1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "cpu.h" 21 22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 23 { 24 ARMCPU *arm_cpu = ARM_CPU(cpu); 25 CPUARMState *env = &arm_cpu->env; 26 27 env->gicv3state = (void *)s; 28 }; 29 30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 31 { 32 return env->gicv3state; 33 } 34 35 static bool gicv3_use_ns_bank(CPUARMState *env) 36 { 37 /* Return true if we should use the NonSecure bank for a banked GIC 38 * CPU interface register. Note that this differs from the 39 * access_secure_reg() function because GICv3 banked registers are 40 * banked even for AArch64, unlike the other CPU system registers. 41 */ 42 return !arm_is_secure_below_el3(env); 43 } 44 45 /* The minimum BPR for the virtual interface is a configurable property */ 46 static inline int icv_min_vbpr(GICv3CPUState *cs) 47 { 48 return 7 - cs->vprebits; 49 } 50 51 /* Simple accessor functions for LR fields */ 52 static uint32_t ich_lr_vintid(uint64_t lr) 53 { 54 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 55 } 56 57 static uint32_t ich_lr_pintid(uint64_t lr) 58 { 59 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 60 } 61 62 static uint32_t ich_lr_prio(uint64_t lr) 63 { 64 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 65 } 66 67 static int ich_lr_state(uint64_t lr) 68 { 69 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 70 } 71 72 static bool icv_access(CPUARMState *env, int hcr_flags) 73 { 74 /* Return true if this ICC_ register access should really be 75 * directed to an ICV_ access. hcr_flags is a mask of 76 * HCR_EL2 bits to check: we treat this as an ICV_ access 77 * if we are in NS EL1 and at least one of the specified 78 * HCR_EL2 bits is set. 79 * 80 * ICV registers fall into four categories: 81 * * access if NS EL1 and HCR_EL2.FMO == 1: 82 * all ICV regs with '0' in their name 83 * * access if NS EL1 and HCR_EL2.IMO == 1: 84 * all ICV regs with '1' in their name 85 * * access if NS EL1 and either IMO or FMO == 1: 86 * CTLR, DIR, PMR, RPR 87 */ 88 bool flagmatch = ((hcr_flags & HCR_IMO) && arm_hcr_el2_imo(env)) || 89 ((hcr_flags & HCR_FMO) && arm_hcr_el2_fmo(env)); 90 91 return flagmatch && arm_current_el(env) == 1 92 && !arm_is_secure_below_el3(env); 93 } 94 95 static int read_vbpr(GICv3CPUState *cs, int grp) 96 { 97 /* Read VBPR value out of the VMCR field (caller must handle 98 * VCBPR effects if required) 99 */ 100 if (grp == GICV3_G0) { 101 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 102 ICH_VMCR_EL2_VBPR0_LENGTH); 103 } else { 104 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 105 ICH_VMCR_EL2_VBPR1_LENGTH); 106 } 107 } 108 109 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 110 { 111 /* Write new VBPR1 value, handling the "writing a value less than 112 * the minimum sets it to the minimum" semantics. 113 */ 114 int min = icv_min_vbpr(cs); 115 116 if (grp != GICV3_G0) { 117 min++; 118 } 119 120 value = MAX(value, min); 121 122 if (grp == GICV3_G0) { 123 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 124 ICH_VMCR_EL2_VBPR0_LENGTH, value); 125 } else { 126 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 127 ICH_VMCR_EL2_VBPR1_LENGTH, value); 128 } 129 } 130 131 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 132 { 133 /* Return a mask word which clears the unimplemented priority bits 134 * from a priority value for a virtual interrupt. (Not to be confused 135 * with the group priority, whose mask depends on the value of VBPR 136 * for the interrupt group.) 137 */ 138 return ~0U << (8 - cs->vpribits); 139 } 140 141 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 142 { 143 /* Calculate the current running priority based on the set bits 144 * in the ICH Active Priority Registers. 145 */ 146 int i; 147 int aprmax = 1 << (cs->vprebits - 5); 148 149 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 150 151 for (i = 0; i < aprmax; i++) { 152 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 153 cs->ich_apr[GICV3_G1NS][i]; 154 155 if (!apr) { 156 continue; 157 } 158 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 159 } 160 /* No current active interrupts: return idle priority */ 161 return 0xff; 162 } 163 164 static int hppvi_index(GICv3CPUState *cs) 165 { 166 /* Return the list register index of the highest priority pending 167 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 168 * pseudocode. If no pending virtual interrupts, return -1. 169 */ 170 int idx = -1; 171 int i; 172 /* Note that a list register entry with a priority of 0xff will 173 * never be reported by this function; this is the architecturally 174 * correct behaviour. 175 */ 176 int prio = 0xff; 177 178 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 179 /* Both groups disabled, definitely nothing to do */ 180 return idx; 181 } 182 183 for (i = 0; i < cs->num_list_regs; i++) { 184 uint64_t lr = cs->ich_lr_el2[i]; 185 int thisprio; 186 187 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 188 /* Not Pending */ 189 continue; 190 } 191 192 /* Ignore interrupts if relevant group enable not set */ 193 if (lr & ICH_LR_EL2_GROUP) { 194 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 195 continue; 196 } 197 } else { 198 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 199 continue; 200 } 201 } 202 203 thisprio = ich_lr_prio(lr); 204 205 if (thisprio < prio) { 206 prio = thisprio; 207 idx = i; 208 } 209 } 210 211 return idx; 212 } 213 214 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 215 { 216 /* Return a mask word which clears the subpriority bits from 217 * a priority value for a virtual interrupt in the specified group. 218 * This depends on the VBPR value. 219 * If using VBPR0 then: 220 * a BPR of 0 means the group priority bits are [7:1]; 221 * a BPR of 1 means they are [7:2], and so on down to 222 * a BPR of 7 meaning no group priority bits at all. 223 * If using VBPR1 then: 224 * a BPR of 0 is impossible (the minimum value is 1) 225 * a BPR of 1 means the group priority bits are [7:1]; 226 * a BPR of 2 means they are [7:2], and so on down to 227 * a BPR of 7 meaning the group priority is [7]. 228 * 229 * Which BPR to use depends on the group of the interrupt and 230 * the current ICH_VMCR_EL2.VCBPR settings. 231 * 232 * This corresponds to the VGroupBits() pseudocode. 233 */ 234 int bpr; 235 236 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 237 group = GICV3_G0; 238 } 239 240 bpr = read_vbpr(cs, group); 241 if (group == GICV3_G1NS) { 242 assert(bpr > 0); 243 bpr--; 244 } 245 246 return ~0U << (bpr + 1); 247 } 248 249 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 250 { 251 /* Return true if we can signal this virtual interrupt defined by 252 * the given list register value; see the pseudocode functions 253 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 254 * Compare also icc_hppi_can_preempt() which is the non-virtual 255 * equivalent of these checks. 256 */ 257 int grp; 258 uint32_t mask, prio, rprio, vpmr; 259 260 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 261 /* Virtual interface disabled */ 262 return false; 263 } 264 265 /* We don't need to check that this LR is in Pending state because 266 * that has already been done in hppvi_index(). 267 */ 268 269 prio = ich_lr_prio(lr); 270 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 271 ICH_VMCR_EL2_VPMR_LENGTH); 272 273 if (prio >= vpmr) { 274 /* Priority mask masks this interrupt */ 275 return false; 276 } 277 278 rprio = ich_highest_active_virt_prio(cs); 279 if (rprio == 0xff) { 280 /* No running interrupt so we can preempt */ 281 return true; 282 } 283 284 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 285 286 mask = icv_gprio_mask(cs, grp); 287 288 /* We only preempt a running interrupt if the pending interrupt's 289 * group priority is sufficient (the subpriorities are not considered). 290 */ 291 if ((prio & mask) < (rprio & mask)) { 292 return true; 293 } 294 295 return false; 296 } 297 298 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 299 uint32_t *misr) 300 { 301 /* Return a set of bits indicating the EOI maintenance interrupt status 302 * for each list register. The EOI maintenance interrupt status is 303 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 304 * (see the GICv3 spec for the ICH_EISR_EL2 register). 305 * If misr is not NULL then we should also collect the information 306 * about the MISR.EOI, MISR.NP and MISR.U bits. 307 */ 308 uint32_t value = 0; 309 int validcount = 0; 310 bool seenpending = false; 311 int i; 312 313 for (i = 0; i < cs->num_list_regs; i++) { 314 uint64_t lr = cs->ich_lr_el2[i]; 315 316 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 317 == ICH_LR_EL2_EOI) { 318 value |= (1 << i); 319 } 320 if ((lr & ICH_LR_EL2_STATE_MASK)) { 321 validcount++; 322 } 323 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 324 seenpending = true; 325 } 326 } 327 328 if (misr) { 329 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 330 *misr |= ICH_MISR_EL2_U; 331 } 332 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 333 *misr |= ICH_MISR_EL2_NP; 334 } 335 if (value) { 336 *misr |= ICH_MISR_EL2_EOI; 337 } 338 } 339 return value; 340 } 341 342 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 343 { 344 /* Return a set of bits indicating the maintenance interrupt status 345 * (as seen in the ICH_MISR_EL2 register). 346 */ 347 uint32_t value = 0; 348 349 /* Scan list registers and fill in the U, NP and EOI bits */ 350 eoi_maintenance_interrupt_state(cs, &value); 351 352 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 353 value |= ICH_MISR_EL2_LRENP; 354 } 355 356 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 357 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 358 value |= ICH_MISR_EL2_VGRP0E; 359 } 360 361 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 362 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 363 value |= ICH_MISR_EL2_VGRP0D; 364 } 365 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 366 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 367 value |= ICH_MISR_EL2_VGRP1E; 368 } 369 370 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 371 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 372 value |= ICH_MISR_EL2_VGRP1D; 373 } 374 375 return value; 376 } 377 378 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 379 { 380 /* Tell the CPU about any pending virtual interrupts or 381 * maintenance interrupts, following a change to the state 382 * of the CPU interface relevant to virtual interrupts. 383 * 384 * CAUTION: this function will call qemu_set_irq() on the 385 * CPU maintenance IRQ line, which is typically wired up 386 * to the GIC as a per-CPU interrupt. This means that it 387 * will recursively call back into the GIC code via 388 * gicv3_redist_set_irq() and thus into the CPU interface code's 389 * gicv3_cpuif_update(). It is therefore important that this 390 * function is only called as the final action of a CPU interface 391 * register write implementation, after all the GIC state 392 * fields have been updated. gicv3_cpuif_update() also must 393 * not cause this function to be called, but that happens 394 * naturally as a result of there being no architectural 395 * linkage between the physical and virtual GIC logic. 396 */ 397 int idx; 398 int irqlevel = 0; 399 int fiqlevel = 0; 400 int maintlevel = 0; 401 402 idx = hppvi_index(cs); 403 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 404 if (idx >= 0) { 405 uint64_t lr = cs->ich_lr_el2[idx]; 406 407 if (icv_hppi_can_preempt(cs, lr)) { 408 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 409 if (lr & ICH_LR_EL2_GROUP) { 410 irqlevel = 1; 411 } else { 412 fiqlevel = 1; 413 } 414 } 415 } 416 417 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 418 maintlevel = maintenance_interrupt_state(cs); 419 } 420 421 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 422 irqlevel, maintlevel); 423 424 qemu_set_irq(cs->parent_vfiq, fiqlevel); 425 qemu_set_irq(cs->parent_virq, irqlevel); 426 qemu_set_irq(cs->maintenance_irq, maintlevel); 427 } 428 429 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 430 { 431 GICv3CPUState *cs = icc_cs_from_env(env); 432 int regno = ri->opc2 & 3; 433 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 434 uint64_t value = cs->ich_apr[grp][regno]; 435 436 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 437 return value; 438 } 439 440 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 441 uint64_t value) 442 { 443 GICv3CPUState *cs = icc_cs_from_env(env); 444 int regno = ri->opc2 & 3; 445 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 446 447 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 448 449 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 450 451 gicv3_cpuif_virt_update(cs); 452 return; 453 } 454 455 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 456 { 457 GICv3CPUState *cs = icc_cs_from_env(env); 458 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 459 uint64_t bpr; 460 bool satinc = false; 461 462 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 463 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 464 grp = GICV3_G0; 465 satinc = true; 466 } 467 468 bpr = read_vbpr(cs, grp); 469 470 if (satinc) { 471 bpr++; 472 bpr = MIN(bpr, 7); 473 } 474 475 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 476 477 return bpr; 478 } 479 480 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 481 uint64_t value) 482 { 483 GICv3CPUState *cs = icc_cs_from_env(env); 484 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 485 486 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 487 gicv3_redist_affid(cs), value); 488 489 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 490 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 491 return; 492 } 493 494 write_vbpr(cs, grp, value); 495 496 gicv3_cpuif_virt_update(cs); 497 } 498 499 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 500 { 501 GICv3CPUState *cs = icc_cs_from_env(env); 502 uint64_t value; 503 504 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 505 ICH_VMCR_EL2_VPMR_LENGTH); 506 507 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 508 return value; 509 } 510 511 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 512 uint64_t value) 513 { 514 GICv3CPUState *cs = icc_cs_from_env(env); 515 516 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 517 518 value &= icv_fullprio_mask(cs); 519 520 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 521 ICH_VMCR_EL2_VPMR_LENGTH, value); 522 523 gicv3_cpuif_virt_update(cs); 524 } 525 526 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 527 { 528 GICv3CPUState *cs = icc_cs_from_env(env); 529 int enbit; 530 uint64_t value; 531 532 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 533 value = extract64(cs->ich_vmcr_el2, enbit, 1); 534 535 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 536 gicv3_redist_affid(cs), value); 537 return value; 538 } 539 540 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 541 uint64_t value) 542 { 543 GICv3CPUState *cs = icc_cs_from_env(env); 544 int enbit; 545 546 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 547 gicv3_redist_affid(cs), value); 548 549 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 550 551 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 552 gicv3_cpuif_virt_update(cs); 553 } 554 555 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 556 { 557 GICv3CPUState *cs = icc_cs_from_env(env); 558 uint64_t value; 559 560 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 561 * should match the ones reported in ich_vtr_read(). 562 */ 563 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 564 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 565 566 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 567 value |= ICC_CTLR_EL1_EOIMODE; 568 } 569 570 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 571 value |= ICC_CTLR_EL1_CBPR; 572 } 573 574 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 575 return value; 576 } 577 578 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 579 uint64_t value) 580 { 581 GICv3CPUState *cs = icc_cs_from_env(env); 582 583 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 584 585 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 586 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 587 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 588 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 589 590 gicv3_cpuif_virt_update(cs); 591 } 592 593 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 594 { 595 GICv3CPUState *cs = icc_cs_from_env(env); 596 int prio = ich_highest_active_virt_prio(cs); 597 598 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 599 return prio; 600 } 601 602 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 603 { 604 GICv3CPUState *cs = icc_cs_from_env(env); 605 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 606 int idx = hppvi_index(cs); 607 uint64_t value = INTID_SPURIOUS; 608 609 if (idx >= 0) { 610 uint64_t lr = cs->ich_lr_el2[idx]; 611 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 612 613 if (grp == thisgrp) { 614 value = ich_lr_vintid(lr); 615 } 616 } 617 618 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 619 return value; 620 } 621 622 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 623 { 624 /* Activate the interrupt in the specified list register 625 * by moving it from Pending to Active state, and update the 626 * Active Priority Registers. 627 */ 628 uint32_t mask = icv_gprio_mask(cs, grp); 629 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 630 int aprbit = prio >> (8 - cs->vprebits); 631 int regno = aprbit / 32; 632 int regbit = aprbit % 32; 633 634 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 635 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 636 cs->ich_apr[grp][regno] |= (1 << regbit); 637 } 638 639 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 640 { 641 GICv3CPUState *cs = icc_cs_from_env(env); 642 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 643 int idx = hppvi_index(cs); 644 uint64_t intid = INTID_SPURIOUS; 645 646 if (idx >= 0) { 647 uint64_t lr = cs->ich_lr_el2[idx]; 648 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 649 650 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 651 intid = ich_lr_vintid(lr); 652 if (intid < INTID_SECURE) { 653 icv_activate_irq(cs, idx, grp); 654 } else { 655 /* Interrupt goes from Pending to Invalid */ 656 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 657 /* We will now return the (bogus) ID from the list register, 658 * as per the pseudocode. 659 */ 660 } 661 } 662 } 663 664 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 665 gicv3_redist_affid(cs), intid); 666 return intid; 667 } 668 669 static int icc_highest_active_prio(GICv3CPUState *cs) 670 { 671 /* Calculate the current running priority based on the set bits 672 * in the Active Priority Registers. 673 */ 674 int i; 675 676 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 677 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 678 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 679 680 if (!apr) { 681 continue; 682 } 683 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 684 } 685 /* No current active interrupts: return idle priority */ 686 return 0xff; 687 } 688 689 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 690 { 691 /* Return a mask word which clears the subpriority bits from 692 * a priority value for an interrupt in the specified group. 693 * This depends on the BPR value. For CBPR0 (S or NS): 694 * a BPR of 0 means the group priority bits are [7:1]; 695 * a BPR of 1 means they are [7:2], and so on down to 696 * a BPR of 7 meaning no group priority bits at all. 697 * For CBPR1 NS: 698 * a BPR of 0 is impossible (the minimum value is 1) 699 * a BPR of 1 means the group priority bits are [7:1]; 700 * a BPR of 2 means they are [7:2], and so on down to 701 * a BPR of 7 meaning the group priority is [7]. 702 * 703 * Which BPR to use depends on the group of the interrupt and 704 * the current ICC_CTLR.CBPR settings. 705 * 706 * This corresponds to the GroupBits() pseudocode. 707 */ 708 int bpr; 709 710 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 711 (group == GICV3_G1NS && 712 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 713 group = GICV3_G0; 714 } 715 716 bpr = cs->icc_bpr[group] & 7; 717 718 if (group == GICV3_G1NS) { 719 assert(bpr > 0); 720 bpr--; 721 } 722 723 return ~0U << (bpr + 1); 724 } 725 726 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 727 { 728 /* Return true if there is no pending interrupt, or the 729 * highest priority pending interrupt is in a group which has been 730 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 731 */ 732 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 733 } 734 735 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 736 { 737 /* Return true if we have a pending interrupt of sufficient 738 * priority to preempt. 739 */ 740 int rprio; 741 uint32_t mask; 742 743 if (icc_no_enabled_hppi(cs)) { 744 return false; 745 } 746 747 if (cs->hppi.prio >= cs->icc_pmr_el1) { 748 /* Priority mask masks this interrupt */ 749 return false; 750 } 751 752 rprio = icc_highest_active_prio(cs); 753 if (rprio == 0xff) { 754 /* No currently running interrupt so we can preempt */ 755 return true; 756 } 757 758 mask = icc_gprio_mask(cs, cs->hppi.grp); 759 760 /* We only preempt a running interrupt if the pending interrupt's 761 * group priority is sufficient (the subpriorities are not considered). 762 */ 763 if ((cs->hppi.prio & mask) < (rprio & mask)) { 764 return true; 765 } 766 767 return false; 768 } 769 770 void gicv3_cpuif_update(GICv3CPUState *cs) 771 { 772 /* Tell the CPU about its highest priority pending interrupt */ 773 int irqlevel = 0; 774 int fiqlevel = 0; 775 ARMCPU *cpu = ARM_CPU(cs->cpu); 776 CPUARMState *env = &cpu->env; 777 778 g_assert(qemu_mutex_iothread_locked()); 779 780 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 781 cs->hppi.grp, cs->hppi.prio); 782 783 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 784 /* If a Security-enabled GIC sends a G1S interrupt to a 785 * Security-disabled CPU, we must treat it as if it were G0. 786 */ 787 cs->hppi.grp = GICV3_G0; 788 } 789 790 if (icc_hppi_can_preempt(cs)) { 791 /* We have an interrupt: should we signal it as IRQ or FIQ? 792 * This is described in the GICv3 spec section 4.6.2. 793 */ 794 bool isfiq; 795 796 switch (cs->hppi.grp) { 797 case GICV3_G0: 798 isfiq = true; 799 break; 800 case GICV3_G1: 801 isfiq = (!arm_is_secure(env) || 802 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 803 break; 804 case GICV3_G1NS: 805 isfiq = arm_is_secure(env); 806 break; 807 default: 808 g_assert_not_reached(); 809 } 810 811 if (isfiq) { 812 fiqlevel = 1; 813 } else { 814 irqlevel = 1; 815 } 816 } 817 818 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 819 820 qemu_set_irq(cs->parent_fiq, fiqlevel); 821 qemu_set_irq(cs->parent_irq, irqlevel); 822 } 823 824 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 825 { 826 GICv3CPUState *cs = icc_cs_from_env(env); 827 uint32_t value = cs->icc_pmr_el1; 828 829 if (icv_access(env, HCR_FMO | HCR_IMO)) { 830 return icv_pmr_read(env, ri); 831 } 832 833 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 834 (env->cp15.scr_el3 & SCR_FIQ)) { 835 /* NS access and Group 0 is inaccessible to NS: return the 836 * NS view of the current priority 837 */ 838 if ((value & 0x80) == 0) { 839 /* Secure priorities not visible to NS */ 840 value = 0; 841 } else if (value != 0xff) { 842 value = (value << 1) & 0xff; 843 } 844 } 845 846 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 847 848 return value; 849 } 850 851 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 852 uint64_t value) 853 { 854 GICv3CPUState *cs = icc_cs_from_env(env); 855 856 if (icv_access(env, HCR_FMO | HCR_IMO)) { 857 return icv_pmr_write(env, ri, value); 858 } 859 860 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 861 862 value &= 0xff; 863 864 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 865 (env->cp15.scr_el3 & SCR_FIQ)) { 866 /* NS access and Group 0 is inaccessible to NS: return the 867 * NS view of the current priority 868 */ 869 if (!(cs->icc_pmr_el1 & 0x80)) { 870 /* Current PMR in the secure range, don't allow NS to change it */ 871 return; 872 } 873 value = (value >> 1) | 0x80; 874 } 875 cs->icc_pmr_el1 = value; 876 gicv3_cpuif_update(cs); 877 } 878 879 static void icc_activate_irq(GICv3CPUState *cs, int irq) 880 { 881 /* Move the interrupt from the Pending state to Active, and update 882 * the Active Priority Registers 883 */ 884 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 885 int prio = cs->hppi.prio & mask; 886 int aprbit = prio >> 1; 887 int regno = aprbit / 32; 888 int regbit = aprbit % 32; 889 890 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 891 892 if (irq < GIC_INTERNAL) { 893 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 894 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 895 gicv3_redist_update(cs); 896 } else { 897 gicv3_gicd_active_set(cs->gic, irq); 898 gicv3_gicd_pending_clear(cs->gic, irq); 899 gicv3_update(cs->gic, irq, 1); 900 } 901 } 902 903 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 904 { 905 /* Return the highest priority pending interrupt register value 906 * for group 0. 907 */ 908 bool irq_is_secure; 909 910 if (cs->hppi.prio == 0xff) { 911 return INTID_SPURIOUS; 912 } 913 914 /* Check whether we can return the interrupt or if we should return 915 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 916 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 917 * is always zero.) 918 */ 919 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 920 (cs->hppi.grp != GICV3_G1NS)); 921 922 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 923 return INTID_SPURIOUS; 924 } 925 if (irq_is_secure && !arm_is_secure(env)) { 926 /* Secure interrupts not visible to Nonsecure */ 927 return INTID_SPURIOUS; 928 } 929 930 if (cs->hppi.grp != GICV3_G0) { 931 /* Indicate to EL3 that there's a Group 1 interrupt for the other 932 * state pending. 933 */ 934 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 935 } 936 937 return cs->hppi.irq; 938 } 939 940 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 941 { 942 /* Return the highest priority pending interrupt register value 943 * for group 1. 944 */ 945 bool irq_is_secure; 946 947 if (cs->hppi.prio == 0xff) { 948 return INTID_SPURIOUS; 949 } 950 951 /* Check whether we can return the interrupt or if we should return 952 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 953 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 954 * is always zero.) 955 */ 956 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 957 (cs->hppi.grp != GICV3_G1NS)); 958 959 if (cs->hppi.grp == GICV3_G0) { 960 /* Group 0 interrupts not visible via HPPIR1 */ 961 return INTID_SPURIOUS; 962 } 963 if (irq_is_secure) { 964 if (!arm_is_secure(env)) { 965 /* Secure interrupts not visible in Non-secure */ 966 return INTID_SPURIOUS; 967 } 968 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 969 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 970 return INTID_SPURIOUS; 971 } 972 973 return cs->hppi.irq; 974 } 975 976 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 977 { 978 GICv3CPUState *cs = icc_cs_from_env(env); 979 uint64_t intid; 980 981 if (icv_access(env, HCR_FMO)) { 982 return icv_iar_read(env, ri); 983 } 984 985 if (!icc_hppi_can_preempt(cs)) { 986 intid = INTID_SPURIOUS; 987 } else { 988 intid = icc_hppir0_value(cs, env); 989 } 990 991 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 992 icc_activate_irq(cs, intid); 993 } 994 995 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 996 return intid; 997 } 998 999 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1000 { 1001 GICv3CPUState *cs = icc_cs_from_env(env); 1002 uint64_t intid; 1003 1004 if (icv_access(env, HCR_IMO)) { 1005 return icv_iar_read(env, ri); 1006 } 1007 1008 if (!icc_hppi_can_preempt(cs)) { 1009 intid = INTID_SPURIOUS; 1010 } else { 1011 intid = icc_hppir1_value(cs, env); 1012 } 1013 1014 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 1015 icc_activate_irq(cs, intid); 1016 } 1017 1018 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1019 return intid; 1020 } 1021 1022 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1023 { 1024 /* Drop the priority of the currently active interrupt in 1025 * the specified group. 1026 * 1027 * Note that we can guarantee (because of the requirement to nest 1028 * ICC_IAR reads [which activate an interrupt and raise priority] 1029 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1030 * that the interrupt we're being called for is the highest priority 1031 * active interrupt, meaning that it has the lowest set bit in the 1032 * APR registers. 1033 * 1034 * If the guest does not honour the ordering constraints then the 1035 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1036 * the values of the APR registers might become incorrect and the 1037 * running priority will be wrong, so interrupts that should preempt 1038 * might not do so, and interrupts that should not preempt might do so. 1039 */ 1040 int i; 1041 1042 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1043 uint64_t *papr = &cs->icc_apr[grp][i]; 1044 1045 if (!*papr) { 1046 continue; 1047 } 1048 /* Clear the lowest set bit */ 1049 *papr &= *papr - 1; 1050 break; 1051 } 1052 1053 /* running priority change means we need an update for this cpu i/f */ 1054 gicv3_cpuif_update(cs); 1055 } 1056 1057 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1058 { 1059 /* Return true if we should split priority drop and interrupt 1060 * deactivation, ie whether the relevant EOIMode bit is set. 1061 */ 1062 if (arm_is_el3_or_mon(env)) { 1063 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1064 } 1065 if (arm_is_secure_below_el3(env)) { 1066 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1067 } else { 1068 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1069 } 1070 } 1071 1072 static int icc_highest_active_group(GICv3CPUState *cs) 1073 { 1074 /* Return the group with the highest priority active interrupt. 1075 * We can do this by just comparing the APRs to see which one 1076 * has the lowest set bit. 1077 * (If more than one group is active at the same priority then 1078 * we're in UNPREDICTABLE territory.) 1079 */ 1080 int i; 1081 1082 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1083 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1084 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1085 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1086 1087 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1088 return GICV3_G1NS; 1089 } 1090 if (g1ctz < g0ctz) { 1091 return GICV3_G1; 1092 } 1093 if (g0ctz < 32) { 1094 return GICV3_G0; 1095 } 1096 } 1097 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1098 * ignores the spurious EOI attempt. 1099 */ 1100 return -1; 1101 } 1102 1103 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1104 { 1105 if (irq < GIC_INTERNAL) { 1106 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1107 gicv3_redist_update(cs); 1108 } else { 1109 gicv3_gicd_active_clear(cs->gic, irq); 1110 gicv3_update(cs->gic, irq, 1); 1111 } 1112 } 1113 1114 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1115 { 1116 /* Return true if we should split priority drop and interrupt 1117 * deactivation, ie whether the virtual EOIMode bit is set. 1118 */ 1119 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1120 } 1121 1122 static int icv_find_active(GICv3CPUState *cs, int irq) 1123 { 1124 /* Given an interrupt number for an active interrupt, return the index 1125 * of the corresponding list register, or -1 if there is no match. 1126 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1127 */ 1128 int i; 1129 1130 for (i = 0; i < cs->num_list_regs; i++) { 1131 uint64_t lr = cs->ich_lr_el2[i]; 1132 1133 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1134 return i; 1135 } 1136 } 1137 1138 return -1; 1139 } 1140 1141 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1142 { 1143 /* Deactivate the interrupt in the specified list register index */ 1144 uint64_t lr = cs->ich_lr_el2[idx]; 1145 1146 if (lr & ICH_LR_EL2_HW) { 1147 /* Deactivate the associated physical interrupt */ 1148 int pirq = ich_lr_pintid(lr); 1149 1150 if (pirq < INTID_SECURE) { 1151 icc_deactivate_irq(cs, pirq); 1152 } 1153 } 1154 1155 /* Clear the 'active' part of the state, so ActivePending->Pending 1156 * and Active->Invalid. 1157 */ 1158 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1159 cs->ich_lr_el2[idx] = lr; 1160 } 1161 1162 static void icv_increment_eoicount(GICv3CPUState *cs) 1163 { 1164 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1165 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1166 ICH_HCR_EL2_EOICOUNT_LENGTH); 1167 1168 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1169 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1170 } 1171 1172 static int icv_drop_prio(GICv3CPUState *cs) 1173 { 1174 /* Drop the priority of the currently active virtual interrupt 1175 * (favouring group 0 if there is a set active bit at 1176 * the same priority for both group 0 and group 1). 1177 * Return the priority value for the bit we just cleared, 1178 * or 0xff if no bits were set in the AP registers at all. 1179 * Note that though the ich_apr[] are uint64_t only the low 1180 * 32 bits are actually relevant. 1181 */ 1182 int i; 1183 int aprmax = 1 << (cs->vprebits - 5); 1184 1185 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1186 1187 for (i = 0; i < aprmax; i++) { 1188 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1189 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1190 int apr0count, apr1count; 1191 1192 if (!*papr0 && !*papr1) { 1193 continue; 1194 } 1195 1196 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1197 * because we need to return the bit number we cleared so 1198 * it can be compared against the list register's priority field. 1199 */ 1200 apr0count = ctz32(*papr0); 1201 apr1count = ctz32(*papr1); 1202 1203 if (apr0count <= apr1count) { 1204 *papr0 &= *papr0 - 1; 1205 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1206 } else { 1207 *papr1 &= *papr1 - 1; 1208 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1209 } 1210 } 1211 return 0xff; 1212 } 1213 1214 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1215 uint64_t value) 1216 { 1217 /* Deactivate interrupt */ 1218 GICv3CPUState *cs = icc_cs_from_env(env); 1219 int idx; 1220 int irq = value & 0xffffff; 1221 1222 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1223 1224 if (irq >= cs->gic->num_irq) { 1225 /* Also catches special interrupt numbers and LPIs */ 1226 return; 1227 } 1228 1229 if (!icv_eoi_split(env, cs)) { 1230 return; 1231 } 1232 1233 idx = icv_find_active(cs, irq); 1234 1235 if (idx < 0) { 1236 /* No list register matching this, so increment the EOI count 1237 * (might trigger a maintenance interrupt) 1238 */ 1239 icv_increment_eoicount(cs); 1240 } else { 1241 icv_deactivate_irq(cs, idx); 1242 } 1243 1244 gicv3_cpuif_virt_update(cs); 1245 } 1246 1247 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1248 uint64_t value) 1249 { 1250 /* End of Interrupt */ 1251 GICv3CPUState *cs = icc_cs_from_env(env); 1252 int irq = value & 0xffffff; 1253 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1254 int idx, dropprio; 1255 1256 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1257 gicv3_redist_affid(cs), value); 1258 1259 if (irq >= cs->gic->num_irq) { 1260 /* Also catches special interrupt numbers and LPIs */ 1261 return; 1262 } 1263 1264 /* We implement the IMPDEF choice of "drop priority before doing 1265 * error checks" (because that lets us avoid scanning the AP 1266 * registers twice). 1267 */ 1268 dropprio = icv_drop_prio(cs); 1269 if (dropprio == 0xff) { 1270 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1271 * whether the list registers are checked in this 1272 * situation; we choose not to. 1273 */ 1274 return; 1275 } 1276 1277 idx = icv_find_active(cs, irq); 1278 1279 if (idx < 0) { 1280 /* No valid list register corresponding to EOI ID */ 1281 icv_increment_eoicount(cs); 1282 } else { 1283 uint64_t lr = cs->ich_lr_el2[idx]; 1284 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1285 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1286 1287 if (thisgrp == grp && lr_gprio == dropprio) { 1288 if (!icv_eoi_split(env, cs)) { 1289 /* Priority drop and deactivate not split: deactivate irq now */ 1290 icv_deactivate_irq(cs, idx); 1291 } 1292 } 1293 } 1294 1295 gicv3_cpuif_virt_update(cs); 1296 } 1297 1298 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1299 uint64_t value) 1300 { 1301 /* End of Interrupt */ 1302 GICv3CPUState *cs = icc_cs_from_env(env); 1303 int irq = value & 0xffffff; 1304 int grp; 1305 1306 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1307 icv_eoir_write(env, ri, value); 1308 return; 1309 } 1310 1311 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1312 gicv3_redist_affid(cs), value); 1313 1314 if (ri->crm == 8) { 1315 /* EOIR0 */ 1316 grp = GICV3_G0; 1317 } else { 1318 /* EOIR1 */ 1319 if (arm_is_secure(env)) { 1320 grp = GICV3_G1; 1321 } else { 1322 grp = GICV3_G1NS; 1323 } 1324 } 1325 1326 if (irq >= cs->gic->num_irq) { 1327 /* This handles two cases: 1328 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1329 * to the GICC_EOIR, the GIC ignores that write. 1330 * 2. If software writes the number of a non-existent interrupt 1331 * this must be a subcase of "value written does not match the last 1332 * valid interrupt value read from the Interrupt Acknowledge 1333 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1334 */ 1335 return; 1336 } 1337 1338 if (icc_highest_active_group(cs) != grp) { 1339 return; 1340 } 1341 1342 icc_drop_prio(cs, grp); 1343 1344 if (!icc_eoi_split(env, cs)) { 1345 /* Priority drop and deactivate not split: deactivate irq now */ 1346 icc_deactivate_irq(cs, irq); 1347 } 1348 } 1349 1350 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1351 { 1352 GICv3CPUState *cs = icc_cs_from_env(env); 1353 uint64_t value; 1354 1355 if (icv_access(env, HCR_FMO)) { 1356 return icv_hppir_read(env, ri); 1357 } 1358 1359 value = icc_hppir0_value(cs, env); 1360 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1361 return value; 1362 } 1363 1364 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1365 { 1366 GICv3CPUState *cs = icc_cs_from_env(env); 1367 uint64_t value; 1368 1369 if (icv_access(env, HCR_IMO)) { 1370 return icv_hppir_read(env, ri); 1371 } 1372 1373 value = icc_hppir1_value(cs, env); 1374 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1375 return value; 1376 } 1377 1378 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1379 { 1380 GICv3CPUState *cs = icc_cs_from_env(env); 1381 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1382 bool satinc = false; 1383 uint64_t bpr; 1384 1385 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1386 return icv_bpr_read(env, ri); 1387 } 1388 1389 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1390 grp = GICV3_G1NS; 1391 } 1392 1393 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1394 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1395 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1396 * modify BPR0 1397 */ 1398 grp = GICV3_G0; 1399 } 1400 1401 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1402 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1403 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1404 grp = GICV3_G0; 1405 satinc = true; 1406 } 1407 1408 bpr = cs->icc_bpr[grp]; 1409 if (satinc) { 1410 bpr++; 1411 bpr = MIN(bpr, 7); 1412 } 1413 1414 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1415 1416 return bpr; 1417 } 1418 1419 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1420 uint64_t value) 1421 { 1422 GICv3CPUState *cs = icc_cs_from_env(env); 1423 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1424 uint64_t minval; 1425 1426 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1427 icv_bpr_write(env, ri, value); 1428 return; 1429 } 1430 1431 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1432 gicv3_redist_affid(cs), value); 1433 1434 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1435 grp = GICV3_G1NS; 1436 } 1437 1438 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1439 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1440 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1441 * modify BPR0 1442 */ 1443 grp = GICV3_G0; 1444 } 1445 1446 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1447 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1448 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1449 return; 1450 } 1451 1452 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR; 1453 if (value < minval) { 1454 value = minval; 1455 } 1456 1457 cs->icc_bpr[grp] = value & 7; 1458 gicv3_cpuif_update(cs); 1459 } 1460 1461 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1462 { 1463 GICv3CPUState *cs = icc_cs_from_env(env); 1464 uint64_t value; 1465 1466 int regno = ri->opc2 & 3; 1467 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1468 1469 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1470 return icv_ap_read(env, ri); 1471 } 1472 1473 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1474 grp = GICV3_G1NS; 1475 } 1476 1477 value = cs->icc_apr[grp][regno]; 1478 1479 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1480 return value; 1481 } 1482 1483 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1484 uint64_t value) 1485 { 1486 GICv3CPUState *cs = icc_cs_from_env(env); 1487 1488 int regno = ri->opc2 & 3; 1489 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1490 1491 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1492 icv_ap_write(env, ri, value); 1493 return; 1494 } 1495 1496 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1497 1498 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1499 grp = GICV3_G1NS; 1500 } 1501 1502 /* It's not possible to claim that a Non-secure interrupt is active 1503 * at a priority outside the Non-secure range (128..255), since this 1504 * would otherwise allow malicious NS code to block delivery of S interrupts 1505 * by writing a bad value to these registers. 1506 */ 1507 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1508 return; 1509 } 1510 1511 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1512 gicv3_cpuif_update(cs); 1513 } 1514 1515 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1516 uint64_t value) 1517 { 1518 /* Deactivate interrupt */ 1519 GICv3CPUState *cs = icc_cs_from_env(env); 1520 int irq = value & 0xffffff; 1521 bool irq_is_secure, single_sec_state, irq_is_grp0; 1522 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1523 1524 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1525 icv_dir_write(env, ri, value); 1526 return; 1527 } 1528 1529 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1530 1531 if (irq >= cs->gic->num_irq) { 1532 /* Also catches special interrupt numbers and LPIs */ 1533 return; 1534 } 1535 1536 if (!icc_eoi_split(env, cs)) { 1537 return; 1538 } 1539 1540 int grp = gicv3_irq_group(cs->gic, cs, irq); 1541 1542 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1543 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1544 irq_is_grp0 = grp == GICV3_G0; 1545 1546 /* Check whether we're allowed to deactivate this interrupt based 1547 * on its group and the current CPU state. 1548 * These checks are laid out to correspond to the spec's pseudocode. 1549 */ 1550 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1551 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1552 /* No need to include !IsSecure in route_*_to_el2 as it's only 1553 * tested in cases where we know !IsSecure is true. 1554 */ 1555 route_fiq_to_el2 = arm_hcr_el2_fmo(env); 1556 route_irq_to_el2 = arm_hcr_el2_imo(env); 1557 1558 switch (arm_current_el(env)) { 1559 case 3: 1560 break; 1561 case 2: 1562 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1563 break; 1564 } 1565 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1566 break; 1567 } 1568 return; 1569 case 1: 1570 if (!arm_is_secure_below_el3(env)) { 1571 if (single_sec_state && irq_is_grp0 && 1572 !route_fiq_to_el3 && !route_fiq_to_el2) { 1573 break; 1574 } 1575 if (!irq_is_secure && !irq_is_grp0 && 1576 !route_irq_to_el3 && !route_irq_to_el2) { 1577 break; 1578 } 1579 } else { 1580 if (irq_is_grp0 && !route_fiq_to_el3) { 1581 break; 1582 } 1583 if (!irq_is_grp0 && 1584 (!irq_is_secure || !single_sec_state) && 1585 !route_irq_to_el3) { 1586 break; 1587 } 1588 } 1589 return; 1590 default: 1591 g_assert_not_reached(); 1592 } 1593 1594 icc_deactivate_irq(cs, irq); 1595 } 1596 1597 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1598 { 1599 GICv3CPUState *cs = icc_cs_from_env(env); 1600 int prio; 1601 1602 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1603 return icv_rpr_read(env, ri); 1604 } 1605 1606 prio = icc_highest_active_prio(cs); 1607 1608 if (arm_feature(env, ARM_FEATURE_EL3) && 1609 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1610 /* NS GIC access and Group 0 is inaccessible to NS */ 1611 if ((prio & 0x80) == 0) { 1612 /* NS mustn't see priorities in the Secure half of the range */ 1613 prio = 0; 1614 } else if (prio != 0xff) { 1615 /* Non-idle priority: show the Non-secure view of it */ 1616 prio = (prio << 1) & 0xff; 1617 } 1618 } 1619 1620 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1621 return prio; 1622 } 1623 1624 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1625 uint64_t value, int grp, bool ns) 1626 { 1627 GICv3State *s = cs->gic; 1628 1629 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1630 uint64_t aff = extract64(value, 48, 8) << 16 | 1631 extract64(value, 32, 8) << 8 | 1632 extract64(value, 16, 8); 1633 uint32_t targetlist = extract64(value, 0, 16); 1634 uint32_t irq = extract64(value, 24, 4); 1635 bool irm = extract64(value, 40, 1); 1636 int i; 1637 1638 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1639 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1640 * interrupts as Group 0 interrupts and must send Secure Group 0 1641 * interrupts to the target CPUs. 1642 */ 1643 grp = GICV3_G0; 1644 } 1645 1646 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1647 aff, targetlist); 1648 1649 for (i = 0; i < s->num_cpu; i++) { 1650 GICv3CPUState *ocs = &s->cpu[i]; 1651 1652 if (irm) { 1653 /* IRM == 1 : route to all CPUs except self */ 1654 if (cs == ocs) { 1655 continue; 1656 } 1657 } else { 1658 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1659 * where the corresponding bit is set in targetlist 1660 */ 1661 int aff0; 1662 1663 if (ocs->gicr_typer >> 40 != aff) { 1664 continue; 1665 } 1666 aff0 = extract64(ocs->gicr_typer, 32, 8); 1667 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1668 continue; 1669 } 1670 } 1671 1672 /* The redistributor will check against its own GICR_NSACR as needed */ 1673 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1674 } 1675 } 1676 1677 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1678 uint64_t value) 1679 { 1680 /* Generate Secure Group 0 SGI. */ 1681 GICv3CPUState *cs = icc_cs_from_env(env); 1682 bool ns = !arm_is_secure(env); 1683 1684 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1685 } 1686 1687 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1688 uint64_t value) 1689 { 1690 /* Generate Group 1 SGI for the current Security state */ 1691 GICv3CPUState *cs = icc_cs_from_env(env); 1692 int grp; 1693 bool ns = !arm_is_secure(env); 1694 1695 grp = ns ? GICV3_G1NS : GICV3_G1; 1696 icc_generate_sgi(env, cs, value, grp, ns); 1697 } 1698 1699 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1700 uint64_t value) 1701 { 1702 /* Generate Group 1 SGI for the Security state that is not 1703 * the current state 1704 */ 1705 GICv3CPUState *cs = icc_cs_from_env(env); 1706 int grp; 1707 bool ns = !arm_is_secure(env); 1708 1709 grp = ns ? GICV3_G1 : GICV3_G1NS; 1710 icc_generate_sgi(env, cs, value, grp, ns); 1711 } 1712 1713 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1714 { 1715 GICv3CPUState *cs = icc_cs_from_env(env); 1716 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1717 uint64_t value; 1718 1719 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1720 return icv_igrpen_read(env, ri); 1721 } 1722 1723 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1724 grp = GICV3_G1NS; 1725 } 1726 1727 value = cs->icc_igrpen[grp]; 1728 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1729 gicv3_redist_affid(cs), value); 1730 return value; 1731 } 1732 1733 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1734 uint64_t value) 1735 { 1736 GICv3CPUState *cs = icc_cs_from_env(env); 1737 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1738 1739 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1740 icv_igrpen_write(env, ri, value); 1741 return; 1742 } 1743 1744 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1745 gicv3_redist_affid(cs), value); 1746 1747 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1748 grp = GICV3_G1NS; 1749 } 1750 1751 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1752 gicv3_cpuif_update(cs); 1753 } 1754 1755 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1756 { 1757 GICv3CPUState *cs = icc_cs_from_env(env); 1758 uint64_t value; 1759 1760 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1761 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1762 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1763 return value; 1764 } 1765 1766 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1767 uint64_t value) 1768 { 1769 GICv3CPUState *cs = icc_cs_from_env(env); 1770 1771 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1772 1773 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1774 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1775 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1776 gicv3_cpuif_update(cs); 1777 } 1778 1779 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1780 { 1781 GICv3CPUState *cs = icc_cs_from_env(env); 1782 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1783 uint64_t value; 1784 1785 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1786 return icv_ctlr_read(env, ri); 1787 } 1788 1789 value = cs->icc_ctlr_el1[bank]; 1790 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1791 return value; 1792 } 1793 1794 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1795 uint64_t value) 1796 { 1797 GICv3CPUState *cs = icc_cs_from_env(env); 1798 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1799 uint64_t mask; 1800 1801 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1802 icv_ctlr_write(env, ri, value); 1803 return; 1804 } 1805 1806 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1807 1808 /* Only CBPR and EOIMODE can be RW; 1809 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1810 * the asseciated priority-based routing of them); 1811 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1812 */ 1813 if (arm_feature(env, ARM_FEATURE_EL3) && 1814 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1815 mask = ICC_CTLR_EL1_EOIMODE; 1816 } else { 1817 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1818 } 1819 1820 cs->icc_ctlr_el1[bank] &= ~mask; 1821 cs->icc_ctlr_el1[bank] |= (value & mask); 1822 gicv3_cpuif_update(cs); 1823 } 1824 1825 1826 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1827 { 1828 GICv3CPUState *cs = icc_cs_from_env(env); 1829 uint64_t value; 1830 1831 value = cs->icc_ctlr_el3; 1832 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1833 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1834 } 1835 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1836 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1837 } 1838 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1839 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1840 } 1841 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1842 value |= ICC_CTLR_EL3_CBPR_EL1S; 1843 } 1844 1845 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1846 return value; 1847 } 1848 1849 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1850 uint64_t value) 1851 { 1852 GICv3CPUState *cs = icc_cs_from_env(env); 1853 uint64_t mask; 1854 1855 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1856 1857 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1858 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1859 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1860 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1861 } 1862 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1863 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1864 } 1865 1866 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1867 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1868 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1869 } 1870 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1871 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1872 } 1873 1874 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1875 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1876 1877 cs->icc_ctlr_el3 &= ~mask; 1878 cs->icc_ctlr_el3 |= (value & mask); 1879 gicv3_cpuif_update(cs); 1880 } 1881 1882 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1883 const ARMCPRegInfo *ri, bool isread) 1884 { 1885 CPAccessResult r = CP_ACCESS_OK; 1886 GICv3CPUState *cs = icc_cs_from_env(env); 1887 int el = arm_current_el(env); 1888 1889 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1890 el == 1 && !arm_is_secure_below_el3(env)) { 1891 /* Takes priority over a possible EL3 trap */ 1892 return CP_ACCESS_TRAP_EL2; 1893 } 1894 1895 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1896 switch (el) { 1897 case 1: 1898 if (arm_is_secure_below_el3(env) || 1899 (arm_hcr_el2_imo(env) == 0 && arm_hcr_el2_fmo(env) == 0)) { 1900 r = CP_ACCESS_TRAP_EL3; 1901 } 1902 break; 1903 case 2: 1904 r = CP_ACCESS_TRAP_EL3; 1905 break; 1906 case 3: 1907 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1908 r = CP_ACCESS_TRAP_EL3; 1909 } 1910 break; 1911 default: 1912 g_assert_not_reached(); 1913 } 1914 } 1915 1916 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1917 r = CP_ACCESS_TRAP; 1918 } 1919 return r; 1920 } 1921 1922 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1923 const ARMCPRegInfo *ri, bool isread) 1924 { 1925 GICv3CPUState *cs = icc_cs_from_env(env); 1926 1927 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1928 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1929 /* Takes priority over a possible EL3 trap */ 1930 return CP_ACCESS_TRAP_EL2; 1931 } 1932 1933 return gicv3_irqfiq_access(env, ri, isread); 1934 } 1935 1936 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1937 const ARMCPRegInfo *ri, bool isread) 1938 { 1939 if ((arm_hcr_el2_imo(env) || arm_hcr_el2_fmo(env)) && 1940 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1941 /* Takes priority over a possible EL3 trap */ 1942 return CP_ACCESS_TRAP_EL2; 1943 } 1944 1945 return gicv3_irqfiq_access(env, ri, isread); 1946 } 1947 1948 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1949 const ARMCPRegInfo *ri, bool isread) 1950 { 1951 CPAccessResult r = CP_ACCESS_OK; 1952 GICv3CPUState *cs = icc_cs_from_env(env); 1953 int el = arm_current_el(env); 1954 1955 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1956 el == 1 && !arm_is_secure_below_el3(env)) { 1957 /* Takes priority over a possible EL3 trap */ 1958 return CP_ACCESS_TRAP_EL2; 1959 } 1960 1961 if (env->cp15.scr_el3 & SCR_FIQ) { 1962 switch (el) { 1963 case 1: 1964 if (arm_is_secure_below_el3(env) || !arm_hcr_el2_fmo(env)) { 1965 r = CP_ACCESS_TRAP_EL3; 1966 } 1967 break; 1968 case 2: 1969 r = CP_ACCESS_TRAP_EL3; 1970 break; 1971 case 3: 1972 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1973 r = CP_ACCESS_TRAP_EL3; 1974 } 1975 break; 1976 default: 1977 g_assert_not_reached(); 1978 } 1979 } 1980 1981 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1982 r = CP_ACCESS_TRAP; 1983 } 1984 return r; 1985 } 1986 1987 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1988 const ARMCPRegInfo *ri, bool isread) 1989 { 1990 CPAccessResult r = CP_ACCESS_OK; 1991 GICv3CPUState *cs = icc_cs_from_env(env); 1992 int el = arm_current_el(env); 1993 1994 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 1995 el == 1 && !arm_is_secure_below_el3(env)) { 1996 /* Takes priority over a possible EL3 trap */ 1997 return CP_ACCESS_TRAP_EL2; 1998 } 1999 2000 if (env->cp15.scr_el3 & SCR_IRQ) { 2001 switch (el) { 2002 case 1: 2003 if (arm_is_secure_below_el3(env) || !arm_hcr_el2_imo(env)) { 2004 r = CP_ACCESS_TRAP_EL3; 2005 } 2006 break; 2007 case 2: 2008 r = CP_ACCESS_TRAP_EL3; 2009 break; 2010 case 3: 2011 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2012 r = CP_ACCESS_TRAP_EL3; 2013 } 2014 break; 2015 default: 2016 g_assert_not_reached(); 2017 } 2018 } 2019 2020 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2021 r = CP_ACCESS_TRAP; 2022 } 2023 return r; 2024 } 2025 2026 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2027 { 2028 GICv3CPUState *cs = icc_cs_from_env(env); 2029 2030 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2031 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2032 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2033 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2034 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2035 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 2036 cs->icc_pmr_el1 = 0; 2037 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2038 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2039 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2040 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2041 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2042 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2043 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2044 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2045 2046 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2047 cs->ich_hcr_el2 = 0; 2048 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2049 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2050 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2051 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2052 } 2053 2054 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2055 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2056 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2057 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2058 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2059 .readfn = icc_pmr_read, 2060 .writefn = icc_pmr_write, 2061 /* We hang the whole cpu interface reset routine off here 2062 * rather than parcelling it out into one little function 2063 * per register 2064 */ 2065 .resetfn = icc_reset, 2066 }, 2067 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2068 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2069 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2070 .access = PL1_R, .accessfn = gicv3_fiq_access, 2071 .readfn = icc_iar0_read, 2072 }, 2073 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2075 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2076 .access = PL1_W, .accessfn = gicv3_fiq_access, 2077 .writefn = icc_eoir_write, 2078 }, 2079 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2080 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2081 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2082 .access = PL1_R, .accessfn = gicv3_fiq_access, 2083 .readfn = icc_hppir0_read, 2084 }, 2085 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2086 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2087 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2088 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2089 .readfn = icc_bpr_read, 2090 .writefn = icc_bpr_write, 2091 }, 2092 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2093 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2094 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2095 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2096 .readfn = icc_ap_read, 2097 .writefn = icc_ap_write, 2098 }, 2099 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2100 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2101 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2102 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2103 .readfn = icc_ap_read, 2104 .writefn = icc_ap_write, 2105 }, 2106 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2107 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2108 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2109 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2110 .readfn = icc_ap_read, 2111 .writefn = icc_ap_write, 2112 }, 2113 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2114 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2115 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2116 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2117 .readfn = icc_ap_read, 2118 .writefn = icc_ap_write, 2119 }, 2120 /* All the ICC_AP1R*_EL1 registers are banked */ 2121 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2122 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2123 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2124 .access = PL1_RW, .accessfn = gicv3_irq_access, 2125 .readfn = icc_ap_read, 2126 .writefn = icc_ap_write, 2127 }, 2128 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2130 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2131 .access = PL1_RW, .accessfn = gicv3_irq_access, 2132 .readfn = icc_ap_read, 2133 .writefn = icc_ap_write, 2134 }, 2135 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2136 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2137 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2138 .access = PL1_RW, .accessfn = gicv3_irq_access, 2139 .readfn = icc_ap_read, 2140 .writefn = icc_ap_write, 2141 }, 2142 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2143 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2144 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2145 .access = PL1_RW, .accessfn = gicv3_irq_access, 2146 .readfn = icc_ap_read, 2147 .writefn = icc_ap_write, 2148 }, 2149 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2150 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2151 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2152 .access = PL1_W, .accessfn = gicv3_dir_access, 2153 .writefn = icc_dir_write, 2154 }, 2155 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2156 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2157 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2158 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2159 .readfn = icc_rpr_read, 2160 }, 2161 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2162 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2163 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2164 .access = PL1_W, .accessfn = gicv3_sgi_access, 2165 .writefn = icc_sgi1r_write, 2166 }, 2167 { .name = "ICC_SGI1R", 2168 .cp = 15, .opc1 = 0, .crm = 12, 2169 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2170 .access = PL1_W, .accessfn = gicv3_sgi_access, 2171 .writefn = icc_sgi1r_write, 2172 }, 2173 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2174 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2175 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2176 .access = PL1_W, .accessfn = gicv3_sgi_access, 2177 .writefn = icc_asgi1r_write, 2178 }, 2179 { .name = "ICC_ASGI1R", 2180 .cp = 15, .opc1 = 1, .crm = 12, 2181 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2182 .access = PL1_W, .accessfn = gicv3_sgi_access, 2183 .writefn = icc_asgi1r_write, 2184 }, 2185 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2186 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2187 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2188 .access = PL1_W, .accessfn = gicv3_sgi_access, 2189 .writefn = icc_sgi0r_write, 2190 }, 2191 { .name = "ICC_SGI0R", 2192 .cp = 15, .opc1 = 2, .crm = 12, 2193 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2194 .access = PL1_W, .accessfn = gicv3_sgi_access, 2195 .writefn = icc_sgi0r_write, 2196 }, 2197 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2198 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2199 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2200 .access = PL1_R, .accessfn = gicv3_irq_access, 2201 .readfn = icc_iar1_read, 2202 }, 2203 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2204 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2205 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2206 .access = PL1_W, .accessfn = gicv3_irq_access, 2207 .writefn = icc_eoir_write, 2208 }, 2209 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2210 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2211 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2212 .access = PL1_R, .accessfn = gicv3_irq_access, 2213 .readfn = icc_hppir1_read, 2214 }, 2215 /* This register is banked */ 2216 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2217 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2218 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2219 .access = PL1_RW, .accessfn = gicv3_irq_access, 2220 .readfn = icc_bpr_read, 2221 .writefn = icc_bpr_write, 2222 }, 2223 /* This register is banked */ 2224 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2225 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2226 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2227 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2228 .readfn = icc_ctlr_el1_read, 2229 .writefn = icc_ctlr_el1_write, 2230 }, 2231 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2232 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2233 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2234 .access = PL1_RW, 2235 /* We don't support IRQ/FIQ bypass and system registers are 2236 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2237 * This register is banked but since it's constant we don't 2238 * need to do anything special. 2239 */ 2240 .resetvalue = 0x7, 2241 }, 2242 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2243 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2244 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2245 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2246 .readfn = icc_igrpen_read, 2247 .writefn = icc_igrpen_write, 2248 }, 2249 /* This register is banked */ 2250 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2251 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2252 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2253 .access = PL1_RW, .accessfn = gicv3_irq_access, 2254 .readfn = icc_igrpen_read, 2255 .writefn = icc_igrpen_write, 2256 }, 2257 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2258 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2259 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2260 .access = PL2_RW, 2261 /* We don't support IRQ/FIQ bypass and system registers are 2262 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2263 */ 2264 .resetvalue = 0xf, 2265 }, 2266 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2267 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2268 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2269 .access = PL3_RW, 2270 .readfn = icc_ctlr_el3_read, 2271 .writefn = icc_ctlr_el3_write, 2272 }, 2273 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2274 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2275 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2276 .access = PL3_RW, 2277 /* We don't support IRQ/FIQ bypass and system registers are 2278 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2279 */ 2280 .resetvalue = 0xf, 2281 }, 2282 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2283 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2284 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2285 .access = PL3_RW, 2286 .readfn = icc_igrpen1_el3_read, 2287 .writefn = icc_igrpen1_el3_write, 2288 }, 2289 REGINFO_SENTINEL 2290 }; 2291 2292 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2293 { 2294 GICv3CPUState *cs = icc_cs_from_env(env); 2295 int regno = ri->opc2 & 3; 2296 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2297 uint64_t value; 2298 2299 value = cs->ich_apr[grp][regno]; 2300 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2301 return value; 2302 } 2303 2304 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2305 uint64_t value) 2306 { 2307 GICv3CPUState *cs = icc_cs_from_env(env); 2308 int regno = ri->opc2 & 3; 2309 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2310 2311 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2312 2313 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2314 gicv3_cpuif_virt_update(cs); 2315 } 2316 2317 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2318 { 2319 GICv3CPUState *cs = icc_cs_from_env(env); 2320 uint64_t value = cs->ich_hcr_el2; 2321 2322 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2323 return value; 2324 } 2325 2326 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2327 uint64_t value) 2328 { 2329 GICv3CPUState *cs = icc_cs_from_env(env); 2330 2331 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2332 2333 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2334 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2335 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2336 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2337 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2338 2339 cs->ich_hcr_el2 = value; 2340 gicv3_cpuif_virt_update(cs); 2341 } 2342 2343 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2344 { 2345 GICv3CPUState *cs = icc_cs_from_env(env); 2346 uint64_t value = cs->ich_vmcr_el2; 2347 2348 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2349 return value; 2350 } 2351 2352 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2353 uint64_t value) 2354 { 2355 GICv3CPUState *cs = icc_cs_from_env(env); 2356 2357 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2358 2359 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2360 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2361 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2362 value |= ICH_VMCR_EL2_VFIQEN; 2363 2364 cs->ich_vmcr_el2 = value; 2365 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2366 * by reading and writing back the fields. 2367 */ 2368 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); 2369 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2370 2371 gicv3_cpuif_virt_update(cs); 2372 } 2373 2374 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2375 { 2376 GICv3CPUState *cs = icc_cs_from_env(env); 2377 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2378 uint64_t value; 2379 2380 /* This read function handles all of: 2381 * 64-bit reads of the whole LR 2382 * 32-bit reads of the low half of the LR 2383 * 32-bit reads of the high half of the LR 2384 */ 2385 if (ri->state == ARM_CP_STATE_AA32) { 2386 if (ri->crm >= 14) { 2387 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2388 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2389 } else { 2390 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2391 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2392 } 2393 } else { 2394 value = cs->ich_lr_el2[regno]; 2395 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2396 } 2397 2398 return value; 2399 } 2400 2401 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2402 uint64_t value) 2403 { 2404 GICv3CPUState *cs = icc_cs_from_env(env); 2405 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2406 2407 /* This write function handles all of: 2408 * 64-bit writes to the whole LR 2409 * 32-bit writes to the low half of the LR 2410 * 32-bit writes to the high half of the LR 2411 */ 2412 if (ri->state == ARM_CP_STATE_AA32) { 2413 if (ri->crm >= 14) { 2414 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2415 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2416 } else { 2417 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2418 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2419 } 2420 } else { 2421 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2422 } 2423 2424 /* Enforce RES0 bits in priority field */ 2425 if (cs->vpribits < 8) { 2426 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2427 8 - cs->vpribits, 0); 2428 } 2429 2430 cs->ich_lr_el2[regno] = value; 2431 gicv3_cpuif_virt_update(cs); 2432 } 2433 2434 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2435 { 2436 GICv3CPUState *cs = icc_cs_from_env(env); 2437 uint64_t value; 2438 2439 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2440 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2441 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2442 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2443 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2444 2445 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2446 return value; 2447 } 2448 2449 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2450 { 2451 GICv3CPUState *cs = icc_cs_from_env(env); 2452 uint64_t value = maintenance_interrupt_state(cs); 2453 2454 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2455 return value; 2456 } 2457 2458 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2459 { 2460 GICv3CPUState *cs = icc_cs_from_env(env); 2461 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2462 2463 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2464 return value; 2465 } 2466 2467 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2468 { 2469 GICv3CPUState *cs = icc_cs_from_env(env); 2470 uint64_t value = 0; 2471 int i; 2472 2473 for (i = 0; i < cs->num_list_regs; i++) { 2474 uint64_t lr = cs->ich_lr_el2[i]; 2475 2476 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2477 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2478 value |= (1 << i); 2479 } 2480 } 2481 2482 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2483 return value; 2484 } 2485 2486 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2487 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2489 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2490 .access = PL2_RW, 2491 .readfn = ich_ap_read, 2492 .writefn = ich_ap_write, 2493 }, 2494 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2495 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2496 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2497 .access = PL2_RW, 2498 .readfn = ich_ap_read, 2499 .writefn = ich_ap_write, 2500 }, 2501 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2502 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2503 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2504 .access = PL2_RW, 2505 .readfn = ich_hcr_read, 2506 .writefn = ich_hcr_write, 2507 }, 2508 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2509 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2510 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2511 .access = PL2_R, 2512 .readfn = ich_vtr_read, 2513 }, 2514 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2515 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2516 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2517 .access = PL2_R, 2518 .readfn = ich_misr_read, 2519 }, 2520 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2521 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2522 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2523 .access = PL2_R, 2524 .readfn = ich_eisr_read, 2525 }, 2526 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2527 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2528 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2529 .access = PL2_R, 2530 .readfn = ich_elrsr_read, 2531 }, 2532 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2533 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2534 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2535 .access = PL2_RW, 2536 .readfn = ich_vmcr_read, 2537 .writefn = ich_vmcr_write, 2538 }, 2539 REGINFO_SENTINEL 2540 }; 2541 2542 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2543 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2544 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2545 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2546 .access = PL2_RW, 2547 .readfn = ich_ap_read, 2548 .writefn = ich_ap_write, 2549 }, 2550 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2551 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2552 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2553 .access = PL2_RW, 2554 .readfn = ich_ap_read, 2555 .writefn = ich_ap_write, 2556 }, 2557 REGINFO_SENTINEL 2558 }; 2559 2560 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2561 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2562 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2563 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2564 .access = PL2_RW, 2565 .readfn = ich_ap_read, 2566 .writefn = ich_ap_write, 2567 }, 2568 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2569 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2570 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2571 .access = PL2_RW, 2572 .readfn = ich_ap_read, 2573 .writefn = ich_ap_write, 2574 }, 2575 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2576 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2577 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2578 .access = PL2_RW, 2579 .readfn = ich_ap_read, 2580 .writefn = ich_ap_write, 2581 }, 2582 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2583 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2584 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2585 .access = PL2_RW, 2586 .readfn = ich_ap_read, 2587 .writefn = ich_ap_write, 2588 }, 2589 REGINFO_SENTINEL 2590 }; 2591 2592 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2593 { 2594 GICv3CPUState *cs = opaque; 2595 2596 gicv3_cpuif_update(cs); 2597 } 2598 2599 void gicv3_init_cpuif(GICv3State *s) 2600 { 2601 /* Called from the GICv3 realize function; register our system 2602 * registers with the CPU 2603 */ 2604 int i; 2605 2606 for (i = 0; i < s->num_cpu; i++) { 2607 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2608 GICv3CPUState *cs = &s->cpu[i]; 2609 2610 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2611 * in define_arm_cp_regs_with_opaque(), because when we're called back 2612 * it might be with code translated by CPU 0 but run by CPU 1, in 2613 * which case we'd get the wrong value. 2614 * So instead we define the regs with no ri->opaque info, and 2615 * get back to the GICv3CPUState from the CPUARMState. 2616 */ 2617 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2618 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2619 && cpu->gic_num_lrs) { 2620 int j; 2621 2622 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; 2623 2624 cs->num_list_regs = cpu->gic_num_lrs; 2625 cs->vpribits = cpu->gic_vpribits; 2626 cs->vprebits = cpu->gic_vprebits; 2627 2628 /* Check against architectural constraints: getting these 2629 * wrong would be a bug in the CPU code defining these, 2630 * and the implementation relies on them holding. 2631 */ 2632 g_assert(cs->vprebits <= cs->vpribits); 2633 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2634 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2635 2636 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2637 2638 for (j = 0; j < cs->num_list_regs; j++) { 2639 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2640 * are split into two cp15 regs, LR (the low part, with the 2641 * same encoding as the AArch64 LR) and LRC (the high part). 2642 */ 2643 ARMCPRegInfo lr_regset[] = { 2644 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2645 .opc0 = 3, .opc1 = 4, .crn = 12, 2646 .crm = 12 + (j >> 3), .opc2 = j & 7, 2647 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2648 .access = PL2_RW, 2649 .readfn = ich_lr_read, 2650 .writefn = ich_lr_write, 2651 }, 2652 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2653 .cp = 15, .opc1 = 4, .crn = 12, 2654 .crm = 14 + (j >> 3), .opc2 = j & 7, 2655 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2656 .access = PL2_RW, 2657 .readfn = ich_lr_read, 2658 .writefn = ich_lr_write, 2659 }, 2660 REGINFO_SENTINEL 2661 }; 2662 define_arm_cp_regs(cpu, lr_regset); 2663 } 2664 if (cs->vprebits >= 6) { 2665 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2666 } 2667 if (cs->vprebits == 7) { 2668 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2669 } 2670 } 2671 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2672 } 2673 } 2674