1 /* 2 * ARM Generic Interrupt Controller v3 (emulation) 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/log.h" 18 #include "qemu/main-loop.h" 19 #include "trace.h" 20 #include "gicv3_internal.h" 21 #include "hw/irq.h" 22 #include "cpu.h" 23 #include "target/arm/cpregs.h" 24 #include "sysemu/tcg.h" 25 #include "sysemu/qtest.h" 26 27 /* 28 * Special case return value from hppvi_index(); must be larger than 29 * the architecturally maximum possible list register index (which is 15) 30 */ 31 #define HPPVI_INDEX_VLPI 16 32 33 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 34 { 35 return env->gicv3state; 36 } 37 38 static bool gicv3_use_ns_bank(CPUARMState *env) 39 { 40 /* Return true if we should use the NonSecure bank for a banked GIC 41 * CPU interface register. Note that this differs from the 42 * access_secure_reg() function because GICv3 banked registers are 43 * banked even for AArch64, unlike the other CPU system registers. 44 */ 45 return !arm_is_secure_below_el3(env); 46 } 47 48 /* The minimum BPR for the virtual interface is a configurable property */ 49 static inline int icv_min_vbpr(GICv3CPUState *cs) 50 { 51 return 7 - cs->vprebits; 52 } 53 54 static inline int ich_num_aprs(GICv3CPUState *cs) 55 { 56 /* Return the number of virtual APR registers (1, 2, or 4) */ 57 int aprmax = 1 << (cs->vprebits - 5); 58 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 59 return aprmax; 60 } 61 62 /* Simple accessor functions for LR fields */ 63 static uint32_t ich_lr_vintid(uint64_t lr) 64 { 65 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 66 } 67 68 static uint32_t ich_lr_pintid(uint64_t lr) 69 { 70 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 71 } 72 73 static uint32_t ich_lr_prio(uint64_t lr) 74 { 75 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 76 } 77 78 static int ich_lr_state(uint64_t lr) 79 { 80 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 81 } 82 83 static bool icv_access(CPUARMState *env, int hcr_flags) 84 { 85 /* Return true if this ICC_ register access should really be 86 * directed to an ICV_ access. hcr_flags is a mask of 87 * HCR_EL2 bits to check: we treat this as an ICV_ access 88 * if we are in NS EL1 and at least one of the specified 89 * HCR_EL2 bits is set. 90 * 91 * ICV registers fall into four categories: 92 * * access if NS EL1 and HCR_EL2.FMO == 1: 93 * all ICV regs with '0' in their name 94 * * access if NS EL1 and HCR_EL2.IMO == 1: 95 * all ICV regs with '1' in their name 96 * * access if NS EL1 and either IMO or FMO == 1: 97 * CTLR, DIR, PMR, RPR 98 */ 99 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 100 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO); 101 102 return flagmatch && arm_current_el(env) == 1 103 && !arm_is_secure_below_el3(env); 104 } 105 106 static int read_vbpr(GICv3CPUState *cs, int grp) 107 { 108 /* Read VBPR value out of the VMCR field (caller must handle 109 * VCBPR effects if required) 110 */ 111 if (grp == GICV3_G0) { 112 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 113 ICH_VMCR_EL2_VBPR0_LENGTH); 114 } else { 115 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 116 ICH_VMCR_EL2_VBPR1_LENGTH); 117 } 118 } 119 120 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 121 { 122 /* Write new VBPR1 value, handling the "writing a value less than 123 * the minimum sets it to the minimum" semantics. 124 */ 125 int min = icv_min_vbpr(cs); 126 127 if (grp != GICV3_G0) { 128 min++; 129 } 130 131 value = MAX(value, min); 132 133 if (grp == GICV3_G0) { 134 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 135 ICH_VMCR_EL2_VBPR0_LENGTH, value); 136 } else { 137 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 138 ICH_VMCR_EL2_VBPR1_LENGTH, value); 139 } 140 } 141 142 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 143 { 144 /* Return a mask word which clears the unimplemented priority bits 145 * from a priority value for a virtual interrupt. (Not to be confused 146 * with the group priority, whose mask depends on the value of VBPR 147 * for the interrupt group.) 148 */ 149 return (~0U << (8 - cs->vpribits)) & 0xff; 150 } 151 152 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 153 { 154 /* Calculate the current running priority based on the set bits 155 * in the ICH Active Priority Registers. 156 */ 157 int i; 158 int aprmax = ich_num_aprs(cs); 159 160 for (i = 0; i < aprmax; i++) { 161 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 162 cs->ich_apr[GICV3_G1NS][i]; 163 164 if (!apr) { 165 continue; 166 } 167 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 168 } 169 /* No current active interrupts: return idle priority */ 170 return 0xff; 171 } 172 173 static int hppvi_index(GICv3CPUState *cs) 174 { 175 /* 176 * Return the list register index of the highest priority pending 177 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 178 * pseudocode. If no pending virtual interrupts, return -1. 179 * If the highest priority pending virtual interrupt is a vLPI, 180 * return HPPVI_INDEX_VLPI. 181 * (The pseudocode handles checking whether the vLPI is higher 182 * priority than the highest priority list register at every 183 * callsite of HighestPriorityVirtualInterrupt; we check it here.) 184 */ 185 ARMCPU *cpu = ARM_CPU(cs->cpu); 186 CPUARMState *env = &cpu->env; 187 int idx = -1; 188 int i; 189 /* Note that a list register entry with a priority of 0xff will 190 * never be reported by this function; this is the architecturally 191 * correct behaviour. 192 */ 193 int prio = 0xff; 194 195 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 196 /* Both groups disabled, definitely nothing to do */ 197 return idx; 198 } 199 200 for (i = 0; i < cs->num_list_regs; i++) { 201 uint64_t lr = cs->ich_lr_el2[i]; 202 int thisprio; 203 204 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 205 /* Not Pending */ 206 continue; 207 } 208 209 /* Ignore interrupts if relevant group enable not set */ 210 if (lr & ICH_LR_EL2_GROUP) { 211 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 212 continue; 213 } 214 } else { 215 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 216 continue; 217 } 218 } 219 220 thisprio = ich_lr_prio(lr); 221 222 if (thisprio < prio) { 223 prio = thisprio; 224 idx = i; 225 } 226 } 227 228 /* 229 * "no pending vLPI" is indicated with prio = 0xff, which always 230 * fails the priority check here. vLPIs are only considered 231 * when we are in Non-Secure state. 232 */ 233 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) { 234 if (cs->hppvlpi.grp == GICV3_G0) { 235 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) { 236 return HPPVI_INDEX_VLPI; 237 } 238 } else { 239 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) { 240 return HPPVI_INDEX_VLPI; 241 } 242 } 243 } 244 245 return idx; 246 } 247 248 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 249 { 250 /* Return a mask word which clears the subpriority bits from 251 * a priority value for a virtual interrupt in the specified group. 252 * This depends on the VBPR value. 253 * If using VBPR0 then: 254 * a BPR of 0 means the group priority bits are [7:1]; 255 * a BPR of 1 means they are [7:2], and so on down to 256 * a BPR of 7 meaning no group priority bits at all. 257 * If using VBPR1 then: 258 * a BPR of 0 is impossible (the minimum value is 1) 259 * a BPR of 1 means the group priority bits are [7:1]; 260 * a BPR of 2 means they are [7:2], and so on down to 261 * a BPR of 7 meaning the group priority is [7]. 262 * 263 * Which BPR to use depends on the group of the interrupt and 264 * the current ICH_VMCR_EL2.VCBPR settings. 265 * 266 * This corresponds to the VGroupBits() pseudocode. 267 */ 268 int bpr; 269 270 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 271 group = GICV3_G0; 272 } 273 274 bpr = read_vbpr(cs, group); 275 if (group == GICV3_G1NS) { 276 assert(bpr > 0); 277 bpr--; 278 } 279 280 return ~0U << (bpr + 1); 281 } 282 283 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 284 { 285 /* Return true if we can signal this virtual interrupt defined by 286 * the given list register value; see the pseudocode functions 287 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 288 * Compare also icc_hppi_can_preempt() which is the non-virtual 289 * equivalent of these checks. 290 */ 291 int grp; 292 uint32_t mask, prio, rprio, vpmr; 293 294 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 295 /* Virtual interface disabled */ 296 return false; 297 } 298 299 /* We don't need to check that this LR is in Pending state because 300 * that has already been done in hppvi_index(). 301 */ 302 303 prio = ich_lr_prio(lr); 304 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 305 ICH_VMCR_EL2_VPMR_LENGTH); 306 307 if (prio >= vpmr) { 308 /* Priority mask masks this interrupt */ 309 return false; 310 } 311 312 rprio = ich_highest_active_virt_prio(cs); 313 if (rprio == 0xff) { 314 /* No running interrupt so we can preempt */ 315 return true; 316 } 317 318 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 319 320 mask = icv_gprio_mask(cs, grp); 321 322 /* We only preempt a running interrupt if the pending interrupt's 323 * group priority is sufficient (the subpriorities are not considered). 324 */ 325 if ((prio & mask) < (rprio & mask)) { 326 return true; 327 } 328 329 return false; 330 } 331 332 static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs) 333 { 334 /* 335 * Return true if we can signal the highest priority pending vLPI. 336 * We can assume we're Non-secure because hppvi_index() already 337 * tested for that. 338 */ 339 uint32_t mask, rprio, vpmr; 340 341 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 342 /* Virtual interface disabled */ 343 return false; 344 } 345 346 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 347 ICH_VMCR_EL2_VPMR_LENGTH); 348 349 if (cs->hppvlpi.prio >= vpmr) { 350 /* Priority mask masks this interrupt */ 351 return false; 352 } 353 354 rprio = ich_highest_active_virt_prio(cs); 355 if (rprio == 0xff) { 356 /* No running interrupt so we can preempt */ 357 return true; 358 } 359 360 mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 361 362 /* 363 * We only preempt a running interrupt if the pending interrupt's 364 * group priority is sufficient (the subpriorities are not considered). 365 */ 366 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) { 367 return true; 368 } 369 370 return false; 371 } 372 373 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 374 uint32_t *misr) 375 { 376 /* Return a set of bits indicating the EOI maintenance interrupt status 377 * for each list register. The EOI maintenance interrupt status is 378 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 379 * (see the GICv3 spec for the ICH_EISR_EL2 register). 380 * If misr is not NULL then we should also collect the information 381 * about the MISR.EOI, MISR.NP and MISR.U bits. 382 */ 383 uint32_t value = 0; 384 int validcount = 0; 385 bool seenpending = false; 386 int i; 387 388 for (i = 0; i < cs->num_list_regs; i++) { 389 uint64_t lr = cs->ich_lr_el2[i]; 390 391 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 392 == ICH_LR_EL2_EOI) { 393 value |= (1 << i); 394 } 395 if ((lr & ICH_LR_EL2_STATE_MASK)) { 396 validcount++; 397 } 398 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 399 seenpending = true; 400 } 401 } 402 403 if (misr) { 404 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 405 *misr |= ICH_MISR_EL2_U; 406 } 407 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 408 *misr |= ICH_MISR_EL2_NP; 409 } 410 if (value) { 411 *misr |= ICH_MISR_EL2_EOI; 412 } 413 } 414 return value; 415 } 416 417 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 418 { 419 /* Return a set of bits indicating the maintenance interrupt status 420 * (as seen in the ICH_MISR_EL2 register). 421 */ 422 uint32_t value = 0; 423 424 /* Scan list registers and fill in the U, NP and EOI bits */ 425 eoi_maintenance_interrupt_state(cs, &value); 426 427 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) && 428 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) { 429 value |= ICH_MISR_EL2_LRENP; 430 } 431 432 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 433 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 434 value |= ICH_MISR_EL2_VGRP0E; 435 } 436 437 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 438 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 439 value |= ICH_MISR_EL2_VGRP0D; 440 } 441 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 442 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 443 value |= ICH_MISR_EL2_VGRP1E; 444 } 445 446 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 447 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 448 value |= ICH_MISR_EL2_VGRP1D; 449 } 450 451 return value; 452 } 453 454 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs) 455 { 456 /* 457 * Tell the CPU about any pending virtual interrupts. 458 * This should only be called for changes that affect the 459 * vIRQ and vFIQ status and do not change the maintenance 460 * interrupt status. This means that unlike gicv3_cpuif_virt_update() 461 * this function won't recursively call back into the GIC code. 462 * The main use of this is when the redistributor has changed the 463 * highest priority pending virtual LPI. 464 */ 465 int idx; 466 int irqlevel = 0; 467 int fiqlevel = 0; 468 469 idx = hppvi_index(cs); 470 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx, 471 cs->hppvlpi.irq, cs->hppvlpi.grp, 472 cs->hppvlpi.prio); 473 if (idx == HPPVI_INDEX_VLPI) { 474 if (icv_hppvlpi_can_preempt(cs)) { 475 if (cs->hppvlpi.grp == GICV3_G0) { 476 fiqlevel = 1; 477 } else { 478 irqlevel = 1; 479 } 480 } 481 } else if (idx >= 0) { 482 uint64_t lr = cs->ich_lr_el2[idx]; 483 484 if (icv_hppi_can_preempt(cs, lr)) { 485 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 486 if (lr & ICH_LR_EL2_GROUP) { 487 irqlevel = 1; 488 } else { 489 fiqlevel = 1; 490 } 491 } 492 } 493 494 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 495 qemu_set_irq(cs->parent_vfiq, fiqlevel); 496 qemu_set_irq(cs->parent_virq, irqlevel); 497 } 498 499 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 500 { 501 /* 502 * Tell the CPU about any pending virtual interrupts or 503 * maintenance interrupts, following a change to the state 504 * of the CPU interface relevant to virtual interrupts. 505 * 506 * CAUTION: this function will call qemu_set_irq() on the 507 * CPU maintenance IRQ line, which is typically wired up 508 * to the GIC as a per-CPU interrupt. This means that it 509 * will recursively call back into the GIC code via 510 * gicv3_redist_set_irq() and thus into the CPU interface code's 511 * gicv3_cpuif_update(). It is therefore important that this 512 * function is only called as the final action of a CPU interface 513 * register write implementation, after all the GIC state 514 * fields have been updated. gicv3_cpuif_update() also must 515 * not cause this function to be called, but that happens 516 * naturally as a result of there being no architectural 517 * linkage between the physical and virtual GIC logic. 518 */ 519 ARMCPU *cpu = ARM_CPU(cs->cpu); 520 int maintlevel = 0; 521 522 gicv3_cpuif_virt_irq_fiq_update(cs); 523 524 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) && 525 maintenance_interrupt_state(cs) != 0) { 526 maintlevel = 1; 527 } 528 529 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel); 530 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel); 531 } 532 533 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 534 { 535 GICv3CPUState *cs = icc_cs_from_env(env); 536 int regno = ri->opc2 & 3; 537 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 538 uint64_t value = cs->ich_apr[grp][regno]; 539 540 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 541 return value; 542 } 543 544 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 545 uint64_t value) 546 { 547 GICv3CPUState *cs = icc_cs_from_env(env); 548 int regno = ri->opc2 & 3; 549 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 550 551 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 552 553 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 554 555 gicv3_cpuif_virt_irq_fiq_update(cs); 556 return; 557 } 558 559 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 560 { 561 GICv3CPUState *cs = icc_cs_from_env(env); 562 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 563 uint64_t bpr; 564 bool satinc = false; 565 566 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 567 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 568 grp = GICV3_G0; 569 satinc = true; 570 } 571 572 bpr = read_vbpr(cs, grp); 573 574 if (satinc) { 575 bpr++; 576 bpr = MIN(bpr, 7); 577 } 578 579 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 580 581 return bpr; 582 } 583 584 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 585 uint64_t value) 586 { 587 GICv3CPUState *cs = icc_cs_from_env(env); 588 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 589 590 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 591 gicv3_redist_affid(cs), value); 592 593 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 594 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 595 return; 596 } 597 598 write_vbpr(cs, grp, value); 599 600 gicv3_cpuif_virt_irq_fiq_update(cs); 601 } 602 603 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 604 { 605 GICv3CPUState *cs = icc_cs_from_env(env); 606 uint64_t value; 607 608 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 609 ICH_VMCR_EL2_VPMR_LENGTH); 610 611 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 612 return value; 613 } 614 615 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 616 uint64_t value) 617 { 618 GICv3CPUState *cs = icc_cs_from_env(env); 619 620 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 621 622 value &= icv_fullprio_mask(cs); 623 624 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 625 ICH_VMCR_EL2_VPMR_LENGTH, value); 626 627 gicv3_cpuif_virt_irq_fiq_update(cs); 628 } 629 630 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 631 { 632 GICv3CPUState *cs = icc_cs_from_env(env); 633 int enbit; 634 uint64_t value; 635 636 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 637 value = extract64(cs->ich_vmcr_el2, enbit, 1); 638 639 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 640 gicv3_redist_affid(cs), value); 641 return value; 642 } 643 644 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 645 uint64_t value) 646 { 647 GICv3CPUState *cs = icc_cs_from_env(env); 648 int enbit; 649 650 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 651 gicv3_redist_affid(cs), value); 652 653 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 654 655 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 656 gicv3_cpuif_virt_update(cs); 657 } 658 659 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 660 { 661 GICv3CPUState *cs = icc_cs_from_env(env); 662 uint64_t value; 663 664 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 665 * should match the ones reported in ich_vtr_read(). 666 */ 667 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 668 ((cs->vpribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 669 670 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 671 value |= ICC_CTLR_EL1_EOIMODE; 672 } 673 674 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 675 value |= ICC_CTLR_EL1_CBPR; 676 } 677 678 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 679 return value; 680 } 681 682 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 683 uint64_t value) 684 { 685 GICv3CPUState *cs = icc_cs_from_env(env); 686 687 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 688 689 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 690 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 691 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 692 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 693 694 gicv3_cpuif_virt_irq_fiq_update(cs); 695 } 696 697 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 698 { 699 GICv3CPUState *cs = icc_cs_from_env(env); 700 int prio = ich_highest_active_virt_prio(cs); 701 702 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 703 return prio; 704 } 705 706 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 707 { 708 GICv3CPUState *cs = icc_cs_from_env(env); 709 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 710 int idx = hppvi_index(cs); 711 uint64_t value = INTID_SPURIOUS; 712 713 if (idx == HPPVI_INDEX_VLPI) { 714 if (cs->hppvlpi.grp == grp) { 715 value = cs->hppvlpi.irq; 716 } 717 } else if (idx >= 0) { 718 uint64_t lr = cs->ich_lr_el2[idx]; 719 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 720 721 if (grp == thisgrp) { 722 value = ich_lr_vintid(lr); 723 } 724 } 725 726 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1, 727 gicv3_redist_affid(cs), value); 728 return value; 729 } 730 731 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 732 { 733 /* Activate the interrupt in the specified list register 734 * by moving it from Pending to Active state, and update the 735 * Active Priority Registers. 736 */ 737 uint32_t mask = icv_gprio_mask(cs, grp); 738 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 739 int aprbit = prio >> (8 - cs->vprebits); 740 int regno = aprbit / 32; 741 int regbit = aprbit % 32; 742 743 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 744 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 745 cs->ich_apr[grp][regno] |= (1 << regbit); 746 } 747 748 static void icv_activate_vlpi(GICv3CPUState *cs) 749 { 750 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp); 751 int prio = cs->hppvlpi.prio & mask; 752 int aprbit = prio >> (8 - cs->vprebits); 753 int regno = aprbit / 32; 754 int regbit = aprbit % 32; 755 756 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit); 757 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0); 758 } 759 760 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 761 { 762 GICv3CPUState *cs = icc_cs_from_env(env); 763 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 764 int idx = hppvi_index(cs); 765 uint64_t intid = INTID_SPURIOUS; 766 767 if (idx == HPPVI_INDEX_VLPI) { 768 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) { 769 intid = cs->hppvlpi.irq; 770 icv_activate_vlpi(cs); 771 } 772 } else if (idx >= 0) { 773 uint64_t lr = cs->ich_lr_el2[idx]; 774 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 775 776 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 777 intid = ich_lr_vintid(lr); 778 if (!gicv3_intid_is_special(intid)) { 779 icv_activate_irq(cs, idx, grp); 780 } else { 781 /* Interrupt goes from Pending to Invalid */ 782 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 783 /* We will now return the (bogus) ID from the list register, 784 * as per the pseudocode. 785 */ 786 } 787 } 788 } 789 790 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 791 gicv3_redist_affid(cs), intid); 792 793 gicv3_cpuif_virt_update(cs); 794 795 return intid; 796 } 797 798 static uint32_t icc_fullprio_mask(GICv3CPUState *cs) 799 { 800 /* 801 * Return a mask word which clears the unimplemented priority bits 802 * from a priority value for a physical interrupt. (Not to be confused 803 * with the group priority, whose mask depends on the value of BPR 804 * for the interrupt group.) 805 */ 806 return (~0U << (8 - cs->pribits)) & 0xff; 807 } 808 809 static inline int icc_min_bpr(GICv3CPUState *cs) 810 { 811 /* The minimum BPR for the physical interface. */ 812 return 7 - cs->prebits; 813 } 814 815 static inline int icc_min_bpr_ns(GICv3CPUState *cs) 816 { 817 return icc_min_bpr(cs) + 1; 818 } 819 820 static inline int icc_num_aprs(GICv3CPUState *cs) 821 { 822 /* Return the number of APR registers (1, 2, or 4) */ 823 int aprmax = 1 << MAX(cs->prebits - 5, 0); 824 assert(aprmax <= ARRAY_SIZE(cs->icc_apr[0])); 825 return aprmax; 826 } 827 828 static int icc_highest_active_prio(GICv3CPUState *cs) 829 { 830 /* Calculate the current running priority based on the set bits 831 * in the Active Priority Registers. 832 */ 833 int i; 834 835 for (i = 0; i < icc_num_aprs(cs); i++) { 836 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 837 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 838 839 if (!apr) { 840 continue; 841 } 842 return (i * 32 + ctz32(apr)) << (icc_min_bpr(cs) + 1); 843 } 844 /* No current active interrupts: return idle priority */ 845 return 0xff; 846 } 847 848 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 849 { 850 /* Return a mask word which clears the subpriority bits from 851 * a priority value for an interrupt in the specified group. 852 * This depends on the BPR value. For CBPR0 (S or NS): 853 * a BPR of 0 means the group priority bits are [7:1]; 854 * a BPR of 1 means they are [7:2], and so on down to 855 * a BPR of 7 meaning no group priority bits at all. 856 * For CBPR1 NS: 857 * a BPR of 0 is impossible (the minimum value is 1) 858 * a BPR of 1 means the group priority bits are [7:1]; 859 * a BPR of 2 means they are [7:2], and so on down to 860 * a BPR of 7 meaning the group priority is [7]. 861 * 862 * Which BPR to use depends on the group of the interrupt and 863 * the current ICC_CTLR.CBPR settings. 864 * 865 * This corresponds to the GroupBits() pseudocode. 866 */ 867 int bpr; 868 869 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 870 (group == GICV3_G1NS && 871 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 872 group = GICV3_G0; 873 } 874 875 bpr = cs->icc_bpr[group] & 7; 876 877 if (group == GICV3_G1NS) { 878 assert(bpr > 0); 879 bpr--; 880 } 881 882 return ~0U << (bpr + 1); 883 } 884 885 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 886 { 887 /* Return true if there is no pending interrupt, or the 888 * highest priority pending interrupt is in a group which has been 889 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 890 */ 891 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 892 } 893 894 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 895 { 896 /* Return true if we have a pending interrupt of sufficient 897 * priority to preempt. 898 */ 899 int rprio; 900 uint32_t mask; 901 902 if (icc_no_enabled_hppi(cs)) { 903 return false; 904 } 905 906 if (cs->hppi.prio >= cs->icc_pmr_el1) { 907 /* Priority mask masks this interrupt */ 908 return false; 909 } 910 911 rprio = icc_highest_active_prio(cs); 912 if (rprio == 0xff) { 913 /* No currently running interrupt so we can preempt */ 914 return true; 915 } 916 917 mask = icc_gprio_mask(cs, cs->hppi.grp); 918 919 /* We only preempt a running interrupt if the pending interrupt's 920 * group priority is sufficient (the subpriorities are not considered). 921 */ 922 if ((cs->hppi.prio & mask) < (rprio & mask)) { 923 return true; 924 } 925 926 return false; 927 } 928 929 void gicv3_cpuif_update(GICv3CPUState *cs) 930 { 931 /* Tell the CPU about its highest priority pending interrupt */ 932 int irqlevel = 0; 933 int fiqlevel = 0; 934 ARMCPU *cpu = ARM_CPU(cs->cpu); 935 CPUARMState *env = &cpu->env; 936 937 g_assert(bql_locked()); 938 939 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 940 cs->hppi.grp, cs->hppi.prio); 941 942 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 943 /* If a Security-enabled GIC sends a G1S interrupt to a 944 * Security-disabled CPU, we must treat it as if it were G0. 945 */ 946 cs->hppi.grp = GICV3_G0; 947 } 948 949 if (icc_hppi_can_preempt(cs)) { 950 /* We have an interrupt: should we signal it as IRQ or FIQ? 951 * This is described in the GICv3 spec section 4.6.2. 952 */ 953 bool isfiq; 954 955 switch (cs->hppi.grp) { 956 case GICV3_G0: 957 isfiq = true; 958 break; 959 case GICV3_G1: 960 isfiq = (!arm_is_secure(env) || 961 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 962 break; 963 case GICV3_G1NS: 964 isfiq = arm_is_secure(env); 965 break; 966 default: 967 g_assert_not_reached(); 968 } 969 970 if (isfiq) { 971 fiqlevel = 1; 972 } else { 973 irqlevel = 1; 974 } 975 } 976 977 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 978 979 qemu_set_irq(cs->parent_fiq, fiqlevel); 980 qemu_set_irq(cs->parent_irq, irqlevel); 981 } 982 983 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 984 { 985 GICv3CPUState *cs = icc_cs_from_env(env); 986 uint32_t value = cs->icc_pmr_el1; 987 988 if (icv_access(env, HCR_FMO | HCR_IMO)) { 989 return icv_pmr_read(env, ri); 990 } 991 992 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 993 (env->cp15.scr_el3 & SCR_FIQ)) { 994 /* NS access and Group 0 is inaccessible to NS: return the 995 * NS view of the current priority 996 */ 997 if ((value & 0x80) == 0) { 998 /* Secure priorities not visible to NS */ 999 value = 0; 1000 } else if (value != 0xff) { 1001 value = (value << 1) & 0xff; 1002 } 1003 } 1004 1005 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 1006 1007 return value; 1008 } 1009 1010 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1011 uint64_t value) 1012 { 1013 GICv3CPUState *cs = icc_cs_from_env(env); 1014 1015 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1016 return icv_pmr_write(env, ri, value); 1017 } 1018 1019 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 1020 1021 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 1022 (env->cp15.scr_el3 & SCR_FIQ)) { 1023 /* NS access and Group 0 is inaccessible to NS: return the 1024 * NS view of the current priority 1025 */ 1026 if (!(cs->icc_pmr_el1 & 0x80)) { 1027 /* Current PMR in the secure range, don't allow NS to change it */ 1028 return; 1029 } 1030 value = (value >> 1) | 0x80; 1031 } 1032 value &= icc_fullprio_mask(cs); 1033 cs->icc_pmr_el1 = value; 1034 gicv3_cpuif_update(cs); 1035 } 1036 1037 static void icc_activate_irq(GICv3CPUState *cs, int irq) 1038 { 1039 /* Move the interrupt from the Pending state to Active, and update 1040 * the Active Priority Registers 1041 */ 1042 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 1043 int prio = cs->hppi.prio & mask; 1044 int aprbit = prio >> (8 - cs->prebits); 1045 int regno = aprbit / 32; 1046 int regbit = aprbit % 32; 1047 1048 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 1049 1050 if (irq < GIC_INTERNAL) { 1051 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 1052 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 1053 gicv3_redist_update(cs); 1054 } else if (irq < GICV3_LPI_INTID_START) { 1055 gicv3_gicd_active_set(cs->gic, irq); 1056 gicv3_gicd_pending_clear(cs->gic, irq); 1057 gicv3_update(cs->gic, irq, 1); 1058 } else { 1059 gicv3_redist_lpi_pending(cs, irq, 0); 1060 } 1061 } 1062 1063 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 1064 { 1065 /* Return the highest priority pending interrupt register value 1066 * for group 0. 1067 */ 1068 bool irq_is_secure; 1069 1070 if (icc_no_enabled_hppi(cs)) { 1071 return INTID_SPURIOUS; 1072 } 1073 1074 /* Check whether we can return the interrupt or if we should return 1075 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 1076 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1077 * is always zero.) 1078 */ 1079 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1080 (cs->hppi.grp != GICV3_G1NS)); 1081 1082 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 1083 return INTID_SPURIOUS; 1084 } 1085 if (irq_is_secure && !arm_is_secure(env)) { 1086 /* Secure interrupts not visible to Nonsecure */ 1087 return INTID_SPURIOUS; 1088 } 1089 1090 if (cs->hppi.grp != GICV3_G0) { 1091 /* Indicate to EL3 that there's a Group 1 interrupt for the other 1092 * state pending. 1093 */ 1094 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 1095 } 1096 1097 return cs->hppi.irq; 1098 } 1099 1100 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 1101 { 1102 /* Return the highest priority pending interrupt register value 1103 * for group 1. 1104 */ 1105 bool irq_is_secure; 1106 1107 if (icc_no_enabled_hppi(cs)) { 1108 return INTID_SPURIOUS; 1109 } 1110 1111 /* Check whether we can return the interrupt or if we should return 1112 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 1113 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 1114 * is always zero.) 1115 */ 1116 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 1117 (cs->hppi.grp != GICV3_G1NS)); 1118 1119 if (cs->hppi.grp == GICV3_G0) { 1120 /* Group 0 interrupts not visible via HPPIR1 */ 1121 return INTID_SPURIOUS; 1122 } 1123 if (irq_is_secure) { 1124 if (!arm_is_secure(env)) { 1125 /* Secure interrupts not visible in Non-secure */ 1126 return INTID_SPURIOUS; 1127 } 1128 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1129 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 1130 return INTID_SPURIOUS; 1131 } 1132 1133 return cs->hppi.irq; 1134 } 1135 1136 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1137 { 1138 GICv3CPUState *cs = icc_cs_from_env(env); 1139 uint64_t intid; 1140 1141 if (icv_access(env, HCR_FMO)) { 1142 return icv_iar_read(env, ri); 1143 } 1144 1145 if (!icc_hppi_can_preempt(cs)) { 1146 intid = INTID_SPURIOUS; 1147 } else { 1148 intid = icc_hppir0_value(cs, env); 1149 } 1150 1151 if (!gicv3_intid_is_special(intid)) { 1152 icc_activate_irq(cs, intid); 1153 } 1154 1155 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 1156 return intid; 1157 } 1158 1159 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1160 { 1161 GICv3CPUState *cs = icc_cs_from_env(env); 1162 uint64_t intid; 1163 1164 if (icv_access(env, HCR_IMO)) { 1165 return icv_iar_read(env, ri); 1166 } 1167 1168 if (!icc_hppi_can_preempt(cs)) { 1169 intid = INTID_SPURIOUS; 1170 } else { 1171 intid = icc_hppir1_value(cs, env); 1172 } 1173 1174 if (!gicv3_intid_is_special(intid)) { 1175 icc_activate_irq(cs, intid); 1176 } 1177 1178 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 1179 return intid; 1180 } 1181 1182 static void icc_drop_prio(GICv3CPUState *cs, int grp) 1183 { 1184 /* Drop the priority of the currently active interrupt in 1185 * the specified group. 1186 * 1187 * Note that we can guarantee (because of the requirement to nest 1188 * ICC_IAR reads [which activate an interrupt and raise priority] 1189 * with ICC_EOIR writes [which drop the priority for the interrupt]) 1190 * that the interrupt we're being called for is the highest priority 1191 * active interrupt, meaning that it has the lowest set bit in the 1192 * APR registers. 1193 * 1194 * If the guest does not honour the ordering constraints then the 1195 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1196 * the values of the APR registers might become incorrect and the 1197 * running priority will be wrong, so interrupts that should preempt 1198 * might not do so, and interrupts that should not preempt might do so. 1199 */ 1200 int i; 1201 1202 for (i = 0; i < icc_num_aprs(cs); i++) { 1203 uint64_t *papr = &cs->icc_apr[grp][i]; 1204 1205 if (!*papr) { 1206 continue; 1207 } 1208 /* Clear the lowest set bit */ 1209 *papr &= *papr - 1; 1210 break; 1211 } 1212 1213 /* running priority change means we need an update for this cpu i/f */ 1214 gicv3_cpuif_update(cs); 1215 } 1216 1217 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1218 { 1219 /* Return true if we should split priority drop and interrupt 1220 * deactivation, ie whether the relevant EOIMode bit is set. 1221 */ 1222 if (arm_is_el3_or_mon(env)) { 1223 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1224 } 1225 if (arm_is_secure_below_el3(env)) { 1226 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1227 } else { 1228 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1229 } 1230 } 1231 1232 static int icc_highest_active_group(GICv3CPUState *cs) 1233 { 1234 /* Return the group with the highest priority active interrupt. 1235 * We can do this by just comparing the APRs to see which one 1236 * has the lowest set bit. 1237 * (If more than one group is active at the same priority then 1238 * we're in UNPREDICTABLE territory.) 1239 */ 1240 int i; 1241 1242 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1243 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1244 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1245 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1246 1247 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1248 return GICV3_G1NS; 1249 } 1250 if (g1ctz < g0ctz) { 1251 return GICV3_G1; 1252 } 1253 if (g0ctz < 32) { 1254 return GICV3_G0; 1255 } 1256 } 1257 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1258 * ignores the spurious EOI attempt. 1259 */ 1260 return -1; 1261 } 1262 1263 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1264 { 1265 if (irq < GIC_INTERNAL) { 1266 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1267 gicv3_redist_update(cs); 1268 } else { 1269 gicv3_gicd_active_clear(cs->gic, irq); 1270 gicv3_update(cs->gic, irq, 1); 1271 } 1272 } 1273 1274 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1275 { 1276 /* Return true if we should split priority drop and interrupt 1277 * deactivation, ie whether the virtual EOIMode bit is set. 1278 */ 1279 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1280 } 1281 1282 static int icv_find_active(GICv3CPUState *cs, int irq) 1283 { 1284 /* Given an interrupt number for an active interrupt, return the index 1285 * of the corresponding list register, or -1 if there is no match. 1286 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1287 */ 1288 int i; 1289 1290 for (i = 0; i < cs->num_list_regs; i++) { 1291 uint64_t lr = cs->ich_lr_el2[i]; 1292 1293 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1294 return i; 1295 } 1296 } 1297 1298 return -1; 1299 } 1300 1301 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1302 { 1303 /* Deactivate the interrupt in the specified list register index */ 1304 uint64_t lr = cs->ich_lr_el2[idx]; 1305 1306 if (lr & ICH_LR_EL2_HW) { 1307 /* Deactivate the associated physical interrupt */ 1308 int pirq = ich_lr_pintid(lr); 1309 1310 if (pirq < INTID_SECURE) { 1311 icc_deactivate_irq(cs, pirq); 1312 } 1313 } 1314 1315 /* Clear the 'active' part of the state, so ActivePending->Pending 1316 * and Active->Invalid. 1317 */ 1318 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1319 cs->ich_lr_el2[idx] = lr; 1320 } 1321 1322 static void icv_increment_eoicount(GICv3CPUState *cs) 1323 { 1324 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1325 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1326 ICH_HCR_EL2_EOICOUNT_LENGTH); 1327 1328 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1329 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1330 } 1331 1332 static int icv_drop_prio(GICv3CPUState *cs) 1333 { 1334 /* Drop the priority of the currently active virtual interrupt 1335 * (favouring group 0 if there is a set active bit at 1336 * the same priority for both group 0 and group 1). 1337 * Return the priority value for the bit we just cleared, 1338 * or 0xff if no bits were set in the AP registers at all. 1339 * Note that though the ich_apr[] are uint64_t only the low 1340 * 32 bits are actually relevant. 1341 */ 1342 int i; 1343 int aprmax = ich_num_aprs(cs); 1344 1345 for (i = 0; i < aprmax; i++) { 1346 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1347 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1348 int apr0count, apr1count; 1349 1350 if (!*papr0 && !*papr1) { 1351 continue; 1352 } 1353 1354 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1355 * because we need to return the bit number we cleared so 1356 * it can be compared against the list register's priority field. 1357 */ 1358 apr0count = ctz32(*papr0); 1359 apr1count = ctz32(*papr1); 1360 1361 if (apr0count <= apr1count) { 1362 *papr0 &= *papr0 - 1; 1363 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1364 } else { 1365 *papr1 &= *papr1 - 1; 1366 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1367 } 1368 } 1369 return 0xff; 1370 } 1371 1372 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1373 uint64_t value) 1374 { 1375 /* Deactivate interrupt */ 1376 GICv3CPUState *cs = icc_cs_from_env(env); 1377 int idx; 1378 int irq = value & 0xffffff; 1379 1380 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1381 1382 if (irq >= GICV3_MAXIRQ) { 1383 /* Also catches special interrupt numbers and LPIs */ 1384 return; 1385 } 1386 1387 if (!icv_eoi_split(env, cs)) { 1388 return; 1389 } 1390 1391 idx = icv_find_active(cs, irq); 1392 1393 if (idx < 0) { 1394 /* No list register matching this, so increment the EOI count 1395 * (might trigger a maintenance interrupt) 1396 */ 1397 icv_increment_eoicount(cs); 1398 } else { 1399 icv_deactivate_irq(cs, idx); 1400 } 1401 1402 gicv3_cpuif_virt_update(cs); 1403 } 1404 1405 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1406 uint64_t value) 1407 { 1408 /* End of Interrupt */ 1409 GICv3CPUState *cs = icc_cs_from_env(env); 1410 int irq = value & 0xffffff; 1411 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1412 int idx, dropprio; 1413 1414 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1415 gicv3_redist_affid(cs), value); 1416 1417 if (gicv3_intid_is_special(irq)) { 1418 return; 1419 } 1420 1421 /* We implement the IMPDEF choice of "drop priority before doing 1422 * error checks" (because that lets us avoid scanning the AP 1423 * registers twice). 1424 */ 1425 dropprio = icv_drop_prio(cs); 1426 if (dropprio == 0xff) { 1427 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1428 * whether the list registers are checked in this 1429 * situation; we choose not to. 1430 */ 1431 return; 1432 } 1433 1434 idx = icv_find_active(cs, irq); 1435 1436 if (idx < 0) { 1437 /* 1438 * No valid list register corresponding to EOI ID; if this is a vLPI 1439 * not in the list regs then do nothing; otherwise increment EOI count 1440 */ 1441 if (irq < GICV3_LPI_INTID_START) { 1442 icv_increment_eoicount(cs); 1443 } 1444 } else { 1445 uint64_t lr = cs->ich_lr_el2[idx]; 1446 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1447 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1448 1449 if (thisgrp == grp && lr_gprio == dropprio) { 1450 if (!icv_eoi_split(env, cs) || irq >= GICV3_LPI_INTID_START) { 1451 /* 1452 * Priority drop and deactivate not split: deactivate irq now. 1453 * LPIs always get their active state cleared immediately 1454 * because no separate deactivate is expected. 1455 */ 1456 icv_deactivate_irq(cs, idx); 1457 } 1458 } 1459 } 1460 1461 gicv3_cpuif_virt_update(cs); 1462 } 1463 1464 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1465 uint64_t value) 1466 { 1467 /* End of Interrupt */ 1468 GICv3CPUState *cs = icc_cs_from_env(env); 1469 int irq = value & 0xffffff; 1470 int grp; 1471 bool is_eoir0 = ri->crm == 8; 1472 1473 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) { 1474 icv_eoir_write(env, ri, value); 1475 return; 1476 } 1477 1478 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1, 1479 gicv3_redist_affid(cs), value); 1480 1481 if ((irq >= cs->gic->num_irq) && 1482 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) { 1483 /* This handles two cases: 1484 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1485 * to the GICC_EOIR, the GIC ignores that write. 1486 * 2. If software writes the number of a non-existent interrupt 1487 * this must be a subcase of "value written does not match the last 1488 * valid interrupt value read from the Interrupt Acknowledge 1489 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1490 */ 1491 return; 1492 } 1493 1494 grp = icc_highest_active_group(cs); 1495 switch (grp) { 1496 case GICV3_G0: 1497 if (!is_eoir0) { 1498 return; 1499 } 1500 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) 1501 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) { 1502 return; 1503 } 1504 break; 1505 case GICV3_G1: 1506 if (is_eoir0) { 1507 return; 1508 } 1509 if (!arm_is_secure(env)) { 1510 return; 1511 } 1512 break; 1513 case GICV3_G1NS: 1514 if (is_eoir0) { 1515 return; 1516 } 1517 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 1518 return; 1519 } 1520 break; 1521 default: 1522 qemu_log_mask(LOG_GUEST_ERROR, 1523 "%s: IRQ %d isn't active\n", __func__, irq); 1524 return; 1525 } 1526 1527 icc_drop_prio(cs, grp); 1528 1529 if (!icc_eoi_split(env, cs)) { 1530 /* Priority drop and deactivate not split: deactivate irq now */ 1531 icc_deactivate_irq(cs, irq); 1532 } 1533 } 1534 1535 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1536 { 1537 GICv3CPUState *cs = icc_cs_from_env(env); 1538 uint64_t value; 1539 1540 if (icv_access(env, HCR_FMO)) { 1541 return icv_hppir_read(env, ri); 1542 } 1543 1544 value = icc_hppir0_value(cs, env); 1545 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1546 return value; 1547 } 1548 1549 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1550 { 1551 GICv3CPUState *cs = icc_cs_from_env(env); 1552 uint64_t value; 1553 1554 if (icv_access(env, HCR_IMO)) { 1555 return icv_hppir_read(env, ri); 1556 } 1557 1558 value = icc_hppir1_value(cs, env); 1559 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1560 return value; 1561 } 1562 1563 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1564 { 1565 GICv3CPUState *cs = icc_cs_from_env(env); 1566 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1567 bool satinc = false; 1568 uint64_t bpr; 1569 1570 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1571 return icv_bpr_read(env, ri); 1572 } 1573 1574 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1575 grp = GICV3_G1NS; 1576 } 1577 1578 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1579 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1580 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1581 * modify BPR0 1582 */ 1583 grp = GICV3_G0; 1584 } 1585 1586 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1587 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1588 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1589 grp = GICV3_G0; 1590 satinc = true; 1591 } 1592 1593 bpr = cs->icc_bpr[grp]; 1594 if (satinc) { 1595 bpr++; 1596 bpr = MIN(bpr, 7); 1597 } 1598 1599 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1600 1601 return bpr; 1602 } 1603 1604 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1605 uint64_t value) 1606 { 1607 GICv3CPUState *cs = icc_cs_from_env(env); 1608 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1609 uint64_t minval; 1610 1611 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1612 icv_bpr_write(env, ri, value); 1613 return; 1614 } 1615 1616 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1617 gicv3_redist_affid(cs), value); 1618 1619 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1620 grp = GICV3_G1NS; 1621 } 1622 1623 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1624 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1625 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1626 * modify BPR0 1627 */ 1628 grp = GICV3_G0; 1629 } 1630 1631 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1632 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1633 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1634 return; 1635 } 1636 1637 minval = (grp == GICV3_G1NS) ? icc_min_bpr_ns(cs) : icc_min_bpr(cs); 1638 if (value < minval) { 1639 value = minval; 1640 } 1641 1642 cs->icc_bpr[grp] = value & 7; 1643 gicv3_cpuif_update(cs); 1644 } 1645 1646 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1647 { 1648 GICv3CPUState *cs = icc_cs_from_env(env); 1649 uint64_t value; 1650 1651 int regno = ri->opc2 & 3; 1652 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1653 1654 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1655 return icv_ap_read(env, ri); 1656 } 1657 1658 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1659 grp = GICV3_G1NS; 1660 } 1661 1662 value = cs->icc_apr[grp][regno]; 1663 1664 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1665 return value; 1666 } 1667 1668 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1669 uint64_t value) 1670 { 1671 GICv3CPUState *cs = icc_cs_from_env(env); 1672 1673 int regno = ri->opc2 & 3; 1674 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0; 1675 1676 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1677 icv_ap_write(env, ri, value); 1678 return; 1679 } 1680 1681 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1682 1683 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1684 grp = GICV3_G1NS; 1685 } 1686 1687 /* It's not possible to claim that a Non-secure interrupt is active 1688 * at a priority outside the Non-secure range (128..255), since this 1689 * would otherwise allow malicious NS code to block delivery of S interrupts 1690 * by writing a bad value to these registers. 1691 */ 1692 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1693 return; 1694 } 1695 1696 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1697 gicv3_cpuif_update(cs); 1698 } 1699 1700 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1701 uint64_t value) 1702 { 1703 /* Deactivate interrupt */ 1704 GICv3CPUState *cs = icc_cs_from_env(env); 1705 int irq = value & 0xffffff; 1706 bool irq_is_secure, single_sec_state, irq_is_grp0; 1707 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1708 1709 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1710 icv_dir_write(env, ri, value); 1711 return; 1712 } 1713 1714 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1715 1716 if (irq >= cs->gic->num_irq) { 1717 /* Also catches special interrupt numbers and LPIs */ 1718 return; 1719 } 1720 1721 if (!icc_eoi_split(env, cs)) { 1722 return; 1723 } 1724 1725 int grp = gicv3_irq_group(cs->gic, cs, irq); 1726 1727 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1728 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1729 irq_is_grp0 = grp == GICV3_G0; 1730 1731 /* Check whether we're allowed to deactivate this interrupt based 1732 * on its group and the current CPU state. 1733 * These checks are laid out to correspond to the spec's pseudocode. 1734 */ 1735 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1736 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1737 /* No need to include !IsSecure in route_*_to_el2 as it's only 1738 * tested in cases where we know !IsSecure is true. 1739 */ 1740 uint64_t hcr_el2 = arm_hcr_el2_eff(env); 1741 route_fiq_to_el2 = hcr_el2 & HCR_FMO; 1742 route_irq_to_el2 = hcr_el2 & HCR_IMO; 1743 1744 switch (arm_current_el(env)) { 1745 case 3: 1746 break; 1747 case 2: 1748 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1749 break; 1750 } 1751 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1752 break; 1753 } 1754 return; 1755 case 1: 1756 if (!arm_is_secure_below_el3(env)) { 1757 if (single_sec_state && irq_is_grp0 && 1758 !route_fiq_to_el3 && !route_fiq_to_el2) { 1759 break; 1760 } 1761 if (!irq_is_secure && !irq_is_grp0 && 1762 !route_irq_to_el3 && !route_irq_to_el2) { 1763 break; 1764 } 1765 } else { 1766 if (irq_is_grp0 && !route_fiq_to_el3) { 1767 break; 1768 } 1769 if (!irq_is_grp0 && 1770 (!irq_is_secure || !single_sec_state) && 1771 !route_irq_to_el3) { 1772 break; 1773 } 1774 } 1775 return; 1776 default: 1777 g_assert_not_reached(); 1778 } 1779 1780 icc_deactivate_irq(cs, irq); 1781 } 1782 1783 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1784 { 1785 GICv3CPUState *cs = icc_cs_from_env(env); 1786 int prio; 1787 1788 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1789 return icv_rpr_read(env, ri); 1790 } 1791 1792 prio = icc_highest_active_prio(cs); 1793 1794 if (arm_feature(env, ARM_FEATURE_EL3) && 1795 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1796 /* NS GIC access and Group 0 is inaccessible to NS */ 1797 if ((prio & 0x80) == 0) { 1798 /* NS mustn't see priorities in the Secure half of the range */ 1799 prio = 0; 1800 } else if (prio != 0xff) { 1801 /* Non-idle priority: show the Non-secure view of it */ 1802 prio = (prio << 1) & 0xff; 1803 } 1804 } 1805 1806 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1807 return prio; 1808 } 1809 1810 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1811 uint64_t value, int grp, bool ns) 1812 { 1813 GICv3State *s = cs->gic; 1814 1815 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1816 uint64_t aff = extract64(value, 48, 8) << 16 | 1817 extract64(value, 32, 8) << 8 | 1818 extract64(value, 16, 8); 1819 uint32_t targetlist = extract64(value, 0, 16); 1820 uint32_t irq = extract64(value, 24, 4); 1821 bool irm = extract64(value, 40, 1); 1822 int i; 1823 1824 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1825 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1826 * interrupts as Group 0 interrupts and must send Secure Group 0 1827 * interrupts to the target CPUs. 1828 */ 1829 grp = GICV3_G0; 1830 } 1831 1832 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1833 aff, targetlist); 1834 1835 for (i = 0; i < s->num_cpu; i++) { 1836 GICv3CPUState *ocs = &s->cpu[i]; 1837 1838 if (irm) { 1839 /* IRM == 1 : route to all CPUs except self */ 1840 if (cs == ocs) { 1841 continue; 1842 } 1843 } else { 1844 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1845 * where the corresponding bit is set in targetlist 1846 */ 1847 int aff0; 1848 1849 if (ocs->gicr_typer >> 40 != aff) { 1850 continue; 1851 } 1852 aff0 = extract64(ocs->gicr_typer, 32, 8); 1853 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1854 continue; 1855 } 1856 } 1857 1858 /* The redistributor will check against its own GICR_NSACR as needed */ 1859 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1860 } 1861 } 1862 1863 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1864 uint64_t value) 1865 { 1866 /* Generate Secure Group 0 SGI. */ 1867 GICv3CPUState *cs = icc_cs_from_env(env); 1868 bool ns = !arm_is_secure(env); 1869 1870 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1871 } 1872 1873 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1874 uint64_t value) 1875 { 1876 /* Generate Group 1 SGI for the current Security state */ 1877 GICv3CPUState *cs = icc_cs_from_env(env); 1878 int grp; 1879 bool ns = !arm_is_secure(env); 1880 1881 grp = ns ? GICV3_G1NS : GICV3_G1; 1882 icc_generate_sgi(env, cs, value, grp, ns); 1883 } 1884 1885 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1886 uint64_t value) 1887 { 1888 /* Generate Group 1 SGI for the Security state that is not 1889 * the current state 1890 */ 1891 GICv3CPUState *cs = icc_cs_from_env(env); 1892 int grp; 1893 bool ns = !arm_is_secure(env); 1894 1895 grp = ns ? GICV3_G1 : GICV3_G1NS; 1896 icc_generate_sgi(env, cs, value, grp, ns); 1897 } 1898 1899 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1900 { 1901 GICv3CPUState *cs = icc_cs_from_env(env); 1902 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1903 uint64_t value; 1904 1905 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1906 return icv_igrpen_read(env, ri); 1907 } 1908 1909 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1910 grp = GICV3_G1NS; 1911 } 1912 1913 value = cs->icc_igrpen[grp]; 1914 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1915 gicv3_redist_affid(cs), value); 1916 return value; 1917 } 1918 1919 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1920 uint64_t value) 1921 { 1922 GICv3CPUState *cs = icc_cs_from_env(env); 1923 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1924 1925 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1926 icv_igrpen_write(env, ri, value); 1927 return; 1928 } 1929 1930 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1931 gicv3_redist_affid(cs), value); 1932 1933 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1934 grp = GICV3_G1NS; 1935 } 1936 1937 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1938 gicv3_cpuif_update(cs); 1939 } 1940 1941 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1942 { 1943 GICv3CPUState *cs = icc_cs_from_env(env); 1944 uint64_t value; 1945 1946 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1947 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1948 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1949 return value; 1950 } 1951 1952 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1953 uint64_t value) 1954 { 1955 GICv3CPUState *cs = icc_cs_from_env(env); 1956 1957 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1958 1959 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1960 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1961 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1962 gicv3_cpuif_update(cs); 1963 } 1964 1965 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1966 { 1967 GICv3CPUState *cs = icc_cs_from_env(env); 1968 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1969 uint64_t value; 1970 1971 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1972 return icv_ctlr_read(env, ri); 1973 } 1974 1975 value = cs->icc_ctlr_el1[bank]; 1976 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1977 return value; 1978 } 1979 1980 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1981 uint64_t value) 1982 { 1983 GICv3CPUState *cs = icc_cs_from_env(env); 1984 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1985 uint64_t mask; 1986 1987 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1988 icv_ctlr_write(env, ri, value); 1989 return; 1990 } 1991 1992 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1993 1994 /* Only CBPR and EOIMODE can be RW; 1995 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1996 * the asseciated priority-based routing of them); 1997 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1998 */ 1999 if (arm_feature(env, ARM_FEATURE_EL3) && 2000 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 2001 mask = ICC_CTLR_EL1_EOIMODE; 2002 } else { 2003 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 2004 } 2005 2006 cs->icc_ctlr_el1[bank] &= ~mask; 2007 cs->icc_ctlr_el1[bank] |= (value & mask); 2008 gicv3_cpuif_update(cs); 2009 } 2010 2011 2012 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 2013 { 2014 GICv3CPUState *cs = icc_cs_from_env(env); 2015 uint64_t value; 2016 2017 value = cs->icc_ctlr_el3; 2018 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2019 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 2020 } 2021 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2022 value |= ICC_CTLR_EL3_CBPR_EL1NS; 2023 } 2024 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 2025 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 2026 } 2027 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 2028 value |= ICC_CTLR_EL3_CBPR_EL1S; 2029 } 2030 2031 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 2032 return value; 2033 } 2034 2035 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 2036 uint64_t value) 2037 { 2038 GICv3CPUState *cs = icc_cs_from_env(env); 2039 uint64_t mask; 2040 2041 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 2042 2043 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 2044 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2045 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 2046 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 2047 } 2048 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 2049 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 2050 } 2051 2052 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 2053 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 2054 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 2055 } 2056 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 2057 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 2058 } 2059 2060 /* The only bit stored in icc_ctlr_el3 which is writable is EOIMODE_EL3: */ 2061 mask = ICC_CTLR_EL3_EOIMODE_EL3; 2062 2063 cs->icc_ctlr_el3 &= ~mask; 2064 cs->icc_ctlr_el3 |= (value & mask); 2065 gicv3_cpuif_update(cs); 2066 } 2067 2068 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 2069 const ARMCPRegInfo *ri, bool isread) 2070 { 2071 CPAccessResult r = CP_ACCESS_OK; 2072 GICv3CPUState *cs = icc_cs_from_env(env); 2073 int el = arm_current_el(env); 2074 2075 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 2076 el == 1 && !arm_is_secure_below_el3(env)) { 2077 /* Takes priority over a possible EL3 trap */ 2078 return CP_ACCESS_TRAP_EL2; 2079 } 2080 2081 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 2082 switch (el) { 2083 case 1: 2084 /* Note that arm_hcr_el2_eff takes secure state into account. */ 2085 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) { 2086 r = CP_ACCESS_TRAP_EL3; 2087 } 2088 break; 2089 case 2: 2090 r = CP_ACCESS_TRAP_EL3; 2091 break; 2092 case 3: 2093 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2094 r = CP_ACCESS_TRAP_EL3; 2095 } 2096 break; 2097 default: 2098 g_assert_not_reached(); 2099 } 2100 } 2101 2102 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2103 r = CP_ACCESS_TRAP; 2104 } 2105 return r; 2106 } 2107 2108 static CPAccessResult gicv3_dir_access(CPUARMState *env, 2109 const ARMCPRegInfo *ri, bool isread) 2110 { 2111 GICv3CPUState *cs = icc_cs_from_env(env); 2112 2113 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 2114 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 2115 /* Takes priority over a possible EL3 trap */ 2116 return CP_ACCESS_TRAP_EL2; 2117 } 2118 2119 return gicv3_irqfiq_access(env, ri, isread); 2120 } 2121 2122 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 2123 const ARMCPRegInfo *ri, bool isread) 2124 { 2125 if (arm_current_el(env) == 1 && 2126 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) { 2127 /* Takes priority over a possible EL3 trap */ 2128 return CP_ACCESS_TRAP_EL2; 2129 } 2130 2131 return gicv3_irqfiq_access(env, ri, isread); 2132 } 2133 2134 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 2135 const ARMCPRegInfo *ri, bool isread) 2136 { 2137 CPAccessResult r = CP_ACCESS_OK; 2138 GICv3CPUState *cs = icc_cs_from_env(env); 2139 int el = arm_current_el(env); 2140 2141 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 2142 el == 1 && !arm_is_secure_below_el3(env)) { 2143 /* Takes priority over a possible EL3 trap */ 2144 return CP_ACCESS_TRAP_EL2; 2145 } 2146 2147 if (env->cp15.scr_el3 & SCR_FIQ) { 2148 switch (el) { 2149 case 1: 2150 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) { 2151 r = CP_ACCESS_TRAP_EL3; 2152 } 2153 break; 2154 case 2: 2155 r = CP_ACCESS_TRAP_EL3; 2156 break; 2157 case 3: 2158 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2159 r = CP_ACCESS_TRAP_EL3; 2160 } 2161 break; 2162 default: 2163 g_assert_not_reached(); 2164 } 2165 } 2166 2167 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2168 r = CP_ACCESS_TRAP; 2169 } 2170 return r; 2171 } 2172 2173 static CPAccessResult gicv3_irq_access(CPUARMState *env, 2174 const ARMCPRegInfo *ri, bool isread) 2175 { 2176 CPAccessResult r = CP_ACCESS_OK; 2177 GICv3CPUState *cs = icc_cs_from_env(env); 2178 int el = arm_current_el(env); 2179 2180 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 2181 el == 1 && !arm_is_secure_below_el3(env)) { 2182 /* Takes priority over a possible EL3 trap */ 2183 return CP_ACCESS_TRAP_EL2; 2184 } 2185 2186 if (env->cp15.scr_el3 & SCR_IRQ) { 2187 switch (el) { 2188 case 1: 2189 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) { 2190 r = CP_ACCESS_TRAP_EL3; 2191 } 2192 break; 2193 case 2: 2194 r = CP_ACCESS_TRAP_EL3; 2195 break; 2196 case 3: 2197 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 2198 r = CP_ACCESS_TRAP_EL3; 2199 } 2200 break; 2201 default: 2202 g_assert_not_reached(); 2203 } 2204 } 2205 2206 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 2207 r = CP_ACCESS_TRAP; 2208 } 2209 return r; 2210 } 2211 2212 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 2213 { 2214 GICv3CPUState *cs = icc_cs_from_env(env); 2215 2216 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 2217 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2218 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2219 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 2220 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 2221 ((cs->pribits - 1) << ICC_CTLR_EL1_PRIBITS_SHIFT); 2222 cs->icc_pmr_el1 = 0; 2223 cs->icc_bpr[GICV3_G0] = icc_min_bpr(cs); 2224 cs->icc_bpr[GICV3_G1] = icc_min_bpr(cs); 2225 cs->icc_bpr[GICV3_G1NS] = icc_min_bpr_ns(cs); 2226 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2227 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2228 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2229 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2230 ((cs->pribits - 1) << ICC_CTLR_EL3_PRIBITS_SHIFT); 2231 2232 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2233 cs->ich_hcr_el2 = 0; 2234 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2235 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2236 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2237 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2238 } 2239 2240 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2241 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2242 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2243 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2244 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2245 .readfn = icc_pmr_read, 2246 .writefn = icc_pmr_write, 2247 /* We hang the whole cpu interface reset routine off here 2248 * rather than parcelling it out into one little function 2249 * per register 2250 */ 2251 .resetfn = icc_reset, 2252 }, 2253 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2254 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2255 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2256 .access = PL1_R, .accessfn = gicv3_fiq_access, 2257 .readfn = icc_iar0_read, 2258 }, 2259 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2260 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2261 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2262 .access = PL1_W, .accessfn = gicv3_fiq_access, 2263 .writefn = icc_eoir_write, 2264 }, 2265 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2266 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2267 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2268 .access = PL1_R, .accessfn = gicv3_fiq_access, 2269 .readfn = icc_hppir0_read, 2270 }, 2271 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2272 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2273 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2274 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2275 .readfn = icc_bpr_read, 2276 .writefn = icc_bpr_write, 2277 }, 2278 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2279 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2280 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2281 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2282 .readfn = icc_ap_read, 2283 .writefn = icc_ap_write, 2284 }, 2285 /* All the ICC_AP1R*_EL1 registers are banked */ 2286 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2287 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2288 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2289 .access = PL1_RW, .accessfn = gicv3_irq_access, 2290 .readfn = icc_ap_read, 2291 .writefn = icc_ap_write, 2292 }, 2293 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2294 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2295 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2296 .access = PL1_W, .accessfn = gicv3_dir_access, 2297 .writefn = icc_dir_write, 2298 }, 2299 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2300 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2301 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2302 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2303 .readfn = icc_rpr_read, 2304 }, 2305 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2306 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2307 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2308 .access = PL1_W, .accessfn = gicv3_sgi_access, 2309 .writefn = icc_sgi1r_write, 2310 }, 2311 { .name = "ICC_SGI1R", 2312 .cp = 15, .opc1 = 0, .crm = 12, 2313 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2314 .access = PL1_W, .accessfn = gicv3_sgi_access, 2315 .writefn = icc_sgi1r_write, 2316 }, 2317 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2318 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2319 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2320 .access = PL1_W, .accessfn = gicv3_sgi_access, 2321 .writefn = icc_asgi1r_write, 2322 }, 2323 { .name = "ICC_ASGI1R", 2324 .cp = 15, .opc1 = 1, .crm = 12, 2325 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2326 .access = PL1_W, .accessfn = gicv3_sgi_access, 2327 .writefn = icc_asgi1r_write, 2328 }, 2329 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2330 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2331 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2332 .access = PL1_W, .accessfn = gicv3_sgi_access, 2333 .writefn = icc_sgi0r_write, 2334 }, 2335 { .name = "ICC_SGI0R", 2336 .cp = 15, .opc1 = 2, .crm = 12, 2337 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2338 .access = PL1_W, .accessfn = gicv3_sgi_access, 2339 .writefn = icc_sgi0r_write, 2340 }, 2341 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2342 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2343 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2344 .access = PL1_R, .accessfn = gicv3_irq_access, 2345 .readfn = icc_iar1_read, 2346 }, 2347 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2348 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2349 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2350 .access = PL1_W, .accessfn = gicv3_irq_access, 2351 .writefn = icc_eoir_write, 2352 }, 2353 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2354 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2355 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2356 .access = PL1_R, .accessfn = gicv3_irq_access, 2357 .readfn = icc_hppir1_read, 2358 }, 2359 /* This register is banked */ 2360 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2361 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2362 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2363 .access = PL1_RW, .accessfn = gicv3_irq_access, 2364 .readfn = icc_bpr_read, 2365 .writefn = icc_bpr_write, 2366 }, 2367 /* This register is banked */ 2368 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2369 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2370 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2371 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2372 .readfn = icc_ctlr_el1_read, 2373 .writefn = icc_ctlr_el1_write, 2374 }, 2375 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2376 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2377 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2378 .access = PL1_RW, 2379 /* We don't support IRQ/FIQ bypass and system registers are 2380 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2381 * This register is banked but since it's constant we don't 2382 * need to do anything special. 2383 */ 2384 .resetvalue = 0x7, 2385 }, 2386 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2387 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2388 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2389 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2390 .fgt = FGT_ICC_IGRPENN_EL1, 2391 .readfn = icc_igrpen_read, 2392 .writefn = icc_igrpen_write, 2393 }, 2394 /* This register is banked */ 2395 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2396 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2397 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2398 .access = PL1_RW, .accessfn = gicv3_irq_access, 2399 .fgt = FGT_ICC_IGRPENN_EL1, 2400 .readfn = icc_igrpen_read, 2401 .writefn = icc_igrpen_write, 2402 }, 2403 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2404 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2405 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2406 .access = PL2_RW, 2407 /* We don't support IRQ/FIQ bypass and system registers are 2408 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2409 */ 2410 .resetvalue = 0xf, 2411 }, 2412 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2413 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2414 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2415 .access = PL3_RW, 2416 .readfn = icc_ctlr_el3_read, 2417 .writefn = icc_ctlr_el3_write, 2418 }, 2419 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2420 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2421 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2422 .access = PL3_RW, 2423 /* We don't support IRQ/FIQ bypass and system registers are 2424 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2425 */ 2426 .resetvalue = 0xf, 2427 }, 2428 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2429 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2430 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2431 .access = PL3_RW, 2432 .readfn = icc_igrpen1_el3_read, 2433 .writefn = icc_igrpen1_el3_write, 2434 }, 2435 }; 2436 2437 static const ARMCPRegInfo gicv3_cpuif_icc_apxr1_reginfo[] = { 2438 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2439 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2440 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2441 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2442 .readfn = icc_ap_read, 2443 .writefn = icc_ap_write, 2444 }, 2445 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2446 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2447 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2448 .access = PL1_RW, .accessfn = gicv3_irq_access, 2449 .readfn = icc_ap_read, 2450 .writefn = icc_ap_write, 2451 }, 2452 }; 2453 2454 static const ARMCPRegInfo gicv3_cpuif_icc_apxr23_reginfo[] = { 2455 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2456 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2457 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2458 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2459 .readfn = icc_ap_read, 2460 .writefn = icc_ap_write, 2461 }, 2462 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2463 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2464 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2465 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2466 .readfn = icc_ap_read, 2467 .writefn = icc_ap_write, 2468 }, 2469 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2470 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2471 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2472 .access = PL1_RW, .accessfn = gicv3_irq_access, 2473 .readfn = icc_ap_read, 2474 .writefn = icc_ap_write, 2475 }, 2476 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2477 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2478 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2479 .access = PL1_RW, .accessfn = gicv3_irq_access, 2480 .readfn = icc_ap_read, 2481 .writefn = icc_ap_write, 2482 }, 2483 }; 2484 2485 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2486 { 2487 GICv3CPUState *cs = icc_cs_from_env(env); 2488 int regno = ri->opc2 & 3; 2489 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2490 uint64_t value; 2491 2492 value = cs->ich_apr[grp][regno]; 2493 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2494 return value; 2495 } 2496 2497 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2498 uint64_t value) 2499 { 2500 GICv3CPUState *cs = icc_cs_from_env(env); 2501 int regno = ri->opc2 & 3; 2502 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0; 2503 2504 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2505 2506 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2507 gicv3_cpuif_virt_irq_fiq_update(cs); 2508 } 2509 2510 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2511 { 2512 GICv3CPUState *cs = icc_cs_from_env(env); 2513 uint64_t value = cs->ich_hcr_el2; 2514 2515 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2516 return value; 2517 } 2518 2519 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2520 uint64_t value) 2521 { 2522 GICv3CPUState *cs = icc_cs_from_env(env); 2523 2524 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2525 2526 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2527 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2528 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2529 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2530 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2531 2532 cs->ich_hcr_el2 = value; 2533 gicv3_cpuif_virt_update(cs); 2534 } 2535 2536 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2537 { 2538 GICv3CPUState *cs = icc_cs_from_env(env); 2539 uint64_t value = cs->ich_vmcr_el2; 2540 2541 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2542 return value; 2543 } 2544 2545 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2546 uint64_t value) 2547 { 2548 GICv3CPUState *cs = icc_cs_from_env(env); 2549 2550 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2551 2552 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2553 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2554 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2555 value |= ICH_VMCR_EL2_VFIQEN; 2556 2557 cs->ich_vmcr_el2 = value; 2558 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2559 * by reading and writing back the fields. 2560 */ 2561 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0)); 2562 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2563 2564 gicv3_cpuif_virt_update(cs); 2565 } 2566 2567 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2568 { 2569 GICv3CPUState *cs = icc_cs_from_env(env); 2570 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2571 uint64_t value; 2572 2573 /* This read function handles all of: 2574 * 64-bit reads of the whole LR 2575 * 32-bit reads of the low half of the LR 2576 * 32-bit reads of the high half of the LR 2577 */ 2578 if (ri->state == ARM_CP_STATE_AA32) { 2579 if (ri->crm >= 14) { 2580 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2581 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2582 } else { 2583 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2584 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2585 } 2586 } else { 2587 value = cs->ich_lr_el2[regno]; 2588 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2589 } 2590 2591 return value; 2592 } 2593 2594 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2595 uint64_t value) 2596 { 2597 GICv3CPUState *cs = icc_cs_from_env(env); 2598 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2599 2600 /* This write function handles all of: 2601 * 64-bit writes to the whole LR 2602 * 32-bit writes to the low half of the LR 2603 * 32-bit writes to the high half of the LR 2604 */ 2605 if (ri->state == ARM_CP_STATE_AA32) { 2606 if (ri->crm >= 14) { 2607 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2608 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2609 } else { 2610 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2611 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2612 } 2613 } else { 2614 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2615 } 2616 2617 /* Enforce RES0 bits in priority field */ 2618 if (cs->vpribits < 8) { 2619 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2620 8 - cs->vpribits, 0); 2621 } 2622 2623 cs->ich_lr_el2[regno] = value; 2624 gicv3_cpuif_virt_update(cs); 2625 } 2626 2627 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2628 { 2629 GICv3CPUState *cs = icc_cs_from_env(env); 2630 uint64_t value; 2631 2632 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2633 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_A3V 2634 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2635 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2636 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2637 2638 if (cs->gic->revision < 4) { 2639 value |= ICH_VTR_EL2_NV4; 2640 } 2641 2642 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2643 return value; 2644 } 2645 2646 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2647 { 2648 GICv3CPUState *cs = icc_cs_from_env(env); 2649 uint64_t value = maintenance_interrupt_state(cs); 2650 2651 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2652 return value; 2653 } 2654 2655 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2656 { 2657 GICv3CPUState *cs = icc_cs_from_env(env); 2658 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2659 2660 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2661 return value; 2662 } 2663 2664 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2665 { 2666 GICv3CPUState *cs = icc_cs_from_env(env); 2667 uint64_t value = 0; 2668 int i; 2669 2670 for (i = 0; i < cs->num_list_regs; i++) { 2671 uint64_t lr = cs->ich_lr_el2[i]; 2672 2673 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2674 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2675 value |= (1 << i); 2676 } 2677 } 2678 2679 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2680 return value; 2681 } 2682 2683 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2684 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2685 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2686 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2687 .nv2_redirect_offset = 0x480, 2688 .access = PL2_RW, 2689 .readfn = ich_ap_read, 2690 .writefn = ich_ap_write, 2691 }, 2692 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2693 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2694 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2695 .nv2_redirect_offset = 0x4a0, 2696 .access = PL2_RW, 2697 .readfn = ich_ap_read, 2698 .writefn = ich_ap_write, 2699 }, 2700 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2701 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2702 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2703 .nv2_redirect_offset = 0x4c0, 2704 .access = PL2_RW, 2705 .readfn = ich_hcr_read, 2706 .writefn = ich_hcr_write, 2707 }, 2708 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2709 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2710 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2711 .access = PL2_R, 2712 .readfn = ich_vtr_read, 2713 }, 2714 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2715 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2716 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2717 .access = PL2_R, 2718 .readfn = ich_misr_read, 2719 }, 2720 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2721 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2722 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2723 .access = PL2_R, 2724 .readfn = ich_eisr_read, 2725 }, 2726 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2727 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2728 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2729 .access = PL2_R, 2730 .readfn = ich_elrsr_read, 2731 }, 2732 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2733 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2734 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2735 .nv2_redirect_offset = 0x4c8, 2736 .access = PL2_RW, 2737 .readfn = ich_vmcr_read, 2738 .writefn = ich_vmcr_write, 2739 }, 2740 }; 2741 2742 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2743 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2744 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2745 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2746 .nv2_redirect_offset = 0x488, 2747 .access = PL2_RW, 2748 .readfn = ich_ap_read, 2749 .writefn = ich_ap_write, 2750 }, 2751 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2752 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2753 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2754 .nv2_redirect_offset = 0x4a8, 2755 .access = PL2_RW, 2756 .readfn = ich_ap_read, 2757 .writefn = ich_ap_write, 2758 }, 2759 }; 2760 2761 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2762 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2763 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2764 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2765 .nv2_redirect_offset = 0x490, 2766 .access = PL2_RW, 2767 .readfn = ich_ap_read, 2768 .writefn = ich_ap_write, 2769 }, 2770 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2771 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2772 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2773 .nv2_redirect_offset = 0x498, 2774 .access = PL2_RW, 2775 .readfn = ich_ap_read, 2776 .writefn = ich_ap_write, 2777 }, 2778 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2779 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2780 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2781 .nv2_redirect_offset = 0x4b0, 2782 .access = PL2_RW, 2783 .readfn = ich_ap_read, 2784 .writefn = ich_ap_write, 2785 }, 2786 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2787 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2788 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2789 .nv2_redirect_offset = 0x4b8, 2790 .access = PL2_RW, 2791 .readfn = ich_ap_read, 2792 .writefn = ich_ap_write, 2793 }, 2794 }; 2795 2796 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2797 { 2798 GICv3CPUState *cs = opaque; 2799 2800 gicv3_cpuif_update(cs); 2801 /* 2802 * Because vLPIs are only pending in NonSecure state, 2803 * an EL change can change the VIRQ/VFIQ status (but 2804 * cannot affect the maintenance interrupt state) 2805 */ 2806 gicv3_cpuif_virt_irq_fiq_update(cs); 2807 } 2808 2809 void gicv3_init_cpuif(GICv3State *s) 2810 { 2811 /* Called from the GICv3 realize function; register our system 2812 * registers with the CPU 2813 */ 2814 int i; 2815 2816 for (i = 0; i < s->num_cpu; i++) { 2817 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2818 GICv3CPUState *cs = &s->cpu[i]; 2819 2820 /* 2821 * If the CPU doesn't define a GICv3 configuration, probably because 2822 * in real hardware it doesn't have one, then we use default values 2823 * matching the one used by most Arm CPUs. This applies to: 2824 * cpu->gic_num_lrs 2825 * cpu->gic_vpribits 2826 * cpu->gic_vprebits 2827 * cpu->gic_pribits 2828 */ 2829 2830 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2831 * in define_arm_cp_regs_with_opaque(), because when we're called back 2832 * it might be with code translated by CPU 0 but run by CPU 1, in 2833 * which case we'd get the wrong value. 2834 * So instead we define the regs with no ri->opaque info, and 2835 * get back to the GICv3CPUState from the CPUARMState. 2836 * 2837 * These CP regs callbacks can be called from either TCG or HVF code. 2838 */ 2839 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2840 2841 /* 2842 * The CPU implementation specifies the number of supported 2843 * bits of physical priority. For backwards compatibility 2844 * of migration, we have a compat property that forces use 2845 * of 8 priority bits regardless of what the CPU really has. 2846 */ 2847 if (s->force_8bit_prio) { 2848 cs->pribits = 8; 2849 } else { 2850 cs->pribits = cpu->gic_pribits ?: 5; 2851 } 2852 2853 /* 2854 * The GICv3 has separate ID register fields for virtual priority 2855 * and preemption bit values, but only a single ID register field 2856 * for the physical priority bits. The preemption bit count is 2857 * always the same as the priority bit count, except that 8 bits 2858 * of priority means 7 preemption bits. We precalculate the 2859 * preemption bits because it simplifies the code and makes the 2860 * parallels between the virtual and physical bits of the GIC 2861 * a bit clearer. 2862 */ 2863 cs->prebits = cs->pribits; 2864 if (cs->prebits == 8) { 2865 cs->prebits--; 2866 } 2867 /* 2868 * Check that CPU code defining pribits didn't violate 2869 * architectural constraints our implementation relies on. 2870 */ 2871 g_assert(cs->pribits >= 4 && cs->pribits <= 8); 2872 2873 /* 2874 * gicv3_cpuif_reginfo[] defines ICC_AP*R0_EL1; add definitions 2875 * for ICC_AP*R{1,2,3}_EL1 if the prebits value requires them. 2876 */ 2877 if (cs->prebits >= 6) { 2878 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr1_reginfo); 2879 } 2880 if (cs->prebits == 7) { 2881 define_arm_cp_regs(cpu, gicv3_cpuif_icc_apxr23_reginfo); 2882 } 2883 2884 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) { 2885 int j; 2886 2887 cs->num_list_regs = cpu->gic_num_lrs ?: 4; 2888 cs->vpribits = cpu->gic_vpribits ?: 5; 2889 cs->vprebits = cpu->gic_vprebits ?: 5; 2890 2891 /* Check against architectural constraints: getting these 2892 * wrong would be a bug in the CPU code defining these, 2893 * and the implementation relies on them holding. 2894 */ 2895 g_assert(cs->vprebits <= cs->vpribits); 2896 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2897 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2898 2899 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2900 2901 for (j = 0; j < cs->num_list_regs; j++) { 2902 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2903 * are split into two cp15 regs, LR (the low part, with the 2904 * same encoding as the AArch64 LR) and LRC (the high part). 2905 */ 2906 ARMCPRegInfo lr_regset[] = { 2907 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2908 .opc0 = 3, .opc1 = 4, .crn = 12, 2909 .crm = 12 + (j >> 3), .opc2 = j & 7, 2910 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2911 .nv2_redirect_offset = 0x400 + 8 * j, 2912 .access = PL2_RW, 2913 .readfn = ich_lr_read, 2914 .writefn = ich_lr_write, 2915 }, 2916 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2917 .cp = 15, .opc1 = 4, .crn = 12, 2918 .crm = 14 + (j >> 3), .opc2 = j & 7, 2919 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2920 .access = PL2_RW, 2921 .readfn = ich_lr_read, 2922 .writefn = ich_lr_write, 2923 }, 2924 }; 2925 define_arm_cp_regs(cpu, lr_regset); 2926 } 2927 if (cs->vprebits >= 6) { 2928 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2929 } 2930 if (cs->vprebits == 7) { 2931 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2932 } 2933 } 2934 if (tcg_enabled() || qtest_enabled()) { 2935 /* 2936 * We can only trap EL changes with TCG. However the GIC interrupt 2937 * state only changes on EL changes involving EL2 or EL3, so for 2938 * the non-TCG case this is OK, as EL2 and EL3 can't exist. 2939 */ 2940 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2941 } else { 2942 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL2)); 2943 assert(!arm_feature(&cpu->env, ARM_FEATURE_EL3)); 2944 } 2945 } 2946 } 2947