1 /* 2 * ARM Generic Interrupt Controller v3 3 * 4 * Copyright (c) 2016 Linaro Limited 5 * Written by Peter Maydell 6 * 7 * This code is licensed under the GPL, version 2 or (at your option) 8 * any later version. 9 */ 10 11 /* This file contains the code for the system register interface 12 * portions of the GICv3. 13 */ 14 15 #include "qemu/osdep.h" 16 #include "qemu/bitops.h" 17 #include "qemu/main-loop.h" 18 #include "trace.h" 19 #include "gicv3_internal.h" 20 #include "cpu.h" 21 22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s) 23 { 24 ARMCPU *arm_cpu = ARM_CPU(cpu); 25 CPUARMState *env = &arm_cpu->env; 26 27 env->gicv3state = (void *)s; 28 }; 29 30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env) 31 { 32 /* Given the CPU, find the right GICv3CPUState struct. 33 * Since we registered the CPU interface with the EL change hook as 34 * the opaque pointer, we can just directly get from the CPU to it. 35 */ 36 return arm_get_el_change_hook_opaque(arm_env_get_cpu(env)); 37 } 38 39 static bool gicv3_use_ns_bank(CPUARMState *env) 40 { 41 /* Return true if we should use the NonSecure bank for a banked GIC 42 * CPU interface register. Note that this differs from the 43 * access_secure_reg() function because GICv3 banked registers are 44 * banked even for AArch64, unlike the other CPU system registers. 45 */ 46 return !arm_is_secure_below_el3(env); 47 } 48 49 /* The minimum BPR for the virtual interface is a configurable property */ 50 static inline int icv_min_vbpr(GICv3CPUState *cs) 51 { 52 return 7 - cs->vprebits; 53 } 54 55 /* Simple accessor functions for LR fields */ 56 static uint32_t ich_lr_vintid(uint64_t lr) 57 { 58 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH); 59 } 60 61 static uint32_t ich_lr_pintid(uint64_t lr) 62 { 63 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH); 64 } 65 66 static uint32_t ich_lr_prio(uint64_t lr) 67 { 68 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH); 69 } 70 71 static int ich_lr_state(uint64_t lr) 72 { 73 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH); 74 } 75 76 static bool icv_access(CPUARMState *env, int hcr_flags) 77 { 78 /* Return true if this ICC_ register access should really be 79 * directed to an ICV_ access. hcr_flags is a mask of 80 * HCR_EL2 bits to check: we treat this as an ICV_ access 81 * if we are in NS EL1 and at least one of the specified 82 * HCR_EL2 bits is set. 83 * 84 * ICV registers fall into four categories: 85 * * access if NS EL1 and HCR_EL2.FMO == 1: 86 * all ICV regs with '0' in their name 87 * * access if NS EL1 and HCR_EL2.IMO == 1: 88 * all ICV regs with '1' in their name 89 * * access if NS EL1 and either IMO or FMO == 1: 90 * CTLR, DIR, PMR, RPR 91 */ 92 return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 93 && !arm_is_secure_below_el3(env); 94 } 95 96 static int read_vbpr(GICv3CPUState *cs, int grp) 97 { 98 /* Read VBPR value out of the VMCR field (caller must handle 99 * VCBPR effects if required) 100 */ 101 if (grp == GICV3_G0) { 102 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 103 ICH_VMCR_EL2_VBPR0_LENGTH); 104 } else { 105 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 106 ICH_VMCR_EL2_VBPR1_LENGTH); 107 } 108 } 109 110 static void write_vbpr(GICv3CPUState *cs, int grp, int value) 111 { 112 /* Write new VBPR1 value, handling the "writing a value less than 113 * the minimum sets it to the minimum" semantics. 114 */ 115 int min = icv_min_vbpr(cs); 116 117 if (grp != GICV3_G0) { 118 min++; 119 } 120 121 value = MAX(value, min); 122 123 if (grp == GICV3_G0) { 124 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT, 125 ICH_VMCR_EL2_VBPR0_LENGTH, value); 126 } else { 127 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT, 128 ICH_VMCR_EL2_VBPR1_LENGTH, value); 129 } 130 } 131 132 static uint32_t icv_fullprio_mask(GICv3CPUState *cs) 133 { 134 /* Return a mask word which clears the unimplemented priority bits 135 * from a priority value for a virtual interrupt. (Not to be confused 136 * with the group priority, whose mask depends on the value of VBPR 137 * for the interrupt group.) 138 */ 139 return ~0U << (8 - cs->vpribits); 140 } 141 142 static int ich_highest_active_virt_prio(GICv3CPUState *cs) 143 { 144 /* Calculate the current running priority based on the set bits 145 * in the ICH Active Priority Registers. 146 */ 147 int i; 148 int aprmax = 1 << (cs->vprebits - 5); 149 150 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 151 152 for (i = 0; i < aprmax; i++) { 153 uint32_t apr = cs->ich_apr[GICV3_G0][i] | 154 cs->ich_apr[GICV3_G1NS][i]; 155 156 if (!apr) { 157 continue; 158 } 159 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1); 160 } 161 /* No current active interrupts: return idle priority */ 162 return 0xff; 163 } 164 165 static int hppvi_index(GICv3CPUState *cs) 166 { 167 /* Return the list register index of the highest priority pending 168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt 169 * pseudocode. If no pending virtual interrupts, return -1. 170 */ 171 int idx = -1; 172 int i; 173 /* Note that a list register entry with a priority of 0xff will 174 * never be reported by this function; this is the architecturally 175 * correct behaviour. 176 */ 177 int prio = 0xff; 178 179 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) { 180 /* Both groups disabled, definitely nothing to do */ 181 return idx; 182 } 183 184 for (i = 0; i < cs->num_list_regs; i++) { 185 uint64_t lr = cs->ich_lr_el2[i]; 186 int thisprio; 187 188 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) { 189 /* Not Pending */ 190 continue; 191 } 192 193 /* Ignore interrupts if relevant group enable not set */ 194 if (lr & ICH_LR_EL2_GROUP) { 195 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 196 continue; 197 } 198 } else { 199 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 200 continue; 201 } 202 } 203 204 thisprio = ich_lr_prio(lr); 205 206 if (thisprio < prio) { 207 prio = thisprio; 208 idx = i; 209 } 210 } 211 212 return idx; 213 } 214 215 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group) 216 { 217 /* Return a mask word which clears the subpriority bits from 218 * a priority value for a virtual interrupt in the specified group. 219 * This depends on the VBPR value: 220 * a BPR of 0 means the group priority bits are [7:1]; 221 * a BPR of 1 means they are [7:2], and so on down to 222 * a BPR of 7 meaning no group priority bits at all. 223 * Which BPR to use depends on the group of the interrupt and 224 * the current ICH_VMCR_EL2.VCBPR settings. 225 */ 226 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 227 group = GICV3_G0; 228 } 229 230 return ~0U << (read_vbpr(cs, group) + 1); 231 } 232 233 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr) 234 { 235 /* Return true if we can signal this virtual interrupt defined by 236 * the given list register value; see the pseudocode functions 237 * CanSignalVirtualInterrupt and CanSignalVirtualInt. 238 * Compare also icc_hppi_can_preempt() which is the non-virtual 239 * equivalent of these checks. 240 */ 241 int grp; 242 uint32_t mask, prio, rprio, vpmr; 243 244 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) { 245 /* Virtual interface disabled */ 246 return false; 247 } 248 249 /* We don't need to check that this LR is in Pending state because 250 * that has already been done in hppvi_index(). 251 */ 252 253 prio = ich_lr_prio(lr); 254 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 255 ICH_VMCR_EL2_VPMR_LENGTH); 256 257 if (prio >= vpmr) { 258 /* Priority mask masks this interrupt */ 259 return false; 260 } 261 262 rprio = ich_highest_active_virt_prio(cs); 263 if (rprio == 0xff) { 264 /* No running interrupt so we can preempt */ 265 return true; 266 } 267 268 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 269 270 mask = icv_gprio_mask(cs, grp); 271 272 /* We only preempt a running interrupt if the pending interrupt's 273 * group priority is sufficient (the subpriorities are not considered). 274 */ 275 if ((prio & mask) < (rprio & mask)) { 276 return true; 277 } 278 279 return false; 280 } 281 282 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs, 283 uint32_t *misr) 284 { 285 /* Return a set of bits indicating the EOI maintenance interrupt status 286 * for each list register. The EOI maintenance interrupt status is 287 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1 288 * (see the GICv3 spec for the ICH_EISR_EL2 register). 289 * If misr is not NULL then we should also collect the information 290 * about the MISR.EOI, MISR.NP and MISR.U bits. 291 */ 292 uint32_t value = 0; 293 int validcount = 0; 294 bool seenpending = false; 295 int i; 296 297 for (i = 0; i < cs->num_list_regs; i++) { 298 uint64_t lr = cs->ich_lr_el2[i]; 299 300 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI)) 301 == ICH_LR_EL2_EOI) { 302 value |= (1 << i); 303 } 304 if ((lr & ICH_LR_EL2_STATE_MASK)) { 305 validcount++; 306 } 307 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) { 308 seenpending = true; 309 } 310 } 311 312 if (misr) { 313 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) { 314 *misr |= ICH_MISR_EL2_U; 315 } 316 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) { 317 *misr |= ICH_MISR_EL2_NP; 318 } 319 if (value) { 320 *misr |= ICH_MISR_EL2_EOI; 321 } 322 } 323 return value; 324 } 325 326 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs) 327 { 328 /* Return a set of bits indicating the maintenance interrupt status 329 * (as seen in the ICH_MISR_EL2 register). 330 */ 331 uint32_t value = 0; 332 333 /* Scan list registers and fill in the U, NP and EOI bits */ 334 eoi_maintenance_interrupt_state(cs, &value); 335 336 if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) { 337 value |= ICH_MISR_EL2_LRENP; 338 } 339 340 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) && 341 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) { 342 value |= ICH_MISR_EL2_VGRP0E; 343 } 344 345 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) && 346 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 347 value |= ICH_MISR_EL2_VGRP0D; 348 } 349 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) && 350 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 351 value |= ICH_MISR_EL2_VGRP1E; 352 } 353 354 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) && 355 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) { 356 value |= ICH_MISR_EL2_VGRP1D; 357 } 358 359 return value; 360 } 361 362 static void gicv3_cpuif_virt_update(GICv3CPUState *cs) 363 { 364 /* Tell the CPU about any pending virtual interrupts or 365 * maintenance interrupts, following a change to the state 366 * of the CPU interface relevant to virtual interrupts. 367 * 368 * CAUTION: this function will call qemu_set_irq() on the 369 * CPU maintenance IRQ line, which is typically wired up 370 * to the GIC as a per-CPU interrupt. This means that it 371 * will recursively call back into the GIC code via 372 * gicv3_redist_set_irq() and thus into the CPU interface code's 373 * gicv3_cpuif_update(). It is therefore important that this 374 * function is only called as the final action of a CPU interface 375 * register write implementation, after all the GIC state 376 * fields have been updated. gicv3_cpuif_update() also must 377 * not cause this function to be called, but that happens 378 * naturally as a result of there being no architectural 379 * linkage between the physical and virtual GIC logic. 380 */ 381 int idx; 382 int irqlevel = 0; 383 int fiqlevel = 0; 384 int maintlevel = 0; 385 386 idx = hppvi_index(cs); 387 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx); 388 if (idx >= 0) { 389 uint64_t lr = cs->ich_lr_el2[idx]; 390 391 if (icv_hppi_can_preempt(cs, lr)) { 392 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */ 393 if (lr & ICH_LR_EL2_GROUP) { 394 irqlevel = 1; 395 } else { 396 fiqlevel = 1; 397 } 398 } 399 } 400 401 if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) { 402 maintlevel = maintenance_interrupt_state(cs); 403 } 404 405 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, 406 irqlevel, maintlevel); 407 408 qemu_set_irq(cs->parent_vfiq, fiqlevel); 409 qemu_set_irq(cs->parent_virq, irqlevel); 410 qemu_set_irq(cs->maintenance_irq, maintlevel); 411 } 412 413 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 414 { 415 GICv3CPUState *cs = icc_cs_from_env(env); 416 int regno = ri->opc2 & 3; 417 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 418 uint64_t value = cs->ich_apr[grp][regno]; 419 420 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 421 return value; 422 } 423 424 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 425 uint64_t value) 426 { 427 GICv3CPUState *cs = icc_cs_from_env(env); 428 int regno = ri->opc2 & 3; 429 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 430 431 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 432 433 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 434 435 gicv3_cpuif_virt_update(cs); 436 return; 437 } 438 439 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 440 { 441 GICv3CPUState *cs = icc_cs_from_env(env); 442 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 443 uint64_t bpr; 444 bool satinc = false; 445 446 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 447 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 448 grp = GICV3_G0; 449 satinc = true; 450 } 451 452 bpr = read_vbpr(cs, grp); 453 454 if (satinc) { 455 bpr++; 456 bpr = MIN(bpr, 7); 457 } 458 459 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 460 461 return bpr; 462 } 463 464 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 465 uint64_t value) 466 { 467 GICv3CPUState *cs = icc_cs_from_env(env); 468 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS; 469 470 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1, 471 gicv3_redist_affid(cs), value); 472 473 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) { 474 /* reads return bpr0 + 1 saturated to 7, writes ignored */ 475 return; 476 } 477 478 write_vbpr(cs, grp, value); 479 480 gicv3_cpuif_virt_update(cs); 481 } 482 483 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 484 { 485 GICv3CPUState *cs = icc_cs_from_env(env); 486 uint64_t value; 487 488 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 489 ICH_VMCR_EL2_VPMR_LENGTH); 490 491 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value); 492 return value; 493 } 494 495 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 496 uint64_t value) 497 { 498 GICv3CPUState *cs = icc_cs_from_env(env); 499 500 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value); 501 502 value &= icv_fullprio_mask(cs); 503 504 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT, 505 ICH_VMCR_EL2_VPMR_LENGTH, value); 506 507 gicv3_cpuif_virt_update(cs); 508 } 509 510 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 511 { 512 GICv3CPUState *cs = icc_cs_from_env(env); 513 int enbit; 514 uint64_t value; 515 516 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 517 value = extract64(cs->ich_vmcr_el2, enbit, 1); 518 519 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0, 520 gicv3_redist_affid(cs), value); 521 return value; 522 } 523 524 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 525 uint64_t value) 526 { 527 GICv3CPUState *cs = icc_cs_from_env(env); 528 int enbit; 529 530 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0, 531 gicv3_redist_affid(cs), value); 532 533 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT; 534 535 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value); 536 gicv3_cpuif_virt_update(cs); 537 } 538 539 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri) 540 { 541 GICv3CPUState *cs = icc_cs_from_env(env); 542 uint64_t value; 543 544 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits) 545 * should match the ones reported in ich_vtr_read(). 546 */ 547 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 548 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 549 550 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) { 551 value |= ICC_CTLR_EL1_EOIMODE; 552 } 553 554 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) { 555 value |= ICC_CTLR_EL1_CBPR; 556 } 557 558 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value); 559 return value; 560 } 561 562 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, 563 uint64_t value) 564 { 565 GICv3CPUState *cs = icc_cs_from_env(env); 566 567 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value); 568 569 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT, 570 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0); 571 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT, 572 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0); 573 574 gicv3_cpuif_virt_update(cs); 575 } 576 577 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 578 { 579 GICv3CPUState *cs = icc_cs_from_env(env); 580 int prio = ich_highest_active_virt_prio(cs); 581 582 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio); 583 return prio; 584 } 585 586 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri) 587 { 588 GICv3CPUState *cs = icc_cs_from_env(env); 589 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 590 int idx = hppvi_index(cs); 591 uint64_t value = INTID_SPURIOUS; 592 593 if (idx >= 0) { 594 uint64_t lr = cs->ich_lr_el2[idx]; 595 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 596 597 if (grp == thisgrp) { 598 value = ich_lr_vintid(lr); 599 } 600 } 601 602 trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value); 603 return value; 604 } 605 606 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp) 607 { 608 /* Activate the interrupt in the specified list register 609 * by moving it from Pending to Active state, and update the 610 * Active Priority Registers. 611 */ 612 uint32_t mask = icv_gprio_mask(cs, grp); 613 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask; 614 int aprbit = prio >> (8 - cs->vprebits); 615 int regno = aprbit / 32; 616 int regbit = aprbit % 32; 617 618 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 619 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT; 620 cs->ich_apr[grp][regno] |= (1 << regbit); 621 } 622 623 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri) 624 { 625 GICv3CPUState *cs = icc_cs_from_env(env); 626 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 627 int idx = hppvi_index(cs); 628 uint64_t intid = INTID_SPURIOUS; 629 630 if (idx >= 0) { 631 uint64_t lr = cs->ich_lr_el2[idx]; 632 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 633 634 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) { 635 intid = ich_lr_vintid(lr); 636 if (intid < INTID_SECURE) { 637 icv_activate_irq(cs, idx, grp); 638 } else { 639 /* Interrupt goes from Pending to Invalid */ 640 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT; 641 /* We will now return the (bogus) ID from the list register, 642 * as per the pseudocode. 643 */ 644 } 645 } 646 } 647 648 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1, 649 gicv3_redist_affid(cs), intid); 650 return intid; 651 } 652 653 static int icc_highest_active_prio(GICv3CPUState *cs) 654 { 655 /* Calculate the current running priority based on the set bits 656 * in the Active Priority Registers. 657 */ 658 int i; 659 660 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 661 uint32_t apr = cs->icc_apr[GICV3_G0][i] | 662 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i]; 663 664 if (!apr) { 665 continue; 666 } 667 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1); 668 } 669 /* No current active interrupts: return idle priority */ 670 return 0xff; 671 } 672 673 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group) 674 { 675 /* Return a mask word which clears the subpriority bits from 676 * a priority value for an interrupt in the specified group. 677 * This depends on the BPR value: 678 * a BPR of 0 means the group priority bits are [7:1]; 679 * a BPR of 1 means they are [7:2], and so on down to 680 * a BPR of 7 meaning no group priority bits at all. 681 * Which BPR to use depends on the group of the interrupt and 682 * the current ICC_CTLR.CBPR settings. 683 */ 684 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) || 685 (group == GICV3_G1NS && 686 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 687 group = GICV3_G0; 688 } 689 690 return ~0U << ((cs->icc_bpr[group] & 7) + 1); 691 } 692 693 static bool icc_no_enabled_hppi(GICv3CPUState *cs) 694 { 695 /* Return true if there is no pending interrupt, or the 696 * highest priority pending interrupt is in a group which has been 697 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits. 698 */ 699 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0); 700 } 701 702 static bool icc_hppi_can_preempt(GICv3CPUState *cs) 703 { 704 /* Return true if we have a pending interrupt of sufficient 705 * priority to preempt. 706 */ 707 int rprio; 708 uint32_t mask; 709 710 if (icc_no_enabled_hppi(cs)) { 711 return false; 712 } 713 714 if (cs->hppi.prio >= cs->icc_pmr_el1) { 715 /* Priority mask masks this interrupt */ 716 return false; 717 } 718 719 rprio = icc_highest_active_prio(cs); 720 if (rprio == 0xff) { 721 /* No currently running interrupt so we can preempt */ 722 return true; 723 } 724 725 mask = icc_gprio_mask(cs, cs->hppi.grp); 726 727 /* We only preempt a running interrupt if the pending interrupt's 728 * group priority is sufficient (the subpriorities are not considered). 729 */ 730 if ((cs->hppi.prio & mask) < (rprio & mask)) { 731 return true; 732 } 733 734 return false; 735 } 736 737 void gicv3_cpuif_update(GICv3CPUState *cs) 738 { 739 /* Tell the CPU about its highest priority pending interrupt */ 740 int irqlevel = 0; 741 int fiqlevel = 0; 742 ARMCPU *cpu = ARM_CPU(cs->cpu); 743 CPUARMState *env = &cpu->env; 744 745 g_assert(qemu_mutex_iothread_locked()); 746 747 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq, 748 cs->hppi.grp, cs->hppi.prio); 749 750 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) { 751 /* If a Security-enabled GIC sends a G1S interrupt to a 752 * Security-disabled CPU, we must treat it as if it were G0. 753 */ 754 cs->hppi.grp = GICV3_G0; 755 } 756 757 if (icc_hppi_can_preempt(cs)) { 758 /* We have an interrupt: should we signal it as IRQ or FIQ? 759 * This is described in the GICv3 spec section 4.6.2. 760 */ 761 bool isfiq; 762 763 switch (cs->hppi.grp) { 764 case GICV3_G0: 765 isfiq = true; 766 break; 767 case GICV3_G1: 768 isfiq = (!arm_is_secure(env) || 769 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3))); 770 break; 771 case GICV3_G1NS: 772 isfiq = arm_is_secure(env); 773 break; 774 default: 775 g_assert_not_reached(); 776 } 777 778 if (isfiq) { 779 fiqlevel = 1; 780 } else { 781 irqlevel = 1; 782 } 783 } 784 785 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel); 786 787 qemu_set_irq(cs->parent_fiq, fiqlevel); 788 qemu_set_irq(cs->parent_irq, irqlevel); 789 } 790 791 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri) 792 { 793 GICv3CPUState *cs = icc_cs_from_env(env); 794 uint32_t value = cs->icc_pmr_el1; 795 796 if (icv_access(env, HCR_FMO | HCR_IMO)) { 797 return icv_pmr_read(env, ri); 798 } 799 800 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 801 (env->cp15.scr_el3 & SCR_FIQ)) { 802 /* NS access and Group 0 is inaccessible to NS: return the 803 * NS view of the current priority 804 */ 805 if (value & 0x80) { 806 /* Secure priorities not visible to NS */ 807 value = 0; 808 } else if (value != 0xff) { 809 value = (value << 1) & 0xff; 810 } 811 } 812 813 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value); 814 815 return value; 816 } 817 818 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri, 819 uint64_t value) 820 { 821 GICv3CPUState *cs = icc_cs_from_env(env); 822 823 if (icv_access(env, HCR_FMO | HCR_IMO)) { 824 return icv_pmr_write(env, ri, value); 825 } 826 827 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value); 828 829 value &= 0xff; 830 831 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) && 832 (env->cp15.scr_el3 & SCR_FIQ)) { 833 /* NS access and Group 0 is inaccessible to NS: return the 834 * NS view of the current priority 835 */ 836 if (!(cs->icc_pmr_el1 & 0x80)) { 837 /* Current PMR in the secure range, don't allow NS to change it */ 838 return; 839 } 840 value = (value >> 1) & 0x80; 841 } 842 cs->icc_pmr_el1 = value; 843 gicv3_cpuif_update(cs); 844 } 845 846 static void icc_activate_irq(GICv3CPUState *cs, int irq) 847 { 848 /* Move the interrupt from the Pending state to Active, and update 849 * the Active Priority Registers 850 */ 851 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp); 852 int prio = cs->hppi.prio & mask; 853 int aprbit = prio >> 1; 854 int regno = aprbit / 32; 855 int regbit = aprbit % 32; 856 857 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit); 858 859 if (irq < GIC_INTERNAL) { 860 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1); 861 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0); 862 gicv3_redist_update(cs); 863 } else { 864 gicv3_gicd_active_set(cs->gic, irq); 865 gicv3_gicd_pending_clear(cs->gic, irq); 866 gicv3_update(cs->gic, irq, 1); 867 } 868 } 869 870 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env) 871 { 872 /* Return the highest priority pending interrupt register value 873 * for group 0. 874 */ 875 bool irq_is_secure; 876 877 if (cs->hppi.prio == 0xff) { 878 return INTID_SPURIOUS; 879 } 880 881 /* Check whether we can return the interrupt or if we should return 882 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers 883 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 884 * is always zero.) 885 */ 886 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 887 (cs->hppi.grp != GICV3_G1NS)); 888 889 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) { 890 return INTID_SPURIOUS; 891 } 892 if (irq_is_secure && !arm_is_secure(env)) { 893 /* Secure interrupts not visible to Nonsecure */ 894 return INTID_SPURIOUS; 895 } 896 897 if (cs->hppi.grp != GICV3_G0) { 898 /* Indicate to EL3 that there's a Group 1 interrupt for the other 899 * state pending. 900 */ 901 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE; 902 } 903 904 return cs->hppi.irq; 905 } 906 907 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env) 908 { 909 /* Return the highest priority pending interrupt register value 910 * for group 1. 911 */ 912 bool irq_is_secure; 913 914 if (cs->hppi.prio == 0xff) { 915 return INTID_SPURIOUS; 916 } 917 918 /* Check whether we can return the interrupt or if we should return 919 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers 920 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM 921 * is always zero.) 922 */ 923 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) && 924 (cs->hppi.grp != GICV3_G1NS)); 925 926 if (cs->hppi.grp == GICV3_G0) { 927 /* Group 0 interrupts not visible via HPPIR1 */ 928 return INTID_SPURIOUS; 929 } 930 if (irq_is_secure) { 931 if (!arm_is_secure(env)) { 932 /* Secure interrupts not visible in Non-secure */ 933 return INTID_SPURIOUS; 934 } 935 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) { 936 /* Group 1 non-secure interrupts not visible in Secure EL1 */ 937 return INTID_SPURIOUS; 938 } 939 940 return cs->hppi.irq; 941 } 942 943 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri) 944 { 945 GICv3CPUState *cs = icc_cs_from_env(env); 946 uint64_t intid; 947 948 if (icv_access(env, HCR_FMO)) { 949 return icv_iar_read(env, ri); 950 } 951 952 if (!icc_hppi_can_preempt(cs)) { 953 intid = INTID_SPURIOUS; 954 } else { 955 intid = icc_hppir0_value(cs, env); 956 } 957 958 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 959 icc_activate_irq(cs, intid); 960 } 961 962 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid); 963 return intid; 964 } 965 966 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri) 967 { 968 GICv3CPUState *cs = icc_cs_from_env(env); 969 uint64_t intid; 970 971 if (icv_access(env, HCR_IMO)) { 972 return icv_iar_read(env, ri); 973 } 974 975 if (!icc_hppi_can_preempt(cs)) { 976 intid = INTID_SPURIOUS; 977 } else { 978 intid = icc_hppir1_value(cs, env); 979 } 980 981 if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) { 982 icc_activate_irq(cs, intid); 983 } 984 985 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid); 986 return intid; 987 } 988 989 static void icc_drop_prio(GICv3CPUState *cs, int grp) 990 { 991 /* Drop the priority of the currently active interrupt in 992 * the specified group. 993 * 994 * Note that we can guarantee (because of the requirement to nest 995 * ICC_IAR reads [which activate an interrupt and raise priority] 996 * with ICC_EOIR writes [which drop the priority for the interrupt]) 997 * that the interrupt we're being called for is the highest priority 998 * active interrupt, meaning that it has the lowest set bit in the 999 * APR registers. 1000 * 1001 * If the guest does not honour the ordering constraints then the 1002 * behaviour of the GIC is UNPREDICTABLE, which for us means that 1003 * the values of the APR registers might become incorrect and the 1004 * running priority will be wrong, so interrupts that should preempt 1005 * might not do so, and interrupts that should not preempt might do so. 1006 */ 1007 int i; 1008 1009 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) { 1010 uint64_t *papr = &cs->icc_apr[grp][i]; 1011 1012 if (!*papr) { 1013 continue; 1014 } 1015 /* Clear the lowest set bit */ 1016 *papr &= *papr - 1; 1017 break; 1018 } 1019 1020 /* running priority change means we need an update for this cpu i/f */ 1021 gicv3_cpuif_update(cs); 1022 } 1023 1024 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1025 { 1026 /* Return true if we should split priority drop and interrupt 1027 * deactivation, ie whether the relevant EOIMode bit is set. 1028 */ 1029 if (arm_is_el3_or_mon(env)) { 1030 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3; 1031 } 1032 if (arm_is_secure_below_el3(env)) { 1033 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE; 1034 } else { 1035 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE; 1036 } 1037 } 1038 1039 static int icc_highest_active_group(GICv3CPUState *cs) 1040 { 1041 /* Return the group with the highest priority active interrupt. 1042 * We can do this by just comparing the APRs to see which one 1043 * has the lowest set bit. 1044 * (If more than one group is active at the same priority then 1045 * we're in UNPREDICTABLE territory.) 1046 */ 1047 int i; 1048 1049 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) { 1050 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]); 1051 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]); 1052 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]); 1053 1054 if (g1nsctz < g0ctz && g1nsctz < g1ctz) { 1055 return GICV3_G1NS; 1056 } 1057 if (g1ctz < g0ctz) { 1058 return GICV3_G1; 1059 } 1060 if (g0ctz < 32) { 1061 return GICV3_G0; 1062 } 1063 } 1064 /* No set active bits? UNPREDICTABLE; return -1 so the caller 1065 * ignores the spurious EOI attempt. 1066 */ 1067 return -1; 1068 } 1069 1070 static void icc_deactivate_irq(GICv3CPUState *cs, int irq) 1071 { 1072 if (irq < GIC_INTERNAL) { 1073 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0); 1074 gicv3_redist_update(cs); 1075 } else { 1076 gicv3_gicd_active_clear(cs->gic, irq); 1077 gicv3_update(cs->gic, irq, 1); 1078 } 1079 } 1080 1081 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs) 1082 { 1083 /* Return true if we should split priority drop and interrupt 1084 * deactivation, ie whether the virtual EOIMode bit is set. 1085 */ 1086 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM; 1087 } 1088 1089 static int icv_find_active(GICv3CPUState *cs, int irq) 1090 { 1091 /* Given an interrupt number for an active interrupt, return the index 1092 * of the corresponding list register, or -1 if there is no match. 1093 * Corresponds to FindActiveVirtualInterrupt pseudocode. 1094 */ 1095 int i; 1096 1097 for (i = 0; i < cs->num_list_regs; i++) { 1098 uint64_t lr = cs->ich_lr_el2[i]; 1099 1100 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) { 1101 return i; 1102 } 1103 } 1104 1105 return -1; 1106 } 1107 1108 static void icv_deactivate_irq(GICv3CPUState *cs, int idx) 1109 { 1110 /* Deactivate the interrupt in the specified list register index */ 1111 uint64_t lr = cs->ich_lr_el2[idx]; 1112 1113 if (lr & ICH_LR_EL2_HW) { 1114 /* Deactivate the associated physical interrupt */ 1115 int pirq = ich_lr_pintid(lr); 1116 1117 if (pirq < INTID_SECURE) { 1118 icc_deactivate_irq(cs, pirq); 1119 } 1120 } 1121 1122 /* Clear the 'active' part of the state, so ActivePending->Pending 1123 * and Active->Invalid. 1124 */ 1125 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT; 1126 cs->ich_lr_el2[idx] = lr; 1127 } 1128 1129 static void icv_increment_eoicount(GICv3CPUState *cs) 1130 { 1131 /* Increment the EOICOUNT field in ICH_HCR_EL2 */ 1132 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1133 ICH_HCR_EL2_EOICOUNT_LENGTH); 1134 1135 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT, 1136 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1); 1137 } 1138 1139 static int icv_drop_prio(GICv3CPUState *cs) 1140 { 1141 /* Drop the priority of the currently active virtual interrupt 1142 * (favouring group 0 if there is a set active bit at 1143 * the same priority for both group 0 and group 1). 1144 * Return the priority value for the bit we just cleared, 1145 * or 0xff if no bits were set in the AP registers at all. 1146 * Note that though the ich_apr[] are uint64_t only the low 1147 * 32 bits are actually relevant. 1148 */ 1149 int i; 1150 int aprmax = 1 << (cs->vprebits - 5); 1151 1152 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0])); 1153 1154 for (i = 0; i < aprmax; i++) { 1155 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i]; 1156 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i]; 1157 int apr0count, apr1count; 1158 1159 if (!*papr0 && !*papr1) { 1160 continue; 1161 } 1162 1163 /* We can't just use the bit-twiddling hack icc_drop_prio() does 1164 * because we need to return the bit number we cleared so 1165 * it can be compared against the list register's priority field. 1166 */ 1167 apr0count = ctz32(*papr0); 1168 apr1count = ctz32(*papr1); 1169 1170 if (apr0count <= apr1count) { 1171 *papr0 &= *papr0 - 1; 1172 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1); 1173 } else { 1174 *papr1 &= *papr1 - 1; 1175 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1); 1176 } 1177 } 1178 return 0xff; 1179 } 1180 1181 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1182 uint64_t value) 1183 { 1184 /* Deactivate interrupt */ 1185 GICv3CPUState *cs = icc_cs_from_env(env); 1186 int idx; 1187 int irq = value & 0xffffff; 1188 1189 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value); 1190 1191 if (irq >= cs->gic->num_irq) { 1192 /* Also catches special interrupt numbers and LPIs */ 1193 return; 1194 } 1195 1196 if (!icv_eoi_split(env, cs)) { 1197 return; 1198 } 1199 1200 idx = icv_find_active(cs, irq); 1201 1202 if (idx < 0) { 1203 /* No list register matching this, so increment the EOI count 1204 * (might trigger a maintenance interrupt) 1205 */ 1206 icv_increment_eoicount(cs); 1207 } else { 1208 icv_deactivate_irq(cs, idx); 1209 } 1210 1211 gicv3_cpuif_virt_update(cs); 1212 } 1213 1214 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1215 uint64_t value) 1216 { 1217 /* End of Interrupt */ 1218 GICv3CPUState *cs = icc_cs_from_env(env); 1219 int irq = value & 0xffffff; 1220 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS; 1221 int idx, dropprio; 1222 1223 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1, 1224 gicv3_redist_affid(cs), value); 1225 1226 if (irq >= cs->gic->num_irq) { 1227 /* Also catches special interrupt numbers and LPIs */ 1228 return; 1229 } 1230 1231 /* We implement the IMPDEF choice of "drop priority before doing 1232 * error checks" (because that lets us avoid scanning the AP 1233 * registers twice). 1234 */ 1235 dropprio = icv_drop_prio(cs); 1236 if (dropprio == 0xff) { 1237 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE 1238 * whether the list registers are checked in this 1239 * situation; we choose not to. 1240 */ 1241 return; 1242 } 1243 1244 idx = icv_find_active(cs, irq); 1245 1246 if (idx < 0) { 1247 /* No valid list register corresponding to EOI ID */ 1248 icv_increment_eoicount(cs); 1249 } else { 1250 uint64_t lr = cs->ich_lr_el2[idx]; 1251 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0; 1252 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp); 1253 1254 if (thisgrp == grp && lr_gprio == dropprio) { 1255 if (!icv_eoi_split(env, cs)) { 1256 /* Priority drop and deactivate not split: deactivate irq now */ 1257 icv_deactivate_irq(cs, idx); 1258 } 1259 } 1260 } 1261 1262 gicv3_cpuif_virt_update(cs); 1263 } 1264 1265 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1266 uint64_t value) 1267 { 1268 /* End of Interrupt */ 1269 GICv3CPUState *cs = icc_cs_from_env(env); 1270 int irq = value & 0xffffff; 1271 int grp; 1272 1273 if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) { 1274 icv_eoir_write(env, ri, value); 1275 return; 1276 } 1277 1278 trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1, 1279 gicv3_redist_affid(cs), value); 1280 1281 if (ri->crm == 8) { 1282 /* EOIR0 */ 1283 grp = GICV3_G0; 1284 } else { 1285 /* EOIR1 */ 1286 if (arm_is_secure(env)) { 1287 grp = GICV3_G1; 1288 } else { 1289 grp = GICV3_G1NS; 1290 } 1291 } 1292 1293 if (irq >= cs->gic->num_irq) { 1294 /* This handles two cases: 1295 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023] 1296 * to the GICC_EOIR, the GIC ignores that write. 1297 * 2. If software writes the number of a non-existent interrupt 1298 * this must be a subcase of "value written does not match the last 1299 * valid interrupt value read from the Interrupt Acknowledge 1300 * register" and so this is UNPREDICTABLE. We choose to ignore it. 1301 */ 1302 return; 1303 } 1304 1305 if (icc_highest_active_group(cs) != grp) { 1306 return; 1307 } 1308 1309 icc_drop_prio(cs, grp); 1310 1311 if (!icc_eoi_split(env, cs)) { 1312 /* Priority drop and deactivate not split: deactivate irq now */ 1313 icc_deactivate_irq(cs, irq); 1314 } 1315 } 1316 1317 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri) 1318 { 1319 GICv3CPUState *cs = icc_cs_from_env(env); 1320 uint64_t value; 1321 1322 if (icv_access(env, HCR_FMO)) { 1323 return icv_hppir_read(env, ri); 1324 } 1325 1326 value = icc_hppir0_value(cs, env); 1327 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value); 1328 return value; 1329 } 1330 1331 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1332 { 1333 GICv3CPUState *cs = icc_cs_from_env(env); 1334 uint64_t value; 1335 1336 if (icv_access(env, HCR_IMO)) { 1337 return icv_hppir_read(env, ri); 1338 } 1339 1340 value = icc_hppir1_value(cs, env); 1341 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value); 1342 return value; 1343 } 1344 1345 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1346 { 1347 GICv3CPUState *cs = icc_cs_from_env(env); 1348 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1349 bool satinc = false; 1350 uint64_t bpr; 1351 1352 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1353 return icv_bpr_read(env, ri); 1354 } 1355 1356 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1357 grp = GICV3_G1NS; 1358 } 1359 1360 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1361 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1362 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1363 * modify BPR0 1364 */ 1365 grp = GICV3_G0; 1366 } 1367 1368 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1369 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1370 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1371 grp = GICV3_G0; 1372 satinc = true; 1373 } 1374 1375 bpr = cs->icc_bpr[grp]; 1376 if (satinc) { 1377 bpr++; 1378 bpr = MIN(bpr, 7); 1379 } 1380 1381 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr); 1382 1383 return bpr; 1384 } 1385 1386 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri, 1387 uint64_t value) 1388 { 1389 GICv3CPUState *cs = icc_cs_from_env(env); 1390 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1; 1391 1392 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1393 icv_bpr_write(env, ri, value); 1394 return; 1395 } 1396 1397 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1, 1398 gicv3_redist_affid(cs), value); 1399 1400 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1401 grp = GICV3_G1NS; 1402 } 1403 1404 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) && 1405 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) { 1406 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses 1407 * modify BPR0 1408 */ 1409 grp = GICV3_G0; 1410 } 1411 1412 if (grp == GICV3_G1NS && arm_current_el(env) < 3 && 1413 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) { 1414 /* reads return bpr0 + 1 sat to 7, writes ignored */ 1415 return; 1416 } 1417 1418 cs->icc_bpr[grp] = value & 7; 1419 gicv3_cpuif_update(cs); 1420 } 1421 1422 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 1423 { 1424 GICv3CPUState *cs = icc_cs_from_env(env); 1425 uint64_t value; 1426 1427 int regno = ri->opc2 & 3; 1428 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1429 1430 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1431 return icv_ap_read(env, ri); 1432 } 1433 1434 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1435 grp = GICV3_G1NS; 1436 } 1437 1438 value = cs->icc_apr[grp][regno]; 1439 1440 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1441 return value; 1442 } 1443 1444 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 1445 uint64_t value) 1446 { 1447 GICv3CPUState *cs = icc_cs_from_env(env); 1448 1449 int regno = ri->opc2 & 3; 1450 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1; 1451 1452 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1453 icv_ap_write(env, ri, value); 1454 return; 1455 } 1456 1457 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 1458 1459 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1460 grp = GICV3_G1NS; 1461 } 1462 1463 /* It's not possible to claim that a Non-secure interrupt is active 1464 * at a priority outside the Non-secure range (128..255), since this 1465 * would otherwise allow malicious NS code to block delivery of S interrupts 1466 * by writing a bad value to these registers. 1467 */ 1468 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) { 1469 return; 1470 } 1471 1472 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU; 1473 gicv3_cpuif_update(cs); 1474 } 1475 1476 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri, 1477 uint64_t value) 1478 { 1479 /* Deactivate interrupt */ 1480 GICv3CPUState *cs = icc_cs_from_env(env); 1481 int irq = value & 0xffffff; 1482 bool irq_is_secure, single_sec_state, irq_is_grp0; 1483 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2; 1484 1485 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1486 icv_dir_write(env, ri, value); 1487 return; 1488 } 1489 1490 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value); 1491 1492 if (irq >= cs->gic->num_irq) { 1493 /* Also catches special interrupt numbers and LPIs */ 1494 return; 1495 } 1496 1497 if (!icc_eoi_split(env, cs)) { 1498 return; 1499 } 1500 1501 int grp = gicv3_irq_group(cs->gic, cs, irq); 1502 1503 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS; 1504 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS); 1505 irq_is_grp0 = grp == GICV3_G0; 1506 1507 /* Check whether we're allowed to deactivate this interrupt based 1508 * on its group and the current CPU state. 1509 * These checks are laid out to correspond to the spec's pseudocode. 1510 */ 1511 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ; 1512 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ; 1513 /* No need to include !IsSecure in route_*_to_el2 as it's only 1514 * tested in cases where we know !IsSecure is true. 1515 */ 1516 route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1517 route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; 1518 1519 switch (arm_current_el(env)) { 1520 case 3: 1521 break; 1522 case 2: 1523 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) { 1524 break; 1525 } 1526 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) { 1527 break; 1528 } 1529 return; 1530 case 1: 1531 if (!arm_is_secure_below_el3(env)) { 1532 if (single_sec_state && irq_is_grp0 && 1533 !route_fiq_to_el3 && !route_fiq_to_el2) { 1534 break; 1535 } 1536 if (!irq_is_secure && !irq_is_grp0 && 1537 !route_irq_to_el3 && !route_irq_to_el2) { 1538 break; 1539 } 1540 } else { 1541 if (irq_is_grp0 && !route_fiq_to_el3) { 1542 break; 1543 } 1544 if (!irq_is_grp0 && 1545 (!irq_is_secure || !single_sec_state) && 1546 !route_irq_to_el3) { 1547 break; 1548 } 1549 } 1550 return; 1551 default: 1552 g_assert_not_reached(); 1553 } 1554 1555 icc_deactivate_irq(cs, irq); 1556 } 1557 1558 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri) 1559 { 1560 GICv3CPUState *cs = icc_cs_from_env(env); 1561 int prio; 1562 1563 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1564 return icv_rpr_read(env, ri); 1565 } 1566 1567 prio = icc_highest_active_prio(cs); 1568 1569 if (arm_feature(env, ARM_FEATURE_EL3) && 1570 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) { 1571 /* NS GIC access and Group 0 is inaccessible to NS */ 1572 if (prio & 0x80) { 1573 /* NS mustn't see priorities in the Secure half of the range */ 1574 prio = 0; 1575 } else if (prio != 0xff) { 1576 /* Non-idle priority: show the Non-secure view of it */ 1577 prio = (prio << 1) & 0xff; 1578 } 1579 } 1580 1581 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio); 1582 return prio; 1583 } 1584 1585 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs, 1586 uint64_t value, int grp, bool ns) 1587 { 1588 GICv3State *s = cs->gic; 1589 1590 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */ 1591 uint64_t aff = extract64(value, 48, 8) << 16 | 1592 extract64(value, 32, 8) << 8 | 1593 extract64(value, 16, 8); 1594 uint32_t targetlist = extract64(value, 0, 16); 1595 uint32_t irq = extract64(value, 24, 4); 1596 bool irm = extract64(value, 40, 1); 1597 int i; 1598 1599 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) { 1600 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1 1601 * interrupts as Group 0 interrupts and must send Secure Group 0 1602 * interrupts to the target CPUs. 1603 */ 1604 grp = GICV3_G0; 1605 } 1606 1607 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm, 1608 aff, targetlist); 1609 1610 for (i = 0; i < s->num_cpu; i++) { 1611 GICv3CPUState *ocs = &s->cpu[i]; 1612 1613 if (irm) { 1614 /* IRM == 1 : route to all CPUs except self */ 1615 if (cs == ocs) { 1616 continue; 1617 } 1618 } else { 1619 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15] 1620 * where the corresponding bit is set in targetlist 1621 */ 1622 int aff0; 1623 1624 if (ocs->gicr_typer >> 40 != aff) { 1625 continue; 1626 } 1627 aff0 = extract64(ocs->gicr_typer, 32, 8); 1628 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) { 1629 continue; 1630 } 1631 } 1632 1633 /* The redistributor will check against its own GICR_NSACR as needed */ 1634 gicv3_redist_send_sgi(ocs, grp, irq, ns); 1635 } 1636 } 1637 1638 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1639 uint64_t value) 1640 { 1641 /* Generate Secure Group 0 SGI. */ 1642 GICv3CPUState *cs = icc_cs_from_env(env); 1643 bool ns = !arm_is_secure(env); 1644 1645 icc_generate_sgi(env, cs, value, GICV3_G0, ns); 1646 } 1647 1648 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1649 uint64_t value) 1650 { 1651 /* Generate Group 1 SGI for the current Security state */ 1652 GICv3CPUState *cs = icc_cs_from_env(env); 1653 int grp; 1654 bool ns = !arm_is_secure(env); 1655 1656 grp = ns ? GICV3_G1NS : GICV3_G1; 1657 icc_generate_sgi(env, cs, value, grp, ns); 1658 } 1659 1660 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri, 1661 uint64_t value) 1662 { 1663 /* Generate Group 1 SGI for the Security state that is not 1664 * the current state 1665 */ 1666 GICv3CPUState *cs = icc_cs_from_env(env); 1667 int grp; 1668 bool ns = !arm_is_secure(env); 1669 1670 grp = ns ? GICV3_G1 : GICV3_G1NS; 1671 icc_generate_sgi(env, cs, value, grp, ns); 1672 } 1673 1674 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri) 1675 { 1676 GICv3CPUState *cs = icc_cs_from_env(env); 1677 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1678 uint64_t value; 1679 1680 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1681 return icv_igrpen_read(env, ri); 1682 } 1683 1684 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1685 grp = GICV3_G1NS; 1686 } 1687 1688 value = cs->icc_igrpen[grp]; 1689 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0, 1690 gicv3_redist_affid(cs), value); 1691 return value; 1692 } 1693 1694 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri, 1695 uint64_t value) 1696 { 1697 GICv3CPUState *cs = icc_cs_from_env(env); 1698 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0; 1699 1700 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) { 1701 icv_igrpen_write(env, ri, value); 1702 return; 1703 } 1704 1705 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0, 1706 gicv3_redist_affid(cs), value); 1707 1708 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) { 1709 grp = GICV3_G1NS; 1710 } 1711 1712 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE; 1713 gicv3_cpuif_update(cs); 1714 } 1715 1716 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1717 { 1718 GICv3CPUState *cs = icc_cs_from_env(env); 1719 uint64_t value; 1720 1721 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1722 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1); 1723 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value); 1724 return value; 1725 } 1726 1727 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1728 uint64_t value) 1729 { 1730 GICv3CPUState *cs = icc_cs_from_env(env); 1731 1732 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value); 1733 1734 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */ 1735 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1); 1736 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1); 1737 gicv3_cpuif_update(cs); 1738 } 1739 1740 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri) 1741 { 1742 GICv3CPUState *cs = icc_cs_from_env(env); 1743 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1744 uint64_t value; 1745 1746 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1747 return icv_ctlr_read(env, ri); 1748 } 1749 1750 value = cs->icc_ctlr_el1[bank]; 1751 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value); 1752 return value; 1753 } 1754 1755 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri, 1756 uint64_t value) 1757 { 1758 GICv3CPUState *cs = icc_cs_from_env(env); 1759 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S; 1760 uint64_t mask; 1761 1762 if (icv_access(env, HCR_FMO | HCR_IMO)) { 1763 icv_ctlr_write(env, ri, value); 1764 return; 1765 } 1766 1767 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value); 1768 1769 /* Only CBPR and EOIMODE can be RW; 1770 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or 1771 * the asseciated priority-based routing of them); 1772 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO. 1773 */ 1774 if (arm_feature(env, ARM_FEATURE_EL3) && 1775 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) { 1776 mask = ICC_CTLR_EL1_EOIMODE; 1777 } else { 1778 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE; 1779 } 1780 1781 cs->icc_ctlr_el1[bank] &= ~mask; 1782 cs->icc_ctlr_el1[bank] |= (value & mask); 1783 gicv3_cpuif_update(cs); 1784 } 1785 1786 1787 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri) 1788 { 1789 GICv3CPUState *cs = icc_cs_from_env(env); 1790 uint64_t value; 1791 1792 value = cs->icc_ctlr_el3; 1793 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1794 value |= ICC_CTLR_EL3_EOIMODE_EL1NS; 1795 } 1796 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1797 value |= ICC_CTLR_EL3_CBPR_EL1NS; 1798 } 1799 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) { 1800 value |= ICC_CTLR_EL3_EOIMODE_EL1S; 1801 } 1802 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) { 1803 value |= ICC_CTLR_EL3_CBPR_EL1S; 1804 } 1805 1806 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value); 1807 return value; 1808 } 1809 1810 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri, 1811 uint64_t value) 1812 { 1813 GICv3CPUState *cs = icc_cs_from_env(env); 1814 uint64_t mask; 1815 1816 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value); 1817 1818 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */ 1819 cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1820 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) { 1821 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE; 1822 } 1823 if (value & ICC_CTLR_EL3_CBPR_EL1NS) { 1824 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR; 1825 } 1826 1827 cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE); 1828 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) { 1829 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE; 1830 } 1831 if (value & ICC_CTLR_EL3_CBPR_EL1S) { 1832 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR; 1833 } 1834 1835 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */ 1836 mask = ICC_CTLR_EL3_EOIMODE_EL3; 1837 1838 cs->icc_ctlr_el3 &= ~mask; 1839 cs->icc_ctlr_el3 |= (value & mask); 1840 gicv3_cpuif_update(cs); 1841 } 1842 1843 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env, 1844 const ARMCPRegInfo *ri, bool isread) 1845 { 1846 CPAccessResult r = CP_ACCESS_OK; 1847 GICv3CPUState *cs = icc_cs_from_env(env); 1848 int el = arm_current_el(env); 1849 1850 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) && 1851 el == 1 && !arm_is_secure_below_el3(env)) { 1852 /* Takes priority over a possible EL3 trap */ 1853 return CP_ACCESS_TRAP_EL2; 1854 } 1855 1856 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) { 1857 switch (el) { 1858 case 1: 1859 if (arm_is_secure_below_el3(env) || 1860 ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { 1861 r = CP_ACCESS_TRAP_EL3; 1862 } 1863 break; 1864 case 2: 1865 r = CP_ACCESS_TRAP_EL3; 1866 break; 1867 case 3: 1868 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1869 r = CP_ACCESS_TRAP_EL3; 1870 } 1871 break; 1872 default: 1873 g_assert_not_reached(); 1874 } 1875 } 1876 1877 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1878 r = CP_ACCESS_TRAP; 1879 } 1880 return r; 1881 } 1882 1883 static CPAccessResult gicv3_dir_access(CPUARMState *env, 1884 const ARMCPRegInfo *ri, bool isread) 1885 { 1886 GICv3CPUState *cs = icc_cs_from_env(env); 1887 1888 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) && 1889 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1890 /* Takes priority over a possible EL3 trap */ 1891 return CP_ACCESS_TRAP_EL2; 1892 } 1893 1894 return gicv3_irqfiq_access(env, ri, isread); 1895 } 1896 1897 static CPAccessResult gicv3_sgi_access(CPUARMState *env, 1898 const ARMCPRegInfo *ri, bool isread) 1899 { 1900 if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && 1901 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { 1902 /* Takes priority over a possible EL3 trap */ 1903 return CP_ACCESS_TRAP_EL2; 1904 } 1905 1906 return gicv3_irqfiq_access(env, ri, isread); 1907 } 1908 1909 static CPAccessResult gicv3_fiq_access(CPUARMState *env, 1910 const ARMCPRegInfo *ri, bool isread) 1911 { 1912 CPAccessResult r = CP_ACCESS_OK; 1913 GICv3CPUState *cs = icc_cs_from_env(env); 1914 int el = arm_current_el(env); 1915 1916 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) && 1917 el == 1 && !arm_is_secure_below_el3(env)) { 1918 /* Takes priority over a possible EL3 trap */ 1919 return CP_ACCESS_TRAP_EL2; 1920 } 1921 1922 if (env->cp15.scr_el3 & SCR_FIQ) { 1923 switch (el) { 1924 case 1: 1925 if (arm_is_secure_below_el3(env) || 1926 ((env->cp15.hcr_el2 & HCR_FMO) == 0)) { 1927 r = CP_ACCESS_TRAP_EL3; 1928 } 1929 break; 1930 case 2: 1931 r = CP_ACCESS_TRAP_EL3; 1932 break; 1933 case 3: 1934 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1935 r = CP_ACCESS_TRAP_EL3; 1936 } 1937 break; 1938 default: 1939 g_assert_not_reached(); 1940 } 1941 } 1942 1943 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1944 r = CP_ACCESS_TRAP; 1945 } 1946 return r; 1947 } 1948 1949 static CPAccessResult gicv3_irq_access(CPUARMState *env, 1950 const ARMCPRegInfo *ri, bool isread) 1951 { 1952 CPAccessResult r = CP_ACCESS_OK; 1953 GICv3CPUState *cs = icc_cs_from_env(env); 1954 int el = arm_current_el(env); 1955 1956 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) && 1957 el == 1 && !arm_is_secure_below_el3(env)) { 1958 /* Takes priority over a possible EL3 trap */ 1959 return CP_ACCESS_TRAP_EL2; 1960 } 1961 1962 if (env->cp15.scr_el3 & SCR_IRQ) { 1963 switch (el) { 1964 case 1: 1965 if (arm_is_secure_below_el3(env) || 1966 ((env->cp15.hcr_el2 & HCR_IMO) == 0)) { 1967 r = CP_ACCESS_TRAP_EL3; 1968 } 1969 break; 1970 case 2: 1971 r = CP_ACCESS_TRAP_EL3; 1972 break; 1973 case 3: 1974 if (!is_a64(env) && !arm_is_el3_or_mon(env)) { 1975 r = CP_ACCESS_TRAP_EL3; 1976 } 1977 break; 1978 default: 1979 g_assert_not_reached(); 1980 } 1981 } 1982 1983 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) { 1984 r = CP_ACCESS_TRAP; 1985 } 1986 return r; 1987 } 1988 1989 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri) 1990 { 1991 GICv3CPUState *cs = icc_cs_from_env(env); 1992 1993 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V | 1994 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 1995 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 1996 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V | 1997 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) | 1998 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT); 1999 cs->icc_pmr_el1 = 0; 2000 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR; 2001 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR; 2002 if (arm_feature(env, ARM_FEATURE_EL3)) { 2003 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS; 2004 } else { 2005 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR; 2006 } 2007 memset(cs->icc_apr, 0, sizeof(cs->icc_apr)); 2008 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen)); 2009 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V | 2010 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) | 2011 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT); 2012 2013 memset(cs->ich_apr, 0, sizeof(cs->ich_apr)); 2014 cs->ich_hcr_el2 = 0; 2015 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2)); 2016 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN | 2017 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) | 2018 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT); 2019 } 2020 2021 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = { 2022 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH, 2023 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0, 2024 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2025 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2026 .readfn = icc_pmr_read, 2027 .writefn = icc_pmr_write, 2028 /* We hang the whole cpu interface reset routine off here 2029 * rather than parcelling it out into one little function 2030 * per register 2031 */ 2032 .resetfn = icc_reset, 2033 }, 2034 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH, 2035 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0, 2036 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2037 .access = PL1_R, .accessfn = gicv3_fiq_access, 2038 .readfn = icc_iar0_read, 2039 }, 2040 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH, 2041 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1, 2042 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2043 .access = PL1_W, .accessfn = gicv3_fiq_access, 2044 .writefn = icc_eoir_write, 2045 }, 2046 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH, 2047 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2, 2048 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2049 .access = PL1_R, .accessfn = gicv3_fiq_access, 2050 .readfn = icc_hppir0_read, 2051 }, 2052 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH, 2053 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3, 2054 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2055 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2056 .readfn = icc_bpr_read, 2057 .writefn = icc_bpr_write, 2058 }, 2059 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH, 2060 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4, 2061 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2062 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2063 .readfn = icc_ap_read, 2064 .writefn = icc_ap_write, 2065 }, 2066 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH, 2067 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5, 2068 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2069 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2070 .readfn = icc_ap_read, 2071 .writefn = icc_ap_write, 2072 }, 2073 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH, 2074 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6, 2075 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2076 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2077 .readfn = icc_ap_read, 2078 .writefn = icc_ap_write, 2079 }, 2080 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH, 2081 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7, 2082 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2083 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2084 .readfn = icc_ap_read, 2085 .writefn = icc_ap_write, 2086 }, 2087 /* All the ICC_AP1R*_EL1 registers are banked */ 2088 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH, 2089 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0, 2090 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2091 .access = PL1_RW, .accessfn = gicv3_irq_access, 2092 .readfn = icc_ap_read, 2093 .writefn = icc_ap_write, 2094 }, 2095 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH, 2096 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1, 2097 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2098 .access = PL1_RW, .accessfn = gicv3_irq_access, 2099 .readfn = icc_ap_read, 2100 .writefn = icc_ap_write, 2101 }, 2102 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH, 2103 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2, 2104 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2105 .access = PL1_RW, .accessfn = gicv3_irq_access, 2106 .readfn = icc_ap_read, 2107 .writefn = icc_ap_write, 2108 }, 2109 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH, 2110 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3, 2111 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2112 .access = PL1_RW, .accessfn = gicv3_irq_access, 2113 .readfn = icc_ap_read, 2114 .writefn = icc_ap_write, 2115 }, 2116 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH, 2117 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1, 2118 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2119 .access = PL1_W, .accessfn = gicv3_dir_access, 2120 .writefn = icc_dir_write, 2121 }, 2122 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH, 2123 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3, 2124 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2125 .access = PL1_R, .accessfn = gicv3_irqfiq_access, 2126 .readfn = icc_rpr_read, 2127 }, 2128 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64, 2129 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5, 2130 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2131 .access = PL1_W, .accessfn = gicv3_sgi_access, 2132 .writefn = icc_sgi1r_write, 2133 }, 2134 { .name = "ICC_SGI1R", 2135 .cp = 15, .opc1 = 0, .crm = 12, 2136 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2137 .access = PL1_W, .accessfn = gicv3_sgi_access, 2138 .writefn = icc_sgi1r_write, 2139 }, 2140 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64, 2141 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6, 2142 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2143 .access = PL1_W, .accessfn = gicv3_sgi_access, 2144 .writefn = icc_asgi1r_write, 2145 }, 2146 { .name = "ICC_ASGI1R", 2147 .cp = 15, .opc1 = 1, .crm = 12, 2148 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2149 .access = PL1_W, .accessfn = gicv3_sgi_access, 2150 .writefn = icc_asgi1r_write, 2151 }, 2152 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64, 2153 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7, 2154 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2155 .access = PL1_W, .accessfn = gicv3_sgi_access, 2156 .writefn = icc_sgi0r_write, 2157 }, 2158 { .name = "ICC_SGI0R", 2159 .cp = 15, .opc1 = 2, .crm = 12, 2160 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW, 2161 .access = PL1_W, .accessfn = gicv3_sgi_access, 2162 .writefn = icc_sgi0r_write, 2163 }, 2164 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH, 2165 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0, 2166 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2167 .access = PL1_R, .accessfn = gicv3_irq_access, 2168 .readfn = icc_iar1_read, 2169 }, 2170 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH, 2171 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1, 2172 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2173 .access = PL1_W, .accessfn = gicv3_irq_access, 2174 .writefn = icc_eoir_write, 2175 }, 2176 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH, 2177 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2, 2178 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2179 .access = PL1_R, .accessfn = gicv3_irq_access, 2180 .readfn = icc_hppir1_read, 2181 }, 2182 /* This register is banked */ 2183 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH, 2184 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3, 2185 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2186 .access = PL1_RW, .accessfn = gicv3_irq_access, 2187 .readfn = icc_bpr_read, 2188 .writefn = icc_bpr_write, 2189 }, 2190 /* This register is banked */ 2191 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH, 2192 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4, 2193 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2194 .access = PL1_RW, .accessfn = gicv3_irqfiq_access, 2195 .readfn = icc_ctlr_el1_read, 2196 .writefn = icc_ctlr_el1_write, 2197 }, 2198 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH, 2199 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5, 2200 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2201 .access = PL1_RW, 2202 /* We don't support IRQ/FIQ bypass and system registers are 2203 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2204 * This register is banked but since it's constant we don't 2205 * need to do anything special. 2206 */ 2207 .resetvalue = 0x7, 2208 }, 2209 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH, 2210 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6, 2211 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2212 .access = PL1_RW, .accessfn = gicv3_fiq_access, 2213 .readfn = icc_igrpen_read, 2214 .writefn = icc_igrpen_write, 2215 }, 2216 /* This register is banked */ 2217 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH, 2218 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7, 2219 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2220 .access = PL1_RW, .accessfn = gicv3_irq_access, 2221 .readfn = icc_igrpen_read, 2222 .writefn = icc_igrpen_write, 2223 }, 2224 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH, 2225 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5, 2226 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2227 .access = PL2_RW, 2228 /* We don't support IRQ/FIQ bypass and system registers are 2229 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2230 */ 2231 .resetvalue = 0xf, 2232 }, 2233 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH, 2234 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4, 2235 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2236 .access = PL3_RW, 2237 .readfn = icc_ctlr_el3_read, 2238 .writefn = icc_ctlr_el3_write, 2239 }, 2240 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH, 2241 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5, 2242 .type = ARM_CP_NO_RAW | ARM_CP_CONST, 2243 .access = PL3_RW, 2244 /* We don't support IRQ/FIQ bypass and system registers are 2245 * always enabled, so all our bits are RAZ/WI or RAO/WI. 2246 */ 2247 .resetvalue = 0xf, 2248 }, 2249 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH, 2250 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7, 2251 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2252 .access = PL3_RW, 2253 .readfn = icc_igrpen1_el3_read, 2254 .writefn = icc_igrpen1_el3_write, 2255 }, 2256 REGINFO_SENTINEL 2257 }; 2258 2259 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri) 2260 { 2261 GICv3CPUState *cs = icc_cs_from_env(env); 2262 int regno = ri->opc2 & 3; 2263 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2264 uint64_t value; 2265 2266 value = cs->ich_apr[grp][regno]; 2267 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2268 return value; 2269 } 2270 2271 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri, 2272 uint64_t value) 2273 { 2274 GICv3CPUState *cs = icc_cs_from_env(env); 2275 int regno = ri->opc2 & 3; 2276 int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS; 2277 2278 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value); 2279 2280 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU; 2281 gicv3_cpuif_virt_update(cs); 2282 } 2283 2284 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2285 { 2286 GICv3CPUState *cs = icc_cs_from_env(env); 2287 uint64_t value = cs->ich_hcr_el2; 2288 2289 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value); 2290 return value; 2291 } 2292 2293 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2294 uint64_t value) 2295 { 2296 GICv3CPUState *cs = icc_cs_from_env(env); 2297 2298 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value); 2299 2300 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE | 2301 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE | 2302 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC | 2303 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI | 2304 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK; 2305 2306 cs->ich_hcr_el2 = value; 2307 gicv3_cpuif_virt_update(cs); 2308 } 2309 2310 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2311 { 2312 GICv3CPUState *cs = icc_cs_from_env(env); 2313 uint64_t value = cs->ich_vmcr_el2; 2314 2315 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value); 2316 return value; 2317 } 2318 2319 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2320 uint64_t value) 2321 { 2322 GICv3CPUState *cs = icc_cs_from_env(env); 2323 2324 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value); 2325 2326 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR | 2327 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK | 2328 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK; 2329 value |= ICH_VMCR_EL2_VFIQEN; 2330 2331 cs->ich_vmcr_el2 = value; 2332 /* Enforce "writing BPRs to less than minimum sets them to the minimum" 2333 * by reading and writing back the fields. 2334 */ 2335 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0)); 2336 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1)); 2337 2338 gicv3_cpuif_virt_update(cs); 2339 } 2340 2341 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2342 { 2343 GICv3CPUState *cs = icc_cs_from_env(env); 2344 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2345 uint64_t value; 2346 2347 /* This read function handles all of: 2348 * 64-bit reads of the whole LR 2349 * 32-bit reads of the low half of the LR 2350 * 32-bit reads of the high half of the LR 2351 */ 2352 if (ri->state == ARM_CP_STATE_AA32) { 2353 if (ri->crm >= 14) { 2354 value = extract64(cs->ich_lr_el2[regno], 32, 32); 2355 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value); 2356 } else { 2357 value = extract64(cs->ich_lr_el2[regno], 0, 32); 2358 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value); 2359 } 2360 } else { 2361 value = cs->ich_lr_el2[regno]; 2362 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value); 2363 } 2364 2365 return value; 2366 } 2367 2368 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri, 2369 uint64_t value) 2370 { 2371 GICv3CPUState *cs = icc_cs_from_env(env); 2372 int regno = ri->opc2 | ((ri->crm & 1) << 3); 2373 2374 /* This write function handles all of: 2375 * 64-bit writes to the whole LR 2376 * 32-bit writes to the low half of the LR 2377 * 32-bit writes to the high half of the LR 2378 */ 2379 if (ri->state == ARM_CP_STATE_AA32) { 2380 if (ri->crm >= 14) { 2381 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value); 2382 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value); 2383 } else { 2384 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value); 2385 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value); 2386 } 2387 } else { 2388 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value); 2389 } 2390 2391 /* Enforce RES0 bits in priority field */ 2392 if (cs->vpribits < 8) { 2393 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT, 2394 8 - cs->vpribits, 0); 2395 } 2396 2397 cs->ich_lr_el2[regno] = value; 2398 gicv3_cpuif_virt_update(cs); 2399 } 2400 2401 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2402 { 2403 GICv3CPUState *cs = icc_cs_from_env(env); 2404 uint64_t value; 2405 2406 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT) 2407 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V 2408 | (1 << ICH_VTR_EL2_IDBITS_SHIFT) 2409 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT) 2410 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT); 2411 2412 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value); 2413 return value; 2414 } 2415 2416 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2417 { 2418 GICv3CPUState *cs = icc_cs_from_env(env); 2419 uint64_t value = maintenance_interrupt_state(cs); 2420 2421 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value); 2422 return value; 2423 } 2424 2425 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2426 { 2427 GICv3CPUState *cs = icc_cs_from_env(env); 2428 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL); 2429 2430 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value); 2431 return value; 2432 } 2433 2434 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri) 2435 { 2436 GICv3CPUState *cs = icc_cs_from_env(env); 2437 uint64_t value = 0; 2438 int i; 2439 2440 for (i = 0; i < cs->num_list_regs; i++) { 2441 uint64_t lr = cs->ich_lr_el2[i]; 2442 2443 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 && 2444 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) { 2445 value |= (1 << i); 2446 } 2447 } 2448 2449 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value); 2450 return value; 2451 } 2452 2453 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = { 2454 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH, 2455 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0, 2456 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2457 .access = PL2_RW, 2458 .readfn = ich_ap_read, 2459 .writefn = ich_ap_write, 2460 }, 2461 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH, 2462 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0, 2463 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2464 .access = PL2_RW, 2465 .readfn = ich_ap_read, 2466 .writefn = ich_ap_write, 2467 }, 2468 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH, 2469 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0, 2470 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2471 .access = PL2_RW, 2472 .readfn = ich_hcr_read, 2473 .writefn = ich_hcr_write, 2474 }, 2475 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH, 2476 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1, 2477 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2478 .access = PL2_R, 2479 .readfn = ich_vtr_read, 2480 }, 2481 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH, 2482 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2, 2483 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2484 .access = PL2_R, 2485 .readfn = ich_misr_read, 2486 }, 2487 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH, 2488 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3, 2489 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2490 .access = PL2_R, 2491 .readfn = ich_eisr_read, 2492 }, 2493 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH, 2494 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5, 2495 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2496 .access = PL2_R, 2497 .readfn = ich_elrsr_read, 2498 }, 2499 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH, 2500 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7, 2501 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2502 .access = PL2_RW, 2503 .readfn = ich_vmcr_read, 2504 .writefn = ich_vmcr_write, 2505 }, 2506 REGINFO_SENTINEL 2507 }; 2508 2509 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = { 2510 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH, 2511 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1, 2512 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2513 .access = PL2_RW, 2514 .readfn = ich_ap_read, 2515 .writefn = ich_ap_write, 2516 }, 2517 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH, 2518 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1, 2519 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2520 .access = PL2_RW, 2521 .readfn = ich_ap_read, 2522 .writefn = ich_ap_write, 2523 }, 2524 REGINFO_SENTINEL 2525 }; 2526 2527 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = { 2528 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH, 2529 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2, 2530 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2531 .access = PL2_RW, 2532 .readfn = ich_ap_read, 2533 .writefn = ich_ap_write, 2534 }, 2535 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH, 2536 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3, 2537 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2538 .access = PL2_RW, 2539 .readfn = ich_ap_read, 2540 .writefn = ich_ap_write, 2541 }, 2542 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH, 2543 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2, 2544 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2545 .access = PL2_RW, 2546 .readfn = ich_ap_read, 2547 .writefn = ich_ap_write, 2548 }, 2549 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH, 2550 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3, 2551 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2552 .access = PL2_RW, 2553 .readfn = ich_ap_read, 2554 .writefn = ich_ap_write, 2555 }, 2556 REGINFO_SENTINEL 2557 }; 2558 2559 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque) 2560 { 2561 GICv3CPUState *cs = opaque; 2562 2563 gicv3_cpuif_update(cs); 2564 } 2565 2566 void gicv3_init_cpuif(GICv3State *s) 2567 { 2568 /* Called from the GICv3 realize function; register our system 2569 * registers with the CPU 2570 */ 2571 int i; 2572 2573 for (i = 0; i < s->num_cpu; i++) { 2574 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i)); 2575 GICv3CPUState *cs = &s->cpu[i]; 2576 2577 /* Note that we can't just use the GICv3CPUState as an opaque pointer 2578 * in define_arm_cp_regs_with_opaque(), because when we're called back 2579 * it might be with code translated by CPU 0 but run by CPU 1, in 2580 * which case we'd get the wrong value. 2581 * So instead we define the regs with no ri->opaque info, and 2582 * get back to the GICv3CPUState from the ARMCPU by reading back 2583 * the opaque pointer from the el_change_hook, which we're going 2584 * to need to register anyway. 2585 */ 2586 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo); 2587 if (arm_feature(&cpu->env, ARM_FEATURE_EL2) 2588 && cpu->gic_num_lrs) { 2589 int j; 2590 2591 cs->maintenance_irq = cpu->gicv3_maintenance_interrupt; 2592 2593 cs->num_list_regs = cpu->gic_num_lrs; 2594 cs->vpribits = cpu->gic_vpribits; 2595 cs->vprebits = cpu->gic_vprebits; 2596 2597 /* Check against architectural constraints: getting these 2598 * wrong would be a bug in the CPU code defining these, 2599 * and the implementation relies on them holding. 2600 */ 2601 g_assert(cs->vprebits <= cs->vpribits); 2602 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7); 2603 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8); 2604 2605 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo); 2606 2607 for (j = 0; j < cs->num_list_regs; j++) { 2608 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs 2609 * are split into two cp15 regs, LR (the low part, with the 2610 * same encoding as the AArch64 LR) and LRC (the high part). 2611 */ 2612 ARMCPRegInfo lr_regset[] = { 2613 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH, 2614 .opc0 = 3, .opc1 = 4, .crn = 12, 2615 .crm = 12 + (j >> 3), .opc2 = j & 7, 2616 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2617 .access = PL2_RW, 2618 .readfn = ich_lr_read, 2619 .writefn = ich_lr_write, 2620 }, 2621 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32, 2622 .cp = 15, .opc1 = 4, .crn = 12, 2623 .crm = 14 + (j >> 3), .opc2 = j & 7, 2624 .type = ARM_CP_IO | ARM_CP_NO_RAW, 2625 .access = PL2_RW, 2626 .readfn = ich_lr_read, 2627 .writefn = ich_lr_write, 2628 }, 2629 REGINFO_SENTINEL 2630 }; 2631 define_arm_cp_regs(cpu, lr_regset); 2632 } 2633 if (cs->vprebits >= 6) { 2634 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo); 2635 } 2636 if (cs->vprebits == 7) { 2637 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo); 2638 } 2639 } 2640 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs); 2641 } 2642 } 2643