1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "cpu.h" 21 22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 23 { 24 ARMCPU *arm_cpu = ARM_CPU(cpu); 25 CPUARMState *env = &arm_cpu->env; 26 27 env->gicv3state = (void *)s; 28 }; 29 30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 31 { 32 return env->gicv3state; 33 } 34 35 static bool gicv3_use_ns_bank(CPUARMState *env) 36 { 37 /* Return true if we should use the NonSecure bank for a banked GIC 38 * CPU interface register. Note that this differs from the 39 * access_secure_reg() function because GICv3 banked registers are 40 * banked even for AArch64, unlike the other CPU system registers. 41 */ 42 return !arm_is_secure_below_el3(env); 43 } 44 45 /* The minimum BPR for the virtual interface is a configurable property */ 46 static inline int icv_min_vbpr(GICv3CPUState *cs) 47 { 48 return 7 - cs->vprebits; 49 } 50 51 /* Simple accessor functions for LR fields */ 52 static uint32_t ich_lr_vintid(uint64_t lr) 53 { 54 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 55 } 56 57 static uint32_t ich_lr_pintid(uint64_t lr) 58 { 59 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 60 } 61 62 static uint32_t ich_lr_prio(uint64_t lr) 63 { 64 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 65 } 66 67 static int ich_lr_state(uint64_t lr) 68 { 69 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 70 } 71 72 static bool icv_access(CPUARMState *env, int hcr_flags) 73 { 74 /* Return true if this ICC_ register access should really be 75 * directed to an ICV_ access. hcr_flags is a mask of 76 * HCR_EL2 bits to check: we treat this as an ICV_ access 77 * if we are in NS EL1 and at least one of the specified 78 * HCR_EL2 bits is set. 79 * 80 * ICV registers fall into four categories: 81 * * access if NS EL1 and HCR_EL2.FMO == 1: 82 * all ICV regs with '0' in their name 83 * * access if NS EL1 and HCR_EL2.IMO == 1: 84 * all ICV regs with '1' in their name 85 * * access if NS EL1 and either IMO or FMO == 1: 86 * CTLR, DIR, PMR, RPR 87 */ 88 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 89 && !arm_is_secure_below_el3(env); 90 } 91 92 static int read_vbpr(GICv3CPUState *cs, int grp) 93 { 94 /* Read VBPR value out of the VMCR field (caller must handle 95 * VCBPR effects if required) 96 */ 97 if (grp == GICV3_G0) { 98 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 99 ICH_VMCR_EL2_VBPR0_LENGTH); 100 } else { 101 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 102 ICH_VMCR_EL2_VBPR1_LENGTH); 103 } 104 } 105 106 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 107 { 108 /* Write new VBPR1 value, handling the "writing a value less than 109 * the minimum sets it to the minimum" semantics. 110 */ 111 int min = icv_min_vbpr(cs); 112 113 if (grp != GICV3_G0) { 114 min++; 115 } 116 117 value = MAX(value, min); 118 119 if (grp == GICV3_G0) { 120 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 121 ICH_VMCR_EL2_VBPR0_LENGTH, value); 122 } else { 123 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 124 ICH_VMCR_EL2_VBPR1_LENGTH, value); 125 } 126 } 127 128 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 129 { 130 /* Return a mask word which clears the unimplemented priority bits 131 * from a priority value for a virtual interrupt. (Not to be confused 132 * with the group priority, whose mask depends on the value of VBPR 133 * for the interrupt group.) 134 */ 135 return ~0U << (8 - cs->vpribits); 136 } 137 138 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 139 { 140 /* Calculate the current running priority based on the set bits 141 * in the ICH Active Priority Registers. 142 */ 143 int i; 144 int aprmax = 1 << (cs->vprebits - 5); 145 146 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 147 148 for (i = 0; i < aprmax; i++) { 149 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 150 cs->ich_apr[GICV3_G1NS][i]; 151 152 if (!apr) { 153 continue; 154 } 155 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 156 } 157 /* No current active interrupts: return idle priority */ 158 return 0xff; 159 } 160 161 static int hppvi_index(GICv3CPUState *cs) 162 { 163 /* Return the list register index of the highest priority pending 164 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 165 * pseudocode. If no pending virtual interrupts, return -1. 166 */ 167 int idx = -1; 168 int i; 169 /* Note that a list register entry with a priority of 0xff will 170 * never be reported by this function; this is the architecturally 171 * correct behaviour. 172 */ 173 int prio = 0xff; 174 175 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 176 /* Both groups disabled, definitely nothing to do */ 177 return idx; 178 } 179 180 for (i = 0; i < cs->num_list_regs; i++) { 181 uint64_t lr = cs->ich_lr_el2[i]; 182 int thisprio; 183 184 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 185 /* Not Pending */ 186 continue; 187 } 188 189 /* Ignore interrupts if relevant group enable not set */ 190 if (lr & ICH_LR_EL2_GROUP) { 191 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 192 continue; 193 } 194 } else { 195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 196 continue; 197 } 198 } 199 200 thisprio = ich_lr_prio(lr); 201 202 if (thisprio < prio) { 203 prio = thisprio; 204 idx = i; 205 } 206 } 207 208 return idx; 209 } 210 211 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 212 { 213 /* Return a mask word which clears the subpriority bits from 214 * a priority value for a virtual interrupt in the specified group. 215 * This depends on the VBPR value. 216 * If using VBPR0 then: 217 * a BPR of 0 means the group priority bits are [7:1]; 218 * a BPR of 1 means they are [7:2], and so on down to 219 * a BPR of 7 meaning no group priority bits at all. 220 * If using VBPR1 then: 221 * a BPR of 0 is impossible (the minimum value is 1) 222 * a BPR of 1 means the group priority bits are [7:1]; 223 * a BPR of 2 means they are [7:2], and so on down to 224 * a BPR of 7 meaning the group priority is [7]. 225 * 226 * Which BPR to use depends on the group of the interrupt and 227 * the current ICH_VMCR_EL2.VCBPR settings. 228 * 229 * This corresponds to the VGroupBits() pseudocode. 230 */ 231 int bpr; 232 233 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 234 group = GICV3_G0; 235 } 236 237 bpr = read_vbpr(cs, group); 238 if (group == GICV3_G1NS) { 239 assert(bpr > 0); 240 bpr--; 241 } 242 243 return ~0U << (bpr + 1); 244 } 245 246 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 247 { 248 /* Return true if we can signal this virtual interrupt defined by 249 * the given list register value; see the pseudocode functions 250 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 251 * Compare also icc_hppi_can_preempt() which is the non-virtual 252 * equivalent of these checks. 253 */ 254 int grp; 255 uint32_t mask, prio, rprio, vpmr; 256 257 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 258 /* Virtual interface disabled */ 259 return false; 260 } 261 262 /* We don't need to check that this LR is in Pending state because 263 * that has already been done in hppvi_index(). 264 */ 265 266 prio = ich_lr_prio(lr); 267 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 268 ICH_VMCR_EL2_VPMR_LENGTH); 269 270 if (prio >= vpmr) { 271 /* Priority mask masks this interrupt */ 272 return false; 273 } 274 275 rprio = ich_highest_active_virt_prio(cs); 276 if (rprio == 0xff) { 277 /* No running interrupt so we can preempt */ 278 return true; 279 } 280 281 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 282 283 mask = icv_gprio_mask(cs, grp); 284 285 /* We only preempt a running interrupt if the pending interrupt's 286 * group priority is sufficient (the subpriorities are not considered). 287 */ 288 if ((prio & mask) < (rprio & mask)) { 289 return true; 290 } 291 292 return false; 293 } 294 295 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 296 uint32_t *misr) 297 { 298 /* Return a set of bits indicating the EOI maintenance interrupt status 299 * for each list register. The EOI maintenance interrupt status is 300 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 301 * (see the GICv3 spec for the ICH_EISR_EL2 register). 302 * If misr is not NULL then we should also collect the information 303 * about the MISR.EOI, MISR.NP and MISR.U bits. 304 */ 305 uint32_t value = 0; 306 int validcount = 0; 307 bool seenpending = false; 308 int i; 309 310 for (i = 0; i < cs->num_list_regs; i++) { 311 uint64_t lr = cs->ich_lr_el2[i]; 312 313 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 314 == ICH_LR_EL2_EOI) { 315 value |= (1 << i); 316 } 317 if ((lr & ICH_LR_EL2_STATE_MASK)) { 318 validcount++; 319 } 320 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 321 seenpending = true; 322 } 323 } 324 325 if (misr) { 326 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 327 *misr |= ICH_MISR_EL2_U; 328 } 329 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 330 *misr |= ICH_MISR_EL2_NP; 331 } 332 if (value) { 333 *misr |= ICH_MISR_EL2_EOI; 334 } 335 } 336 return value; 337 } 338 339 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 340 { 341 /* Return a set of bits indicating the maintenance interrupt status 342 * (as seen in the ICH_MISR_EL2 register). 343 */ 344 uint32_t value = 0; 345 346 /* Scan list registers and fill in the U, NP and EOI bits */ 347 eoi_maintenance_interrupt_state(cs, &value); 348 349 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 350 value |= ICH_MISR_EL2_LRENP; 351 } 352 353 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 354 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 355 value |= ICH_MISR_EL2_VGRP0E; 356 } 357 358 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 359 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 360 value |= ICH_MISR_EL2_VGRP0D; 361 } 362 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 363 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 364 value |= ICH_MISR_EL2_VGRP1E; 365 } 366 367 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 368 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 369 value |= ICH_MISR_EL2_VGRP1D; 370 } 371 372 return value; 373 } 374 375 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 376 { 377 /* Tell the CPU about any pending virtual interrupts or 378 * maintenance interrupts, following a change to the state 379 * of the CPU interface relevant to virtual interrupts. 380 * 381 * CAUTION: this function will call qemu_set_irq() on the 382 * CPU maintenance IRQ line, which is typically wired up 383 * to the GIC as a per-CPU interrupt. This means that it 384 * will recursively call back into the GIC code via 385 * gicv3_redist_set_irq() and thus into the CPU interface code's 386 * gicv3_cpuif_update(). It is therefore important that this 387 * function is only called as the final action of a CPU interface 388 * register write implementation, after all the GIC state 389 * fields have been updated. gicv3_cpuif_update() also must 390 * not cause this function to be called, but that happens 391 * naturally as a result of there being no architectural 392 * linkage between the physical and virtual GIC logic. 393 */ 394 int idx; 395 int irqlevel = 0; 396 int fiqlevel = 0; 397 int maintlevel = 0; 398 399 idx = hppvi_index(cs); 400 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 401 if (idx >= 0) { 402 uint64_t lr = cs->ich_lr_el2[idx]; 403 404 if (icv_hppi_can_preempt(cs, lr)) { 405 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 406 if (lr & ICH_LR_EL2_GROUP) { 407 irqlevel = 1; 408 } else { 409 fiqlevel = 1; 410 } 411 } 412 } 413 414 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 415 maintlevel = maintenance_interrupt_state(cs); 416 } 417 418 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 419 irqlevel, maintlevel); 420 421 qemu_set_irq(cs->parent_vfiq, fiqlevel); 422 qemu_set_irq(cs->parent_virq, irqlevel); 423 qemu_set_irq(cs->maintenance_irq, maintlevel); 424 } 425 426 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 427 { 428 GICv3CPUState *cs = icc_cs_from_env(env); 429 int regno = ri->opc2 & 3; 430 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 431 uint64_t value = cs->ich_apr[grp][regno]; 432 433 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 434 return value; 435 } 436 437 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 438 uint64_t value) 439 { 440 GICv3CPUState *cs = icc_cs_from_env(env); 441 int regno = ri->opc2 & 3; 442 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 443 444 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 445 446 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 447 448 gicv3_cpuif_virt_update(cs); 449 return; 450 } 451 452 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 453 { 454 GICv3CPUState *cs = icc_cs_from_env(env); 455 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 456 uint64_t bpr; 457 bool satinc = false; 458 459 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 460 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 461 grp = GICV3_G0; 462 satinc = true; 463 } 464 465 bpr = read_vbpr(cs, grp); 466 467 if (satinc) { 468 bpr++; 469 bpr = MIN(bpr, 7); 470 } 471 472 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 473 474 return bpr; 475 } 476 477 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 478 uint64_t value) 479 { 480 GICv3CPUState *cs = icc_cs_from_env(env); 481 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 482 483 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 484 gicv3_redist_affid(cs), value); 485 486 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 487 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 488 return; 489 } 490 491 write_vbpr(cs, grp, value); 492 493 gicv3_cpuif_virt_update(cs); 494 } 495 496 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 497 { 498 GICv3CPUState *cs = icc_cs_from_env(env); 499 uint64_t value; 500 501 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 502 ICH_VMCR_EL2_VPMR_LENGTH); 503 504 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 505 return value; 506 } 507 508 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 509 uint64_t value) 510 { 511 GICv3CPUState *cs = icc_cs_from_env(env); 512 513 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 514 515 value &= icv_fullprio_mask(cs); 516 517 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 518 ICH_VMCR_EL2_VPMR_LENGTH, value); 519 520 gicv3_cpuif_virt_update(cs); 521 } 522 523 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 524 { 525 GICv3CPUState *cs = icc_cs_from_env(env); 526 int enbit; 527 uint64_t value; 528 529 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 530 value = extract64(cs->ich_vmcr_el2, enbit, 1); 531 532 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 533 gicv3_redist_affid(cs), value); 534 return value; 535 } 536 537 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 538 uint64_t value) 539 { 540 GICv3CPUState *cs = icc_cs_from_env(env); 541 int enbit; 542 543 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 544 gicv3_redist_affid(cs), value); 545 546 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 547 548 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 549 gicv3_cpuif_virt_update(cs); 550 } 551 552 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 553 { 554 GICv3CPUState *cs = icc_cs_from_env(env); 555 uint64_t value; 556 557 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 558 * should match the ones reported in ich_vtr_read(). 559 */ 560 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 561 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 562 563 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 564 value |= ICC_CTLR_EL1_EOIMODE; 565 } 566 567 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 568 value |= ICC_CTLR_EL1_CBPR; 569 } 570 571 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 572 return value; 573 } 574 575 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 576 uint64_t value) 577 { 578 GICv3CPUState *cs = icc_cs_from_env(env); 579 580 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 581 582 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 583 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 584 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 585 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 586 587 gicv3_cpuif_virt_update(cs); 588 } 589 590 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 591 { 592 GICv3CPUState *cs = icc_cs_from_env(env); 593 int prio = ich_highest_active_virt_prio(cs); 594 595 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 596 return prio; 597 } 598 599 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 600 { 601 GICv3CPUState *cs = icc_cs_from_env(env); 602 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 603 int idx = hppvi_index(cs); 604 uint64_t value = INTID_SPURIOUS; 605 606 if (idx >= 0) { 607 uint64_t lr = cs->ich_lr_el2[idx]; 608 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 609 610 if (grp == thisgrp) { 611 value = ich_lr_vintid(lr); 612 } 613 } 614 615 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 616 return value; 617 } 618 619 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 620 { 621 /* Activate the interrupt in the specified list register 622 * by moving it from Pending to Active state, and update the 623 * Active Priority Registers. 624 */ 625 uint32_t mask = icv_gprio_mask(cs, grp); 626 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 627 int aprbit = prio >> (8 - cs->vprebits); 628 int regno = aprbit / 32; 629 int regbit = aprbit % 32; 630 631 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 632 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 633 cs->ich_apr[grp][regno] |= (1 << regbit); 634 } 635 636 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 637 { 638 GICv3CPUState *cs = icc_cs_from_env(env); 639 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 640 int idx = hppvi_index(cs); 641 uint64_t intid = INTID_SPURIOUS; 642 643 if (idx >= 0) { 644 uint64_t lr = cs->ich_lr_el2[idx]; 645 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 646 647 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 648 intid = ich_lr_vintid(lr); 649 if (intid < INTID_SECURE) { 650 icv_activate_irq(cs, idx, grp); 651 } else { 652 /* Interrupt goes from Pending to Invalid */ 653 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 654 /* We will now return the (bogus) ID from the list register, 655 * as per the pseudocode. 656 */ 657 } 658 } 659 } 660 661 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 662 gicv3_redist_affid(cs), intid); 663 return intid; 664 } 665 666 static int icc_highest_active_prio(GICv3CPUState *cs) 667 { 668 /* Calculate the current running priority based on the set bits 669 * in the Active Priority Registers. 670 */ 671 int i; 672 673 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 674 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 675 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 676 677 if (!apr) { 678 continue; 679 } 680 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 681 } 682 /* No current active interrupts: return idle priority */ 683 return 0xff; 684 } 685 686 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 687 { 688 /* Return a mask word which clears the subpriority bits from 689 * a priority value for an interrupt in the specified group. 690 * This depends on the BPR value. For CBPR0 (S or NS): 691 * a BPR of 0 means the group priority bits are [7:1]; 692 * a BPR of 1 means they are [7:2], and so on down to 693 * a BPR of 7 meaning no group priority bits at all. 694 * For CBPR1 NS: 695 * a BPR of 0 is impossible (the minimum value is 1) 696 * a BPR of 1 means the group priority bits are [7:1]; 697 * a BPR of 2 means they are [7:2], and so on down to 698 * a BPR of 7 meaning the group priority is [7]. 699 * 700 * Which BPR to use depends on the group of the interrupt and 701 * the current ICC_CTLR.CBPR settings. 702 * 703 * This corresponds to the GroupBits() pseudocode. 704 */ 705 int bpr; 706 707 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 708 (group == GICV3_G1NS && 709 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 710 group = GICV3_G0; 711 } 712 713 bpr = cs->icc_bpr[group] & 7; 714 715 if (group == GICV3_G1NS) { 716 assert(bpr > 0); 717 bpr--; 718 } 719 720 return ~0U << (bpr + 1); 721 } 722 723 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 724 { 725 /* Return true if there is no pending interrupt, or the 726 * highest priority pending interrupt is in a group which has been 727 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 728 */ 729 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 730 } 731 732 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 733 { 734 /* Return true if we have a pending interrupt of sufficient 735 * priority to preempt. 736 */ 737 int rprio; 738 uint32_t mask; 739 740 if (icc_no_enabled_hppi(cs)) { 741 return false; 742 } 743 744 if (cs->hppi.prio >= cs->icc_pmr_el1) { 745 /* Priority mask masks this interrupt */ 746 return false; 747 } 748 749 rprio = icc_highest_active_prio(cs); 750 if (rprio == 0xff) { 751 /* No currently running interrupt so we can preempt */ 752 return true; 753 } 754 755 mask = icc_gprio_mask(cs, cs->hppi.grp); 756 757 /* We only preempt a running interrupt if the pending interrupt's 758 * group priority is sufficient (the subpriorities are not considered). 759 */ 760 if ((cs->hppi.prio & mask) < (rprio & mask)) { 761 return true; 762 } 763 764 return false; 765 } 766 767 void gicv3_cpuif_update(GICv3CPUState *cs) 768 { 769 /* Tell the CPU about its highest priority pending interrupt */ 770 int irqlevel = 0; 771 int fiqlevel = 0; 772 ARMCPU *cpu = ARM_CPU(cs->cpu); 773 CPUARMState *env = &cpu->env; 774 775 g_assert(qemu_mutex_iothread_locked()); 776 777 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 778 cs->hppi.grp, cs->hppi.prio); 779 780 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 781 /* If a Security-enabled GIC sends a G1S interrupt to a 782 * Security-disabled CPU, we must treat it as if it were G0. 783 */ 784 cs->hppi.grp = GICV3_G0; 785 } 786 787 if (icc_hppi_can_preempt(cs)) { 788 /* We have an interrupt: should we signal it as IRQ or FIQ? 789 * This is described in the GICv3 spec section 4.6.2. 790 */ 791 bool isfiq; 792 793 switch (cs->hppi.grp) { 794 case GICV3_G0: 795 isfiq = true; 796 break; 797 case GICV3_G1: 798 isfiq = (!arm_is_secure(env) || 799 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 800 break; 801 case GICV3_G1NS: 802 isfiq = arm_is_secure(env); 803 break; 804 default: 805 g_assert_not_reached(); 806 } 807 808 if (isfiq) { 809 fiqlevel = 1; 810 } else { 811 irqlevel = 1; 812 } 813 } 814 815 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 816 817 qemu_set_irq(cs->parent_fiq, fiqlevel); 818 qemu_set_irq(cs->parent_irq, irqlevel); 819 } 820 821 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 822 { 823 GICv3CPUState *cs = icc_cs_from_env(env); 824 uint32_t value = cs->icc_pmr_el1; 825 826 if (icv_access(env, HCR_FMO | HCR_IMO)) { 827 return icv_pmr_read(env, ri); 828 } 829 830 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 831 (env->cp15.scr_el3 & SCR_FIQ)) { 832 /* NS access and Group 0 is inaccessible to NS: return the 833 * NS view of the current priority 834 */ 835 if ((value & 0x80) == 0) { 836 /* Secure priorities not visible to NS */ 837 value = 0; 838 } else if (value != 0xff) { 839 value = (value << 1) & 0xff; 840 } 841 } 842 843 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 844 845 return value; 846 } 847 848 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 849 uint64_t value) 850 { 851 GICv3CPUState *cs = icc_cs_from_env(env); 852 853 if (icv_access(env, HCR_FMO | HCR_IMO)) { 854 return icv_pmr_write(env, ri, value); 855 } 856 857 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 858 859 value &= 0xff; 860 861 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 862 (env->cp15.scr_el3 & SCR_FIQ)) { 863 /* NS access and Group 0 is inaccessible to NS: return the 864 * NS view of the current priority 865 */ 866 if (!(cs->icc_pmr_el1 & 0x80)) { 867 /* Current PMR in the secure range, don't allow NS to change it */ 868 return; 869 } 870 value = (value >> 1) | 0x80; 871 } 872 cs->icc_pmr_el1 = value; 873 gicv3_cpuif_update(cs); 874 } 875 876 static void icc_activate_irq(GICv3CPUState *cs, int irq) 877 { 878 /* Move the interrupt from the Pending state to Active, and update 879 * the Active Priority Registers 880 */ 881 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 882 int prio = cs->hppi.prio & mask; 883 int aprbit = prio >> 1; 884 int regno = aprbit / 32; 885 int regbit = aprbit % 32; 886 887 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 888 889 if (irq < GIC_INTERNAL) { 890 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 891 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 892 gicv3_redist_update(cs); 893 } else { 894 gicv3_gicd_active_set(cs->gic, irq); 895 gicv3_gicd_pending_clear(cs->gic, irq); 896 gicv3_update(cs->gic, irq, 1); 897 } 898 } 899 900 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 901 { 902 /* Return the highest priority pending interrupt register value 903 * for group 0. 904 */ 905 bool irq_is_secure; 906 907 if (cs->hppi.prio == 0xff) { 908 return INTID_SPURIOUS; 909 } 910 911 /* Check whether we can return the interrupt or if we should return 912 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 913 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 914 * is always zero.) 915 */ 916 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 917 (cs->hppi.grp != GICV3_G1NS)); 918 919 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 920 return INTID_SPURIOUS; 921 } 922 if (irq_is_secure && !arm_is_secure(env)) { 923 /* Secure interrupts not visible to Nonsecure */ 924 return INTID_SPURIOUS; 925 } 926 927 if (cs->hppi.grp != GICV3_G0) { 928 /* Indicate to EL3 that there's a Group 1 interrupt for the other 929 * state pending. 930 */ 931 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 932 } 933 934 return cs->hppi.irq; 935 } 936 937 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 938 { 939 /* Return the highest priority pending interrupt register value 940 * for group 1. 941 */ 942 bool irq_is_secure; 943 944 if (cs->hppi.prio == 0xff) { 945 return INTID_SPURIOUS; 946 } 947 948 /* Check whether we can return the interrupt or if we should return 949 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 950 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 951 * is always zero.) 952 */ 953 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 954 (cs->hppi.grp != GICV3_G1NS)); 955 956 if (cs->hppi.grp == GICV3_G0) { 957 /* Group 0 interrupts not visible via HPPIR1 */ 958 return INTID_SPURIOUS; 959 } 960 if (irq_is_secure) { 961 if (!arm_is_secure(env)) { 962 /* Secure interrupts not visible in Non-secure */ 963 return INTID_SPURIOUS; 964 } 965 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 966 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 967 return INTID_SPURIOUS; 968 } 969 970 return cs->hppi.irq; 971 } 972 973 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 974 { 975 GICv3CPUState *cs = icc_cs_from_env(env); 976 uint64_t intid; 977 978 if (icv_access(env, HCR_FMO)) { 979 return icv_iar_read(env, ri); 980 } 981 982 if (!icc_hppi_can_preempt(cs)) { 983 intid = INTID_SPURIOUS; 984 } else { 985 intid = icc_hppir0_value(cs, env); 986 } 987 988 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 989 icc_activate_irq(cs, intid); 990 } 991 992 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 993 return intid; 994 } 995 996 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 997 { 998 GICv3CPUState *cs = icc_cs_from_env(env); 999 uint64_t intid; 1000 1001 if (icv_access(env, HCR_IMO)) { 1002 return icv_iar_read(env, ri); 1003 } 1004 1005 if (!icc_hppi_can_preempt(cs)) { 1006 intid = INTID_SPURIOUS; 1007 } else { 1008 intid = icc_hppir1_value(cs, env); 1009 } 1010 1011 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 1012 icc_activate_irq(cs, intid); 1013 } 1014 1015 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1016 return intid; 1017 } 1018 1019 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1020 { 1021 /* Drop the priority of the currently active interrupt in 1022 * the specified group. 1023 * 1024 * Note that we can guarantee (because of the requirement to nest 1025 * ICC_IAR reads [which activate an interrupt and raise priority] 1026 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1027 * that the interrupt we're being called for is the highest priority 1028 * active interrupt, meaning that it has the lowest set bit in the 1029 * APR registers. 1030 * 1031 * If the guest does not honour the ordering constraints then the 1032 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1033 * the values of the APR registers might become incorrect and the 1034 * running priority will be wrong, so interrupts that should preempt 1035 * might not do so, and interrupts that should not preempt might do so. 1036 */ 1037 int i; 1038 1039 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1040 uint64_t *papr = &cs->icc_apr[grp][i]; 1041 1042 if (!*papr) { 1043 continue; 1044 } 1045 /* Clear the lowest set bit */ 1046 *papr &= *papr - 1; 1047 break; 1048 } 1049 1050 /* running priority change means we need an update for this cpu i/f */ 1051 gicv3_cpuif_update(cs); 1052 } 1053 1054 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1055 { 1056 /* Return true if we should split priority drop and interrupt 1057 * deactivation, ie whether the relevant EOIMode bit is set. 1058 */ 1059 if (arm_is_el3_or_mon(env)) { 1060 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1061 } 1062 if (arm_is_secure_below_el3(env)) { 1063 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1064 } else { 1065 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1066 } 1067 } 1068 1069 static int icc_highest_active_group(GICv3CPUState *cs) 1070 { 1071 /* Return the group with the highest priority active interrupt. 1072 * We can do this by just comparing the APRs to see which one 1073 * has the lowest set bit. 1074 * (If more than one group is active at the same priority then 1075 * we're in UNPREDICTABLE territory.) 1076 */ 1077 int i; 1078 1079 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1080 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1081 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1082 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1083 1084 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1085 return GICV3_G1NS; 1086 } 1087 if (g1ctz < g0ctz) { 1088 return GICV3_G1; 1089 } 1090 if (g0ctz < 32) { 1091 return GICV3_G0; 1092 } 1093 } 1094 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1095 * ignores the spurious EOI attempt. 1096 */ 1097 return -1; 1098 } 1099 1100 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1101 { 1102 if (irq < GIC_INTERNAL) { 1103 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1104 gicv3_redist_update(cs); 1105 } else { 1106 gicv3_gicd_active_clear(cs->gic, irq); 1107 gicv3_update(cs->gic, irq, 1); 1108 } 1109 } 1110 1111 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1112 { 1113 /* Return true if we should split priority drop and interrupt 1114 * deactivation, ie whether the virtual EOIMode bit is set. 1115 */ 1116 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1117 } 1118 1119 static int icv_find_active(GICv3CPUState *cs, int irq) 1120 { 1121 /* Given an interrupt number for an active interrupt, return the index 1122 * of the corresponding list register, or -1 if there is no match. 1123 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1124 */ 1125 int i; 1126 1127 for (i = 0; i < cs->num_list_regs; i++) { 1128 uint64_t lr = cs->ich_lr_el2[i]; 1129 1130 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1131 return i; 1132 } 1133 } 1134 1135 return -1; 1136 } 1137 1138 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1139 { 1140 /* Deactivate the interrupt in the specified list register index */ 1141 uint64_t lr = cs->ich_lr_el2[idx]; 1142 1143 if (lr & ICH_LR_EL2_HW) { 1144 /* Deactivate the associated physical interrupt */ 1145 int pirq = ich_lr_pintid(lr); 1146 1147 if (pirq < INTID_SECURE) { 1148 icc_deactivate_irq(cs, pirq); 1149 } 1150 } 1151 1152 /* Clear the 'active' part of the state, so ActivePending->Pending 1153 * and Active->Invalid. 1154 */ 1155 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1156 cs->ich_lr_el2[idx] = lr; 1157 } 1158 1159 static void icv_increment_eoicount(GICv3CPUState *cs) 1160 { 1161 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1162 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1163 ICH_HCR_EL2_EOICOUNT_LENGTH); 1164 1165 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1166 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1167 } 1168 1169 static int icv_drop_prio(GICv3CPUState *cs) 1170 { 1171 /* Drop the priority of the currently active virtual interrupt 1172 * (favouring group 0 if there is a set active bit at 1173 * the same priority for both group 0 and group 1). 1174 * Return the priority value for the bit we just cleared, 1175 * or 0xff if no bits were set in the AP registers at all. 1176 * Note that though the ich_apr[] are uint64_t only the low 1177 * 32 bits are actually relevant. 1178 */ 1179 int i; 1180 int aprmax = 1 << (cs->vprebits - 5); 1181 1182 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1183 1184 for (i = 0; i < aprmax; i++) { 1185 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1186 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1187 int apr0count, apr1count; 1188 1189 if (!*papr0 && !*papr1) { 1190 continue; 1191 } 1192 1193 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1194 * because we need to return the bit number we cleared so 1195 * it can be compared against the list register's priority field. 1196 */ 1197 apr0count = ctz32(*papr0); 1198 apr1count = ctz32(*papr1); 1199 1200 if (apr0count <= apr1count) { 1201 *papr0 &= *papr0 - 1; 1202 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1203 } else { 1204 *papr1 &= *papr1 - 1; 1205 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1206 } 1207 } 1208 return 0xff; 1209 } 1210 1211 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1212 uint64_t value) 1213 { 1214 /* Deactivate interrupt */ 1215 GICv3CPUState *cs = icc_cs_from_env(env); 1216 int idx; 1217 int irq = value & 0xffffff; 1218 1219 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1220 1221 if (irq >= cs->gic->num_irq) { 1222 /* Also catches special interrupt numbers and LPIs */ 1223 return; 1224 } 1225 1226 if (!icv_eoi_split(env, cs)) { 1227 return; 1228 } 1229 1230 idx = icv_find_active(cs, irq); 1231 1232 if (idx < 0) { 1233 /* No list register matching this, so increment the EOI count 1234 * (might trigger a maintenance interrupt) 1235 */ 1236 icv_increment_eoicount(cs); 1237 } else { 1238 icv_deactivate_irq(cs, idx); 1239 } 1240 1241 gicv3_cpuif_virt_update(cs); 1242 } 1243 1244 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1245 uint64_t value) 1246 { 1247 /* End of Interrupt */ 1248 GICv3CPUState *cs = icc_cs_from_env(env); 1249 int irq = value & 0xffffff; 1250 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1251 int idx, dropprio; 1252 1253 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1254 gicv3_redist_affid(cs), value); 1255 1256 if (irq >= cs->gic->num_irq) { 1257 /* Also catches special interrupt numbers and LPIs */ 1258 return; 1259 } 1260 1261 /* We implement the IMPDEF choice of "drop priority before doing 1262 * error checks" (because that lets us avoid scanning the AP 1263 * registers twice). 1264 */ 1265 dropprio = icv_drop_prio(cs); 1266 if (dropprio == 0xff) { 1267 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1268 * whether the list registers are checked in this 1269 * situation; we choose not to. 1270 */ 1271 return; 1272 } 1273 1274 idx = icv_find_active(cs, irq); 1275 1276 if (idx < 0) { 1277 /* No valid list register corresponding to EOI ID */ 1278 icv_increment_eoicount(cs); 1279 } else { 1280 uint64_t lr = cs->ich_lr_el2[idx]; 1281 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1282 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1283 1284 if (thisgrp == grp && lr_gprio == dropprio) { 1285 if (!icv_eoi_split(env, cs)) { 1286 /* Priority drop and deactivate not split: deactivate irq now */ 1287 icv_deactivate_irq(cs, idx); 1288 } 1289 } 1290 } 1291 1292 gicv3_cpuif_virt_update(cs); 1293 } 1294 1295 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1296 uint64_t value) 1297 { 1298 /* End of Interrupt */ 1299 GICv3CPUState *cs = icc_cs_from_env(env); 1300 int irq = value & 0xffffff; 1301 int grp; 1302 1303 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1304 icv_eoir_write(env, ri, value); 1305 return; 1306 } 1307 1308 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1309 gicv3_redist_affid(cs), value); 1310 1311 if (ri->crm == 8) { 1312 /* EOIR0 */ 1313 grp = GICV3_G0; 1314 } else { 1315 /* EOIR1 */ 1316 if (arm_is_secure(env)) { 1317 grp = GICV3_G1; 1318 } else { 1319 grp = GICV3_G1NS; 1320 } 1321 } 1322 1323 if (irq >= cs->gic->num_irq) { 1324 /* This handles two cases: 1325 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1326 * to the GICC_EOIR, the GIC ignores that write. 1327 * 2. If software writes the number of a non-existent interrupt 1328 * this must be a subcase of "value written does not match the last 1329 * valid interrupt value read from the Interrupt Acknowledge 1330 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1331 */ 1332 return; 1333 } 1334 1335 if (icc_highest_active_group(cs) != grp) { 1336 return; 1337 } 1338 1339 icc_drop_prio(cs, grp); 1340 1341 if (!icc_eoi_split(env, cs)) { 1342 /* Priority drop and deactivate not split: deactivate irq now */ 1343 icc_deactivate_irq(cs, irq); 1344 } 1345 } 1346 1347 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1348 { 1349 GICv3CPUState *cs = icc_cs_from_env(env); 1350 uint64_t value; 1351 1352 if (icv_access(env, HCR_FMO)) { 1353 return icv_hppir_read(env, ri); 1354 } 1355 1356 value = icc_hppir0_value(cs, env); 1357 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1358 return value; 1359 } 1360 1361 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1362 { 1363 GICv3CPUState *cs = icc_cs_from_env(env); 1364 uint64_t value; 1365 1366 if (icv_access(env, HCR_IMO)) { 1367 return icv_hppir_read(env, ri); 1368 } 1369 1370 value = icc_hppir1_value(cs, env); 1371 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1372 return value; 1373 } 1374 1375 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1376 { 1377 GICv3CPUState *cs = icc_cs_from_env(env); 1378 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1379 bool satinc = false; 1380 uint64_t bpr; 1381 1382 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1383 return icv_bpr_read(env, ri); 1384 } 1385 1386 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1387 grp = GICV3_G1NS; 1388 } 1389 1390 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1391 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1392 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1393 * modify BPR0 1394 */ 1395 grp = GICV3_G0; 1396 } 1397 1398 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1399 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1400 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1401 grp = GICV3_G0; 1402 satinc = true; 1403 } 1404 1405 bpr = cs->icc_bpr[grp]; 1406 if (satinc) { 1407 bpr++; 1408 bpr = MIN(bpr, 7); 1409 } 1410 1411 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1412 1413 return bpr; 1414 } 1415 1416 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1417 uint64_t value) 1418 { 1419 GICv3CPUState *cs = icc_cs_from_env(env); 1420 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1421 uint64_t minval; 1422 1423 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1424 icv_bpr_write(env, ri, value); 1425 return; 1426 } 1427 1428 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1429 gicv3_redist_affid(cs), value); 1430 1431 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1432 grp = GICV3_G1NS; 1433 } 1434 1435 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1436 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1437 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1438 * modify BPR0 1439 */ 1440 grp = GICV3_G0; 1441 } 1442 1443 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1444 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1445 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1446 return; 1447 } 1448 1449 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1450 if (value < minval) { 1451 value = minval; 1452 } 1453 1454 cs->icc_bpr[grp] = value & 7; 1455 gicv3_cpuif_update(cs); 1456 } 1457 1458 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1459 { 1460 GICv3CPUState *cs = icc_cs_from_env(env); 1461 uint64_t value; 1462 1463 int regno = ri->opc2 & 3; 1464 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1465 1466 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1467 return icv_ap_read(env, ri); 1468 } 1469 1470 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1471 grp = GICV3_G1NS; 1472 } 1473 1474 value = cs->icc_apr[grp][regno]; 1475 1476 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1477 return value; 1478 } 1479 1480 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1481 uint64_t value) 1482 { 1483 GICv3CPUState *cs = icc_cs_from_env(env); 1484 1485 int regno = ri->opc2 & 3; 1486 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1487 1488 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1489 icv_ap_write(env, ri, value); 1490 return; 1491 } 1492 1493 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1494 1495 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1496 grp = GICV3_G1NS; 1497 } 1498 1499 /* It's not possible to claim that a Non-secure interrupt is active 1500 * at a priority outside the Non-secure range (128..255), since this 1501 * would otherwise allow malicious NS code to block delivery of S interrupts 1502 * by writing a bad value to these registers. 1503 */ 1504 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1505 return; 1506 } 1507 1508 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1509 gicv3_cpuif_update(cs); 1510 } 1511 1512 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1513 uint64_t value) 1514 { 1515 /* Deactivate interrupt */ 1516 GICv3CPUState *cs = icc_cs_from_env(env); 1517 int irq = value & 0xffffff; 1518 bool irq_is_secure, single_sec_state, irq_is_grp0; 1519 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1520 1521 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1522 icv_dir_write(env, ri, value); 1523 return; 1524 } 1525 1526 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1527 1528 if (irq >= cs->gic->num_irq) { 1529 /* Also catches special interrupt numbers and LPIs */ 1530 return; 1531 } 1532 1533 if (!icc_eoi_split(env, cs)) { 1534 return; 1535 } 1536 1537 int grp = gicv3_irq_group(cs->gic, cs, irq); 1538 1539 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1540 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1541 irq_is_grp0 = grp == GICV3_G0; 1542 1543 /* Check whether we're allowed to deactivate this interrupt based 1544 * on its group and the current CPU state. 1545 * These checks are laid out to correspond to the spec's pseudocode. 1546 */ 1547 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1548 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1549 /* No need to include !IsSecure in route_*_to_el2 as it's only 1550 * tested in cases where we know !IsSecure is true. 1551 */ 1552 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1553 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1554 1555 switch (arm_current_el(env)) { 1556 case 3: 1557 break; 1558 case 2: 1559 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1560 break; 1561 } 1562 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1563 break; 1564 } 1565 return; 1566 case 1: 1567 if (!arm_is_secure_below_el3(env)) { 1568 if (single_sec_state && irq_is_grp0 && 1569 !route_fiq_to_el3 && !route_fiq_to_el2) { 1570 break; 1571 } 1572 if (!irq_is_secure && !irq_is_grp0 && 1573 !route_irq_to_el3 && !route_irq_to_el2) { 1574 break; 1575 } 1576 } else { 1577 if (irq_is_grp0 && !route_fiq_to_el3) { 1578 break; 1579 } 1580 if (!irq_is_grp0 && 1581 (!irq_is_secure || !single_sec_state) && 1582 !route_irq_to_el3) { 1583 break; 1584 } 1585 } 1586 return; 1587 default: 1588 g_assert_not_reached(); 1589 } 1590 1591 icc_deactivate_irq(cs, irq); 1592 } 1593 1594 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1595 { 1596 GICv3CPUState *cs = icc_cs_from_env(env); 1597 int prio; 1598 1599 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1600 return icv_rpr_read(env, ri); 1601 } 1602 1603 prio = icc_highest_active_prio(cs); 1604 1605 if (arm_feature(env, ARM_FEATURE_EL3) && 1606 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1607 /* NS GIC access and Group 0 is inaccessible to NS */ 1608 if ((prio & 0x80) == 0) { 1609 /* NS mustn't see priorities in the Secure half of the range */ 1610 prio = 0; 1611 } else if (prio != 0xff) { 1612 /* Non-idle priority: show the Non-secure view of it */ 1613 prio = (prio << 1) & 0xff; 1614 } 1615 } 1616 1617 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1618 return prio; 1619 } 1620 1621 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1622 uint64_t value, int grp, bool ns) 1623 { 1624 GICv3State *s = cs->gic; 1625 1626 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1627 uint64_t aff = extract64(value, 48, 8) << 16 | 1628 extract64(value, 32, 8) << 8 | 1629 extract64(value, 16, 8); 1630 uint32_t targetlist = extract64(value, 0, 16); 1631 uint32_t irq = extract64(value, 24, 4); 1632 bool irm = extract64(value, 40, 1); 1633 int i; 1634 1635 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1636 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1637 * interrupts as Group 0 interrupts and must send Secure Group 0 1638 * interrupts to the target CPUs. 1639 */ 1640 grp = GICV3_G0; 1641 } 1642 1643 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1644 aff, targetlist); 1645 1646 for (i = 0; i < s->num_cpu; i++) { 1647 GICv3CPUState *ocs = &s->cpu[i]; 1648 1649 if (irm) { 1650 /* IRM == 1 : route to all CPUs except self */ 1651 if (cs == ocs) { 1652 continue; 1653 } 1654 } else { 1655 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1656 * where the corresponding bit is set in targetlist 1657 */ 1658 int aff0; 1659 1660 if (ocs->gicr_typer >> 40 != aff) { 1661 continue; 1662 } 1663 aff0 = extract64(ocs->gicr_typer, 32, 8); 1664 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1665 continue; 1666 } 1667 } 1668 1669 /* The redistributor will check against its own GICR_NSACR as needed */ 1670 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1671 } 1672 } 1673 1674 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1675 uint64_t value) 1676 { 1677 /* Generate Secure Group 0 SGI. */ 1678 GICv3CPUState *cs = icc_cs_from_env(env); 1679 bool ns = !arm_is_secure(env); 1680 1681 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1682 } 1683 1684 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1685 uint64_t value) 1686 { 1687 /* Generate Group 1 SGI for the current Security state */ 1688 GICv3CPUState *cs = icc_cs_from_env(env); 1689 int grp; 1690 bool ns = !arm_is_secure(env); 1691 1692 grp = ns ? GICV3_G1NS : GICV3_G1; 1693 icc_generate_sgi(env, cs, value, grp, ns); 1694 } 1695 1696 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1697 uint64_t value) 1698 { 1699 /* Generate Group 1 SGI for the Security state that is not 1700 * the current state 1701 */ 1702 GICv3CPUState *cs = icc_cs_from_env(env); 1703 int grp; 1704 bool ns = !arm_is_secure(env); 1705 1706 grp = ns ? GICV3_G1 : GICV3_G1NS; 1707 icc_generate_sgi(env, cs, value, grp, ns); 1708 } 1709 1710 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1711 { 1712 GICv3CPUState *cs = icc_cs_from_env(env); 1713 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1714 uint64_t value; 1715 1716 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1717 return icv_igrpen_read(env, ri); 1718 } 1719 1720 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1721 grp = GICV3_G1NS; 1722 } 1723 1724 value = cs->icc_igrpen[grp]; 1725 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1726 gicv3_redist_affid(cs), value); 1727 return value; 1728 } 1729 1730 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1731 uint64_t value) 1732 { 1733 GICv3CPUState *cs = icc_cs_from_env(env); 1734 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1735 1736 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1737 icv_igrpen_write(env, ri, value); 1738 return; 1739 } 1740 1741 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1742 gicv3_redist_affid(cs), value); 1743 1744 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1745 grp = GICV3_G1NS; 1746 } 1747 1748 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1749 gicv3_cpuif_update(cs); 1750 } 1751 1752 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1753 { 1754 GICv3CPUState *cs = icc_cs_from_env(env); 1755 uint64_t value; 1756 1757 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1758 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1759 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1760 return value; 1761 } 1762 1763 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1764 uint64_t value) 1765 { 1766 GICv3CPUState *cs = icc_cs_from_env(env); 1767 1768 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1769 1770 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1771 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1772 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1773 gicv3_cpuif_update(cs); 1774 } 1775 1776 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1777 { 1778 GICv3CPUState *cs = icc_cs_from_env(env); 1779 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1780 uint64_t value; 1781 1782 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1783 return icv_ctlr_read(env, ri); 1784 } 1785 1786 value = cs->icc_ctlr_el1[bank]; 1787 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1788 return value; 1789 } 1790 1791 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1792 uint64_t value) 1793 { 1794 GICv3CPUState *cs = icc_cs_from_env(env); 1795 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1796 uint64_t mask; 1797 1798 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1799 icv_ctlr_write(env, ri, value); 1800 return; 1801 } 1802 1803 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1804 1805 /* Only CBPR and EOIMODE can be RW; 1806 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1807 * the asseciated priority-based routing of them); 1808 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1809 */ 1810 if (arm_feature(env, ARM_FEATURE_EL3) && 1811 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1812 mask = ICC_CTLR_EL1_EOIMODE; 1813 } else { 1814 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1815 } 1816 1817 cs->icc_ctlr_el1[bank] &= ~mask; 1818 cs->icc_ctlr_el1[bank] |= (value & mask); 1819 gicv3_cpuif_update(cs); 1820 } 1821 1822 1823 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1824 { 1825 GICv3CPUState *cs = icc_cs_from_env(env); 1826 uint64_t value; 1827 1828 value = cs->icc_ctlr_el3; 1829 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1830 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1831 } 1832 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1833 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1834 } 1835 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1836 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1837 } 1838 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1839 value |= ICC_CTLR_EL3_CBPR_EL1S; 1840 } 1841 1842 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1843 return value; 1844 } 1845 1846 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1847 uint64_t value) 1848 { 1849 GICv3CPUState *cs = icc_cs_from_env(env); 1850 uint64_t mask; 1851 1852 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1853 1854 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1855 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1856 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1857 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1858 } 1859 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1860 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1861 } 1862 1863 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1864 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1865 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1866 } 1867 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1868 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1869 } 1870 1871 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1872 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1873 1874 cs->icc_ctlr_el3 &= ~mask; 1875 cs->icc_ctlr_el3 |= (value & mask); 1876 gicv3_cpuif_update(cs); 1877 } 1878 1879 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1880 const ARMCPRegInfo *ri, bool isread) 1881 { 1882 CPAccessResult r = CP_ACCESS_OK; 1883 GICv3CPUState *cs = icc_cs_from_env(env); 1884 int el = arm_current_el(env); 1885 1886 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1887 el == 1 && !arm_is_secure_below_el3(env)) { 1888 /* Takes priority over a possible EL3 trap */ 1889 return CP_ACCESS_TRAP_EL2; 1890 } 1891 1892 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1893 switch (el) { 1894 case 1: 1895 if (arm_is_secure_below_el3(env) || 1896 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { 1897 r = CP_ACCESS_TRAP_EL3; 1898 } 1899 break; 1900 case 2: 1901 r = CP_ACCESS_TRAP_EL3; 1902 break; 1903 case 3: 1904 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1905 r = CP_ACCESS_TRAP_EL3; 1906 } 1907 break; 1908 default: 1909 g_assert_not_reached(); 1910 } 1911 } 1912 1913 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1914 r = CP_ACCESS_TRAP; 1915 } 1916 return r; 1917 } 1918 1919 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1920 const ARMCPRegInfo *ri, bool isread) 1921 { 1922 GICv3CPUState *cs = icc_cs_from_env(env); 1923 1924 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1925 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1926 /* Takes priority over a possible EL3 trap */ 1927 return CP_ACCESS_TRAP_EL2; 1928 } 1929 1930 return gicv3_irqfiq_access(env, ri, isread); 1931 } 1932 1933 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1934 const ARMCPRegInfo *ri, bool isread) 1935 { 1936 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && 1937 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1938 /* Takes priority over a possible EL3 trap */ 1939 return CP_ACCESS_TRAP_EL2; 1940 } 1941 1942 return gicv3_irqfiq_access(env, ri, isread); 1943 } 1944 1945 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1946 const ARMCPRegInfo *ri, bool isread) 1947 { 1948 CPAccessResult r = CP_ACCESS_OK; 1949 GICv3CPUState *cs = icc_cs_from_env(env); 1950 int el = arm_current_el(env); 1951 1952 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1953 el == 1 && !arm_is_secure_below_el3(env)) { 1954 /* Takes priority over a possible EL3 trap */ 1955 return CP_ACCESS_TRAP_EL2; 1956 } 1957 1958 if (env->cp15.scr_el3 & SCR_FIQ) { 1959 switch (el) { 1960 case 1: 1961 if (arm_is_secure_below_el3(env) || 1962 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { 1963 r = CP_ACCESS_TRAP_EL3; 1964 } 1965 break; 1966 case 2: 1967 r = CP_ACCESS_TRAP_EL3; 1968 break; 1969 case 3: 1970 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1971 r = CP_ACCESS_TRAP_EL3; 1972 } 1973 break; 1974 default: 1975 g_assert_not_reached(); 1976 } 1977 } 1978 1979 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1980 r = CP_ACCESS_TRAP; 1981 } 1982 return r; 1983 } 1984 1985 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1986 const ARMCPRegInfo *ri, bool isread) 1987 { 1988 CPAccessResult r = CP_ACCESS_OK; 1989 GICv3CPUState *cs = icc_cs_from_env(env); 1990 int el = arm_current_el(env); 1991 1992 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 1993 el == 1 && !arm_is_secure_below_el3(env)) { 1994 /* Takes priority over a possible EL3 trap */ 1995 return CP_ACCESS_TRAP_EL2; 1996 } 1997 1998 if (env->cp15.scr_el3 & SCR_IRQ) { 1999 switch (el) { 2000 case 1: 2001 if (arm_is_secure_below_el3(env) || 2002 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { 2003 r = CP_ACCESS_TRAP_EL3; 2004 } 2005 break; 2006 case 2: 2007 r = CP_ACCESS_TRAP_EL3; 2008 break; 2009 case 3: 2010 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2011 r = CP_ACCESS_TRAP_EL3; 2012 } 2013 break; 2014 default: 2015 g_assert_not_reached(); 2016 } 2017 } 2018 2019 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2020 r = CP_ACCESS_TRAP; 2021 } 2022 return r; 2023 } 2024 2025 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2026 { 2027 GICv3CPUState *cs = icc_cs_from_env(env); 2028 2029 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2030 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2031 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2032 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2033 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2034 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2035 cs->icc_pmr_el1 = 0; 2036 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2037 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2038 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2039 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2040 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2041 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2042 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2043 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2044 2045 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2046 cs->ich_hcr_el2 = 0; 2047 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2048 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2049 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2050 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2051 } 2052 2053 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2054 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2055 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2056 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2057 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2058 .readfn = icc_pmr_read, 2059 .writefn = icc_pmr_write, 2060 /* We hang the whole cpu interface reset routine off here 2061 * rather than parcelling it out into one little function 2062 * per register 2063 */ 2064 .resetfn = icc_reset, 2065 }, 2066 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2068 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2069 .access = PL1_R, .accessfn = gicv3_fiq_access, 2070 .readfn = icc_iar0_read, 2071 }, 2072 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2073 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2074 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2075 .access = PL1_W, .accessfn = gicv3_fiq_access, 2076 .writefn = icc_eoir_write, 2077 }, 2078 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2079 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2080 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2081 .access = PL1_R, .accessfn = gicv3_fiq_access, 2082 .readfn = icc_hppir0_read, 2083 }, 2084 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2085 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2086 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2087 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2088 .readfn = icc_bpr_read, 2089 .writefn = icc_bpr_write, 2090 }, 2091 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2092 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2093 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2094 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2095 .readfn = icc_ap_read, 2096 .writefn = icc_ap_write, 2097 }, 2098 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2099 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2100 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2101 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2102 .readfn = icc_ap_read, 2103 .writefn = icc_ap_write, 2104 }, 2105 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2106 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2107 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2108 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2109 .readfn = icc_ap_read, 2110 .writefn = icc_ap_write, 2111 }, 2112 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2113 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2114 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2115 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2116 .readfn = icc_ap_read, 2117 .writefn = icc_ap_write, 2118 }, 2119 /* All the ICC_AP1R*_EL1 registers are banked */ 2120 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2121 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2122 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2123 .access = PL1_RW, .accessfn = gicv3_irq_access, 2124 .readfn = icc_ap_read, 2125 .writefn = icc_ap_write, 2126 }, 2127 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2128 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2129 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2130 .access = PL1_RW, .accessfn = gicv3_irq_access, 2131 .readfn = icc_ap_read, 2132 .writefn = icc_ap_write, 2133 }, 2134 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2135 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2136 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2137 .access = PL1_RW, .accessfn = gicv3_irq_access, 2138 .readfn = icc_ap_read, 2139 .writefn = icc_ap_write, 2140 }, 2141 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2142 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2143 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2144 .access = PL1_RW, .accessfn = gicv3_irq_access, 2145 .readfn = icc_ap_read, 2146 .writefn = icc_ap_write, 2147 }, 2148 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2149 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2150 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2151 .access = PL1_W, .accessfn = gicv3_dir_access, 2152 .writefn = icc_dir_write, 2153 }, 2154 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2155 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2156 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2157 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2158 .readfn = icc_rpr_read, 2159 }, 2160 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2161 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2162 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2163 .access = PL1_W, .accessfn = gicv3_sgi_access, 2164 .writefn = icc_sgi1r_write, 2165 }, 2166 { .name = "ICC_SGI1R", 2167 .cp = 15, .opc1 = 0, .crm = 12, 2168 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2169 .access = PL1_W, .accessfn = gicv3_sgi_access, 2170 .writefn = icc_sgi1r_write, 2171 }, 2172 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2173 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2174 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2175 .access = PL1_W, .accessfn = gicv3_sgi_access, 2176 .writefn = icc_asgi1r_write, 2177 }, 2178 { .name = "ICC_ASGI1R", 2179 .cp = 15, .opc1 = 1, .crm = 12, 2180 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2181 .access = PL1_W, .accessfn = gicv3_sgi_access, 2182 .writefn = icc_asgi1r_write, 2183 }, 2184 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2185 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2186 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2187 .access = PL1_W, .accessfn = gicv3_sgi_access, 2188 .writefn = icc_sgi0r_write, 2189 }, 2190 { .name = "ICC_SGI0R", 2191 .cp = 15, .opc1 = 2, .crm = 12, 2192 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2193 .access = PL1_W, .accessfn = gicv3_sgi_access, 2194 .writefn = icc_sgi0r_write, 2195 }, 2196 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2197 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2198 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2199 .access = PL1_R, .accessfn = gicv3_irq_access, 2200 .readfn = icc_iar1_read, 2201 }, 2202 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2203 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2204 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2205 .access = PL1_W, .accessfn = gicv3_irq_access, 2206 .writefn = icc_eoir_write, 2207 }, 2208 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2209 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2210 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2211 .access = PL1_R, .accessfn = gicv3_irq_access, 2212 .readfn = icc_hppir1_read, 2213 }, 2214 /* This register is banked */ 2215 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2216 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2217 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2218 .access = PL1_RW, .accessfn = gicv3_irq_access, 2219 .readfn = icc_bpr_read, 2220 .writefn = icc_bpr_write, 2221 }, 2222 /* This register is banked */ 2223 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2224 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2225 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2226 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2227 .readfn = icc_ctlr_el1_read, 2228 .writefn = icc_ctlr_el1_write, 2229 }, 2230 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2231 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2232 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2233 .access = PL1_RW, 2234 /* We don't support IRQ/FIQ bypass and system registers are 2235 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2236 * This register is banked but since it's constant we don't 2237 * need to do anything special. 2238 */ 2239 .resetvalue = 0x7, 2240 }, 2241 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2242 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2243 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2244 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2245 .readfn = icc_igrpen_read, 2246 .writefn = icc_igrpen_write, 2247 }, 2248 /* This register is banked */ 2249 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2250 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2251 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2252 .access = PL1_RW, .accessfn = gicv3_irq_access, 2253 .readfn = icc_igrpen_read, 2254 .writefn = icc_igrpen_write, 2255 }, 2256 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2257 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2258 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2259 .access = PL2_RW, 2260 /* We don't support IRQ/FIQ bypass and system registers are 2261 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2262 */ 2263 .resetvalue = 0xf, 2264 }, 2265 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2267 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2268 .access = PL3_RW, 2269 .readfn = icc_ctlr_el3_read, 2270 .writefn = icc_ctlr_el3_write, 2271 }, 2272 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2273 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2274 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2275 .access = PL3_RW, 2276 /* We don't support IRQ/FIQ bypass and system registers are 2277 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2278 */ 2279 .resetvalue = 0xf, 2280 }, 2281 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2282 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2283 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2284 .access = PL3_RW, 2285 .readfn = icc_igrpen1_el3_read, 2286 .writefn = icc_igrpen1_el3_write, 2287 }, 2288 REGINFO_SENTINEL 2289 }; 2290 2291 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2292 { 2293 GICv3CPUState *cs = icc_cs_from_env(env); 2294 int regno = ri->opc2 & 3; 2295 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2296 uint64_t value; 2297 2298 value = cs->ich_apr[grp][regno]; 2299 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2300 return value; 2301 } 2302 2303 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2304 uint64_t value) 2305 { 2306 GICv3CPUState *cs = icc_cs_from_env(env); 2307 int regno = ri->opc2 & 3; 2308 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2309 2310 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2311 2312 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2313 gicv3_cpuif_virt_update(cs); 2314 } 2315 2316 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2317 { 2318 GICv3CPUState *cs = icc_cs_from_env(env); 2319 uint64_t value = cs->ich_hcr_el2; 2320 2321 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2322 return value; 2323 } 2324 2325 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2326 uint64_t value) 2327 { 2328 GICv3CPUState *cs = icc_cs_from_env(env); 2329 2330 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2331 2332 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2333 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2334 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2335 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2336 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2337 2338 cs->ich_hcr_el2 = value; 2339 gicv3_cpuif_virt_update(cs); 2340 } 2341 2342 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2343 { 2344 GICv3CPUState *cs = icc_cs_from_env(env); 2345 uint64_t value = cs->ich_vmcr_el2; 2346 2347 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2348 return value; 2349 } 2350 2351 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2352 uint64_t value) 2353 { 2354 GICv3CPUState *cs = icc_cs_from_env(env); 2355 2356 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2357 2358 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2359 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2360 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2361 value |= ICH_VMCR_EL2_VFIQEN; 2362 2363 cs->ich_vmcr_el2 = value; 2364 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2365 * by reading and writing back the fields. 2366 */ 2367 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); 2368 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2369 2370 gicv3_cpuif_virt_update(cs); 2371 } 2372 2373 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2374 { 2375 GICv3CPUState *cs = icc_cs_from_env(env); 2376 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2377 uint64_t value; 2378 2379 /* This read function handles all of: 2380 * 64-bit reads of the whole LR 2381 * 32-bit reads of the low half of the LR 2382 * 32-bit reads of the high half of the LR 2383 */ 2384 if (ri->state == ARM_CP_STATE_AA32) { 2385 if (ri->crm >= 14) { 2386 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2387 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2388 } else { 2389 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2390 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2391 } 2392 } else { 2393 value = cs->ich_lr_el2[regno]; 2394 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2395 } 2396 2397 return value; 2398 } 2399 2400 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2401 uint64_t value) 2402 { 2403 GICv3CPUState *cs = icc_cs_from_env(env); 2404 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2405 2406 /* This write function handles all of: 2407 * 64-bit writes to the whole LR 2408 * 32-bit writes to the low half of the LR 2409 * 32-bit writes to the high half of the LR 2410 */ 2411 if (ri->state == ARM_CP_STATE_AA32) { 2412 if (ri->crm >= 14) { 2413 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2414 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2415 } else { 2416 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2417 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2418 } 2419 } else { 2420 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2421 } 2422 2423 /* Enforce RES0 bits in priority field */ 2424 if (cs->vpribits < 8) { 2425 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2426 8 - cs->vpribits, 0); 2427 } 2428 2429 cs->ich_lr_el2[regno] = value; 2430 gicv3_cpuif_virt_update(cs); 2431 } 2432 2433 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2434 { 2435 GICv3CPUState *cs = icc_cs_from_env(env); 2436 uint64_t value; 2437 2438 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2439 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2440 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2441 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2442 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2443 2444 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2445 return value; 2446 } 2447 2448 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2449 { 2450 GICv3CPUState *cs = icc_cs_from_env(env); 2451 uint64_t value = maintenance_interrupt_state(cs); 2452 2453 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2454 return value; 2455 } 2456 2457 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2458 { 2459 GICv3CPUState *cs = icc_cs_from_env(env); 2460 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2461 2462 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2463 return value; 2464 } 2465 2466 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2467 { 2468 GICv3CPUState *cs = icc_cs_from_env(env); 2469 uint64_t value = 0; 2470 int i; 2471 2472 for (i = 0; i < cs->num_list_regs; i++) { 2473 uint64_t lr = cs->ich_lr_el2[i]; 2474 2475 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2476 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2477 value |= (1 << i); 2478 } 2479 } 2480 2481 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2482 return value; 2483 } 2484 2485 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2486 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2487 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2488 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2489 .access = PL2_RW, 2490 .readfn = ich_ap_read, 2491 .writefn = ich_ap_write, 2492 }, 2493 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2495 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2496 .access = PL2_RW, 2497 .readfn = ich_ap_read, 2498 .writefn = ich_ap_write, 2499 }, 2500 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2501 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2502 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2503 .access = PL2_RW, 2504 .readfn = ich_hcr_read, 2505 .writefn = ich_hcr_write, 2506 }, 2507 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2508 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2509 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2510 .access = PL2_R, 2511 .readfn = ich_vtr_read, 2512 }, 2513 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2514 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2515 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2516 .access = PL2_R, 2517 .readfn = ich_misr_read, 2518 }, 2519 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2520 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2521 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2522 .access = PL2_R, 2523 .readfn = ich_eisr_read, 2524 }, 2525 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2526 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2527 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2528 .access = PL2_R, 2529 .readfn = ich_elrsr_read, 2530 }, 2531 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2532 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2533 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2534 .access = PL2_RW, 2535 .readfn = ich_vmcr_read, 2536 .writefn = ich_vmcr_write, 2537 }, 2538 REGINFO_SENTINEL 2539 }; 2540 2541 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2542 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2543 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2544 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2545 .access = PL2_RW, 2546 .readfn = ich_ap_read, 2547 .writefn = ich_ap_write, 2548 }, 2549 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2551 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2552 .access = PL2_RW, 2553 .readfn = ich_ap_read, 2554 .writefn = ich_ap_write, 2555 }, 2556 REGINFO_SENTINEL 2557 }; 2558 2559 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2560 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2561 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2562 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2563 .access = PL2_RW, 2564 .readfn = ich_ap_read, 2565 .writefn = ich_ap_write, 2566 }, 2567 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2568 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2569 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2570 .access = PL2_RW, 2571 .readfn = ich_ap_read, 2572 .writefn = ich_ap_write, 2573 }, 2574 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2575 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2576 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2577 .access = PL2_RW, 2578 .readfn = ich_ap_read, 2579 .writefn = ich_ap_write, 2580 }, 2581 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2582 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2583 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2584 .access = PL2_RW, 2585 .readfn = ich_ap_read, 2586 .writefn = ich_ap_write, 2587 }, 2588 REGINFO_SENTINEL 2589 }; 2590 2591 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2592 { 2593 GICv3CPUState *cs = opaque; 2594 2595 gicv3_cpuif_update(cs); 2596 } 2597 2598 void gicv3_init_cpuif(GICv3State *s) 2599 { 2600 /* Called from the GICv3 realize function; register our system 2601 * registers with the CPU 2602 */ 2603 int i; 2604 2605 for (i = 0; i < s->num_cpu; i++) { 2606 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2607 GICv3CPUState *cs = &s->cpu[i]; 2608 2609 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2610 * in define_arm_cp_regs_with_opaque(), because when we're called back 2611 * it might be with code translated by CPU 0 but run by CPU 1, in 2612 * which case we'd get the wrong value. 2613 * So instead we define the regs with no ri->opaque info, and 2614 * get back to the GICv3CPUState from the CPUARMState. 2615 */ 2616 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2617 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2618 && cpu->gic_num_lrs) { 2619 int j; 2620 2621 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; 2622 2623 cs->num_list_regs = cpu->gic_num_lrs; 2624 cs->vpribits = cpu->gic_vpribits; 2625 cs->vprebits = cpu->gic_vprebits; 2626 2627 /* Check against architectural constraints: getting these 2628 * wrong would be a bug in the CPU code defining these, 2629 * and the implementation relies on them holding. 2630 */ 2631 g_assert(cs->vprebits <= cs->vpribits); 2632 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2633 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2634 2635 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2636 2637 for (j = 0; j < cs->num_list_regs; j++) { 2638 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2639 * are split into two cp15 regs, LR (the low part, with the 2640 * same encoding as the AArch64 LR) and LRC (the high part). 2641 */ 2642 ARMCPRegInfo lr_regset[] = { 2643 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2644 .opc0 = 3, .opc1 = 4, .crn = 12, 2645 .crm = 12 + (j >> 3), .opc2 = j & 7, 2646 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2647 .access = PL2_RW, 2648 .readfn = ich_lr_read, 2649 .writefn = ich_lr_write, 2650 }, 2651 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2652 .cp = 15, .opc1 = 4, .crn = 12, 2653 .crm = 14 + (j >> 3), .opc2 = j & 7, 2654 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2655 .access = PL2_RW, 2656 .readfn = ich_lr_read, 2657 .writefn = ich_lr_write, 2658 }, 2659 REGINFO_SENTINEL 2660 }; 2661 define_arm_cp_regs(cpu, lr_regset); 2662 } 2663 if (cs->vprebits >= 6) { 2664 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2665 } 2666 if (cs->vprebits == 7) { 2667 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2668 } 2669 } 2670 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2671 } 2672 } 2673