xref: /openbmc/qemu/hw/intc/arm_gicv3_cpuif.c (revision 10337638bbaffa03f280a83ed23940aedc2de9ce)
1 /*
2  * ARM Generic Interrupt Controller v3 (emulation)
3  *
4  * Copyright (c) 2016 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This code is licensed under the GPL, version 2 or (at your option)
8  * any later version.
9  */
10 
11 /* This file contains the code for the system register interface
12  * portions of the GICv3.
13  */
14 
15 #include "qemu/osdep.h"
16 #include "qemu/bitops.h"
17 #include "qemu/log.h"
18 #include "qemu/main-loop.h"
19 #include "trace.h"
20 #include "gicv3_internal.h"
21 #include "hw/irq.h"
22 #include "cpu.h"
23 
24 static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
25 {
26     return env->gicv3state;
27 }
28 
29 static bool gicv3_use_ns_bank(CPUARMState *env)
30 {
31     /* Return true if we should use the NonSecure bank for a banked GIC
32      * CPU interface register. Note that this differs from the
33      * access_secure_reg() function because GICv3 banked registers are
34      * banked even for AArch64, unlike the other CPU system registers.
35      */
36     return !arm_is_secure_below_el3(env);
37 }
38 
39 /* The minimum BPR for the virtual interface is a configurable property */
40 static inline int icv_min_vbpr(GICv3CPUState *cs)
41 {
42     return 7 - cs->vprebits;
43 }
44 
45 /* Simple accessor functions for LR fields */
46 static uint32_t ich_lr_vintid(uint64_t lr)
47 {
48     return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
49 }
50 
51 static uint32_t ich_lr_pintid(uint64_t lr)
52 {
53     return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
54 }
55 
56 static uint32_t ich_lr_prio(uint64_t lr)
57 {
58     return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
59 }
60 
61 static int ich_lr_state(uint64_t lr)
62 {
63     return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
64 }
65 
66 static bool icv_access(CPUARMState *env, int hcr_flags)
67 {
68     /* Return true if this ICC_ register access should really be
69      * directed to an ICV_ access. hcr_flags is a mask of
70      * HCR_EL2 bits to check: we treat this as an ICV_ access
71      * if we are in NS EL1 and at least one of the specified
72      * HCR_EL2 bits is set.
73      *
74      * ICV registers fall into four categories:
75      *  * access if NS EL1 and HCR_EL2.FMO == 1:
76      *    all ICV regs with '0' in their name
77      *  * access if NS EL1 and HCR_EL2.IMO == 1:
78      *    all ICV regs with '1' in their name
79      *  * access if NS EL1 and either IMO or FMO == 1:
80      *    CTLR, DIR, PMR, RPR
81      */
82     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
83     bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
84 
85     return flagmatch && arm_current_el(env) == 1
86         && !arm_is_secure_below_el3(env);
87 }
88 
89 static int read_vbpr(GICv3CPUState *cs, int grp)
90 {
91     /* Read VBPR value out of the VMCR field (caller must handle
92      * VCBPR effects if required)
93      */
94     if (grp == GICV3_G0) {
95         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
96                      ICH_VMCR_EL2_VBPR0_LENGTH);
97     } else {
98         return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
99                          ICH_VMCR_EL2_VBPR1_LENGTH);
100     }
101 }
102 
103 static void write_vbpr(GICv3CPUState *cs, int grp, int value)
104 {
105     /* Write new VBPR1 value, handling the "writing a value less than
106      * the minimum sets it to the minimum" semantics.
107      */
108     int min = icv_min_vbpr(cs);
109 
110     if (grp != GICV3_G0) {
111         min++;
112     }
113 
114     value = MAX(value, min);
115 
116     if (grp == GICV3_G0) {
117         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
118                                      ICH_VMCR_EL2_VBPR0_LENGTH, value);
119     } else {
120         cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
121                                      ICH_VMCR_EL2_VBPR1_LENGTH, value);
122     }
123 }
124 
125 static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
126 {
127     /* Return a mask word which clears the unimplemented priority bits
128      * from a priority value for a virtual interrupt. (Not to be confused
129      * with the group priority, whose mask depends on the value of VBPR
130      * for the interrupt group.)
131      */
132     return ~0U << (8 - cs->vpribits);
133 }
134 
135 static int ich_highest_active_virt_prio(GICv3CPUState *cs)
136 {
137     /* Calculate the current running priority based on the set bits
138      * in the ICH Active Priority Registers.
139      */
140     int i;
141     int aprmax = 1 << (cs->vprebits - 5);
142 
143     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
144 
145     for (i = 0; i < aprmax; i++) {
146         uint32_t apr = cs->ich_apr[GICV3_G0][i] |
147             cs->ich_apr[GICV3_G1NS][i];
148 
149         if (!apr) {
150             continue;
151         }
152         return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
153     }
154     /* No current active interrupts: return idle priority */
155     return 0xff;
156 }
157 
158 static int hppvi_index(GICv3CPUState *cs)
159 {
160     /* Return the list register index of the highest priority pending
161      * virtual interrupt, as per the HighestPriorityVirtualInterrupt
162      * pseudocode. If no pending virtual interrupts, return -1.
163      */
164     int idx = -1;
165     int i;
166     /* Note that a list register entry with a priority of 0xff will
167      * never be reported by this function; this is the architecturally
168      * correct behaviour.
169      */
170     int prio = 0xff;
171 
172     if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
173         /* Both groups disabled, definitely nothing to do */
174         return idx;
175     }
176 
177     for (i = 0; i < cs->num_list_regs; i++) {
178         uint64_t lr = cs->ich_lr_el2[i];
179         int thisprio;
180 
181         if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
182             /* Not Pending */
183             continue;
184         }
185 
186         /* Ignore interrupts if relevant group enable not set */
187         if (lr & ICH_LR_EL2_GROUP) {
188             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
189                 continue;
190             }
191         } else {
192             if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
193                 continue;
194             }
195         }
196 
197         thisprio = ich_lr_prio(lr);
198 
199         if (thisprio < prio) {
200             prio = thisprio;
201             idx = i;
202         }
203     }
204 
205     return idx;
206 }
207 
208 static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
209 {
210     /* Return a mask word which clears the subpriority bits from
211      * a priority value for a virtual interrupt in the specified group.
212      * This depends on the VBPR value.
213      * If using VBPR0 then:
214      *  a BPR of 0 means the group priority bits are [7:1];
215      *  a BPR of 1 means they are [7:2], and so on down to
216      *  a BPR of 7 meaning no group priority bits at all.
217      * If using VBPR1 then:
218      *  a BPR of 0 is impossible (the minimum value is 1)
219      *  a BPR of 1 means the group priority bits are [7:1];
220      *  a BPR of 2 means they are [7:2], and so on down to
221      *  a BPR of 7 meaning the group priority is [7].
222      *
223      * Which BPR to use depends on the group of the interrupt and
224      * the current ICH_VMCR_EL2.VCBPR settings.
225      *
226      * This corresponds to the VGroupBits() pseudocode.
227      */
228     int bpr;
229 
230     if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
231         group = GICV3_G0;
232     }
233 
234     bpr = read_vbpr(cs, group);
235     if (group == GICV3_G1NS) {
236         assert(bpr > 0);
237         bpr--;
238     }
239 
240     return ~0U << (bpr + 1);
241 }
242 
243 static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
244 {
245     /* Return true if we can signal this virtual interrupt defined by
246      * the given list register value; see the pseudocode functions
247      * CanSignalVirtualInterrupt and CanSignalVirtualInt.
248      * Compare also icc_hppi_can_preempt() which is the non-virtual
249      * equivalent of these checks.
250      */
251     int grp;
252     uint32_t mask, prio, rprio, vpmr;
253 
254     if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
255         /* Virtual interface disabled */
256         return false;
257     }
258 
259     /* We don't need to check that this LR is in Pending state because
260      * that has already been done in hppvi_index().
261      */
262 
263     prio = ich_lr_prio(lr);
264     vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
265                      ICH_VMCR_EL2_VPMR_LENGTH);
266 
267     if (prio >= vpmr) {
268         /* Priority mask masks this interrupt */
269         return false;
270     }
271 
272     rprio = ich_highest_active_virt_prio(cs);
273     if (rprio == 0xff) {
274         /* No running interrupt so we can preempt */
275         return true;
276     }
277 
278     grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
279 
280     mask = icv_gprio_mask(cs, grp);
281 
282     /* We only preempt a running interrupt if the pending interrupt's
283      * group priority is sufficient (the subpriorities are not considered).
284      */
285     if ((prio & mask) < (rprio & mask)) {
286         return true;
287     }
288 
289     return false;
290 }
291 
292 static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
293                                                 uint32_t *misr)
294 {
295     /* Return a set of bits indicating the EOI maintenance interrupt status
296      * for each list register. The EOI maintenance interrupt status is
297      * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
298      * (see the GICv3 spec for the ICH_EISR_EL2 register).
299      * If misr is not NULL then we should also collect the information
300      * about the MISR.EOI, MISR.NP and MISR.U bits.
301      */
302     uint32_t value = 0;
303     int validcount = 0;
304     bool seenpending = false;
305     int i;
306 
307     for (i = 0; i < cs->num_list_regs; i++) {
308         uint64_t lr = cs->ich_lr_el2[i];
309 
310         if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
311             == ICH_LR_EL2_EOI) {
312             value |= (1 << i);
313         }
314         if ((lr & ICH_LR_EL2_STATE_MASK)) {
315             validcount++;
316         }
317         if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
318             seenpending = true;
319         }
320     }
321 
322     if (misr) {
323         if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
324             *misr |= ICH_MISR_EL2_U;
325         }
326         if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
327             *misr |= ICH_MISR_EL2_NP;
328         }
329         if (value) {
330             *misr |= ICH_MISR_EL2_EOI;
331         }
332     }
333     return value;
334 }
335 
336 static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
337 {
338     /* Return a set of bits indicating the maintenance interrupt status
339      * (as seen in the ICH_MISR_EL2 register).
340      */
341     uint32_t value = 0;
342 
343     /* Scan list registers and fill in the U, NP and EOI bits */
344     eoi_maintenance_interrupt_state(cs, &value);
345 
346     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
347         (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
348         value |= ICH_MISR_EL2_LRENP;
349     }
350 
351     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
352         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
353         value |= ICH_MISR_EL2_VGRP0E;
354     }
355 
356     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
357         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
358         value |= ICH_MISR_EL2_VGRP0D;
359     }
360     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
361         (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
362         value |= ICH_MISR_EL2_VGRP1E;
363     }
364 
365     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
366         !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
367         value |= ICH_MISR_EL2_VGRP1D;
368     }
369 
370     return value;
371 }
372 
373 void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
374 {
375     /*
376      * Tell the CPU about any pending virtual interrupts.
377      * This should only be called for changes that affect the
378      * vIRQ and vFIQ status and do not change the maintenance
379      * interrupt status. This means that unlike gicv3_cpuif_virt_update()
380      * this function won't recursively call back into the GIC code.
381      * The main use of this is when the redistributor has changed the
382      * highest priority pending virtual LPI.
383      */
384     int idx;
385     int irqlevel = 0;
386     int fiqlevel = 0;
387 
388     idx = hppvi_index(cs);
389     trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
390     if (idx >= 0) {
391         uint64_t lr = cs->ich_lr_el2[idx];
392 
393         if (icv_hppi_can_preempt(cs, lr)) {
394             /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
395             if (lr & ICH_LR_EL2_GROUP) {
396                 irqlevel = 1;
397             } else {
398                 fiqlevel = 1;
399             }
400         }
401     }
402 
403     trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
404     qemu_set_irq(cs->parent_vfiq, fiqlevel);
405     qemu_set_irq(cs->parent_virq, irqlevel);
406 }
407 
408 static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
409 {
410     /*
411      * Tell the CPU about any pending virtual interrupts or
412      * maintenance interrupts, following a change to the state
413      * of the CPU interface relevant to virtual interrupts.
414      *
415      * CAUTION: this function will call qemu_set_irq() on the
416      * CPU maintenance IRQ line, which is typically wired up
417      * to the GIC as a per-CPU interrupt. This means that it
418      * will recursively call back into the GIC code via
419      * gicv3_redist_set_irq() and thus into the CPU interface code's
420      * gicv3_cpuif_update(). It is therefore important that this
421      * function is only called as the final action of a CPU interface
422      * register write implementation, after all the GIC state
423      * fields have been updated. gicv3_cpuif_update() also must
424      * not cause this function to be called, but that happens
425      * naturally as a result of there being no architectural
426      * linkage between the physical and virtual GIC logic.
427      */
428     ARMCPU *cpu = ARM_CPU(cs->cpu);
429     int maintlevel = 0;
430 
431     gicv3_cpuif_virt_irq_fiq_update(cs);
432 
433     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
434         maintenance_interrupt_state(cs) != 0) {
435         maintlevel = 1;
436     }
437 
438     trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
439     qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
440 }
441 
442 static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
443 {
444     GICv3CPUState *cs = icc_cs_from_env(env);
445     int regno = ri->opc2 & 3;
446     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
447     uint64_t value = cs->ich_apr[grp][regno];
448 
449     trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
450     return value;
451 }
452 
453 static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
454                          uint64_t value)
455 {
456     GICv3CPUState *cs = icc_cs_from_env(env);
457     int regno = ri->opc2 & 3;
458     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
459 
460     trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
461 
462     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
463 
464     gicv3_cpuif_virt_update(cs);
465     return;
466 }
467 
468 static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
469 {
470     GICv3CPUState *cs = icc_cs_from_env(env);
471     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
472     uint64_t bpr;
473     bool satinc = false;
474 
475     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
476         /* reads return bpr0 + 1 saturated to 7, writes ignored */
477         grp = GICV3_G0;
478         satinc = true;
479     }
480 
481     bpr = read_vbpr(cs, grp);
482 
483     if (satinc) {
484         bpr++;
485         bpr = MIN(bpr, 7);
486     }
487 
488     trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
489 
490     return bpr;
491 }
492 
493 static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
494                           uint64_t value)
495 {
496     GICv3CPUState *cs = icc_cs_from_env(env);
497     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
498 
499     trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
500                               gicv3_redist_affid(cs), value);
501 
502     if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
503         /* reads return bpr0 + 1 saturated to 7, writes ignored */
504         return;
505     }
506 
507     write_vbpr(cs, grp, value);
508 
509     gicv3_cpuif_virt_update(cs);
510 }
511 
512 static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
513 {
514     GICv3CPUState *cs = icc_cs_from_env(env);
515     uint64_t value;
516 
517     value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
518                       ICH_VMCR_EL2_VPMR_LENGTH);
519 
520     trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
521     return value;
522 }
523 
524 static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
525                           uint64_t value)
526 {
527     GICv3CPUState *cs = icc_cs_from_env(env);
528 
529     trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
530 
531     value &= icv_fullprio_mask(cs);
532 
533     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
534                                  ICH_VMCR_EL2_VPMR_LENGTH, value);
535 
536     gicv3_cpuif_virt_update(cs);
537 }
538 
539 static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
540 {
541     GICv3CPUState *cs = icc_cs_from_env(env);
542     int enbit;
543     uint64_t value;
544 
545     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
546     value = extract64(cs->ich_vmcr_el2, enbit, 1);
547 
548     trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
549                                 gicv3_redist_affid(cs), value);
550     return value;
551 }
552 
553 static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
554                              uint64_t value)
555 {
556     GICv3CPUState *cs = icc_cs_from_env(env);
557     int enbit;
558 
559     trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
560                                  gicv3_redist_affid(cs), value);
561 
562     enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
563 
564     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
565     gicv3_cpuif_virt_update(cs);
566 }
567 
568 static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
569 {
570     GICv3CPUState *cs = icc_cs_from_env(env);
571     uint64_t value;
572 
573     /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
574      * should match the ones reported in ich_vtr_read().
575      */
576     value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
577         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
578 
579     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
580         value |= ICC_CTLR_EL1_EOIMODE;
581     }
582 
583     if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
584         value |= ICC_CTLR_EL1_CBPR;
585     }
586 
587     trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
588     return value;
589 }
590 
591 static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
592                                uint64_t value)
593 {
594     GICv3CPUState *cs = icc_cs_from_env(env);
595 
596     trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
597 
598     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
599                                  1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
600     cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
601                                  1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
602 
603     gicv3_cpuif_virt_update(cs);
604 }
605 
606 static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
607 {
608     GICv3CPUState *cs = icc_cs_from_env(env);
609     int prio = ich_highest_active_virt_prio(cs);
610 
611     trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
612     return prio;
613 }
614 
615 static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
616 {
617     GICv3CPUState *cs = icc_cs_from_env(env);
618     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
619     int idx = hppvi_index(cs);
620     uint64_t value = INTID_SPURIOUS;
621 
622     if (idx >= 0) {
623         uint64_t lr = cs->ich_lr_el2[idx];
624         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
625 
626         if (grp == thisgrp) {
627             value = ich_lr_vintid(lr);
628         }
629     }
630 
631     trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
632                                gicv3_redist_affid(cs), value);
633     return value;
634 }
635 
636 static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
637 {
638     /* Activate the interrupt in the specified list register
639      * by moving it from Pending to Active state, and update the
640      * Active Priority Registers.
641      */
642     uint32_t mask = icv_gprio_mask(cs, grp);
643     int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
644     int aprbit = prio >> (8 - cs->vprebits);
645     int regno = aprbit / 32;
646     int regbit = aprbit % 32;
647 
648     cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
649     cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
650     cs->ich_apr[grp][regno] |= (1 << regbit);
651 }
652 
653 static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
654 {
655     GICv3CPUState *cs = icc_cs_from_env(env);
656     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
657     int idx = hppvi_index(cs);
658     uint64_t intid = INTID_SPURIOUS;
659 
660     if (idx >= 0) {
661         uint64_t lr = cs->ich_lr_el2[idx];
662         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
663 
664         if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
665             intid = ich_lr_vintid(lr);
666             if (!gicv3_intid_is_special(intid)) {
667                 icv_activate_irq(cs, idx, grp);
668             } else {
669                 /* Interrupt goes from Pending to Invalid */
670                 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
671                 /* We will now return the (bogus) ID from the list register,
672                  * as per the pseudocode.
673                  */
674             }
675         }
676     }
677 
678     trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
679                              gicv3_redist_affid(cs), intid);
680 
681     gicv3_cpuif_virt_update(cs);
682 
683     return intid;
684 }
685 
686 static int icc_highest_active_prio(GICv3CPUState *cs)
687 {
688     /* Calculate the current running priority based on the set bits
689      * in the Active Priority Registers.
690      */
691     int i;
692 
693     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
694         uint32_t apr = cs->icc_apr[GICV3_G0][i] |
695             cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
696 
697         if (!apr) {
698             continue;
699         }
700         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
701     }
702     /* No current active interrupts: return idle priority */
703     return 0xff;
704 }
705 
706 static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
707 {
708     /* Return a mask word which clears the subpriority bits from
709      * a priority value for an interrupt in the specified group.
710      * This depends on the BPR value. For CBPR0 (S or NS):
711      *  a BPR of 0 means the group priority bits are [7:1];
712      *  a BPR of 1 means they are [7:2], and so on down to
713      *  a BPR of 7 meaning no group priority bits at all.
714      * For CBPR1 NS:
715      *  a BPR of 0 is impossible (the minimum value is 1)
716      *  a BPR of 1 means the group priority bits are [7:1];
717      *  a BPR of 2 means they are [7:2], and so on down to
718      *  a BPR of 7 meaning the group priority is [7].
719      *
720      * Which BPR to use depends on the group of the interrupt and
721      * the current ICC_CTLR.CBPR settings.
722      *
723      * This corresponds to the GroupBits() pseudocode.
724      */
725     int bpr;
726 
727     if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
728         (group == GICV3_G1NS &&
729          cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
730         group = GICV3_G0;
731     }
732 
733     bpr = cs->icc_bpr[group] & 7;
734 
735     if (group == GICV3_G1NS) {
736         assert(bpr > 0);
737         bpr--;
738     }
739 
740     return ~0U << (bpr + 1);
741 }
742 
743 static bool icc_no_enabled_hppi(GICv3CPUState *cs)
744 {
745     /* Return true if there is no pending interrupt, or the
746      * highest priority pending interrupt is in a group which has been
747      * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
748      */
749     return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
750 }
751 
752 static bool icc_hppi_can_preempt(GICv3CPUState *cs)
753 {
754     /* Return true if we have a pending interrupt of sufficient
755      * priority to preempt.
756      */
757     int rprio;
758     uint32_t mask;
759 
760     if (icc_no_enabled_hppi(cs)) {
761         return false;
762     }
763 
764     if (cs->hppi.prio >= cs->icc_pmr_el1) {
765         /* Priority mask masks this interrupt */
766         return false;
767     }
768 
769     rprio = icc_highest_active_prio(cs);
770     if (rprio == 0xff) {
771         /* No currently running interrupt so we can preempt */
772         return true;
773     }
774 
775     mask = icc_gprio_mask(cs, cs->hppi.grp);
776 
777     /* We only preempt a running interrupt if the pending interrupt's
778      * group priority is sufficient (the subpriorities are not considered).
779      */
780     if ((cs->hppi.prio & mask) < (rprio & mask)) {
781         return true;
782     }
783 
784     return false;
785 }
786 
787 void gicv3_cpuif_update(GICv3CPUState *cs)
788 {
789     /* Tell the CPU about its highest priority pending interrupt */
790     int irqlevel = 0;
791     int fiqlevel = 0;
792     ARMCPU *cpu = ARM_CPU(cs->cpu);
793     CPUARMState *env = &cpu->env;
794 
795     g_assert(qemu_mutex_iothread_locked());
796 
797     trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
798                              cs->hppi.grp, cs->hppi.prio);
799 
800     if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
801         /* If a Security-enabled GIC sends a G1S interrupt to a
802          * Security-disabled CPU, we must treat it as if it were G0.
803          */
804         cs->hppi.grp = GICV3_G0;
805     }
806 
807     if (icc_hppi_can_preempt(cs)) {
808         /* We have an interrupt: should we signal it as IRQ or FIQ?
809          * This is described in the GICv3 spec section 4.6.2.
810          */
811         bool isfiq;
812 
813         switch (cs->hppi.grp) {
814         case GICV3_G0:
815             isfiq = true;
816             break;
817         case GICV3_G1:
818             isfiq = (!arm_is_secure(env) ||
819                      (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
820             break;
821         case GICV3_G1NS:
822             isfiq = arm_is_secure(env);
823             break;
824         default:
825             g_assert_not_reached();
826         }
827 
828         if (isfiq) {
829             fiqlevel = 1;
830         } else {
831             irqlevel = 1;
832         }
833     }
834 
835     trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
836 
837     qemu_set_irq(cs->parent_fiq, fiqlevel);
838     qemu_set_irq(cs->parent_irq, irqlevel);
839 }
840 
841 static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
842 {
843     GICv3CPUState *cs = icc_cs_from_env(env);
844     uint32_t value = cs->icc_pmr_el1;
845 
846     if (icv_access(env, HCR_FMO | HCR_IMO)) {
847         return icv_pmr_read(env, ri);
848     }
849 
850     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
851         (env->cp15.scr_el3 & SCR_FIQ)) {
852         /* NS access and Group 0 is inaccessible to NS: return the
853          * NS view of the current priority
854          */
855         if ((value & 0x80) == 0) {
856             /* Secure priorities not visible to NS */
857             value = 0;
858         } else if (value != 0xff) {
859             value = (value << 1) & 0xff;
860         }
861     }
862 
863     trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
864 
865     return value;
866 }
867 
868 static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
869                           uint64_t value)
870 {
871     GICv3CPUState *cs = icc_cs_from_env(env);
872 
873     if (icv_access(env, HCR_FMO | HCR_IMO)) {
874         return icv_pmr_write(env, ri, value);
875     }
876 
877     trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
878 
879     value &= 0xff;
880 
881     if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
882         (env->cp15.scr_el3 & SCR_FIQ)) {
883         /* NS access and Group 0 is inaccessible to NS: return the
884          * NS view of the current priority
885          */
886         if (!(cs->icc_pmr_el1 & 0x80)) {
887             /* Current PMR in the secure range, don't allow NS to change it */
888             return;
889         }
890         value = (value >> 1) | 0x80;
891     }
892     cs->icc_pmr_el1 = value;
893     gicv3_cpuif_update(cs);
894 }
895 
896 static void icc_activate_irq(GICv3CPUState *cs, int irq)
897 {
898     /* Move the interrupt from the Pending state to Active, and update
899      * the Active Priority Registers
900      */
901     uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
902     int prio = cs->hppi.prio & mask;
903     int aprbit = prio >> 1;
904     int regno = aprbit / 32;
905     int regbit = aprbit % 32;
906 
907     cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
908 
909     if (irq < GIC_INTERNAL) {
910         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
911         cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
912         gicv3_redist_update(cs);
913     } else if (irq < GICV3_LPI_INTID_START) {
914         gicv3_gicd_active_set(cs->gic, irq);
915         gicv3_gicd_pending_clear(cs->gic, irq);
916         gicv3_update(cs->gic, irq, 1);
917     } else {
918         gicv3_redist_lpi_pending(cs, irq, 0);
919     }
920 }
921 
922 static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
923 {
924     /* Return the highest priority pending interrupt register value
925      * for group 0.
926      */
927     bool irq_is_secure;
928 
929     if (cs->hppi.prio == 0xff) {
930         return INTID_SPURIOUS;
931     }
932 
933     /* Check whether we can return the interrupt or if we should return
934      * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
935      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
936      * is always zero.)
937      */
938     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
939                      (cs->hppi.grp != GICV3_G1NS));
940 
941     if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
942         return INTID_SPURIOUS;
943     }
944     if (irq_is_secure && !arm_is_secure(env)) {
945         /* Secure interrupts not visible to Nonsecure */
946         return INTID_SPURIOUS;
947     }
948 
949     if (cs->hppi.grp != GICV3_G0) {
950         /* Indicate to EL3 that there's a Group 1 interrupt for the other
951          * state pending.
952          */
953         return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
954     }
955 
956     return cs->hppi.irq;
957 }
958 
959 static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
960 {
961     /* Return the highest priority pending interrupt register value
962      * for group 1.
963      */
964     bool irq_is_secure;
965 
966     if (cs->hppi.prio == 0xff) {
967         return INTID_SPURIOUS;
968     }
969 
970     /* Check whether we can return the interrupt or if we should return
971      * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
972      * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
973      * is always zero.)
974      */
975     irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
976                      (cs->hppi.grp != GICV3_G1NS));
977 
978     if (cs->hppi.grp == GICV3_G0) {
979         /* Group 0 interrupts not visible via HPPIR1 */
980         return INTID_SPURIOUS;
981     }
982     if (irq_is_secure) {
983         if (!arm_is_secure(env)) {
984             /* Secure interrupts not visible in Non-secure */
985             return INTID_SPURIOUS;
986         }
987     } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
988         /* Group 1 non-secure interrupts not visible in Secure EL1 */
989         return INTID_SPURIOUS;
990     }
991 
992     return cs->hppi.irq;
993 }
994 
995 static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
996 {
997     GICv3CPUState *cs = icc_cs_from_env(env);
998     uint64_t intid;
999 
1000     if (icv_access(env, HCR_FMO)) {
1001         return icv_iar_read(env, ri);
1002     }
1003 
1004     if (!icc_hppi_can_preempt(cs)) {
1005         intid = INTID_SPURIOUS;
1006     } else {
1007         intid = icc_hppir0_value(cs, env);
1008     }
1009 
1010     if (!gicv3_intid_is_special(intid)) {
1011         icc_activate_irq(cs, intid);
1012     }
1013 
1014     trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1015     return intid;
1016 }
1017 
1018 static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1019 {
1020     GICv3CPUState *cs = icc_cs_from_env(env);
1021     uint64_t intid;
1022 
1023     if (icv_access(env, HCR_IMO)) {
1024         return icv_iar_read(env, ri);
1025     }
1026 
1027     if (!icc_hppi_can_preempt(cs)) {
1028         intid = INTID_SPURIOUS;
1029     } else {
1030         intid = icc_hppir1_value(cs, env);
1031     }
1032 
1033     if (!gicv3_intid_is_special(intid)) {
1034         icc_activate_irq(cs, intid);
1035     }
1036 
1037     trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1038     return intid;
1039 }
1040 
1041 static void icc_drop_prio(GICv3CPUState *cs, int grp)
1042 {
1043     /* Drop the priority of the currently active interrupt in
1044      * the specified group.
1045      *
1046      * Note that we can guarantee (because of the requirement to nest
1047      * ICC_IAR reads [which activate an interrupt and raise priority]
1048      * with ICC_EOIR writes [which drop the priority for the interrupt])
1049      * that the interrupt we're being called for is the highest priority
1050      * active interrupt, meaning that it has the lowest set bit in the
1051      * APR registers.
1052      *
1053      * If the guest does not honour the ordering constraints then the
1054      * behaviour of the GIC is UNPREDICTABLE, which for us means that
1055      * the values of the APR registers might become incorrect and the
1056      * running priority will be wrong, so interrupts that should preempt
1057      * might not do so, and interrupts that should not preempt might do so.
1058      */
1059     int i;
1060 
1061     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1062         uint64_t *papr = &cs->icc_apr[grp][i];
1063 
1064         if (!*papr) {
1065             continue;
1066         }
1067         /* Clear the lowest set bit */
1068         *papr &= *papr - 1;
1069         break;
1070     }
1071 
1072     /* running priority change means we need an update for this cpu i/f */
1073     gicv3_cpuif_update(cs);
1074 }
1075 
1076 static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1077 {
1078     /* Return true if we should split priority drop and interrupt
1079      * deactivation, ie whether the relevant EOIMode bit is set.
1080      */
1081     if (arm_is_el3_or_mon(env)) {
1082         return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1083     }
1084     if (arm_is_secure_below_el3(env)) {
1085         return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1086     } else {
1087         return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1088     }
1089 }
1090 
1091 static int icc_highest_active_group(GICv3CPUState *cs)
1092 {
1093     /* Return the group with the highest priority active interrupt.
1094      * We can do this by just comparing the APRs to see which one
1095      * has the lowest set bit.
1096      * (If more than one group is active at the same priority then
1097      * we're in UNPREDICTABLE territory.)
1098      */
1099     int i;
1100 
1101     for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1102         int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1103         int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1104         int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1105 
1106         if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1107             return GICV3_G1NS;
1108         }
1109         if (g1ctz < g0ctz) {
1110             return GICV3_G1;
1111         }
1112         if (g0ctz < 32) {
1113             return GICV3_G0;
1114         }
1115     }
1116     /* No set active bits? UNPREDICTABLE; return -1 so the caller
1117      * ignores the spurious EOI attempt.
1118      */
1119     return -1;
1120 }
1121 
1122 static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1123 {
1124     if (irq < GIC_INTERNAL) {
1125         cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1126         gicv3_redist_update(cs);
1127     } else {
1128         gicv3_gicd_active_clear(cs->gic, irq);
1129         gicv3_update(cs->gic, irq, 1);
1130     }
1131 }
1132 
1133 static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1134 {
1135     /* Return true if we should split priority drop and interrupt
1136      * deactivation, ie whether the virtual EOIMode bit is set.
1137      */
1138     return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1139 }
1140 
1141 static int icv_find_active(GICv3CPUState *cs, int irq)
1142 {
1143     /* Given an interrupt number for an active interrupt, return the index
1144      * of the corresponding list register, or -1 if there is no match.
1145      * Corresponds to FindActiveVirtualInterrupt pseudocode.
1146      */
1147     int i;
1148 
1149     for (i = 0; i < cs->num_list_regs; i++) {
1150         uint64_t lr = cs->ich_lr_el2[i];
1151 
1152         if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1153             return i;
1154         }
1155     }
1156 
1157     return -1;
1158 }
1159 
1160 static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1161 {
1162     /* Deactivate the interrupt in the specified list register index */
1163     uint64_t lr = cs->ich_lr_el2[idx];
1164 
1165     if (lr & ICH_LR_EL2_HW) {
1166         /* Deactivate the associated physical interrupt */
1167         int pirq = ich_lr_pintid(lr);
1168 
1169         if (pirq < INTID_SECURE) {
1170             icc_deactivate_irq(cs, pirq);
1171         }
1172     }
1173 
1174     /* Clear the 'active' part of the state, so ActivePending->Pending
1175      * and Active->Invalid.
1176      */
1177     lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1178     cs->ich_lr_el2[idx] = lr;
1179 }
1180 
1181 static void icv_increment_eoicount(GICv3CPUState *cs)
1182 {
1183     /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1184     int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1185                              ICH_HCR_EL2_EOICOUNT_LENGTH);
1186 
1187     cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1188                                 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1189 }
1190 
1191 static int icv_drop_prio(GICv3CPUState *cs)
1192 {
1193     /* Drop the priority of the currently active virtual interrupt
1194      * (favouring group 0 if there is a set active bit at
1195      * the same priority for both group 0 and group 1).
1196      * Return the priority value for the bit we just cleared,
1197      * or 0xff if no bits were set in the AP registers at all.
1198      * Note that though the ich_apr[] are uint64_t only the low
1199      * 32 bits are actually relevant.
1200      */
1201     int i;
1202     int aprmax = 1 << (cs->vprebits - 5);
1203 
1204     assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1205 
1206     for (i = 0; i < aprmax; i++) {
1207         uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1208         uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1209         int apr0count, apr1count;
1210 
1211         if (!*papr0 && !*papr1) {
1212             continue;
1213         }
1214 
1215         /* We can't just use the bit-twiddling hack icc_drop_prio() does
1216          * because we need to return the bit number we cleared so
1217          * it can be compared against the list register's priority field.
1218          */
1219         apr0count = ctz32(*papr0);
1220         apr1count = ctz32(*papr1);
1221 
1222         if (apr0count <= apr1count) {
1223             *papr0 &= *papr0 - 1;
1224             return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1225         } else {
1226             *papr1 &= *papr1 - 1;
1227             return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1228         }
1229     }
1230     return 0xff;
1231 }
1232 
1233 static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1234                           uint64_t value)
1235 {
1236     /* Deactivate interrupt */
1237     GICv3CPUState *cs = icc_cs_from_env(env);
1238     int idx;
1239     int irq = value & 0xffffff;
1240 
1241     trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1242 
1243     if (irq >= GICV3_MAXIRQ) {
1244         /* Also catches special interrupt numbers and LPIs */
1245         return;
1246     }
1247 
1248     if (!icv_eoi_split(env, cs)) {
1249         return;
1250     }
1251 
1252     idx = icv_find_active(cs, irq);
1253 
1254     if (idx < 0) {
1255         /* No list register matching this, so increment the EOI count
1256          * (might trigger a maintenance interrupt)
1257          */
1258         icv_increment_eoicount(cs);
1259     } else {
1260         icv_deactivate_irq(cs, idx);
1261     }
1262 
1263     gicv3_cpuif_virt_update(cs);
1264 }
1265 
1266 static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1267                            uint64_t value)
1268 {
1269     /* End of Interrupt */
1270     GICv3CPUState *cs = icc_cs_from_env(env);
1271     int irq = value & 0xffffff;
1272     int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1273     int idx, dropprio;
1274 
1275     trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1276                                gicv3_redist_affid(cs), value);
1277 
1278     if (gicv3_intid_is_special(irq)) {
1279         return;
1280     }
1281 
1282     /* We implement the IMPDEF choice of "drop priority before doing
1283      * error checks" (because that lets us avoid scanning the AP
1284      * registers twice).
1285      */
1286     dropprio = icv_drop_prio(cs);
1287     if (dropprio == 0xff) {
1288         /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1289          * whether the list registers are checked in this
1290          * situation; we choose not to.
1291          */
1292         return;
1293     }
1294 
1295     idx = icv_find_active(cs, irq);
1296 
1297     if (idx < 0) {
1298         /* No valid list register corresponding to EOI ID */
1299         icv_increment_eoicount(cs);
1300     } else {
1301         uint64_t lr = cs->ich_lr_el2[idx];
1302         int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1303         int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1304 
1305         if (thisgrp == grp && lr_gprio == dropprio) {
1306             if (!icv_eoi_split(env, cs)) {
1307                 /* Priority drop and deactivate not split: deactivate irq now */
1308                 icv_deactivate_irq(cs, idx);
1309             }
1310         }
1311     }
1312 
1313     gicv3_cpuif_virt_update(cs);
1314 }
1315 
1316 static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1317                            uint64_t value)
1318 {
1319     /* End of Interrupt */
1320     GICv3CPUState *cs = icc_cs_from_env(env);
1321     int irq = value & 0xffffff;
1322     int grp;
1323     bool is_eoir0 = ri->crm == 8;
1324 
1325     if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
1326         icv_eoir_write(env, ri, value);
1327         return;
1328     }
1329 
1330     trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
1331                                gicv3_redist_affid(cs), value);
1332 
1333     if ((irq >= cs->gic->num_irq) &&
1334         !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
1335         /* This handles two cases:
1336          * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1337          * to the GICC_EOIR, the GIC ignores that write.
1338          * 2. If software writes the number of a non-existent interrupt
1339          * this must be a subcase of "value written does not match the last
1340          * valid interrupt value read from the Interrupt Acknowledge
1341          * register" and so this is UNPREDICTABLE. We choose to ignore it.
1342          */
1343         return;
1344     }
1345 
1346     grp = icc_highest_active_group(cs);
1347     switch (grp) {
1348     case GICV3_G0:
1349         if (!is_eoir0) {
1350             return;
1351         }
1352         if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1353             && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1354             return;
1355         }
1356         break;
1357     case GICV3_G1:
1358         if (is_eoir0) {
1359             return;
1360         }
1361         if (!arm_is_secure(env)) {
1362             return;
1363         }
1364         break;
1365     case GICV3_G1NS:
1366         if (is_eoir0) {
1367             return;
1368         }
1369         if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1370             return;
1371         }
1372         break;
1373     default:
1374         qemu_log_mask(LOG_GUEST_ERROR,
1375                       "%s: IRQ %d isn't active\n", __func__, irq);
1376         return;
1377     }
1378 
1379     icc_drop_prio(cs, grp);
1380 
1381     if (!icc_eoi_split(env, cs)) {
1382         /* Priority drop and deactivate not split: deactivate irq now */
1383         icc_deactivate_irq(cs, irq);
1384     }
1385 }
1386 
1387 static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1388 {
1389     GICv3CPUState *cs = icc_cs_from_env(env);
1390     uint64_t value;
1391 
1392     if (icv_access(env, HCR_FMO)) {
1393         return icv_hppir_read(env, ri);
1394     }
1395 
1396     value = icc_hppir0_value(cs, env);
1397     trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1398     return value;
1399 }
1400 
1401 static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1402 {
1403     GICv3CPUState *cs = icc_cs_from_env(env);
1404     uint64_t value;
1405 
1406     if (icv_access(env, HCR_IMO)) {
1407         return icv_hppir_read(env, ri);
1408     }
1409 
1410     value = icc_hppir1_value(cs, env);
1411     trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1412     return value;
1413 }
1414 
1415 static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1416 {
1417     GICv3CPUState *cs = icc_cs_from_env(env);
1418     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1419     bool satinc = false;
1420     uint64_t bpr;
1421 
1422     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1423         return icv_bpr_read(env, ri);
1424     }
1425 
1426     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1427         grp = GICV3_G1NS;
1428     }
1429 
1430     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1431         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1432         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1433          * modify BPR0
1434          */
1435         grp = GICV3_G0;
1436     }
1437 
1438     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1439         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1440         /* reads return bpr0 + 1 sat to 7, writes ignored */
1441         grp = GICV3_G0;
1442         satinc = true;
1443     }
1444 
1445     bpr = cs->icc_bpr[grp];
1446     if (satinc) {
1447         bpr++;
1448         bpr = MIN(bpr, 7);
1449     }
1450 
1451     trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
1452 
1453     return bpr;
1454 }
1455 
1456 static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1457                           uint64_t value)
1458 {
1459     GICv3CPUState *cs = icc_cs_from_env(env);
1460     int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1461     uint64_t minval;
1462 
1463     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1464         icv_bpr_write(env, ri, value);
1465         return;
1466     }
1467 
1468     trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1469                               gicv3_redist_affid(cs), value);
1470 
1471     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1472         grp = GICV3_G1NS;
1473     }
1474 
1475     if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1476         (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1477         /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1478          * modify BPR0
1479          */
1480         grp = GICV3_G0;
1481     }
1482 
1483     if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1484         (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1485         /* reads return bpr0 + 1 sat to 7, writes ignored */
1486         return;
1487     }
1488 
1489     minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1490     if (value < minval) {
1491         value = minval;
1492     }
1493 
1494     cs->icc_bpr[grp] = value & 7;
1495     gicv3_cpuif_update(cs);
1496 }
1497 
1498 static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1499 {
1500     GICv3CPUState *cs = icc_cs_from_env(env);
1501     uint64_t value;
1502 
1503     int regno = ri->opc2 & 3;
1504     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1505 
1506     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1507         return icv_ap_read(env, ri);
1508     }
1509 
1510     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1511         grp = GICV3_G1NS;
1512     }
1513 
1514     value = cs->icc_apr[grp][regno];
1515 
1516     trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1517     return value;
1518 }
1519 
1520 static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1521                          uint64_t value)
1522 {
1523     GICv3CPUState *cs = icc_cs_from_env(env);
1524 
1525     int regno = ri->opc2 & 3;
1526     int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
1527 
1528     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1529         icv_ap_write(env, ri, value);
1530         return;
1531     }
1532 
1533     trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
1534 
1535     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1536         grp = GICV3_G1NS;
1537     }
1538 
1539     /* It's not possible to claim that a Non-secure interrupt is active
1540      * at a priority outside the Non-secure range (128..255), since this
1541      * would otherwise allow malicious NS code to block delivery of S interrupts
1542      * by writing a bad value to these registers.
1543      */
1544     if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1545         return;
1546     }
1547 
1548     cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1549     gicv3_cpuif_update(cs);
1550 }
1551 
1552 static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1553                           uint64_t value)
1554 {
1555     /* Deactivate interrupt */
1556     GICv3CPUState *cs = icc_cs_from_env(env);
1557     int irq = value & 0xffffff;
1558     bool irq_is_secure, single_sec_state, irq_is_grp0;
1559     bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1560 
1561     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1562         icv_dir_write(env, ri, value);
1563         return;
1564     }
1565 
1566     trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1567 
1568     if (irq >= cs->gic->num_irq) {
1569         /* Also catches special interrupt numbers and LPIs */
1570         return;
1571     }
1572 
1573     if (!icc_eoi_split(env, cs)) {
1574         return;
1575     }
1576 
1577     int grp = gicv3_irq_group(cs->gic, cs, irq);
1578 
1579     single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1580     irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1581     irq_is_grp0 = grp == GICV3_G0;
1582 
1583     /* Check whether we're allowed to deactivate this interrupt based
1584      * on its group and the current CPU state.
1585      * These checks are laid out to correspond to the spec's pseudocode.
1586      */
1587     route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1588     route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1589     /* No need to include !IsSecure in route_*_to_el2 as it's only
1590      * tested in cases where we know !IsSecure is true.
1591      */
1592     uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1593     route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1594     route_irq_to_el2 = hcr_el2 & HCR_IMO;
1595 
1596     switch (arm_current_el(env)) {
1597     case 3:
1598         break;
1599     case 2:
1600         if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1601             break;
1602         }
1603         if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1604             break;
1605         }
1606         return;
1607     case 1:
1608         if (!arm_is_secure_below_el3(env)) {
1609             if (single_sec_state && irq_is_grp0 &&
1610                 !route_fiq_to_el3 && !route_fiq_to_el2) {
1611                 break;
1612             }
1613             if (!irq_is_secure && !irq_is_grp0 &&
1614                 !route_irq_to_el3 && !route_irq_to_el2) {
1615                 break;
1616             }
1617         } else {
1618             if (irq_is_grp0 && !route_fiq_to_el3) {
1619                 break;
1620             }
1621             if (!irq_is_grp0 &&
1622                 (!irq_is_secure || !single_sec_state) &&
1623                 !route_irq_to_el3) {
1624                 break;
1625             }
1626         }
1627         return;
1628     default:
1629         g_assert_not_reached();
1630     }
1631 
1632     icc_deactivate_irq(cs, irq);
1633 }
1634 
1635 static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1636 {
1637     GICv3CPUState *cs = icc_cs_from_env(env);
1638     int prio;
1639 
1640     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1641         return icv_rpr_read(env, ri);
1642     }
1643 
1644     prio = icc_highest_active_prio(cs);
1645 
1646     if (arm_feature(env, ARM_FEATURE_EL3) &&
1647         !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1648         /* NS GIC access and Group 0 is inaccessible to NS */
1649         if ((prio & 0x80) == 0) {
1650             /* NS mustn't see priorities in the Secure half of the range */
1651             prio = 0;
1652         } else if (prio != 0xff) {
1653             /* Non-idle priority: show the Non-secure view of it */
1654             prio = (prio << 1) & 0xff;
1655         }
1656     }
1657 
1658     trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1659     return prio;
1660 }
1661 
1662 static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1663                              uint64_t value, int grp, bool ns)
1664 {
1665     GICv3State *s = cs->gic;
1666 
1667     /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1668     uint64_t aff = extract64(value, 48, 8) << 16 |
1669         extract64(value, 32, 8) << 8 |
1670         extract64(value, 16, 8);
1671     uint32_t targetlist = extract64(value, 0, 16);
1672     uint32_t irq = extract64(value, 24, 4);
1673     bool irm = extract64(value, 40, 1);
1674     int i;
1675 
1676     if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1677         /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1678          * interrupts as Group 0 interrupts and must send Secure Group 0
1679          * interrupts to the target CPUs.
1680          */
1681         grp = GICV3_G0;
1682     }
1683 
1684     trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1685                                  aff, targetlist);
1686 
1687     for (i = 0; i < s->num_cpu; i++) {
1688         GICv3CPUState *ocs = &s->cpu[i];
1689 
1690         if (irm) {
1691             /* IRM == 1 : route to all CPUs except self */
1692             if (cs == ocs) {
1693                 continue;
1694             }
1695         } else {
1696             /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1697              * where the corresponding bit is set in targetlist
1698              */
1699             int aff0;
1700 
1701             if (ocs->gicr_typer >> 40 != aff) {
1702                 continue;
1703             }
1704             aff0 = extract64(ocs->gicr_typer, 32, 8);
1705             if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1706                 continue;
1707             }
1708         }
1709 
1710         /* The redistributor will check against its own GICR_NSACR as needed */
1711         gicv3_redist_send_sgi(ocs, grp, irq, ns);
1712     }
1713 }
1714 
1715 static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1716                            uint64_t value)
1717 {
1718     /* Generate Secure Group 0 SGI. */
1719     GICv3CPUState *cs = icc_cs_from_env(env);
1720     bool ns = !arm_is_secure(env);
1721 
1722     icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1723 }
1724 
1725 static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1726                            uint64_t value)
1727 {
1728     /* Generate Group 1 SGI for the current Security state */
1729     GICv3CPUState *cs = icc_cs_from_env(env);
1730     int grp;
1731     bool ns = !arm_is_secure(env);
1732 
1733     grp = ns ? GICV3_G1NS : GICV3_G1;
1734     icc_generate_sgi(env, cs, value, grp, ns);
1735 }
1736 
1737 static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1738                              uint64_t value)
1739 {
1740     /* Generate Group 1 SGI for the Security state that is not
1741      * the current state
1742      */
1743     GICv3CPUState *cs = icc_cs_from_env(env);
1744     int grp;
1745     bool ns = !arm_is_secure(env);
1746 
1747     grp = ns ? GICV3_G1 : GICV3_G1NS;
1748     icc_generate_sgi(env, cs, value, grp, ns);
1749 }
1750 
1751 static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1752 {
1753     GICv3CPUState *cs = icc_cs_from_env(env);
1754     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1755     uint64_t value;
1756 
1757     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1758         return icv_igrpen_read(env, ri);
1759     }
1760 
1761     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1762         grp = GICV3_G1NS;
1763     }
1764 
1765     value = cs->icc_igrpen[grp];
1766     trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1767                                 gicv3_redist_affid(cs), value);
1768     return value;
1769 }
1770 
1771 static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1772                              uint64_t value)
1773 {
1774     GICv3CPUState *cs = icc_cs_from_env(env);
1775     int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1776 
1777     if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1778         icv_igrpen_write(env, ri, value);
1779         return;
1780     }
1781 
1782     trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1783                                  gicv3_redist_affid(cs), value);
1784 
1785     if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1786         grp = GICV3_G1NS;
1787     }
1788 
1789     cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1790     gicv3_cpuif_update(cs);
1791 }
1792 
1793 static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1794 {
1795     GICv3CPUState *cs = icc_cs_from_env(env);
1796     uint64_t value;
1797 
1798     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1799     value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1800     trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1801     return value;
1802 }
1803 
1804 static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1805                                   uint64_t value)
1806 {
1807     GICv3CPUState *cs = icc_cs_from_env(env);
1808 
1809     trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1810 
1811     /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1812     cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1813     cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1814     gicv3_cpuif_update(cs);
1815 }
1816 
1817 static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1818 {
1819     GICv3CPUState *cs = icc_cs_from_env(env);
1820     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1821     uint64_t value;
1822 
1823     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1824         return icv_ctlr_read(env, ri);
1825     }
1826 
1827     value = cs->icc_ctlr_el1[bank];
1828     trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1829     return value;
1830 }
1831 
1832 static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1833                                uint64_t value)
1834 {
1835     GICv3CPUState *cs = icc_cs_from_env(env);
1836     int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1837     uint64_t mask;
1838 
1839     if (icv_access(env, HCR_FMO | HCR_IMO)) {
1840         icv_ctlr_write(env, ri, value);
1841         return;
1842     }
1843 
1844     trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1845 
1846     /* Only CBPR and EOIMODE can be RW;
1847      * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1848      * the asseciated priority-based routing of them);
1849      * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1850      */
1851     if (arm_feature(env, ARM_FEATURE_EL3) &&
1852         ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1853         mask = ICC_CTLR_EL1_EOIMODE;
1854     } else {
1855         mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1856     }
1857 
1858     cs->icc_ctlr_el1[bank] &= ~mask;
1859     cs->icc_ctlr_el1[bank] |= (value & mask);
1860     gicv3_cpuif_update(cs);
1861 }
1862 
1863 
1864 static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1865 {
1866     GICv3CPUState *cs = icc_cs_from_env(env);
1867     uint64_t value;
1868 
1869     value = cs->icc_ctlr_el3;
1870     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1871         value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1872     }
1873     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1874         value |= ICC_CTLR_EL3_CBPR_EL1NS;
1875     }
1876     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1877         value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1878     }
1879     if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1880         value |= ICC_CTLR_EL3_CBPR_EL1S;
1881     }
1882 
1883     trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1884     return value;
1885 }
1886 
1887 static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1888                                uint64_t value)
1889 {
1890     GICv3CPUState *cs = icc_cs_from_env(env);
1891     uint64_t mask;
1892 
1893     trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1894 
1895     /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
1896     cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1897     if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
1898         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
1899     }
1900     if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
1901         cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
1902     }
1903 
1904     cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
1905     if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
1906         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
1907     }
1908     if (value & ICC_CTLR_EL3_CBPR_EL1S) {
1909         cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
1910     }
1911 
1912     /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
1913     mask = ICC_CTLR_EL3_EOIMODE_EL3;
1914 
1915     cs->icc_ctlr_el3 &= ~mask;
1916     cs->icc_ctlr_el3 |= (value & mask);
1917     gicv3_cpuif_update(cs);
1918 }
1919 
1920 static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
1921                                           const ARMCPRegInfo *ri, bool isread)
1922 {
1923     CPAccessResult r = CP_ACCESS_OK;
1924     GICv3CPUState *cs = icc_cs_from_env(env);
1925     int el = arm_current_el(env);
1926 
1927     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
1928         el == 1 && !arm_is_secure_below_el3(env)) {
1929         /* Takes priority over a possible EL3 trap */
1930         return CP_ACCESS_TRAP_EL2;
1931     }
1932 
1933     if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
1934         switch (el) {
1935         case 1:
1936             /* Note that arm_hcr_el2_eff takes secure state into account.  */
1937             if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
1938                 r = CP_ACCESS_TRAP_EL3;
1939             }
1940             break;
1941         case 2:
1942             r = CP_ACCESS_TRAP_EL3;
1943             break;
1944         case 3:
1945             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
1946                 r = CP_ACCESS_TRAP_EL3;
1947             }
1948             break;
1949         default:
1950             g_assert_not_reached();
1951         }
1952     }
1953 
1954     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
1955         r = CP_ACCESS_TRAP;
1956     }
1957     return r;
1958 }
1959 
1960 static CPAccessResult gicv3_dir_access(CPUARMState *env,
1961                                        const ARMCPRegInfo *ri, bool isread)
1962 {
1963     GICv3CPUState *cs = icc_cs_from_env(env);
1964 
1965     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
1966         arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
1967         /* Takes priority over a possible EL3 trap */
1968         return CP_ACCESS_TRAP_EL2;
1969     }
1970 
1971     return gicv3_irqfiq_access(env, ri, isread);
1972 }
1973 
1974 static CPAccessResult gicv3_sgi_access(CPUARMState *env,
1975                                        const ARMCPRegInfo *ri, bool isread)
1976 {
1977     if (arm_current_el(env) == 1 &&
1978         (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
1979         /* Takes priority over a possible EL3 trap */
1980         return CP_ACCESS_TRAP_EL2;
1981     }
1982 
1983     return gicv3_irqfiq_access(env, ri, isread);
1984 }
1985 
1986 static CPAccessResult gicv3_fiq_access(CPUARMState *env,
1987                                        const ARMCPRegInfo *ri, bool isread)
1988 {
1989     CPAccessResult r = CP_ACCESS_OK;
1990     GICv3CPUState *cs = icc_cs_from_env(env);
1991     int el = arm_current_el(env);
1992 
1993     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
1994         el == 1 && !arm_is_secure_below_el3(env)) {
1995         /* Takes priority over a possible EL3 trap */
1996         return CP_ACCESS_TRAP_EL2;
1997     }
1998 
1999     if (env->cp15.scr_el3 & SCR_FIQ) {
2000         switch (el) {
2001         case 1:
2002             if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
2003                 r = CP_ACCESS_TRAP_EL3;
2004             }
2005             break;
2006         case 2:
2007             r = CP_ACCESS_TRAP_EL3;
2008             break;
2009         case 3:
2010             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2011                 r = CP_ACCESS_TRAP_EL3;
2012             }
2013             break;
2014         default:
2015             g_assert_not_reached();
2016         }
2017     }
2018 
2019     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2020         r = CP_ACCESS_TRAP;
2021     }
2022     return r;
2023 }
2024 
2025 static CPAccessResult gicv3_irq_access(CPUARMState *env,
2026                                        const ARMCPRegInfo *ri, bool isread)
2027 {
2028     CPAccessResult r = CP_ACCESS_OK;
2029     GICv3CPUState *cs = icc_cs_from_env(env);
2030     int el = arm_current_el(env);
2031 
2032     if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2033         el == 1 && !arm_is_secure_below_el3(env)) {
2034         /* Takes priority over a possible EL3 trap */
2035         return CP_ACCESS_TRAP_EL2;
2036     }
2037 
2038     if (env->cp15.scr_el3 & SCR_IRQ) {
2039         switch (el) {
2040         case 1:
2041             if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
2042                 r = CP_ACCESS_TRAP_EL3;
2043             }
2044             break;
2045         case 2:
2046             r = CP_ACCESS_TRAP_EL3;
2047             break;
2048         case 3:
2049             if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2050                 r = CP_ACCESS_TRAP_EL3;
2051             }
2052             break;
2053         default:
2054             g_assert_not_reached();
2055         }
2056     }
2057 
2058     if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2059         r = CP_ACCESS_TRAP;
2060     }
2061     return r;
2062 }
2063 
2064 static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2065 {
2066     GICv3CPUState *cs = icc_cs_from_env(env);
2067 
2068     cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2069         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2070         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2071     cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2072         (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2073         (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2074     cs->icc_pmr_el1 = 0;
2075     cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2076     cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
2077     cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
2078     memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2079     memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2080     cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2081         (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2082         (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
2083 
2084     memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2085     cs->ich_hcr_el2 = 0;
2086     memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2087     cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
2088         ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
2089         (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
2090 }
2091 
2092 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2093     { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2094       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2095       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2096       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2097       .readfn = icc_pmr_read,
2098       .writefn = icc_pmr_write,
2099       /* We hang the whole cpu interface reset routine off here
2100        * rather than parcelling it out into one little function
2101        * per register
2102        */
2103       .resetfn = icc_reset,
2104     },
2105     { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2106       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2107       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2108       .access = PL1_R, .accessfn = gicv3_fiq_access,
2109       .readfn = icc_iar0_read,
2110     },
2111     { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2112       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2113       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2114       .access = PL1_W, .accessfn = gicv3_fiq_access,
2115       .writefn = icc_eoir_write,
2116     },
2117     { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2118       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2119       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2120       .access = PL1_R, .accessfn = gicv3_fiq_access,
2121       .readfn = icc_hppir0_read,
2122     },
2123     { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2124       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2125       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2126       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2127       .readfn = icc_bpr_read,
2128       .writefn = icc_bpr_write,
2129     },
2130     { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2131       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2132       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2133       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2134       .readfn = icc_ap_read,
2135       .writefn = icc_ap_write,
2136     },
2137     { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2138       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2139       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2140       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2141       .readfn = icc_ap_read,
2142       .writefn = icc_ap_write,
2143     },
2144     { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2145       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2146       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2147       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2148       .readfn = icc_ap_read,
2149       .writefn = icc_ap_write,
2150     },
2151     { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2152       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2153       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2154       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2155       .readfn = icc_ap_read,
2156       .writefn = icc_ap_write,
2157     },
2158     /* All the ICC_AP1R*_EL1 registers are banked */
2159     { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2160       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2161       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2162       .access = PL1_RW, .accessfn = gicv3_irq_access,
2163       .readfn = icc_ap_read,
2164       .writefn = icc_ap_write,
2165     },
2166     { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2167       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2168       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2169       .access = PL1_RW, .accessfn = gicv3_irq_access,
2170       .readfn = icc_ap_read,
2171       .writefn = icc_ap_write,
2172     },
2173     { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2174       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2175       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2176       .access = PL1_RW, .accessfn = gicv3_irq_access,
2177       .readfn = icc_ap_read,
2178       .writefn = icc_ap_write,
2179     },
2180     { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2181       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2182       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2183       .access = PL1_RW, .accessfn = gicv3_irq_access,
2184       .readfn = icc_ap_read,
2185       .writefn = icc_ap_write,
2186     },
2187     { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2188       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2189       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2190       .access = PL1_W, .accessfn = gicv3_dir_access,
2191       .writefn = icc_dir_write,
2192     },
2193     { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2194       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2195       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2196       .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2197       .readfn = icc_rpr_read,
2198     },
2199     { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2200       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2201       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2202       .access = PL1_W, .accessfn = gicv3_sgi_access,
2203       .writefn = icc_sgi1r_write,
2204     },
2205     { .name = "ICC_SGI1R",
2206       .cp = 15, .opc1 = 0, .crm = 12,
2207       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2208       .access = PL1_W, .accessfn = gicv3_sgi_access,
2209       .writefn = icc_sgi1r_write,
2210     },
2211     { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2212       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2213       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2214       .access = PL1_W, .accessfn = gicv3_sgi_access,
2215       .writefn = icc_asgi1r_write,
2216     },
2217     { .name = "ICC_ASGI1R",
2218       .cp = 15, .opc1 = 1, .crm = 12,
2219       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2220       .access = PL1_W, .accessfn = gicv3_sgi_access,
2221       .writefn = icc_asgi1r_write,
2222     },
2223     { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2224       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2225       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2226       .access = PL1_W, .accessfn = gicv3_sgi_access,
2227       .writefn = icc_sgi0r_write,
2228     },
2229     { .name = "ICC_SGI0R",
2230       .cp = 15, .opc1 = 2, .crm = 12,
2231       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
2232       .access = PL1_W, .accessfn = gicv3_sgi_access,
2233       .writefn = icc_sgi0r_write,
2234     },
2235     { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2236       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2237       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2238       .access = PL1_R, .accessfn = gicv3_irq_access,
2239       .readfn = icc_iar1_read,
2240     },
2241     { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2242       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2243       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2244       .access = PL1_W, .accessfn = gicv3_irq_access,
2245       .writefn = icc_eoir_write,
2246     },
2247     { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2248       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2249       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2250       .access = PL1_R, .accessfn = gicv3_irq_access,
2251       .readfn = icc_hppir1_read,
2252     },
2253     /* This register is banked */
2254     { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2255       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2256       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2257       .access = PL1_RW, .accessfn = gicv3_irq_access,
2258       .readfn = icc_bpr_read,
2259       .writefn = icc_bpr_write,
2260     },
2261     /* This register is banked */
2262     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2263       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2264       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2265       .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2266       .readfn = icc_ctlr_el1_read,
2267       .writefn = icc_ctlr_el1_write,
2268     },
2269     { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2270       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2271       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2272       .access = PL1_RW,
2273       /* We don't support IRQ/FIQ bypass and system registers are
2274        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2275        * This register is banked but since it's constant we don't
2276        * need to do anything special.
2277        */
2278       .resetvalue = 0x7,
2279     },
2280     { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2281       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2282       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2283       .access = PL1_RW, .accessfn = gicv3_fiq_access,
2284       .readfn = icc_igrpen_read,
2285       .writefn = icc_igrpen_write,
2286     },
2287     /* This register is banked */
2288     { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2289       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2290       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2291       .access = PL1_RW, .accessfn = gicv3_irq_access,
2292       .readfn = icc_igrpen_read,
2293       .writefn = icc_igrpen_write,
2294     },
2295     { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2296       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2297       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2298       .access = PL2_RW,
2299       /* We don't support IRQ/FIQ bypass and system registers are
2300        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2301        */
2302       .resetvalue = 0xf,
2303     },
2304     { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2305       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2306       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2307       .access = PL3_RW,
2308       .readfn = icc_ctlr_el3_read,
2309       .writefn = icc_ctlr_el3_write,
2310     },
2311     { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2312       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2313       .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2314       .access = PL3_RW,
2315       /* We don't support IRQ/FIQ bypass and system registers are
2316        * always enabled, so all our bits are RAZ/WI or RAO/WI.
2317        */
2318       .resetvalue = 0xf,
2319     },
2320     { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2321       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2322       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2323       .access = PL3_RW,
2324       .readfn = icc_igrpen1_el3_read,
2325       .writefn = icc_igrpen1_el3_write,
2326     },
2327     REGINFO_SENTINEL
2328 };
2329 
2330 static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2331 {
2332     GICv3CPUState *cs = icc_cs_from_env(env);
2333     int regno = ri->opc2 & 3;
2334     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2335     uint64_t value;
2336 
2337     value = cs->ich_apr[grp][regno];
2338     trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2339     return value;
2340 }
2341 
2342 static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2343                          uint64_t value)
2344 {
2345     GICv3CPUState *cs = icc_cs_from_env(env);
2346     int regno = ri->opc2 & 3;
2347     int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
2348 
2349     trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2350 
2351     cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
2352     gicv3_cpuif_virt_update(cs);
2353 }
2354 
2355 static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2356 {
2357     GICv3CPUState *cs = icc_cs_from_env(env);
2358     uint64_t value = cs->ich_hcr_el2;
2359 
2360     trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2361     return value;
2362 }
2363 
2364 static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2365                           uint64_t value)
2366 {
2367     GICv3CPUState *cs = icc_cs_from_env(env);
2368 
2369     trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2370 
2371     value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2372         ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2373         ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2374         ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2375         ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2376 
2377     cs->ich_hcr_el2 = value;
2378     gicv3_cpuif_virt_update(cs);
2379 }
2380 
2381 static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2382 {
2383     GICv3CPUState *cs = icc_cs_from_env(env);
2384     uint64_t value = cs->ich_vmcr_el2;
2385 
2386     trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2387     return value;
2388 }
2389 
2390 static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2391                          uint64_t value)
2392 {
2393     GICv3CPUState *cs = icc_cs_from_env(env);
2394 
2395     trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2396 
2397     value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2398         ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2399         ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2400     value |= ICH_VMCR_EL2_VFIQEN;
2401 
2402     cs->ich_vmcr_el2 = value;
2403     /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2404      * by reading and writing back the fields.
2405      */
2406     write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
2407     write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2408 
2409     gicv3_cpuif_virt_update(cs);
2410 }
2411 
2412 static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2413 {
2414     GICv3CPUState *cs = icc_cs_from_env(env);
2415     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2416     uint64_t value;
2417 
2418     /* This read function handles all of:
2419      * 64-bit reads of the whole LR
2420      * 32-bit reads of the low half of the LR
2421      * 32-bit reads of the high half of the LR
2422      */
2423     if (ri->state == ARM_CP_STATE_AA32) {
2424         if (ri->crm >= 14) {
2425             value = extract64(cs->ich_lr_el2[regno], 32, 32);
2426             trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2427         } else {
2428             value = extract64(cs->ich_lr_el2[regno], 0, 32);
2429             trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2430         }
2431     } else {
2432         value = cs->ich_lr_el2[regno];
2433         trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2434     }
2435 
2436     return value;
2437 }
2438 
2439 static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2440                          uint64_t value)
2441 {
2442     GICv3CPUState *cs = icc_cs_from_env(env);
2443     int regno = ri->opc2 | ((ri->crm & 1) << 3);
2444 
2445     /* This write function handles all of:
2446      * 64-bit writes to the whole LR
2447      * 32-bit writes to the low half of the LR
2448      * 32-bit writes to the high half of the LR
2449      */
2450     if (ri->state == ARM_CP_STATE_AA32) {
2451         if (ri->crm >= 14) {
2452             trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2453             value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2454         } else {
2455             trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2456             value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2457         }
2458     } else {
2459         trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2460     }
2461 
2462     /* Enforce RES0 bits in priority field */
2463     if (cs->vpribits < 8) {
2464         value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2465                           8 - cs->vpribits, 0);
2466     }
2467 
2468     cs->ich_lr_el2[regno] = value;
2469     gicv3_cpuif_virt_update(cs);
2470 }
2471 
2472 static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2473 {
2474     GICv3CPUState *cs = icc_cs_from_env(env);
2475     uint64_t value;
2476 
2477     value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2478         | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2479         | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2480         | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2481         | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2482 
2483     trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2484     return value;
2485 }
2486 
2487 static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2488 {
2489     GICv3CPUState *cs = icc_cs_from_env(env);
2490     uint64_t value = maintenance_interrupt_state(cs);
2491 
2492     trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2493     return value;
2494 }
2495 
2496 static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2497 {
2498     GICv3CPUState *cs = icc_cs_from_env(env);
2499     uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2500 
2501     trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2502     return value;
2503 }
2504 
2505 static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2506 {
2507     GICv3CPUState *cs = icc_cs_from_env(env);
2508     uint64_t value = 0;
2509     int i;
2510 
2511     for (i = 0; i < cs->num_list_regs; i++) {
2512         uint64_t lr = cs->ich_lr_el2[i];
2513 
2514         if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
2515             ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
2516             value |= (1 << i);
2517         }
2518     }
2519 
2520     trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2521     return value;
2522 }
2523 
2524 static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2525     { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2526       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2527       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2528       .access = PL2_RW,
2529       .readfn = ich_ap_read,
2530       .writefn = ich_ap_write,
2531     },
2532     { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2533       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2534       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2535       .access = PL2_RW,
2536       .readfn = ich_ap_read,
2537       .writefn = ich_ap_write,
2538     },
2539     { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2540       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2541       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2542       .access = PL2_RW,
2543       .readfn = ich_hcr_read,
2544       .writefn = ich_hcr_write,
2545     },
2546     { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2547       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2548       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2549       .access = PL2_R,
2550       .readfn = ich_vtr_read,
2551     },
2552     { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2553       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2554       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2555       .access = PL2_R,
2556       .readfn = ich_misr_read,
2557     },
2558     { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2559       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2560       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2561       .access = PL2_R,
2562       .readfn = ich_eisr_read,
2563     },
2564     { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2565       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2566       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2567       .access = PL2_R,
2568       .readfn = ich_elrsr_read,
2569     },
2570     { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2571       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2572       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2573       .access = PL2_RW,
2574       .readfn = ich_vmcr_read,
2575       .writefn = ich_vmcr_write,
2576     },
2577     REGINFO_SENTINEL
2578 };
2579 
2580 static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2581     { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2582       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2583       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2584       .access = PL2_RW,
2585       .readfn = ich_ap_read,
2586       .writefn = ich_ap_write,
2587     },
2588     { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2589       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2590       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2591       .access = PL2_RW,
2592       .readfn = ich_ap_read,
2593       .writefn = ich_ap_write,
2594     },
2595     REGINFO_SENTINEL
2596 };
2597 
2598 static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2599     { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2600       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2601       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2602       .access = PL2_RW,
2603       .readfn = ich_ap_read,
2604       .writefn = ich_ap_write,
2605     },
2606     { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2607       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2608       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2609       .access = PL2_RW,
2610       .readfn = ich_ap_read,
2611       .writefn = ich_ap_write,
2612     },
2613     { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2614       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2615       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2616       .access = PL2_RW,
2617       .readfn = ich_ap_read,
2618       .writefn = ich_ap_write,
2619     },
2620     { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2621       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2622       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2623       .access = PL2_RW,
2624       .readfn = ich_ap_read,
2625       .writefn = ich_ap_write,
2626     },
2627     REGINFO_SENTINEL
2628 };
2629 
2630 static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2631 {
2632     GICv3CPUState *cs = opaque;
2633 
2634     gicv3_cpuif_update(cs);
2635 }
2636 
2637 void gicv3_init_cpuif(GICv3State *s)
2638 {
2639     /* Called from the GICv3 realize function; register our system
2640      * registers with the CPU
2641      */
2642     int i;
2643 
2644     for (i = 0; i < s->num_cpu; i++) {
2645         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2646         GICv3CPUState *cs = &s->cpu[i];
2647 
2648         /* Note that we can't just use the GICv3CPUState as an opaque pointer
2649          * in define_arm_cp_regs_with_opaque(), because when we're called back
2650          * it might be with code translated by CPU 0 but run by CPU 1, in
2651          * which case we'd get the wrong value.
2652          * So instead we define the regs with no ri->opaque info, and
2653          * get back to the GICv3CPUState from the CPUARMState.
2654          */
2655         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
2656         if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2657             && cpu->gic_num_lrs) {
2658             int j;
2659 
2660             cs->num_list_regs = cpu->gic_num_lrs;
2661             cs->vpribits = cpu->gic_vpribits;
2662             cs->vprebits = cpu->gic_vprebits;
2663 
2664             /* Check against architectural constraints: getting these
2665              * wrong would be a bug in the CPU code defining these,
2666              * and the implementation relies on them holding.
2667              */
2668             g_assert(cs->vprebits <= cs->vpribits);
2669             g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2670             g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2671 
2672             define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2673 
2674             for (j = 0; j < cs->num_list_regs; j++) {
2675                 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2676                  * are split into two cp15 regs, LR (the low part, with the
2677                  * same encoding as the AArch64 LR) and LRC (the high part).
2678                  */
2679                 ARMCPRegInfo lr_regset[] = {
2680                     { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2681                       .opc0 = 3, .opc1 = 4, .crn = 12,
2682                       .crm = 12 + (j >> 3), .opc2 = j & 7,
2683                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2684                       .access = PL2_RW,
2685                       .readfn = ich_lr_read,
2686                       .writefn = ich_lr_write,
2687                     },
2688                     { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2689                       .cp = 15, .opc1 = 4, .crn = 12,
2690                       .crm = 14 + (j >> 3), .opc2 = j & 7,
2691                       .type = ARM_CP_IO | ARM_CP_NO_RAW,
2692                       .access = PL2_RW,
2693                       .readfn = ich_lr_read,
2694                       .writefn = ich_lr_write,
2695                     },
2696                     REGINFO_SENTINEL
2697                 };
2698                 define_arm_cp_regs(cpu, lr_regset);
2699             }
2700             if (cs->vprebits >= 6) {
2701                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2702             }
2703             if (cs->vprebits == 7) {
2704                 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2705             }
2706         }
2707         arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2708     }
2709 }
2710