xref: /openbmc/qemu/hw/intc/arm_gicv3_cpuif.c (revision 37677d7d)
1 /*
2  * ARM Generic Interrupt Controller v3
3  *
4  * Copyright (c) 2016 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This code is licensed under the GPL, version 2 or (at your option)
8  * any later version.
9  */
10 
11 /* This file contains the code for the system register interface
12  * portions of the GICv3.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/main-loop.h"
18 #include "trace.h"
19 #include "gicv3_internal.h"
20 #include "cpu.h"
21 
22 void gicv3_set_gicv3state(CPUState *cpu, GICv3CPUState *s)
23 {
24     ARMCPU *arm_cpu = ARM_CPU(cpu);
25     CPUARMState *env = &arm_cpu->env;
26 
27     env->gicv3state = (void *)s;
28 };
29 
30 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
31 {
32     return env->gicv3state;
33 }
34 
35 static bool gicv3_use_ns_bank(CPUARMState *env)
36 {
37     /* Return true if we should use the NonSecure bank for a banked GIC
38      * CPU interface register. Note that this differs from the
39      * access_secure_reg() function because GICv3 banked registers are
40      * banked even for AArch64, unlike the other CPU system registers.
41      */
42     return !arm_is_secure_below_el3(env);
43 }
44 
45 /* The minimum BPR for the virtual interface is a configurable property */
46 static inline int icv_min_vbpr(GICv3CPUState *cs)
47 {
48     return 7 - cs->vprebits;
49 }
50 
51 /* Simple accessor functions for LR fields */
52 static uint32_t ich_lr_vintid(uint64_t lr)
53 {
54     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
55 }
56 
57 static uint32_t ich_lr_pintid(uint64_t lr)
58 {
59     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
60 }
61 
62 static uint32_t ich_lr_prio(uint64_t lr)
63 {
64     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
65 }
66 
67 static int ich_lr_state(uint64_t lr)
68 {
69     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
70 }
71 
72 static bool icv_access(CPUARMState *env, int hcr_flags)
73 {
74     /* Return true if this ICC_ register access should really be
75      * directed to an ICV_ access. hcr_flags is a mask of
76      * HCR_EL2 bits to check: we treat this as an ICV_ access
77      * if we are in NS EL1 and at least one of the specified
78      * HCR_EL2 bits is set.
79      *
80      * ICV registers fall into four categories:
81      *  * access if NS EL1 and HCR_EL2.FMO == 1:
82      *    all ICV regs with '0' in their name
83      *  * access if NS EL1 and HCR_EL2.IMO == 1:
84      *    all ICV regs with '1' in their name
85      *  * access if NS EL1 and either IMO or FMO == 1:
86      *    CTLR, DIR, PMR, RPR
87      */
88     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
89     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
90 
91     return flagmatch && arm_current_el(env) == 1
92         && !arm_is_secure_below_el3(env);
93 }
94 
95 static int read_vbpr(GICv3CPUState *cs, int grp)
96 {
97     /* Read VBPR value out of the VMCR field (caller must handle
98      * VCBPR effects if required)
99      */
100     if (grp == GICV3_G0) {
101         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
102                      ICH_VMCR_EL2_VBPR0_LENGTH);
103     } else {
104         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
105                          ICH_VMCR_EL2_VBPR1_LENGTH);
106     }
107 }
108 
109 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
110 {
111     /* Write new VBPR1 value, handling the "writing a value less than
112      * the minimum sets it to the minimum" semantics.
113      */
114     int min = icv_min_vbpr(cs);
115 
116     if (grp != GICV3_G0) {
117         min++;
118     }
119 
120     value = MAX(value, min);
121 
122     if (grp == GICV3_G0) {
123         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
124                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
125     } else {
126         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
127                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
128     }
129 }
130 
131 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
132 {
133     /* Return a mask word which clears the unimplemented priority bits
134      * from a priority value for a virtual interrupt. (Not to be confused
135      * with the group priority, whose mask depends on the value of VBPR
136      * for the interrupt group.)
137      */
138     return ~0U << (8 - cs->vpribits);
139 }
140 
141 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
142 {
143     /* Calculate the current running priority based on the set bits
144      * in the ICH Active Priority Registers.
145      */
146     int i;
147     int aprmax = 1 << (cs->vprebits - 5);
148 
149     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
150 
151     for (i = 0; i < aprmax; i++) {
152         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
153             cs->ich_apr[GICV3_G1NS][i];
154 
155         if (!apr) {
156             continue;
157         }
158         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
159     }
160     /* No current active interrupts: return idle priority */
161     return 0xff;
162 }
163 
164 static int hppvi_index(GICv3CPUState *cs)
165 {
166     /* Return the list register index of the highest priority pending
167      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
168      * pseudocode. If no pending virtual interrupts, return -1.
169      */
170     int idx = -1;
171     int i;
172     /* Note that a list register entry with a priority of 0xff will
173      * never be reported by this function; this is the architecturally
174      * correct behaviour.
175      */
176     int prio = 0xff;
177 
178     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
179         /* Both groups disabled, definitely nothing to do */
180         return idx;
181     }
182 
183     for (i = 0; i < cs->num_list_regs; i++) {
184         uint64_t lr = cs->ich_lr_el2[i];
185         int thisprio;
186 
187         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
188             /* Not Pending */
189             continue;
190         }
191 
192         /* Ignore interrupts if relevant group enable not set */
193         if (lr & ICH_LR_EL2_GROUP) {
194             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
195                 continue;
196             }
197         } else {
198             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
199                 continue;
200             }
201         }
202 
203         thisprio = ich_lr_prio(lr);
204 
205         if (thisprio < prio) {
206             prio = thisprio;
207             idx = i;
208         }
209     }
210 
211     return idx;
212 }
213 
214 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
215 {
216     /* Return a mask word which clears the subpriority bits from
217      * a priority value for a virtual interrupt in the specified group.
218      * This depends on the VBPR value.
219      * If using VBPR0 then:
220      *  a BPR of 0 means the group priority bits are [7:1];
221      *  a BPR of 1 means they are [7:2], and so on down to
222      *  a BPR of 7 meaning no group priority bits at all.
223      * If using VBPR1 then:
224      *  a BPR of 0 is impossible (the minimum value is 1)
225      *  a BPR of 1 means the group priority bits are [7:1];
226      *  a BPR of 2 means they are [7:2], and so on down to
227      *  a BPR of 7 meaning the group priority is [7].
228      *
229      * Which BPR to use depends on the group of the interrupt and
230      * the current ICH_VMCR_EL2.VCBPR settings.
231      *
232      * This corresponds to the VGroupBits() pseudocode.
233      */
234     int bpr;
235 
236     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
237         group = GICV3_G0;
238     }
239 
240     bpr = read_vbpr(cs, group);
241     if (group == GICV3_G1NS) {
242         assert(bpr > 0);
243         bpr--;
244     }
245 
246     return ~0U << (bpr + 1);
247 }
248 
249 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
250 {
251     /* Return true if we can signal this virtual interrupt defined by
252      * the given list register value; see the pseudocode functions
253      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
254      * Compare also icc_hppi_can_preempt() which is the non-virtual
255      * equivalent of these checks.
256      */
257     int grp;
258     uint32_t mask, prio, rprio, vpmr;
259 
260     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
261         /* Virtual interface disabled */
262         return false;
263     }
264 
265     /* We don't need to check that this LR is in Pending state because
266      * that has already been done in hppvi_index().
267      */
268 
269     prio = ich_lr_prio(lr);
270     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
271                      ICH_VMCR_EL2_VPMR_LENGTH);
272 
273     if (prio >= vpmr) {
274         /* Priority mask masks this interrupt */
275         return false;
276     }
277 
278     rprio = ich_highest_active_virt_prio(cs);
279     if (rprio == 0xff) {
280         /* No running interrupt so we can preempt */
281         return true;
282     }
283 
284     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
285 
286     mask = icv_gprio_mask(cs, grp);
287 
288     /* We only preempt a running interrupt if the pending interrupt's
289      * group priority is sufficient (the subpriorities are not considered).
290      */
291     if ((prio & mask) < (rprio & mask)) {
292         return true;
293     }
294 
295     return false;
296 }
297 
298 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
299                                                 uint32_t *misr)
300 {
301     /* Return a set of bits indicating the EOI maintenance interrupt status
302      * for each list register. The EOI maintenance interrupt status is
303      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
304      * (see the GICv3 spec for the ICH_EISR_EL2 register).
305      * If misr is not NULL then we should also collect the information
306      * about the MISR.EOI, MISR.NP and MISR.U bits.
307      */
308     uint32_t value = 0;
309     int validcount = 0;
310     bool seenpending = false;
311     int i;
312 
313     for (i = 0; i < cs->num_list_regs; i++) {
314         uint64_t lr = cs->ich_lr_el2[i];
315 
316         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
317             == ICH_LR_EL2_EOI) {
318             value |= (1 << i);
319         }
320         if ((lr & ICH_LR_EL2_STATE_MASK)) {
321             validcount++;
322         }
323         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
324             seenpending = true;
325         }
326     }
327 
328     if (misr) {
329         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
330             *misr |= ICH_MISR_EL2_U;
331         }
332         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
333             *misr |= ICH_MISR_EL2_NP;
334         }
335         if (value) {
336             *misr |= ICH_MISR_EL2_EOI;
337         }
338     }
339     return value;
340 }
341 
342 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
343 {
344     /* Return a set of bits indicating the maintenance interrupt status
345      * (as seen in the ICH_MISR_EL2 register).
346      */
347     uint32_t value = 0;
348 
349     /* Scan list registers and fill in the U, NP and EOI bits */
350     eoi_maintenance_interrupt_state(cs, &value);
351 
352     if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
353         value |= ICH_MISR_EL2_LRENP;
354     }
355 
356     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
357         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
358         value |= ICH_MISR_EL2_VGRP0E;
359     }
360 
361     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
362         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
363         value |= ICH_MISR_EL2_VGRP0D;
364     }
365     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
366         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
367         value |= ICH_MISR_EL2_VGRP1E;
368     }
369 
370     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
371         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
372         value |= ICH_MISR_EL2_VGRP1D;
373     }
374 
375     return value;
376 }
377 
378 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
379 {
380     /* Tell the CPU about any pending virtual interrupts or
381      * maintenance interrupts, following a change to the state
382      * of the CPU interface relevant to virtual interrupts.
383      *
384      * CAUTION: this function will call qemu_set_irq() on the
385      * CPU maintenance IRQ line, which is typically wired up
386      * to the GIC as a per-CPU interrupt. This means that it
387      * will recursively call back into the GIC code via
388      * gicv3_redist_set_irq() and thus into the CPU interface code's
389      * gicv3_cpuif_update(). It is therefore important that this
390      * function is only called as the final action of a CPU interface
391      * register write implementation, after all the GIC state
392      * fields have been updated. gicv3_cpuif_update() also must
393      * not cause this function to be called, but that happens
394      * naturally as a result of there being no architectural
395      * linkage between the physical and virtual GIC logic.
396      */
397     int idx;
398     int irqlevel = 0;
399     int fiqlevel = 0;
400     int maintlevel = 0;
401 
402     idx = hppvi_index(cs);
403     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
404     if (idx >= 0) {
405         uint64_t lr = cs->ich_lr_el2[idx];
406 
407         if (icv_hppi_can_preempt(cs, lr)) {
408             /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
409             if (lr & ICH_LR_EL2_GROUP) {
410                 irqlevel = 1;
411             } else {
412                 fiqlevel = 1;
413             }
414         }
415     }
416 
417     if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
418         maintlevel = maintenance_interrupt_state(cs);
419     }
420 
421     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
422                                     irqlevel, maintlevel);
423 
424     qemu_set_irq(cs->parent_vfiq, fiqlevel);
425     qemu_set_irq(cs->parent_virq, irqlevel);
426     qemu_set_irq(cs->maintenance_irq, maintlevel);
427 }
428 
429 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
430 {
431     GICv3CPUState *cs = icc_cs_from_env(env);
432     int regno = ri->opc2 & 3;
433     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
434     uint64_t value = cs->ich_apr[grp][regno];
435 
436     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
437     return value;
438 }
439 
440 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
441                          uint64_t value)
442 {
443     GICv3CPUState *cs = icc_cs_from_env(env);
444     int regno = ri->opc2 & 3;
445     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
446 
447     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
448 
449     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
450 
451     gicv3_cpuif_virt_update(cs);
452     return;
453 }
454 
455 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
456 {
457     GICv3CPUState *cs = icc_cs_from_env(env);
458     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
459     uint64_t bpr;
460     bool satinc = false;
461 
462     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
463         /* reads return bpr0 + 1 saturated to 7, writes ignored */
464         grp = GICV3_G0;
465         satinc = true;
466     }
467 
468     bpr = read_vbpr(cs, grp);
469 
470     if (satinc) {
471         bpr++;
472         bpr = MIN(bpr, 7);
473     }
474 
475     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
476 
477     return bpr;
478 }
479 
480 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
481                           uint64_t value)
482 {
483     GICv3CPUState *cs = icc_cs_from_env(env);
484     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
485 
486     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
487                               gicv3_redist_affid(cs), value);
488 
489     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
490         /* reads return bpr0 + 1 saturated to 7, writes ignored */
491         return;
492     }
493 
494     write_vbpr(cs, grp, value);
495 
496     gicv3_cpuif_virt_update(cs);
497 }
498 
499 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
500 {
501     GICv3CPUState *cs = icc_cs_from_env(env);
502     uint64_t value;
503 
504     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
505                       ICH_VMCR_EL2_VPMR_LENGTH);
506 
507     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
508     return value;
509 }
510 
511 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
512                           uint64_t value)
513 {
514     GICv3CPUState *cs = icc_cs_from_env(env);
515 
516     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
517 
518     value &= icv_fullprio_mask(cs);
519 
520     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
521                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
522 
523     gicv3_cpuif_virt_update(cs);
524 }
525 
526 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
527 {
528     GICv3CPUState *cs = icc_cs_from_env(env);
529     int enbit;
530     uint64_t value;
531 
532     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
533     value = extract64(cs->ich_vmcr_el2, enbit, 1);
534 
535     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
536                                 gicv3_redist_affid(cs), value);
537     return value;
538 }
539 
540 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
541                              uint64_t value)
542 {
543     GICv3CPUState *cs = icc_cs_from_env(env);
544     int enbit;
545 
546     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
547                                  gicv3_redist_affid(cs), value);
548 
549     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
550 
551     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
552     gicv3_cpuif_virt_update(cs);
553 }
554 
555 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
556 {
557     GICv3CPUState *cs = icc_cs_from_env(env);
558     uint64_t value;
559 
560     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
561      * should match the ones reported in ich_vtr_read().
562      */
563     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
564         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
565 
566     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
567         value |= ICC_CTLR_EL1_EOIMODE;
568     }
569 
570     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
571         value |= ICC_CTLR_EL1_CBPR;
572     }
573 
574     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
575     return value;
576 }
577 
578 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
579                                uint64_t value)
580 {
581     GICv3CPUState *cs = icc_cs_from_env(env);
582 
583     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
584 
585     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
586                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
587     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
588                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
589 
590     gicv3_cpuif_virt_update(cs);
591 }
592 
593 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
594 {
595     GICv3CPUState *cs = icc_cs_from_env(env);
596     int prio = ich_highest_active_virt_prio(cs);
597 
598     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
599     return prio;
600 }
601 
602 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
603 {
604     GICv3CPUState *cs = icc_cs_from_env(env);
605     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
606     int idx = hppvi_index(cs);
607     uint64_t value = INTID_SPURIOUS;
608 
609     if (idx >= 0) {
610         uint64_t lr = cs->ich_lr_el2[idx];
611         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
612 
613         if (grp == thisgrp) {
614             value = ich_lr_vintid(lr);
615         }
616     }
617 
618     trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
619     return value;
620 }
621 
622 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
623 {
624     /* Activate the interrupt in the specified list register
625      * by moving it from Pending to Active state, and update the
626      * Active Priority Registers.
627      */
628     uint32_t mask = icv_gprio_mask(cs, grp);
629     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
630     int aprbit = prio >> (8 - cs->vprebits);
631     int regno = aprbit / 32;
632     int regbit = aprbit % 32;
633 
634     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
635     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
636     cs->ich_apr[grp][regno] |= (1 << regbit);
637 }
638 
639 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
640 {
641     GICv3CPUState *cs = icc_cs_from_env(env);
642     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
643     int idx = hppvi_index(cs);
644     uint64_t intid = INTID_SPURIOUS;
645 
646     if (idx >= 0) {
647         uint64_t lr = cs->ich_lr_el2[idx];
648         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
649 
650         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
651             intid = ich_lr_vintid(lr);
652             if (intid < INTID_SECURE) {
653                 icv_activate_irq(cs, idx, grp);
654             } else {
655                 /* Interrupt goes from Pending to Invalid */
656                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
657                 /* We will now return the (bogus) ID from the list register,
658                  * as per the pseudocode.
659                  */
660             }
661         }
662     }
663 
664     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
665                              gicv3_redist_affid(cs), intid);
666     return intid;
667 }
668 
669 static int icc_highest_active_prio(GICv3CPUState *cs)
670 {
671     /* Calculate the current running priority based on the set bits
672      * in the Active Priority Registers.
673      */
674     int i;
675 
676     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
677         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
678             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
679 
680         if (!apr) {
681             continue;
682         }
683         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
684     }
685     /* No current active interrupts: return idle priority */
686     return 0xff;
687 }
688 
689 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
690 {
691     /* Return a mask word which clears the subpriority bits from
692      * a priority value for an interrupt in the specified group.
693      * This depends on the BPR value. For CBPR0 (S or NS):
694      *  a BPR of 0 means the group priority bits are [7:1];
695      *  a BPR of 1 means they are [7:2], and so on down to
696      *  a BPR of 7 meaning no group priority bits at all.
697      * For CBPR1 NS:
698      *  a BPR of 0 is impossible (the minimum value is 1)
699      *  a BPR of 1 means the group priority bits are [7:1];
700      *  a BPR of 2 means they are [7:2], and so on down to
701      *  a BPR of 7 meaning the group priority is [7].
702      *
703      * Which BPR to use depends on the group of the interrupt and
704      * the current ICC_CTLR.CBPR settings.
705      *
706      * This corresponds to the GroupBits() pseudocode.
707      */
708     int bpr;
709 
710     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
711         (group == GICV3_G1NS &&
712          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
713         group = GICV3_G0;
714     }
715 
716     bpr = cs->icc_bpr[group] & 7;
717 
718     if (group == GICV3_G1NS) {
719         assert(bpr > 0);
720         bpr--;
721     }
722 
723     return ~0U << (bpr + 1);
724 }
725 
726 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
727 {
728     /* Return true if there is no pending interrupt, or the
729      * highest priority pending interrupt is in a group which has been
730      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
731      */
732     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
733 }
734 
735 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
736 {
737     /* Return true if we have a pending interrupt of sufficient
738      * priority to preempt.
739      */
740     int rprio;
741     uint32_t mask;
742 
743     if (icc_no_enabled_hppi(cs)) {
744         return false;
745     }
746 
747     if (cs->hppi.prio >= cs->icc_pmr_el1) {
748         /* Priority mask masks this interrupt */
749         return false;
750     }
751 
752     rprio = icc_highest_active_prio(cs);
753     if (rprio == 0xff) {
754         /* No currently running interrupt so we can preempt */
755         return true;
756     }
757 
758     mask = icc_gprio_mask(cs, cs->hppi.grp);
759 
760     /* We only preempt a running interrupt if the pending interrupt's
761      * group priority is sufficient (the subpriorities are not considered).
762      */
763     if ((cs->hppi.prio & mask) < (rprio & mask)) {
764         return true;
765     }
766 
767     return false;
768 }
769 
770 void gicv3_cpuif_update(GICv3CPUState *cs)
771 {
772     /* Tell the CPU about its highest priority pending interrupt */
773     int irqlevel = 0;
774     int fiqlevel = 0;
775     ARMCPU *cpu = ARM_CPU(cs->cpu);
776     CPUARMState *env = &cpu->env;
777 
778     g_assert(qemu_mutex_iothread_locked());
779 
780     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
781                              cs->hppi.grp, cs->hppi.prio);
782 
783     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
784         /* If a Security-enabled GIC sends a G1S interrupt to a
785          * Security-disabled CPU, we must treat it as if it were G0.
786          */
787         cs->hppi.grp = GICV3_G0;
788     }
789 
790     if (icc_hppi_can_preempt(cs)) {
791         /* We have an interrupt: should we signal it as IRQ or FIQ?
792          * This is described in the GICv3 spec section 4.6.2.
793          */
794         bool isfiq;
795 
796         switch (cs->hppi.grp) {
797         case GICV3_G0:
798             isfiq = true;
799             break;
800         case GICV3_G1:
801             isfiq = (!arm_is_secure(env) ||
802                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
803             break;
804         case GICV3_G1NS:
805             isfiq = arm_is_secure(env);
806             break;
807         default:
808             g_assert_not_reached();
809         }
810 
811         if (isfiq) {
812             fiqlevel = 1;
813         } else {
814             irqlevel = 1;
815         }
816     }
817 
818     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
819 
820     qemu_set_irq(cs->parent_fiq, fiqlevel);
821     qemu_set_irq(cs->parent_irq, irqlevel);
822 }
823 
824 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
825 {
826     GICv3CPUState *cs = icc_cs_from_env(env);
827     uint32_t value = cs->icc_pmr_el1;
828 
829     if (icv_access(env, HCR_FMO | HCR_IMO)) {
830         return icv_pmr_read(env, ri);
831     }
832 
833     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
834         (env->cp15.scr_el3 & SCR_FIQ)) {
835         /* NS access and Group 0 is inaccessible to NS: return the
836          * NS view of the current priority
837          */
838         if ((value & 0x80) == 0) {
839             /* Secure priorities not visible to NS */
840             value = 0;
841         } else if (value != 0xff) {
842             value = (value << 1) & 0xff;
843         }
844     }
845 
846     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
847 
848     return value;
849 }
850 
851 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
852                           uint64_t value)
853 {
854     GICv3CPUState *cs = icc_cs_from_env(env);
855 
856     if (icv_access(env, HCR_FMO | HCR_IMO)) {
857         return icv_pmr_write(env, ri, value);
858     }
859 
860     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
861 
862     value &= 0xff;
863 
864     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
865         (env->cp15.scr_el3 & SCR_FIQ)) {
866         /* NS access and Group 0 is inaccessible to NS: return the
867          * NS view of the current priority
868          */
869         if (!(cs->icc_pmr_el1 & 0x80)) {
870             /* Current PMR in the secure range, don't allow NS to change it */
871             return;
872         }
873         value = (value >> 1) | 0x80;
874     }
875     cs->icc_pmr_el1 = value;
876     gicv3_cpuif_update(cs);
877 }
878 
879 static void icc_activate_irq(GICv3CPUState *cs, int irq)
880 {
881     /* Move the interrupt from the Pending state to Active, and update
882      * the Active Priority Registers
883      */
884     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
885     int prio = cs->hppi.prio & mask;
886     int aprbit = prio >> 1;
887     int regno = aprbit / 32;
888     int regbit = aprbit % 32;
889 
890     cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
891 
892     if (irq < GIC_INTERNAL) {
893         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
894         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
895         gicv3_redist_update(cs);
896     } else {
897         gicv3_gicd_active_set(cs->gic, irq);
898         gicv3_gicd_pending_clear(cs->gic, irq);
899         gicv3_update(cs->gic, irq, 1);
900     }
901 }
902 
903 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
904 {
905     /* Return the highest priority pending interrupt register value
906      * for group 0.
907      */
908     bool irq_is_secure;
909 
910     if (cs->hppi.prio == 0xff) {
911         return INTID_SPURIOUS;
912     }
913 
914     /* Check whether we can return the interrupt or if we should return
915      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
916      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
917      * is always zero.)
918      */
919     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
920                      (cs->hppi.grp != GICV3_G1NS));
921 
922     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
923         return INTID_SPURIOUS;
924     }
925     if (irq_is_secure && !arm_is_secure(env)) {
926         /* Secure interrupts not visible to Nonsecure */
927         return INTID_SPURIOUS;
928     }
929 
930     if (cs->hppi.grp != GICV3_G0) {
931         /* Indicate to EL3 that there's a Group 1 interrupt for the other
932          * state pending.
933          */
934         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
935     }
936 
937     return cs->hppi.irq;
938 }
939 
940 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
941 {
942     /* Return the highest priority pending interrupt register value
943      * for group 1.
944      */
945     bool irq_is_secure;
946 
947     if (cs->hppi.prio == 0xff) {
948         return INTID_SPURIOUS;
949     }
950 
951     /* Check whether we can return the interrupt or if we should return
952      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
953      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
954      * is always zero.)
955      */
956     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
957                      (cs->hppi.grp != GICV3_G1NS));
958 
959     if (cs->hppi.grp == GICV3_G0) {
960         /* Group 0 interrupts not visible via HPPIR1 */
961         return INTID_SPURIOUS;
962     }
963     if (irq_is_secure) {
964         if (!arm_is_secure(env)) {
965             /* Secure interrupts not visible in Non-secure */
966             return INTID_SPURIOUS;
967         }
968     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
969         /* Group 1 non-secure interrupts not visible in Secure EL1 */
970         return INTID_SPURIOUS;
971     }
972 
973     return cs->hppi.irq;
974 }
975 
976 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
977 {
978     GICv3CPUState *cs = icc_cs_from_env(env);
979     uint64_t intid;
980 
981     if (icv_access(env, HCR_FMO)) {
982         return icv_iar_read(env, ri);
983     }
984 
985     if (!icc_hppi_can_preempt(cs)) {
986         intid = INTID_SPURIOUS;
987     } else {
988         intid = icc_hppir0_value(cs, env);
989     }
990 
991     if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
992         icc_activate_irq(cs, intid);
993     }
994 
995     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
996     return intid;
997 }
998 
999 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1000 {
1001     GICv3CPUState *cs = icc_cs_from_env(env);
1002     uint64_t intid;
1003 
1004     if (icv_access(env, HCR_IMO)) {
1005         return icv_iar_read(env, ri);
1006     }
1007 
1008     if (!icc_hppi_can_preempt(cs)) {
1009         intid = INTID_SPURIOUS;
1010     } else {
1011         intid = icc_hppir1_value(cs, env);
1012     }
1013 
1014     if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
1015         icc_activate_irq(cs, intid);
1016     }
1017 
1018     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1019     return intid;
1020 }
1021 
1022 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1023 {
1024     /* Drop the priority of the currently active interrupt in
1025      * the specified group.
1026      *
1027      * Note that we can guarantee (because of the requirement to nest
1028      * ICC_IAR reads [which activate an interrupt and raise priority]
1029      * with ICC_EOIR writes [which drop the priority for the interrupt])
1030      * that the interrupt we're being called for is the highest priority
1031      * active interrupt, meaning that it has the lowest set bit in the
1032      * APR registers.
1033      *
1034      * If the guest does not honour the ordering constraints then the
1035      * behaviour of the GIC is UNPREDICTABLE, which for us means that
1036      * the values of the APR registers might become incorrect and the
1037      * running priority will be wrong, so interrupts that should preempt
1038      * might not do so, and interrupts that should not preempt might do so.
1039      */
1040     int i;
1041 
1042     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1043         uint64_t *papr = &cs->icc_apr[grp][i];
1044 
1045         if (!*papr) {
1046             continue;
1047         }
1048         /* Clear the lowest set bit */
1049         *papr &= *papr - 1;
1050         break;
1051     }
1052 
1053     /* running priority change means we need an update for this cpu i/f */
1054     gicv3_cpuif_update(cs);
1055 }
1056 
1057 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1058 {
1059     /* Return true if we should split priority drop and interrupt
1060      * deactivation, ie whether the relevant EOIMode bit is set.
1061      */
1062     if (arm_is_el3_or_mon(env)) {
1063         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1064     }
1065     if (arm_is_secure_below_el3(env)) {
1066         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1067     } else {
1068         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1069     }
1070 }
1071 
1072 static int icc_highest_active_group(GICv3CPUState *cs)
1073 {
1074     /* Return the group with the highest priority active interrupt.
1075      * We can do this by just comparing the APRs to see which one
1076      * has the lowest set bit.
1077      * (If more than one group is active at the same priority then
1078      * we're in UNPREDICTABLE territory.)
1079      */
1080     int i;
1081 
1082     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1083         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1084         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1085         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1086 
1087         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1088             return GICV3_G1NS;
1089         }
1090         if (g1ctz < g0ctz) {
1091             return GICV3_G1;
1092         }
1093         if (g0ctz < 32) {
1094             return GICV3_G0;
1095         }
1096     }
1097     /* No set active bits? UNPREDICTABLE; return -1 so the caller
1098      * ignores the spurious EOI attempt.
1099      */
1100     return -1;
1101 }
1102 
1103 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1104 {
1105     if (irq < GIC_INTERNAL) {
1106         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1107         gicv3_redist_update(cs);
1108     } else {
1109         gicv3_gicd_active_clear(cs->gic, irq);
1110         gicv3_update(cs->gic, irq, 1);
1111     }
1112 }
1113 
1114 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1115 {
1116     /* Return true if we should split priority drop and interrupt
1117      * deactivation, ie whether the virtual EOIMode bit is set.
1118      */
1119     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1120 }
1121 
1122 static int icv_find_active(GICv3CPUState *cs, int irq)
1123 {
1124     /* Given an interrupt number for an active interrupt, return the index
1125      * of the corresponding list register, or -1 if there is no match.
1126      * Corresponds to FindActiveVirtualInterrupt pseudocode.
1127      */
1128     int i;
1129 
1130     for (i = 0; i < cs->num_list_regs; i++) {
1131         uint64_t lr = cs->ich_lr_el2[i];
1132 
1133         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1134             return i;
1135         }
1136     }
1137 
1138     return -1;
1139 }
1140 
1141 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1142 {
1143     /* Deactivate the interrupt in the specified list register index */
1144     uint64_t lr = cs->ich_lr_el2[idx];
1145 
1146     if (lr & ICH_LR_EL2_HW) {
1147         /* Deactivate the associated physical interrupt */
1148         int pirq = ich_lr_pintid(lr);
1149 
1150         if (pirq < INTID_SECURE) {
1151             icc_deactivate_irq(cs, pirq);
1152         }
1153     }
1154 
1155     /* Clear the 'active' part of the state, so ActivePending->Pending
1156      * and Active->Invalid.
1157      */
1158     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1159     cs->ich_lr_el2[idx] = lr;
1160 }
1161 
1162 static void icv_increment_eoicount(GICv3CPUState *cs)
1163 {
1164     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1165     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1166                              ICH_HCR_EL2_EOICOUNT_LENGTH);
1167 
1168     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1169                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1170 }
1171 
1172 static int icv_drop_prio(GICv3CPUState *cs)
1173 {
1174     /* Drop the priority of the currently active virtual interrupt
1175      * (favouring group 0 if there is a set active bit at
1176      * the same priority for both group 0 and group 1).
1177      * Return the priority value for the bit we just cleared,
1178      * or 0xff if no bits were set in the AP registers at all.
1179      * Note that though the ich_apr[] are uint64_t only the low
1180      * 32 bits are actually relevant.
1181      */
1182     int i;
1183     int aprmax = 1 << (cs->vprebits - 5);
1184 
1185     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1186 
1187     for (i = 0; i < aprmax; i++) {
1188         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1189         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1190         int apr0count, apr1count;
1191 
1192         if (!*papr0 && !*papr1) {
1193             continue;
1194         }
1195 
1196         /* We can't just use the bit-twiddling hack icc_drop_prio() does
1197          * because we need to return the bit number we cleared so
1198          * it can be compared against the list register's priority field.
1199          */
1200         apr0count = ctz32(*papr0);
1201         apr1count = ctz32(*papr1);
1202 
1203         if (apr0count <= apr1count) {
1204             *papr0 &= *papr0 - 1;
1205             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1206         } else {
1207             *papr1 &= *papr1 - 1;
1208             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1209         }
1210     }
1211     return 0xff;
1212 }
1213 
1214 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1215                           uint64_t value)
1216 {
1217     /* Deactivate interrupt */
1218     GICv3CPUState *cs = icc_cs_from_env(env);
1219     int idx;
1220     int irq = value & 0xffffff;
1221 
1222     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1223 
1224     if (irq >= cs->gic->num_irq) {
1225         /* Also catches special interrupt numbers and LPIs */
1226         return;
1227     }
1228 
1229     if (!icv_eoi_split(env, cs)) {
1230         return;
1231     }
1232 
1233     idx = icv_find_active(cs, irq);
1234 
1235     if (idx < 0) {
1236         /* No list register matching this, so increment the EOI count
1237          * (might trigger a maintenance interrupt)
1238          */
1239         icv_increment_eoicount(cs);
1240     } else {
1241         icv_deactivate_irq(cs, idx);
1242     }
1243 
1244     gicv3_cpuif_virt_update(cs);
1245 }
1246 
1247 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1248                            uint64_t value)
1249 {
1250     /* End of Interrupt */
1251     GICv3CPUState *cs = icc_cs_from_env(env);
1252     int irq = value & 0xffffff;
1253     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1254     int idx, dropprio;
1255 
1256     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1257                                gicv3_redist_affid(cs), value);
1258 
1259     if (irq >= cs->gic->num_irq) {
1260         /* Also catches special interrupt numbers and LPIs */
1261         return;
1262     }
1263 
1264     /* We implement the IMPDEF choice of "drop priority before doing
1265      * error checks" (because that lets us avoid scanning the AP
1266      * registers twice).
1267      */
1268     dropprio = icv_drop_prio(cs);
1269     if (dropprio == 0xff) {
1270         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1271          * whether the list registers are checked in this
1272          * situation; we choose not to.
1273          */
1274         return;
1275     }
1276 
1277     idx = icv_find_active(cs, irq);
1278 
1279     if (idx < 0) {
1280         /* No valid list register corresponding to EOI ID */
1281         icv_increment_eoicount(cs);
1282     } else {
1283         uint64_t lr = cs->ich_lr_el2[idx];
1284         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1285         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1286 
1287         if (thisgrp == grp && lr_gprio == dropprio) {
1288             if (!icv_eoi_split(env, cs)) {
1289                 /* Priority drop and deactivate not split: deactivate irq now */
1290                 icv_deactivate_irq(cs, idx);
1291             }
1292         }
1293     }
1294 
1295     gicv3_cpuif_virt_update(cs);
1296 }
1297 
1298 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1299                            uint64_t value)
1300 {
1301     /* End of Interrupt */
1302     GICv3CPUState *cs = icc_cs_from_env(env);
1303     int irq = value & 0xffffff;
1304     int grp;
1305 
1306     if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
1307         icv_eoir_write(env, ri, value);
1308         return;
1309     }
1310 
1311     trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
1312                                gicv3_redist_affid(cs), value);
1313 
1314     if (ri->crm == 8) {
1315         /* EOIR0 */
1316         grp = GICV3_G0;
1317     } else {
1318         /* EOIR1 */
1319         if (arm_is_secure(env)) {
1320             grp = GICV3_G1;
1321         } else {
1322             grp = GICV3_G1NS;
1323         }
1324     }
1325 
1326     if (irq >= cs->gic->num_irq) {
1327         /* This handles two cases:
1328          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1329          * to the GICC_EOIR, the GIC ignores that write.
1330          * 2. If software writes the number of a non-existent interrupt
1331          * this must be a subcase of "value written does not match the last
1332          * valid interrupt value read from the Interrupt Acknowledge
1333          * register" and so this is UNPREDICTABLE. We choose to ignore it.
1334          */
1335         return;
1336     }
1337 
1338     if (icc_highest_active_group(cs) != grp) {
1339         return;
1340     }
1341 
1342     icc_drop_prio(cs, grp);
1343 
1344     if (!icc_eoi_split(env, cs)) {
1345         /* Priority drop and deactivate not split: deactivate irq now */
1346         icc_deactivate_irq(cs, irq);
1347     }
1348 }
1349 
1350 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1351 {
1352     GICv3CPUState *cs = icc_cs_from_env(env);
1353     uint64_t value;
1354 
1355     if (icv_access(env, HCR_FMO)) {
1356         return icv_hppir_read(env, ri);
1357     }
1358 
1359     value = icc_hppir0_value(cs, env);
1360     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1361     return value;
1362 }
1363 
1364 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1365 {
1366     GICv3CPUState *cs = icc_cs_from_env(env);
1367     uint64_t value;
1368 
1369     if (icv_access(env, HCR_IMO)) {
1370         return icv_hppir_read(env, ri);
1371     }
1372 
1373     value = icc_hppir1_value(cs, env);
1374     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1375     return value;
1376 }
1377 
1378 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1379 {
1380     GICv3CPUState *cs = icc_cs_from_env(env);
1381     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1382     bool satinc = false;
1383     uint64_t bpr;
1384 
1385     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1386         return icv_bpr_read(env, ri);
1387     }
1388 
1389     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1390         grp = GICV3_G1NS;
1391     }
1392 
1393     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1394         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1395         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1396          * modify BPR0
1397          */
1398         grp = GICV3_G0;
1399     }
1400 
1401     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1402         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1403         /* reads return bpr0 + 1 sat to 7, writes ignored */
1404         grp = GICV3_G0;
1405         satinc = true;
1406     }
1407 
1408     bpr = cs->icc_bpr[grp];
1409     if (satinc) {
1410         bpr++;
1411         bpr = MIN(bpr, 7);
1412     }
1413 
1414     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1415 
1416     return bpr;
1417 }
1418 
1419 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1420                           uint64_t value)
1421 {
1422     GICv3CPUState *cs = icc_cs_from_env(env);
1423     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1424     uint64_t minval;
1425 
1426     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1427         icv_bpr_write(env, ri, value);
1428         return;
1429     }
1430 
1431     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1432                               gicv3_redist_affid(cs), value);
1433 
1434     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1435         grp = GICV3_G1NS;
1436     }
1437 
1438     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1439         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1440         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1441          * modify BPR0
1442          */
1443         grp = GICV3_G0;
1444     }
1445 
1446     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1447         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1448         /* reads return bpr0 + 1 sat to 7, writes ignored */
1449         return;
1450     }
1451 
1452     minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1453     if (value < minval) {
1454         value = minval;
1455     }
1456 
1457     cs->icc_bpr[grp] = value & 7;
1458     gicv3_cpuif_update(cs);
1459 }
1460 
1461 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1462 {
1463     GICv3CPUState *cs = icc_cs_from_env(env);
1464     uint64_t value;
1465 
1466     int regno = ri->opc2 & 3;
1467     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1468 
1469     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1470         return icv_ap_read(env, ri);
1471     }
1472 
1473     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1474         grp = GICV3_G1NS;
1475     }
1476 
1477     value = cs->icc_apr[grp][regno];
1478 
1479     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1480     return value;
1481 }
1482 
1483 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1484                          uint64_t value)
1485 {
1486     GICv3CPUState *cs = icc_cs_from_env(env);
1487 
1488     int regno = ri->opc2 & 3;
1489     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1490 
1491     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1492         icv_ap_write(env, ri, value);
1493         return;
1494     }
1495 
1496     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1497 
1498     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1499         grp = GICV3_G1NS;
1500     }
1501 
1502     /* It's not possible to claim that a Non-secure interrupt is active
1503      * at a priority outside the Non-secure range (128..255), since this
1504      * would otherwise allow malicious NS code to block delivery of S interrupts
1505      * by writing a bad value to these registers.
1506      */
1507     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1508         return;
1509     }
1510 
1511     cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1512     gicv3_cpuif_update(cs);
1513 }
1514 
1515 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1516                           uint64_t value)
1517 {
1518     /* Deactivate interrupt */
1519     GICv3CPUState *cs = icc_cs_from_env(env);
1520     int irq = value & 0xffffff;
1521     bool irq_is_secure, single_sec_state, irq_is_grp0;
1522     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1523 
1524     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1525         icv_dir_write(env, ri, value);
1526         return;
1527     }
1528 
1529     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1530 
1531     if (irq >= cs->gic->num_irq) {
1532         /* Also catches special interrupt numbers and LPIs */
1533         return;
1534     }
1535 
1536     if (!icc_eoi_split(env, cs)) {
1537         return;
1538     }
1539 
1540     int grp = gicv3_irq_group(cs->gic, cs, irq);
1541 
1542     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1543     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1544     irq_is_grp0 = grp == GICV3_G0;
1545 
1546     /* Check whether we're allowed to deactivate this interrupt based
1547      * on its group and the current CPU state.
1548      * These checks are laid out to correspond to the spec's pseudocode.
1549      */
1550     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1551     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1552     /* No need to include !IsSecure in route_*_to_el2 as it's only
1553      * tested in cases where we know !IsSecure is true.
1554      */
1555     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1556     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1557     route_irq_to_el2 = hcr_el2 & HCR_IMO;
1558 
1559     switch (arm_current_el(env)) {
1560     case 3:
1561         break;
1562     case 2:
1563         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1564             break;
1565         }
1566         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1567             break;
1568         }
1569         return;
1570     case 1:
1571         if (!arm_is_secure_below_el3(env)) {
1572             if (single_sec_state && irq_is_grp0 &&
1573                 !route_fiq_to_el3 && !route_fiq_to_el2) {
1574                 break;
1575             }
1576             if (!irq_is_secure && !irq_is_grp0 &&
1577                 !route_irq_to_el3 && !route_irq_to_el2) {
1578                 break;
1579             }
1580         } else {
1581             if (irq_is_grp0 && !route_fiq_to_el3) {
1582                 break;
1583             }
1584             if (!irq_is_grp0 &&
1585                 (!irq_is_secure || !single_sec_state) &&
1586                 !route_irq_to_el3) {
1587                 break;
1588             }
1589         }
1590         return;
1591     default:
1592         g_assert_not_reached();
1593     }
1594 
1595     icc_deactivate_irq(cs, irq);
1596 }
1597 
1598 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1599 {
1600     GICv3CPUState *cs = icc_cs_from_env(env);
1601     int prio;
1602 
1603     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1604         return icv_rpr_read(env, ri);
1605     }
1606 
1607     prio = icc_highest_active_prio(cs);
1608 
1609     if (arm_feature(env, ARM_FEATURE_EL3) &&
1610         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1611         /* NS GIC access and Group 0 is inaccessible to NS */
1612         if ((prio & 0x80) == 0) {
1613             /* NS mustn't see priorities in the Secure half of the range */
1614             prio = 0;
1615         } else if (prio != 0xff) {
1616             /* Non-idle priority: show the Non-secure view of it */
1617             prio = (prio << 1) & 0xff;
1618         }
1619     }
1620 
1621     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1622     return prio;
1623 }
1624 
1625 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1626                              uint64_t value, int grp, bool ns)
1627 {
1628     GICv3State *s = cs->gic;
1629 
1630     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1631     uint64_t aff = extract64(value, 48, 8) << 16 |
1632         extract64(value, 32, 8) << 8 |
1633         extract64(value, 16, 8);
1634     uint32_t targetlist = extract64(value, 0, 16);
1635     uint32_t irq = extract64(value, 24, 4);
1636     bool irm = extract64(value, 40, 1);
1637     int i;
1638 
1639     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1640         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1641          * interrupts as Group 0 interrupts and must send Secure Group 0
1642          * interrupts to the target CPUs.
1643          */
1644         grp = GICV3_G0;
1645     }
1646 
1647     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1648                                  aff, targetlist);
1649 
1650     for (i = 0; i < s->num_cpu; i++) {
1651         GICv3CPUState *ocs = &s->cpu[i];
1652 
1653         if (irm) {
1654             /* IRM == 1 : route to all CPUs except self */
1655             if (cs == ocs) {
1656                 continue;
1657             }
1658         } else {
1659             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1660              * where the corresponding bit is set in targetlist
1661              */
1662             int aff0;
1663 
1664             if (ocs->gicr_typer >> 40 != aff) {
1665                 continue;
1666             }
1667             aff0 = extract64(ocs->gicr_typer, 32, 8);
1668             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1669                 continue;
1670             }
1671         }
1672 
1673         /* The redistributor will check against its own GICR_NSACR as needed */
1674         gicv3_redist_send_sgi(ocs, grp, irq, ns);
1675     }
1676 }
1677 
1678 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1679                            uint64_t value)
1680 {
1681     /* Generate Secure Group 0 SGI. */
1682     GICv3CPUState *cs = icc_cs_from_env(env);
1683     bool ns = !arm_is_secure(env);
1684 
1685     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1686 }
1687 
1688 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1689                            uint64_t value)
1690 {
1691     /* Generate Group 1 SGI for the current Security state */
1692     GICv3CPUState *cs = icc_cs_from_env(env);
1693     int grp;
1694     bool ns = !arm_is_secure(env);
1695 
1696     grp = ns ? GICV3_G1NS : GICV3_G1;
1697     icc_generate_sgi(env, cs, value, grp, ns);
1698 }
1699 
1700 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1701                              uint64_t value)
1702 {
1703     /* Generate Group 1 SGI for the Security state that is not
1704      * the current state
1705      */
1706     GICv3CPUState *cs = icc_cs_from_env(env);
1707     int grp;
1708     bool ns = !arm_is_secure(env);
1709 
1710     grp = ns ? GICV3_G1 : GICV3_G1NS;
1711     icc_generate_sgi(env, cs, value, grp, ns);
1712 }
1713 
1714 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1715 {
1716     GICv3CPUState *cs = icc_cs_from_env(env);
1717     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1718     uint64_t value;
1719 
1720     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1721         return icv_igrpen_read(env, ri);
1722     }
1723 
1724     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1725         grp = GICV3_G1NS;
1726     }
1727 
1728     value = cs->icc_igrpen[grp];
1729     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1730                                 gicv3_redist_affid(cs), value);
1731     return value;
1732 }
1733 
1734 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1735                              uint64_t value)
1736 {
1737     GICv3CPUState *cs = icc_cs_from_env(env);
1738     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1739 
1740     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1741         icv_igrpen_write(env, ri, value);
1742         return;
1743     }
1744 
1745     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1746                                  gicv3_redist_affid(cs), value);
1747 
1748     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1749         grp = GICV3_G1NS;
1750     }
1751 
1752     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1753     gicv3_cpuif_update(cs);
1754 }
1755 
1756 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1757 {
1758     GICv3CPUState *cs = icc_cs_from_env(env);
1759     uint64_t value;
1760 
1761     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1762     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1763     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1764     return value;
1765 }
1766 
1767 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1768                                   uint64_t value)
1769 {
1770     GICv3CPUState *cs = icc_cs_from_env(env);
1771 
1772     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1773 
1774     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1775     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1776     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1777     gicv3_cpuif_update(cs);
1778 }
1779 
1780 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1781 {
1782     GICv3CPUState *cs = icc_cs_from_env(env);
1783     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1784     uint64_t value;
1785 
1786     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1787         return icv_ctlr_read(env, ri);
1788     }
1789 
1790     value = cs->icc_ctlr_el1[bank];
1791     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1792     return value;
1793 }
1794 
1795 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1796                                uint64_t value)
1797 {
1798     GICv3CPUState *cs = icc_cs_from_env(env);
1799     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1800     uint64_t mask;
1801 
1802     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1803         icv_ctlr_write(env, ri, value);
1804         return;
1805     }
1806 
1807     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1808 
1809     /* Only CBPR and EOIMODE can be RW;
1810      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1811      * the asseciated priority-based routing of them);
1812      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1813      */
1814     if (arm_feature(env, ARM_FEATURE_EL3) &&
1815         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1816         mask = ICC_CTLR_EL1_EOIMODE;
1817     } else {
1818         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1819     }
1820 
1821     cs->icc_ctlr_el1[bank] &= ~mask;
1822     cs->icc_ctlr_el1[bank] |= (value & mask);
1823     gicv3_cpuif_update(cs);
1824 }
1825 
1826 
1827 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1828 {
1829     GICv3CPUState *cs = icc_cs_from_env(env);
1830     uint64_t value;
1831 
1832     value = cs->icc_ctlr_el3;
1833     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1834         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1835     }
1836     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1837         value |= ICC_CTLR_EL3_CBPR_EL1NS;
1838     }
1839     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1840         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1841     }
1842     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1843         value |= ICC_CTLR_EL3_CBPR_EL1S;
1844     }
1845 
1846     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1847     return value;
1848 }
1849 
1850 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1851                                uint64_t value)
1852 {
1853     GICv3CPUState *cs = icc_cs_from_env(env);
1854     uint64_t mask;
1855 
1856     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1857 
1858     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1859     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1860     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1861         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1862     }
1863     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1864         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1865     }
1866 
1867     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1868     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1869         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1870     }
1871     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1872         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1873     }
1874 
1875     /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1876     mask = ICC_CTLR_EL3_EOIMODE_EL3;
1877 
1878     cs->icc_ctlr_el3 &= ~mask;
1879     cs->icc_ctlr_el3 |= (value & mask);
1880     gicv3_cpuif_update(cs);
1881 }
1882 
1883 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1884                                           const ARMCPRegInfo *ri, bool isread)
1885 {
1886     CPAccessResult r = CP_ACCESS_OK;
1887     GICv3CPUState *cs = icc_cs_from_env(env);
1888     int el = arm_current_el(env);
1889 
1890     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1891         el == 1 && !arm_is_secure_below_el3(env)) {
1892         /* Takes priority over a possible EL3 trap */
1893         return CP_ACCESS_TRAP_EL2;
1894     }
1895 
1896     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1897         switch (el) {
1898         case 1:
1899             /* Note that arm_hcr_el2_eff takes secure state into account.  */
1900             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1901                 r = CP_ACCESS_TRAP_EL3;
1902             }
1903             break;
1904         case 2:
1905             r = CP_ACCESS_TRAP_EL3;
1906             break;
1907         case 3:
1908             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1909                 r = CP_ACCESS_TRAP_EL3;
1910             }
1911             break;
1912         default:
1913             g_assert_not_reached();
1914         }
1915     }
1916 
1917     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1918         r = CP_ACCESS_TRAP;
1919     }
1920     return r;
1921 }
1922 
1923 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1924                                        const ARMCPRegInfo *ri, bool isread)
1925 {
1926     GICv3CPUState *cs = icc_cs_from_env(env);
1927 
1928     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1929         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1930         /* Takes priority over a possible EL3 trap */
1931         return CP_ACCESS_TRAP_EL2;
1932     }
1933 
1934     return gicv3_irqfiq_access(env, ri, isread);
1935 }
1936 
1937 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1938                                        const ARMCPRegInfo *ri, bool isread)
1939 {
1940     if (arm_current_el(env) == 1 &&
1941         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1942         /* Takes priority over a possible EL3 trap */
1943         return CP_ACCESS_TRAP_EL2;
1944     }
1945 
1946     return gicv3_irqfiq_access(env, ri, isread);
1947 }
1948 
1949 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1950                                        const ARMCPRegInfo *ri, bool isread)
1951 {
1952     CPAccessResult r = CP_ACCESS_OK;
1953     GICv3CPUState *cs = icc_cs_from_env(env);
1954     int el = arm_current_el(env);
1955 
1956     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1957         el == 1 && !arm_is_secure_below_el3(env)) {
1958         /* Takes priority over a possible EL3 trap */
1959         return CP_ACCESS_TRAP_EL2;
1960     }
1961 
1962     if (env->cp15.scr_el3 & SCR_FIQ) {
1963         switch (el) {
1964         case 1:
1965             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
1966                 r = CP_ACCESS_TRAP_EL3;
1967             }
1968             break;
1969         case 2:
1970             r = CP_ACCESS_TRAP_EL3;
1971             break;
1972         case 3:
1973             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1974                 r = CP_ACCESS_TRAP_EL3;
1975             }
1976             break;
1977         default:
1978             g_assert_not_reached();
1979         }
1980     }
1981 
1982     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1983         r = CP_ACCESS_TRAP;
1984     }
1985     return r;
1986 }
1987 
1988 static CPAccessResult gicv3_irq_access(CPUARMState *env,
1989                                        const ARMCPRegInfo *ri, bool isread)
1990 {
1991     CPAccessResult r = CP_ACCESS_OK;
1992     GICv3CPUState *cs = icc_cs_from_env(env);
1993     int el = arm_current_el(env);
1994 
1995     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
1996         el == 1 && !arm_is_secure_below_el3(env)) {
1997         /* Takes priority over a possible EL3 trap */
1998         return CP_ACCESS_TRAP_EL2;
1999     }
2000 
2001     if (env->cp15.scr_el3 & SCR_IRQ) {
2002         switch (el) {
2003         case 1:
2004             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2005                 r = CP_ACCESS_TRAP_EL3;
2006             }
2007             break;
2008         case 2:
2009             r = CP_ACCESS_TRAP_EL3;
2010             break;
2011         case 3:
2012             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2013                 r = CP_ACCESS_TRAP_EL3;
2014             }
2015             break;
2016         default:
2017             g_assert_not_reached();
2018         }
2019     }
2020 
2021     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2022         r = CP_ACCESS_TRAP;
2023     }
2024     return r;
2025 }
2026 
2027 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2028 {
2029     GICv3CPUState *cs = icc_cs_from_env(env);
2030 
2031     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2032         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2033         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2034     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2035         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2036         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2037     cs->icc_pmr_el1 = 0;
2038     cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2039     cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2040     cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2041     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2042     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2043     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2044         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2045         (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2046 
2047     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2048     cs->ich_hcr_el2 = 0;
2049     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2050     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2051         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2052         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2053 }
2054 
2055 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2056     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2057       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2058       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2059       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2060       .readfn = icc_pmr_read,
2061       .writefn = icc_pmr_write,
2062       /* We hang the whole cpu interface reset routine off here
2063        * rather than parcelling it out into one little function
2064        * per register
2065        */
2066       .resetfn = icc_reset,
2067     },
2068     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2069       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2070       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2071       .access = PL1_R, .accessfn = gicv3_fiq_access,
2072       .readfn = icc_iar0_read,
2073     },
2074     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2075       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2076       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2077       .access = PL1_W, .accessfn = gicv3_fiq_access,
2078       .writefn = icc_eoir_write,
2079     },
2080     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2081       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2082       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2083       .access = PL1_R, .accessfn = gicv3_fiq_access,
2084       .readfn = icc_hppir0_read,
2085     },
2086     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2087       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2088       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2089       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2090       .readfn = icc_bpr_read,
2091       .writefn = icc_bpr_write,
2092     },
2093     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2094       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2095       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2096       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2097       .readfn = icc_ap_read,
2098       .writefn = icc_ap_write,
2099     },
2100     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2101       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2102       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2103       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2104       .readfn = icc_ap_read,
2105       .writefn = icc_ap_write,
2106     },
2107     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2108       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2109       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2110       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2111       .readfn = icc_ap_read,
2112       .writefn = icc_ap_write,
2113     },
2114     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2115       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2116       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2117       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2118       .readfn = icc_ap_read,
2119       .writefn = icc_ap_write,
2120     },
2121     /* All the ICC_AP1R*_EL1 registers are banked */
2122     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2123       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2124       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2125       .access = PL1_RW, .accessfn = gicv3_irq_access,
2126       .readfn = icc_ap_read,
2127       .writefn = icc_ap_write,
2128     },
2129     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2130       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2131       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2132       .access = PL1_RW, .accessfn = gicv3_irq_access,
2133       .readfn = icc_ap_read,
2134       .writefn = icc_ap_write,
2135     },
2136     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2137       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2138       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2139       .access = PL1_RW, .accessfn = gicv3_irq_access,
2140       .readfn = icc_ap_read,
2141       .writefn = icc_ap_write,
2142     },
2143     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2144       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2145       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2146       .access = PL1_RW, .accessfn = gicv3_irq_access,
2147       .readfn = icc_ap_read,
2148       .writefn = icc_ap_write,
2149     },
2150     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2151       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2152       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2153       .access = PL1_W, .accessfn = gicv3_dir_access,
2154       .writefn = icc_dir_write,
2155     },
2156     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2157       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2158       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2159       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2160       .readfn = icc_rpr_read,
2161     },
2162     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2163       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2164       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2165       .access = PL1_W, .accessfn = gicv3_sgi_access,
2166       .writefn = icc_sgi1r_write,
2167     },
2168     { .name = "ICC_SGI1R",
2169       .cp = 15, .opc1 = 0, .crm = 12,
2170       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2171       .access = PL1_W, .accessfn = gicv3_sgi_access,
2172       .writefn = icc_sgi1r_write,
2173     },
2174     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2175       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2176       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2177       .access = PL1_W, .accessfn = gicv3_sgi_access,
2178       .writefn = icc_asgi1r_write,
2179     },
2180     { .name = "ICC_ASGI1R",
2181       .cp = 15, .opc1 = 1, .crm = 12,
2182       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2183       .access = PL1_W, .accessfn = gicv3_sgi_access,
2184       .writefn = icc_asgi1r_write,
2185     },
2186     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2187       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2188       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2189       .access = PL1_W, .accessfn = gicv3_sgi_access,
2190       .writefn = icc_sgi0r_write,
2191     },
2192     { .name = "ICC_SGI0R",
2193       .cp = 15, .opc1 = 2, .crm = 12,
2194       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2195       .access = PL1_W, .accessfn = gicv3_sgi_access,
2196       .writefn = icc_sgi0r_write,
2197     },
2198     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2199       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2200       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2201       .access = PL1_R, .accessfn = gicv3_irq_access,
2202       .readfn = icc_iar1_read,
2203     },
2204     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2205       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2206       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2207       .access = PL1_W, .accessfn = gicv3_irq_access,
2208       .writefn = icc_eoir_write,
2209     },
2210     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2211       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2212       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2213       .access = PL1_R, .accessfn = gicv3_irq_access,
2214       .readfn = icc_hppir1_read,
2215     },
2216     /* This register is banked */
2217     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2218       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2219       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2220       .access = PL1_RW, .accessfn = gicv3_irq_access,
2221       .readfn = icc_bpr_read,
2222       .writefn = icc_bpr_write,
2223     },
2224     /* This register is banked */
2225     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2226       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2227       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2228       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2229       .readfn = icc_ctlr_el1_read,
2230       .writefn = icc_ctlr_el1_write,
2231     },
2232     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2233       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2234       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2235       .access = PL1_RW,
2236       /* We don't support IRQ/FIQ bypass and system registers are
2237        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2238        * This register is banked but since it's constant we don't
2239        * need to do anything special.
2240        */
2241       .resetvalue = 0x7,
2242     },
2243     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2244       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2245       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2246       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2247       .readfn = icc_igrpen_read,
2248       .writefn = icc_igrpen_write,
2249     },
2250     /* This register is banked */
2251     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2252       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2253       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2254       .access = PL1_RW, .accessfn = gicv3_irq_access,
2255       .readfn = icc_igrpen_read,
2256       .writefn = icc_igrpen_write,
2257     },
2258     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2259       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2260       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2261       .access = PL2_RW,
2262       /* We don't support IRQ/FIQ bypass and system registers are
2263        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2264        */
2265       .resetvalue = 0xf,
2266     },
2267     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2268       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2269       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2270       .access = PL3_RW,
2271       .readfn = icc_ctlr_el3_read,
2272       .writefn = icc_ctlr_el3_write,
2273     },
2274     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2275       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2276       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2277       .access = PL3_RW,
2278       /* We don't support IRQ/FIQ bypass and system registers are
2279        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2280        */
2281       .resetvalue = 0xf,
2282     },
2283     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2284       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2285       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2286       .access = PL3_RW,
2287       .readfn = icc_igrpen1_el3_read,
2288       .writefn = icc_igrpen1_el3_write,
2289     },
2290     REGINFO_SENTINEL
2291 };
2292 
2293 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2294 {
2295     GICv3CPUState *cs = icc_cs_from_env(env);
2296     int regno = ri->opc2 & 3;
2297     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2298     uint64_t value;
2299 
2300     value = cs->ich_apr[grp][regno];
2301     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2302     return value;
2303 }
2304 
2305 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2306                          uint64_t value)
2307 {
2308     GICv3CPUState *cs = icc_cs_from_env(env);
2309     int regno = ri->opc2 & 3;
2310     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2311 
2312     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2313 
2314     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2315     gicv3_cpuif_virt_update(cs);
2316 }
2317 
2318 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2319 {
2320     GICv3CPUState *cs = icc_cs_from_env(env);
2321     uint64_t value = cs->ich_hcr_el2;
2322 
2323     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2324     return value;
2325 }
2326 
2327 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2328                           uint64_t value)
2329 {
2330     GICv3CPUState *cs = icc_cs_from_env(env);
2331 
2332     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2333 
2334     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2335         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2336         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2337         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2338         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2339 
2340     cs->ich_hcr_el2 = value;
2341     gicv3_cpuif_virt_update(cs);
2342 }
2343 
2344 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2345 {
2346     GICv3CPUState *cs = icc_cs_from_env(env);
2347     uint64_t value = cs->ich_vmcr_el2;
2348 
2349     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2350     return value;
2351 }
2352 
2353 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2354                          uint64_t value)
2355 {
2356     GICv3CPUState *cs = icc_cs_from_env(env);
2357 
2358     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2359 
2360     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2361         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2362         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2363     value |= ICH_VMCR_EL2_VFIQEN;
2364 
2365     cs->ich_vmcr_el2 = value;
2366     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2367      * by reading and writing back the fields.
2368      */
2369     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2370     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2371 
2372     gicv3_cpuif_virt_update(cs);
2373 }
2374 
2375 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376 {
2377     GICv3CPUState *cs = icc_cs_from_env(env);
2378     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2379     uint64_t value;
2380 
2381     /* This read function handles all of:
2382      * 64-bit reads of the whole LR
2383      * 32-bit reads of the low half of the LR
2384      * 32-bit reads of the high half of the LR
2385      */
2386     if (ri->state == ARM_CP_STATE_AA32) {
2387         if (ri->crm >= 14) {
2388             value = extract64(cs->ich_lr_el2[regno], 32, 32);
2389             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2390         } else {
2391             value = extract64(cs->ich_lr_el2[regno], 0, 32);
2392             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2393         }
2394     } else {
2395         value = cs->ich_lr_el2[regno];
2396         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2397     }
2398 
2399     return value;
2400 }
2401 
2402 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2403                          uint64_t value)
2404 {
2405     GICv3CPUState *cs = icc_cs_from_env(env);
2406     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2407 
2408     /* This write function handles all of:
2409      * 64-bit writes to the whole LR
2410      * 32-bit writes to the low half of the LR
2411      * 32-bit writes to the high half of the LR
2412      */
2413     if (ri->state == ARM_CP_STATE_AA32) {
2414         if (ri->crm >= 14) {
2415             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2416             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2417         } else {
2418             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2419             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2420         }
2421     } else {
2422         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2423     }
2424 
2425     /* Enforce RES0 bits in priority field */
2426     if (cs->vpribits < 8) {
2427         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2428                           8 - cs->vpribits, 0);
2429     }
2430 
2431     cs->ich_lr_el2[regno] = value;
2432     gicv3_cpuif_virt_update(cs);
2433 }
2434 
2435 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436 {
2437     GICv3CPUState *cs = icc_cs_from_env(env);
2438     uint64_t value;
2439 
2440     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2441         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2442         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2443         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2444         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2445 
2446     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2447     return value;
2448 }
2449 
2450 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2451 {
2452     GICv3CPUState *cs = icc_cs_from_env(env);
2453     uint64_t value = maintenance_interrupt_state(cs);
2454 
2455     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2456     return value;
2457 }
2458 
2459 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2460 {
2461     GICv3CPUState *cs = icc_cs_from_env(env);
2462     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2463 
2464     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2465     return value;
2466 }
2467 
2468 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2469 {
2470     GICv3CPUState *cs = icc_cs_from_env(env);
2471     uint64_t value = 0;
2472     int i;
2473 
2474     for (i = 0; i < cs->num_list_regs; i++) {
2475         uint64_t lr = cs->ich_lr_el2[i];
2476 
2477         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2478             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2479             value |= (1 << i);
2480         }
2481     }
2482 
2483     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2484     return value;
2485 }
2486 
2487 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2488     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2489       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2490       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2491       .access = PL2_RW,
2492       .readfn = ich_ap_read,
2493       .writefn = ich_ap_write,
2494     },
2495     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2496       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2497       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2498       .access = PL2_RW,
2499       .readfn = ich_ap_read,
2500       .writefn = ich_ap_write,
2501     },
2502     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2503       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2504       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2505       .access = PL2_RW,
2506       .readfn = ich_hcr_read,
2507       .writefn = ich_hcr_write,
2508     },
2509     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2510       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2511       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2512       .access = PL2_R,
2513       .readfn = ich_vtr_read,
2514     },
2515     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2516       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2517       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2518       .access = PL2_R,
2519       .readfn = ich_misr_read,
2520     },
2521     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2522       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2523       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2524       .access = PL2_R,
2525       .readfn = ich_eisr_read,
2526     },
2527     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2528       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2529       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2530       .access = PL2_R,
2531       .readfn = ich_elrsr_read,
2532     },
2533     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2534       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2535       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2536       .access = PL2_RW,
2537       .readfn = ich_vmcr_read,
2538       .writefn = ich_vmcr_write,
2539     },
2540     REGINFO_SENTINEL
2541 };
2542 
2543 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2544     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2545       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2546       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2547       .access = PL2_RW,
2548       .readfn = ich_ap_read,
2549       .writefn = ich_ap_write,
2550     },
2551     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2552       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2553       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2554       .access = PL2_RW,
2555       .readfn = ich_ap_read,
2556       .writefn = ich_ap_write,
2557     },
2558     REGINFO_SENTINEL
2559 };
2560 
2561 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2562     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2563       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2564       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2565       .access = PL2_RW,
2566       .readfn = ich_ap_read,
2567       .writefn = ich_ap_write,
2568     },
2569     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2570       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2571       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2572       .access = PL2_RW,
2573       .readfn = ich_ap_read,
2574       .writefn = ich_ap_write,
2575     },
2576     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2577       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2578       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2579       .access = PL2_RW,
2580       .readfn = ich_ap_read,
2581       .writefn = ich_ap_write,
2582     },
2583     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2584       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2585       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2586       .access = PL2_RW,
2587       .readfn = ich_ap_read,
2588       .writefn = ich_ap_write,
2589     },
2590     REGINFO_SENTINEL
2591 };
2592 
2593 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2594 {
2595     GICv3CPUState *cs = opaque;
2596 
2597     gicv3_cpuif_update(cs);
2598 }
2599 
2600 void gicv3_init_cpuif(GICv3State *s)
2601 {
2602     /* Called from the GICv3 realize function; register our system
2603      * registers with the CPU
2604      */
2605     int i;
2606 
2607     for (i = 0; i < s->num_cpu; i++) {
2608         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2609         GICv3CPUState *cs = &s->cpu[i];
2610 
2611         /* Note that we can't just use the GICv3CPUState as an opaque pointer
2612          * in define_arm_cp_regs_with_opaque(), because when we're called back
2613          * it might be with code translated by CPU 0 but run by CPU 1, in
2614          * which case we'd get the wrong value.
2615          * So instead we define the regs with no ri->opaque info, and
2616          * get back to the GICv3CPUState from the CPUARMState.
2617          */
2618         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2619         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2620             && cpu->gic_num_lrs) {
2621             int j;
2622 
2623             cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;
2624 
2625             cs->num_list_regs = cpu->gic_num_lrs;
2626             cs->vpribits = cpu->gic_vpribits;
2627             cs->vprebits = cpu->gic_vprebits;
2628 
2629             /* Check against architectural constraints: getting these
2630              * wrong would be a bug in the CPU code defining these,
2631              * and the implementation relies on them holding.
2632              */
2633             g_assert(cs->vprebits <= cs->vpribits);
2634             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2635             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2636 
2637             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2638 
2639             for (j = 0; j < cs->num_list_regs; j++) {
2640                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2641                  * are split into two cp15 regs, LR (the low part, with the
2642                  * same encoding as the AArch64 LR) and LRC (the high part).
2643                  */
2644                 ARMCPRegInfo lr_regset[] = {
2645                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2646                       .opc0 = 3, .opc1 = 4, .crn = 12,
2647                       .crm = 12 + (j >> 3), .opc2 = j & 7,
2648                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2649                       .access = PL2_RW,
2650                       .readfn = ich_lr_read,
2651                       .writefn = ich_lr_write,
2652                     },
2653                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2654                       .cp = 15, .opc1 = 4, .crn = 12,
2655                       .crm = 14 + (j >> 3), .opc2 = j & 7,
2656                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2657                       .access = PL2_RW,
2658                       .readfn = ich_lr_read,
2659                       .writefn = ich_lr_write,
2660                     },
2661                     REGINFO_SENTINEL
2662                 };
2663                 define_arm_cp_regs(cpu, lr_regset);
2664             }
2665             if (cs->vprebits >= 6) {
2666                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2667             }
2668             if (cs->vprebits == 7) {
2669                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2670             }
2671         }
2672         arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2673     }
2674 }
2675