can_preempt(cs)) { 350 intid = INTID_SPURIOUS; 351 } else { 352 intid = icc_hppir1_value(cs, env); 353 } 354 355 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 356 icc_activate_irq(cs, intid); 357 } 358 359 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 360 return intid; 361 } 362 363 static void icc_drop_prio(GICv3CPUState *cs, int grp) 364 { 365 /* Drop the priority of the currently active interrupt in 366 * the specified group. 367 * 368 * Note that we can guarantee (because of the requirement to nest 369 * ICC_IAR reads [which activate an interrupt and raise priority] 370 * with ICC_EOIR writes [which drop the priority for the interrupt]) 371 * that the interrupt we're being called for is the highest priority 372 * active interrupt, meaning that it has the lowest set bit in the 373 * APR registers. 374 * 375 * If the guest does not honour the ordering constraints then the 376 * behaviour of the GIC is UNPREDICTABLE, which for us means that 377 * the values of the APR registers might become incorrect and the 378 * running priority will be wrong, so interrupts that should preempt 379 * might not do so, and interrupts that should not preempt might do so. 380 */ 381 int i; 382 383 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 384 uint64_t *papr = &cs->icc_apr[grp][i]; 385 386 if (!*papr) { 387 continue; 388 } 389 /* Clear the lowest set bit */ 390 *papr &= *papr - 1; 391 break; 392 } 393 394 /* running priority change means we need an update for this cpu i/f */ 395 gicv3_cpuif_update(cs); 396 } 397 398 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 399 { 400 /* Return true if we should split priority drop and interrupt 401 * deactivation, ie whether the relevant EOIMode bit is set. 402 */ 403 if (arm_is_el3_or_mon(env)) { 404 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 405 } 406 if (arm_is_secure_below_el3(env)) { 407 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 408 } else { 409 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 410 } 411 } 412 413 static int icc_highest_active_group(GICv3CPUState *cs) 414 { 415 /* Return the group with the highest priority active interrupt. 416 * We can do this by just comparing the APRs to see which one 417 * has the lowest set bit. 418 * (If more than one group is active at the same priority then 419 * we're in UNPREDICTABLE territory.) 420 */ 421 int i; 422 423 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 424 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 425 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 426 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 427 428 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 429 return GICV3_G1NS; 430 } 431 if (g1ctz < g0ctz) { 432 return GICV3_G1; 433 } 434 if (g0ctz < 32) { 435 return GICV3_G0; 436 } 437 } 438 /* No set active bits? UNPREDICTABLE; return -1 so the caller 439 * ignores the spurious EOI attempt. 440 */ 441 return -1; 442 } 443 444 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 445 { 446 if (irq < GIC_INTERNAL) { 447 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 448 gicv3_redist_update(cs); 449 } else { 450 gicv3_gicd_active_clear(cs->gic, irq); 451 gicv3_update(cs->gic, irq, 1); 452 } 453 } 454 455 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 456 uint64_t value) 457 { 458 /* End of Interrupt */ 459 GICv3CPUState *cs = icc_cs_from_env(env); 460 int irq = value & 0xffffff; 461 int grp; 462 463 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 464 gicv3_redist_affid(cs), value); 465 466 if (ri->crm == 8) { 467 /* EOIR0 */ 468 grp = GICV3_G0; 469 } else { 470 /* EOIR1 */ 471 if (arm_is_secure(env)) { 472 grp = GICV3_G1; 473 } else { 474 grp = GICV3_G1NS; 475 } 476 } 477 478 if (irq >= cs->gic->num_irq) { 479 /* This handles two cases: 480 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 481 * to the GICC_EOIR, the GIC ignores that write. 482 * 2. If software writes the number of a non-existent interrupt 483 * this must be a subcase of "value written does not match the last 484 * valid interrupt value read from the Interrupt Acknowledge 485 * register" and so this is UNPREDICTABLE. We choose to ignore it. 486 */ 487 return; 488 } 489 490 if (icc_highest_active_group(cs) != grp) { 491 return; 492 } 493 494 icc_drop_prio(cs, grp); 495 496 if (!icc_eoi_split(env, cs)) { 497 /* Priority drop and deactivate not split: deactivate irq now */ 498 icc_deactivate_irq(cs, irq); 499 } 500 } 501 502 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 503 { 504 GICv3CPUState *cs = icc_cs_from_env(env); 505 uint64_t value = icc_hppir0_value(cs, env); 506 507 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 508 return value; 509 } 510 511 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 512 { 513 GICv3CPUState *cs = icc_cs_from_env(env); 514 uint64_t value = icc_hppir1_value(cs, env); 515 516 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 517 return value; 518 } 519 520 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 521 { 522 GICv3CPUState *cs = icc_cs_from_env(env); 523 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 524 bool satinc = false; 525 uint64_t bpr; 526 527 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 528 grp = GICV3_G1NS; 529 } 530 531 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 532 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 533 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 534 * modify BPR0 535 */ 536 grp = GICV3_G0; 537 } 538 539 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 540 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 541 /* reads return bpr0 + 1 sat to 7, writes ignored */ 542 grp = GICV3_G0; 543 satinc = true; 544 } 545 546 bpr = cs->icc_bpr[grp]; 547 if (satinc) { 548 bpr++; 549 bpr = MIN(bpr, 7); 550 } 551 552 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 553 554 return bpr; 555 } 556 557 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 558 uint64_t value) 559 { 560 GICv3CPUState *cs = icc_cs_from_env(env); 561 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 562 563 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 564 gicv3_redist_affid(cs), value); 565 566 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 567 grp = GICV3_G1NS; 568 } 569 570 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 571 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 572 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 573 * modify BPR0 574 */ 575 grp = GICV3_G0; 576 } 577 578 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 579 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 580 /* reads return bpr0 + 1 sat to 7, writes ignored */ 581 return; 582 } 583 584 cs->icc_bpr[grp] = value & 7; 585 gicv3_cpuif_update(cs); 586 } 587 588 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 589 { 590 GICv3CPUState *cs = icc_cs_from_env(env); 591 uint64_t value; 592 593 int regno = ri->opc2 & 3; 594 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 595 596 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 597 grp = GICV3_G1NS; 598 } 599 600 value = cs->icc_apr[grp][regno]; 601 602 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 603 return value; 604 } 605 606 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 607 uint64_t value) 608 { 609 GICv3CPUState *cs = icc_cs_from_env(env); 610 611 int regno = ri->opc2 & 3; 612 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 613 614 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 615 616 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 617 grp = GICV3_G1NS; 618 } 619 620 /* It's not possible to claim that a Non-secure interrupt is active 621 * at a priority outside the Non-secure range (128..255), since this 622 * would otherwise allow malicious NS code to block delivery of S interrupts 623 * by writing a bad value to these registers. 624 */ 625 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 626 return; 627 } 628 629 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 630 gicv3_cpuif_update(cs); 631 } 632 633 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 634 uint64_t value) 635 { 636 /* Deactivate interrupt */ 637 GICv3CPUState *cs = icc_cs_from_env(env); 638 int irq = value & 0xffffff; 639 bool irq_is_secure, single_sec_state, irq_is_grp0; 640 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 641 642 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 643 644 if (irq >= cs->gic->num_irq) { 645 /* Also catches special interrupt numbers and LPIs */ 646 return; 647 } 648 649 if (!icc_eoi_split(env, cs)) { 650 return; 651 } 652 653 int grp = gicv3_irq_group(cs->gic, cs, irq); 654 655 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 656 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 657 irq_is_grp0 = grp == GICV3_G0; 658 659 /* Check whether we're allowed to deactivate this interrupt based 660 * on its group and the current CPU state. 661 * These checks are laid out to correspond to the spec's pseudocode. 662 */ 663 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 664 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 665 /* No need to include !IsSecure in route_*_to_el2 as it's only 666 * tested in cases where we know !IsSecure is true. 667 */ 668 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 669 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 670 671 switch (arm_current_el(env)) { 672 case 3: 673 break; 674 case 2: 675 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 676 break; 677 } 678 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 679 break; 680 } 681 return; 682 case 1: 683 if (!arm_is_secure_below_el3(env)) { 684 if (single_sec_state && irq_is_grp0 && 685 !route_fiq_to_el3 && !route_fiq_to_el2) { 686 break; 687 } 688 if (!irq_is_secure && !irq_is_grp0 && 689 !route_irq_to_el3 && !route_irq_to_el2) { 690 break; 691 } 692 } else { 693 if (irq_is_grp0 && !route_fiq_to_el3) { 694 break; 695 } 696 if (!irq_is_grp0 && 697 (!irq_is_secure || !single_sec_state) && 698 !route_irq_to_el3) { 699 break; 700 } 701 } 702 return; 703 default: 704 g_assert_not_reached(); 705 } 706 707 icc_deactivate_irq(cs, irq); 708 } 709 710 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 711 { 712 GICv3CPUState *cs = icc_cs_from_env(env); 713 int prio = icc_highest_active_prio(cs); 714 715 if (arm_feature(env, ARM_FEATURE_EL3) && 716 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 717 /* NS GIC access and Group 0 is inaccessible to NS */ 718 if (prio & 0x80) { 719 /* NS mustn't see priorities in the Secure half of the range */ 720 prio = 0; 721 } else if (prio != 0xff) { 722 /* Non-idle priority: show the Non-secure view of it */ 723 prio = (prio << 1) & 0xff; 724 } 725 } 726 727 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 728 return prio; 729 } 730 731 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 732 uint64_t value, int grp, bool ns) 733 { 734 GICv3State *s = cs->gic; 735 736 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 737 uint64_t aff = extract64(value, 48, 8) << 16 | 738 extract64(value, 32, 8) << 8 | 739 extract64(value, 16, 8); 740 uint32_t targetlist = extract64(value, 0, 16); 741 uint32_t irq = extract64(value, 24, 4); 742 bool irm = extract64(value, 40, 1); 743 int i; 744 745 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 746 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 747 * interrupts as Group 0 interrupts and must send Secure Group 0 748 * interrupts to the target CPUs. 749 */ 750 grp = GICV3_G0; 751 } 752 753 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 754 aff, targetlist); 755 756 for (i = 0; i < s->num_cpu; i++) { 757 GICv3CPUState *ocs = &s->cpu[i]; 758 759 if (irm) { 760 /* IRM == 1 : route to all CPUs except self */ 761 if (cs == ocs) { 762 continue; 763 } 764 } else { 765 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 766 * where the corresponding bit is set in targetlist 767 */ 768 int aff0; 769 770 if (ocs->gicr_typer >> 40 != aff) { 771 continue; 772 } 773 aff0 = extract64(ocs->gicr_typer, 32, 8); 774 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 775 continue; 776 } 777 } 778 779 /* The redistributor will check against its own GICR_NSACR as needed */ 780 gicv3_redist_send_sgi(ocs, grp, irq, ns); 781 } 782 } 783 784 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 785 uint64_t value) 786 { 787 /* Generate Secure Group 0 SGI. */ 788 GICv3CPUState *cs = icc_cs_from_env(env); 789 bool ns = !arm_is_secure(env); 790 791 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 792 } 793 794 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 795 uint64_t value) 796 { 797 /* Generate Group 1 SGI for the current Security state */ 798 GICv3CPUState *cs = icc_cs_from_env(env); 799 int grp; 800 bool ns = !arm_is_secure(env); 801 802 grp = ns ? GICV3_G1NS : GICV3_G1; 803 icc_generate_sgi(env, cs, value, grp, ns); 804 } 805 806 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 807 uint64_t value) 808 { 809 /* Generate Group 1 SGI for the Security state that is not 810 * the current state 811 */ 812 GICv3CPUState *cs = icc_cs_from_env(env); 813 int grp; 814 bool ns = !arm_is_secure(env); 815 816 grp = ns ? GICV3_G1 : GICV3_G1NS; 817 icc_generate_sgi(env, cs, value, grp, ns); 818 } 819 820 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 821 { 822 GICv3CPUState *cs = icc_cs_from_env(env); 823 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 824 uint64_t value; 825 826 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 827 grp = GICV3_G1NS; 828 } 829 830 value = cs->icc_igrpen[grp]; 831 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 832 gicv3_redist_affid(cs), value); 833 return value; 834 } 835 836 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 837 uint64_t value) 838 { 839 GICv3CPUState *cs = icc_cs_from_env(env); 840 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 841 842 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 843 gicv3_redist_affid(cs), value); 844 845 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 846 grp = GICV3_G1NS; 847 } 848 849 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 850 gicv3_cpuif_update(cs); 851 } 852 853 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 854 { 855 GICv3CPUState *cs = icc_cs_from_env(env); 856 uint64_t value; 857 858 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 859 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 860 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 861 return value; 862 } 863 864 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 865 uint64_t value) 866 { 867 GICv3CPUState *cs = icc_cs_from_env(env); 868 869 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 870 871 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 872 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 873 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 874 gicv3_cpuif_update(cs); 875 } 876 877 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 878 { 879 GICv3CPUState *cs = icc_cs_from_env(env); 880 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 881 uint64_t value; 882 883 value = cs->icc_ctlr_el1[bank]; 884 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 885 return value; 886 } 887 888 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 889 uint64_t value) 890 { 891 GICv3CPUState *cs = icc_cs_from_env(env); 892 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 893 uint64_t mask; 894 895 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 896 897 /* Only CBPR and EOIMODE can be RW; 898 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 899 * the asseciated priority-based routing of them); 900 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 901 */ 902 if (arm_feature(env, ARM_FEATURE_EL3) && 903 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 904 mask = ICC_CTLR_EL1_EOIMODE; 905 } else { 906 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 907 } 908 909 cs->icc_ctlr_el1[bank] &= ~mask; 910 cs->icc_ctlr_el1[bank] |= (value & mask); 911 gicv3_cpuif_update(cs); 912 } 913 914 915 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 916 { 917 GICv3CPUState *cs = icc_cs_from_env(env); 918 uint64_t value; 919 920 value = cs->icc_ctlr_el3; 921 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 922 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 923 } 924 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 925 value |= ICC_CTLR_EL3_CBPR_EL1NS; 926 } 927 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 928 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 929 } 930 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 931 value |= ICC_CTLR_EL3_CBPR_EL1S; 932 } 933 934 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 935 return value; 936 } 937 938 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 939 uint64_t value) 940 { 941 GICv3CPUState *cs = icc_cs_from_env(env); 942 uint64_t mask; 943 944 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 945 946 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 947 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 948 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 949 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 950 } 951 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 952 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 953 } 954 955 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 956 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 957 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 958 } 959 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 960 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 961 } 962 963 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 964 mask = ICC_CTLR_EL3_EOIMODE_EL3; 965 966 cs->icc_ctlr_el3 &= ~mask; 967 cs->icc_ctlr_el3 |= (value & mask); 968 gicv3_cpuif_update(cs); 969 } 970 971 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 972 const ARMCPRegInfo *ri, bool isread) 973 { 974 CPAccessResult r = CP_ACCESS_OK; 975 976 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 977 switch (arm_current_el(env)) { 978 case 1: 979 if (arm_is_secure_below_el3(env) || 980 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { 981 r = CP_ACCESS_TRAP_EL3; 982 } 983 break; 984 case 2: 985 r = CP_ACCESS_TRAP_EL3; 986 break; 987 case 3: 988 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 989 r = CP_ACCESS_TRAP_EL3; 990 } 991 break; 992 default: 993 g_assert_not_reached(); 994 } 995 } 996 997 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 998 r = CP_ACCESS_TRAP; 999 } 1000 return r; 1001 } 1002 1003 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1004 const ARMCPRegInfo *ri, bool isread) 1005 { 1006 CPAccessResult r = CP_ACCESS_OK; 1007 1008 if (env->cp15.scr_el3 & SCR_FIQ) { 1009 switch (arm_current_el(env)) { 1010 case 1: 1011 if (arm_is_secure_below_el3(env) || 1012 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { 1013 r = CP_ACCESS_TRAP_EL3; 1014 } 1015 break; 1016 case 2: 1017 r = CP_ACCESS_TRAP_EL3; 1018 break; 1019 case 3: 1020 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1021 r = CP_ACCESS_TRAP_EL3; 1022 } 1023 break; 1024 default: 1025 g_assert_not_reached(); 1026 } 1027 } 1028 1029 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1030 r = CP_ACCESS_TRAP; 1031 } 1032 return r; 1033 } 1034 1035 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1036 const ARMCPRegInfo *ri, bool isread) 1037 { 1038 CPAccessResult r = CP_ACCESS_OK; 1039 1040 if (env->cp15.scr_el3 & SCR_IRQ) { 1041 switch (arm_current_el(env)) { 1042 case 1: 1043 if (arm_is_secure_below_el3(env) || 1044 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { 1045 r = CP_ACCESS_TRAP_EL3; 1046 } 1047 break; 1048 case 2: 1049 r = CP_ACCESS_TRAP_EL3; 1050 break; 1051 case 3: 1052 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1053 r = CP_ACCESS_TRAP_EL3; 1054 } 1055 break; 1056 default: 1057 g_assert_not_reached(); 1058 } 1059 } 1060 1061 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1062 r = CP_ACCESS_TRAP; 1063 } 1064 return r; 1065 } 1066 1067 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1068 { 1069 GICv3CPUState *cs = icc_cs_from_env(env); 1070 1071 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 1072 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 1073 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 1074 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 1075 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 1076 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 1077 cs->icc_pmr_el1 = 0; 1078 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 1079 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 1080 if (arm_feature(env, ARM_FEATURE_EL3)) { 1081 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 1082 } else { 1083 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; 1084 } 1085 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 1086 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 1087 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 1088 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 1089 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 1090 1091 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 1092 cs->ich_hcr_el2 = 0; 1093 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 1094 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 1095 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) | 1096 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 1097 } 1098 1099 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 1100 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 1101 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 1102 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1103 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 1104 .readfn = icc_pmr_read, 1105 .writefn = icc_pmr_write, 1106 /* We hang the whole cpu interface reset routine off here 1107 * rather than parcelling it out into one little function 1108 * per register 1109 */ 1110 .resetfn = icc_reset, 1111 }, 1112 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 1113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 1114 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1115 .access = PL1_R, .accessfn = gicv3_fiq_access, 1116 .readfn = icc_iar0_read, 1117 }, 1118 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 1119 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 1120 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1121 .access = PL1_W, .accessfn = gicv3_fiq_access, 1122 .writefn = icc_eoir_write, 1123 }, 1124 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 1125 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 1126 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1127 .access = PL1_R, .accessfn = gicv3_fiq_access, 1128 .readfn = icc_hppir0_read, 1129 }, 1130 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 1131 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 1132 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1133 .access = PL1_RW, .accessfn = gicv3_fiq_access, 1134 .readfn = icc_bpr_read, 1135 .writefn = icc_bpr_write, 1136 }, 1137 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 1138 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 1139 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1140 .access = PL1_RW, .accessfn = gicv3_fiq_access, 1141 .readfn = icc_ap_read, 1142 .writefn = icc_ap_write, 1143 }, 1144 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 1145 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 1146 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1147 .access = PL1_RW, .accessfn = gicv3_fiq_access, 1148 .readfn = icc_ap_read, 1149 .writefn = icc_ap_write, 1150 }, 1151 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 1152 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 1153 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1154 .access = PL1_RW, .accessfn = gicv3_fiq_access, 1155 .readfn = icc_ap_read, 1156 .writefn = icc_ap_write, 1157 }, 1158 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 1159 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 1160 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1161 .access = PL1_RW, .accessfn = gicv3_fiq_access, 1162 .readfn = icc_ap_read, 1163 .writefn = icc_ap_write, 1164 }, 1165 /* All the ICC_AP1R*_EL1 registers are banked */ 1166 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 1167 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 1168 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1169 .access = PL1_RW, .accessfn = gicv3_irq_access, 1170 .readfn = icc_ap_read, 1171 .writefn = icc_ap_write, 1172 }, 1173 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 1174 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 1175 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1176 .access = PL1_RW, .accessfn = gicv3_irq_access, 1177 .readfn = icc_ap_read, 1178 .writefn = icc_ap_write, 1179 }, 1180 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 1181 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 1182 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1183 .access = PL1_RW, .accessfn = gicv3_irq_access, 1184 .readfn = icc_ap_read, 1185 .writefn = icc_ap_write, 1186 }, 1187 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 1188 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 1189 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1190 .access = PL1_RW, .accessfn = gicv3_irq_access, 1191 .readfn = icc_ap_read, 1192 .writefn = icc_ap_write, 1193 }, 1194 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 1195 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 1196 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1197 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1198 .writefn = icc_dir_write, 1199 }, 1200 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 1201 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 1202 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1203 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 1204 .readfn = icc_rpr_read, 1205 }, 1206 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 1207 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 1208 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1209 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1210 .writefn = icc_sgi1r_write, 1211 }, 1212 { .name = "ICC_SGI1R", 1213 .cp = 15, .opc1 = 0, .crm = 12, 1214 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 1215 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1216 .writefn = icc_sgi1r_write, 1217 }, 1218 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 1219 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 1220 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1221 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1222 .writefn = icc_asgi1r_write, 1223 }, 1224 { .name = "ICC_ASGI1R", 1225 .cp = 15, .opc1 = 1, .crm = 12, 1226 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 1227 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1228 .writefn = icc_asgi1r_write, 1229 }, 1230 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 1231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 1232 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1233 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1234 .writefn = icc_sgi0r_write, 1235 }, 1236 { .name = "ICC_SGI0R", 1237 .cp = 15, .opc1 = 2, .crm = 12, 1238 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 1239 .access = PL1_W, .accessfn = gicv3_irqfiq_access, 1240 .writefn = icc_sgi0r_write, 1241 }, 1242 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 1243 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 1244 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1245 .access = PL1_R, .accessfn = gicv3_irq_access, 1246 .readfn = icc_iar1_read, 1247 }, 1248 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 1249 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 1250 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1251 .access = PL1_W, .accessfn = gicv3_irq_access, 1252 .writefn = icc_eoir_write, 1253 }, 1254 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 1255 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 1256 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1257 .access = PL1_R, .accessfn = gicv3_irq_access, 1258 .readfn = icc_hppir1_read, 1259 }, 1260 /* This register is banked */ 1261 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 1262 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 1263 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1264 .access = PL1_RW, .accessfn = gicv3_irq_access, 1265 .readfn = icc_bpr_read, 1266 .writefn = icc_bpr_write, 1267 }, 1268 /* This register is banked */ 1269 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 1270 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 1271 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1272 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 1273 .readfn = icc_ctlr_el1_read, 1274 .writefn = icc_ctlr_el1_write, 1275 }, 1276 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 1277 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 1278 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 1279 .access = PL1_RW, 1280 /* We don't support IRQ/FIQ bypass and system registers are 1281 * always enabled, so all our bits are RAZ/WI or RAO/WI. 1282 * This register is banked but since it's constant we don't 1283 * need to do anything special. 1284 */ 1285 .resetvalue = 0x7, 1286 }, 1287 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 1288 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 1289 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1290 .access = PL1_RW, .accessfn = gicv3_fiq_access, 1291 .readfn = icc_igrpen_read, 1292 .writefn = icc_igrpen_write, 1293 }, 1294 /* This register is banked */ 1295 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 1296 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 1297 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1298 .access = PL1_RW, .accessfn = gicv3_irq_access, 1299 .readfn = icc_igrpen_read, 1300 .writefn = icc_igrpen_write, 1301 }, 1302 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 1303 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 1304 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 1305 .access = PL2_RW, 1306 /* We don't support IRQ/FIQ bypass and system registers are 1307 * always enabled, so all our bits are RAZ/WI or RAO/WI. 1308 */ 1309 .resetvalue = 0xf, 1310 }, 1311 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 1312 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 1313 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1314 .access = PL3_RW, 1315 .readfn = icc_ctlr_el3_read, 1316 .writefn = icc_ctlr_el3_write, 1317 }, 1318 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 1319 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 1320 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 1321 .access = PL3_RW, 1322 /* We don't support IRQ/FIQ bypass and system registers are 1323 * always enabled, so all our bits are RAZ/WI or RAO/WI. 1324 */ 1325 .resetvalue = 0xf, 1326 }, 1327 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 1328 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 1329 .type = ARM_CP_IO | ARM_CP_NO_RAW, 1330 .access = PL3_RW, 1331 .readfn = icc_igrpen1_el3_read, 1332 .writefn = icc_igrpen1_el3_write, 1333 }, 1334 REGINFO_SENTINEL 1335 }; 1336 1337 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 1338 { 1339 GICv3CPUState *cs = opaque; 1340 1341 gicv3_cpuif_update(cs); 1342 } 1343 1344 void gicv3_init_cpuif(GICv3State *s) 1345 { 1346 /* Called from the GICv3 realize function; register our system 1347 * registers with the CPU 1348 */ 1349 int i; 1350 1351 for (i = 0; i < s->num_cpu; i++) { 1352 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 1353 GICv3CPUState *cs = &s->cpu[i]; 1354 1355 /* Note that we can't just use the GICv3CPUState as an opaque pointer 1356 * in define_arm_cp_regs_with_opaque(), because when we're called back 1357 * it might be with code translated by CPU 0 but run by CPU 1, in 1358 * which case we'd get the wrong value. 1359 * So instead we define the regs with no ri->opaque info, and 1360 * get back to the GICv3CPUState from the ARMCPU by reading back 1361 * the opaque pointer from the el_change_hook, which we're going 1362 * to need to register anyway. 1363 */ 1364 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 1365 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 1366 } 1367 } 1368