xref: /openbmc/qemu/hw/intc/arm_gicv3_common.c (revision ee48fef0)
1 /*
2  * ARM GICv3 support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qemu/module.h"
27 #include "qemu/error-report.h"
28 #include "hw/core/cpu.h"
29 #include "hw/intc/arm_gicv3_common.h"
30 #include "hw/qdev-properties.h"
31 #include "migration/vmstate.h"
32 #include "gicv3_internal.h"
33 #include "hw/arm/linux-boot-if.h"
34 #include "sysemu/kvm.h"
35 
36 
37 static void gicv3_gicd_no_migration_shift_bug_post_load(GICv3State *cs)
38 {
39     if (cs->gicd_no_migration_shift_bug) {
40         return;
41     }
42 
43     /* Older versions of QEMU had a bug in the handling of state save/restore
44      * to the KVM GICv3: they got the offset in the bitmap arrays wrong,
45      * so that instead of the data for external interrupts 32 and up
46      * starting at bit position 32 in the bitmap, it started at bit
47      * position 64. If we're receiving data from a QEMU with that bug,
48      * we must move the data down into the right place.
49      */
50     memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8,
51             sizeof(cs->group) - GIC_INTERNAL / 8);
52     memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8,
53             sizeof(cs->grpmod) - GIC_INTERNAL / 8);
54     memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8,
55             sizeof(cs->enabled) - GIC_INTERNAL / 8);
56     memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8,
57             sizeof(cs->pending) - GIC_INTERNAL / 8);
58     memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8,
59             sizeof(cs->active) - GIC_INTERNAL / 8);
60     memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8,
61             sizeof(cs->edge_trigger) - GIC_INTERNAL / 8);
62 
63     /*
64      * While this new version QEMU doesn't have this kind of bug as we fix it,
65      * so it needs to set the flag to true to indicate that and it's necessary
66      * for next migration to work from this new version QEMU.
67      */
68     cs->gicd_no_migration_shift_bug = true;
69 }
70 
71 static int gicv3_pre_save(void *opaque)
72 {
73     GICv3State *s = (GICv3State *)opaque;
74     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
75 
76     if (c->pre_save) {
77         c->pre_save(s);
78     }
79 
80     return 0;
81 }
82 
83 static int gicv3_post_load(void *opaque, int version_id)
84 {
85     GICv3State *s = (GICv3State *)opaque;
86     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
87 
88     gicv3_gicd_no_migration_shift_bug_post_load(s);
89 
90     if (c->post_load) {
91         c->post_load(s);
92     }
93     return 0;
94 }
95 
96 static bool virt_state_needed(void *opaque)
97 {
98     GICv3CPUState *cs = opaque;
99 
100     return cs->num_list_regs != 0;
101 }
102 
103 static const VMStateDescription vmstate_gicv3_cpu_virt = {
104     .name = "arm_gicv3_cpu/virt",
105     .version_id = 1,
106     .minimum_version_id = 1,
107     .needed = virt_state_needed,
108     .fields = (const VMStateField[]) {
109         VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4),
110         VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState),
111         VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX),
112         VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState),
113         VMSTATE_END_OF_LIST()
114     }
115 };
116 
117 static int vmstate_gicv3_cpu_pre_load(void *opaque)
118 {
119     GICv3CPUState *cs = opaque;
120 
121    /*
122     * If the sre_el1 subsection is not transferred this
123     * means SRE_EL1 is 0x7 (which might not be the same as
124     * our reset value).
125     */
126     cs->icc_sre_el1 = 0x7;
127     return 0;
128 }
129 
130 static bool icc_sre_el1_reg_needed(void *opaque)
131 {
132     GICv3CPUState *cs = opaque;
133 
134     return cs->icc_sre_el1 != 7;
135 }
136 
137 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = {
138     .name = "arm_gicv3_cpu/sre_el1",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = icc_sre_el1_reg_needed,
142     .fields = (const VMStateField[]) {
143         VMSTATE_UINT64(icc_sre_el1, GICv3CPUState),
144         VMSTATE_END_OF_LIST()
145     }
146 };
147 
148 static bool gicv4_needed(void *opaque)
149 {
150     GICv3CPUState *cs = opaque;
151 
152     return cs->gic->revision > 3;
153 }
154 
155 const VMStateDescription vmstate_gicv3_gicv4 = {
156     .name = "arm_gicv3_cpu/gicv4",
157     .version_id = 1,
158     .minimum_version_id = 1,
159     .needed = gicv4_needed,
160     .fields = (const VMStateField[]) {
161         VMSTATE_UINT64(gicr_vpropbaser, GICv3CPUState),
162         VMSTATE_UINT64(gicr_vpendbaser, GICv3CPUState),
163         VMSTATE_END_OF_LIST()
164     }
165 };
166 
167 static bool gicv3_cpu_nmi_needed(void *opaque)
168 {
169     GICv3CPUState *cs = opaque;
170 
171     return cs->gic->nmi_support;
172 }
173 
174 static const VMStateDescription vmstate_gicv3_cpu_nmi = {
175     .name = "arm_gicv3_cpu/nmi",
176     .version_id = 1,
177     .minimum_version_id = 1,
178     .needed = gicv3_cpu_nmi_needed,
179     .fields = (const VMStateField[]) {
180         VMSTATE_UINT32(gicr_inmir0, GICv3CPUState),
181         VMSTATE_END_OF_LIST()
182     }
183 };
184 
185 static const VMStateDescription vmstate_gicv3_cpu = {
186     .name = "arm_gicv3_cpu",
187     .version_id = 1,
188     .minimum_version_id = 1,
189     .pre_load = vmstate_gicv3_cpu_pre_load,
190     .fields = (const VMStateField[]) {
191         VMSTATE_UINT32(level, GICv3CPUState),
192         VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
193         VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
194         VMSTATE_UINT32(gicr_waker, GICv3CPUState),
195         VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
196         VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
197         VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
198         VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
199         VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
200         VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
201         VMSTATE_UINT32(edge_trigger, GICv3CPUState),
202         VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
203         VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
204         VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
205         VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
206         VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
207         VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
208         VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
209         VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
210         VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
211         VMSTATE_END_OF_LIST()
212     },
213     .subsections = (const VMStateDescription * const []) {
214         &vmstate_gicv3_cpu_virt,
215         &vmstate_gicv3_cpu_sre_el1,
216         &vmstate_gicv3_gicv4,
217         &vmstate_gicv3_cpu_nmi,
218         NULL
219     }
220 };
221 
222 static int gicv3_pre_load(void *opaque)
223 {
224     GICv3State *cs = opaque;
225 
226    /*
227     * The gicd_no_migration_shift_bug flag is used for migration compatibility
228     * for old version QEMU which may have the GICD bmp shift bug under KVM mode.
229     * Strictly, what we want to know is whether the migration source is using
230     * KVM. Since we don't have any way to determine that, we look at whether the
231     * destination is using KVM; this is close enough because for the older QEMU
232     * versions with this bug KVM -> TCG migration didn't work anyway. If the
233     * source is a newer QEMU without this bug it will transmit the migration
234     * subsection which sets the flag to true; otherwise it will remain set to
235     * the value we select here.
236     */
237     if (kvm_enabled()) {
238         cs->gicd_no_migration_shift_bug = false;
239     }
240 
241     return 0;
242 }
243 
244 static bool needed_always(void *opaque)
245 {
246     return true;
247 }
248 
249 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = {
250     .name = "arm_gicv3/gicd_no_migration_shift_bug",
251     .version_id = 1,
252     .minimum_version_id = 1,
253     .needed = needed_always,
254     .fields = (const VMStateField[]) {
255         VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State),
256         VMSTATE_END_OF_LIST()
257     }
258 };
259 
260 static bool gicv3_nmi_needed(void *opaque)
261 {
262     GICv3State *cs = opaque;
263 
264     return cs->nmi_support;
265 }
266 
267 const VMStateDescription vmstate_gicv3_gicd_nmi = {
268     .name = "arm_gicv3/gicd_nmi",
269     .version_id = 1,
270     .minimum_version_id = 1,
271     .needed = gicv3_nmi_needed,
272     .fields = (const VMStateField[]) {
273         VMSTATE_UINT32_ARRAY(nmi, GICv3State, GICV3_BMP_SIZE),
274         VMSTATE_END_OF_LIST()
275     }
276 };
277 
278 static const VMStateDescription vmstate_gicv3 = {
279     .name = "arm_gicv3",
280     .version_id = 1,
281     .minimum_version_id = 1,
282     .pre_load = gicv3_pre_load,
283     .pre_save = gicv3_pre_save,
284     .post_load = gicv3_post_load,
285     .priority = MIG_PRI_GICV3,
286     .fields = (const VMStateField[]) {
287         VMSTATE_UINT32(gicd_ctlr, GICv3State),
288         VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
289         VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
290         VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
291         VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
292         VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
293         VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
294         VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
295         VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
296         VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
297         VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
298         VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
299                              DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
300         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
301                                              vmstate_gicv3_cpu, GICv3CPUState),
302         VMSTATE_END_OF_LIST()
303     },
304     .subsections = (const VMStateDescription * const []) {
305         &vmstate_gicv3_gicd_no_migration_shift_bug,
306         &vmstate_gicv3_gicd_nmi,
307         NULL
308     }
309 };
310 
311 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
312                               const MemoryRegionOps *ops)
313 {
314     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
315     int i;
316     int cpuidx;
317 
318     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
319      * GPIO array layout is thus:
320      *  [0..N-1] spi
321      *  [N..N+31] PPIs for CPU 0
322      *  [N+32..N+63] PPIs for CPU 1
323      *   ...
324      */
325     i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
326     qdev_init_gpio_in(DEVICE(s), handler, i);
327 
328     for (i = 0; i < s->num_cpu; i++) {
329         sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
330     }
331     for (i = 0; i < s->num_cpu; i++) {
332         sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
333     }
334     for (i = 0; i < s->num_cpu; i++) {
335         sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
336     }
337     for (i = 0; i < s->num_cpu; i++) {
338         sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
339     }
340     for (i = 0; i < s->num_cpu; i++) {
341         sysbus_init_irq(sbd, &s->cpu[i].parent_nmi);
342     }
343     for (i = 0; i < s->num_cpu; i++) {
344         sysbus_init_irq(sbd, &s->cpu[i].parent_vnmi);
345     }
346 
347     memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
348                           "gicv3_dist", 0x10000);
349     sysbus_init_mmio(sbd, &s->iomem_dist);
350 
351     s->redist_regions = g_new0(GICv3RedistRegion, s->nb_redist_regions);
352     cpuidx = 0;
353     for (i = 0; i < s->nb_redist_regions; i++) {
354         char *name = g_strdup_printf("gicv3_redist_region[%d]", i);
355         GICv3RedistRegion *region = &s->redist_regions[i];
356 
357         region->gic = s;
358         region->cpuidx = cpuidx;
359         cpuidx += s->redist_region_count[i];
360 
361         memory_region_init_io(&region->iomem, OBJECT(s),
362                               ops ? &ops[1] : NULL, region, name,
363                               s->redist_region_count[i] * gicv3_redist_size(s));
364         sysbus_init_mmio(sbd, &region->iomem);
365         g_free(name);
366     }
367 }
368 
369 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
370 {
371     GICv3State *s = ARM_GICV3_COMMON(dev);
372     int i, rdist_capacity, cpuidx;
373 
374     /*
375      * This GIC device supports only revisions 3 and 4. The GICv1/v2
376      * is a separate device.
377      * Note that subclasses of this device may impose further restrictions
378      * on the GIC revision: notably, the in-kernel KVM GIC doesn't
379      * support GICv4.
380      */
381     if (s->revision != 3 && s->revision != 4) {
382         error_setg(errp, "unsupported GIC revision %d", s->revision);
383         return;
384     }
385 
386     if (s->num_irq > GICV3_MAXIRQ) {
387         error_setg(errp,
388                    "requested %u interrupt lines exceeds GIC maximum %d",
389                    s->num_irq, GICV3_MAXIRQ);
390         return;
391     }
392     if (s->num_irq < GIC_INTERNAL) {
393         error_setg(errp,
394                    "requested %u interrupt lines is below GIC minimum %d",
395                    s->num_irq, GIC_INTERNAL);
396         return;
397     }
398     if (s->num_cpu == 0) {
399         error_setg(errp, "num-cpu must be at least 1");
400         return;
401     }
402 
403     /* ITLinesNumber is represented as (N / 32) - 1, so this is an
404      * implementation imposed restriction, not an architectural one,
405      * so we don't have to deal with bitfields where only some of the
406      * bits in a 32-bit word should be valid.
407      */
408     if (s->num_irq % 32) {
409         error_setg(errp,
410                    "%d interrupt lines unsupported: not divisible by 32",
411                    s->num_irq);
412         return;
413     }
414 
415     if (s->lpi_enable && !s->dma) {
416         error_setg(errp, "Redist-ITS: Guest 'sysmem' reference link not set");
417         return;
418     }
419 
420     rdist_capacity = 0;
421     for (i = 0; i < s->nb_redist_regions; i++) {
422         rdist_capacity += s->redist_region_count[i];
423     }
424     if (rdist_capacity != s->num_cpu) {
425         error_setg(errp, "Capacity of the redist regions(%d) "
426                    "does not match the number of vcpus(%d)",
427                    rdist_capacity, s->num_cpu);
428         return;
429     }
430 
431     if (s->lpi_enable) {
432         address_space_init(&s->dma_as, s->dma,
433                            "gicv3-its-sysmem");
434     }
435 
436     s->cpu = g_new0(GICv3CPUState, s->num_cpu);
437 
438     for (i = 0; i < s->num_cpu; i++) {
439         CPUState *cpu = qemu_get_cpu(i);
440         uint64_t cpu_affid;
441 
442         s->cpu[i].cpu = cpu;
443         s->cpu[i].gic = s;
444         /* Store GICv3CPUState in CPUARMState gicv3state pointer */
445         gicv3_set_gicv3state(cpu, &s->cpu[i]);
446 
447         /* Pre-construct the GICR_TYPER:
448          * For our implementation:
449          *  Top 32 bits are the affinity value of the associated CPU
450          *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
451          *  Processor_Number == CPU index starting from 0
452          *  DPGS == 0 (GICR_CTLR.DPG* not supported)
453          *  Last == 1 if this is the last redistributor in a series of
454          *            contiguous redistributor pages
455          *  DirectLPI == 0 (direct injection of LPIs not supported)
456          *  VLPIS == 1 if vLPIs supported (GICv4 and up)
457          *  PLPIS == 1 if LPIs supported
458          */
459         cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL);
460 
461         /* The CPU mp-affinity property is in MPIDR register format; squash
462          * the affinity bytes into 32 bits as the GICR_TYPER has them.
463          */
464         cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
465                      (cpu_affid & 0xFFFFFF);
466         s->cpu[i].gicr_typer = (cpu_affid << 32) |
467             (1 << 24) |
468             (i << 8);
469 
470         if (s->lpi_enable) {
471             s->cpu[i].gicr_typer |= GICR_TYPER_PLPIS;
472             if (s->revision > 3) {
473                 s->cpu[i].gicr_typer |= GICR_TYPER_VLPIS;
474             }
475         }
476     }
477 
478     /*
479      * Now go through and set GICR_TYPER.Last for the final
480      * redistributor in each region.
481      */
482     cpuidx = 0;
483     for (i = 0; i < s->nb_redist_regions; i++) {
484         cpuidx += s->redist_region_count[i];
485         s->cpu[cpuidx - 1].gicr_typer |= GICR_TYPER_LAST;
486     }
487 
488     s->itslist = g_ptr_array_new();
489 }
490 
491 static void arm_gicv3_finalize(Object *obj)
492 {
493     GICv3State *s = ARM_GICV3_COMMON(obj);
494 
495     g_free(s->redist_region_count);
496 }
497 
498 static void arm_gicv3_common_reset_hold(Object *obj, ResetType type)
499 {
500     GICv3State *s = ARM_GICV3_COMMON(obj);
501     int i;
502 
503     for (i = 0; i < s->num_cpu; i++) {
504         GICv3CPUState *cs = &s->cpu[i];
505 
506         cs->level = 0;
507         cs->gicr_ctlr = 0;
508         if (s->lpi_enable) {
509             /* Our implementation supports clearing GICR_CTLR.EnableLPIs */
510             cs->gicr_ctlr |= GICR_CTLR_CES;
511         }
512         cs->gicr_statusr[GICV3_S] = 0;
513         cs->gicr_statusr[GICV3_NS] = 0;
514         cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
515         cs->gicr_propbaser = 0;
516         cs->gicr_pendbaser = 0;
517         cs->gicr_vpropbaser = 0;
518         cs->gicr_vpendbaser = 0;
519         /* If we're resetting a TZ-aware GIC as if secure firmware
520          * had set it up ready to start a kernel in non-secure, we
521          * need to set interrupts to group 1 so the kernel can use them.
522          * Otherwise they reset to group 0 like the hardware.
523          */
524         if (s->irq_reset_nonsecure) {
525             cs->gicr_igroupr0 = 0xffffffff;
526         } else {
527             cs->gicr_igroupr0 = 0;
528         }
529 
530         cs->gicr_ienabler0 = 0;
531         cs->gicr_ipendr0 = 0;
532         cs->gicr_iactiver0 = 0;
533         cs->edge_trigger = 0xffff;
534         cs->gicr_igrpmodr0 = 0;
535         cs->gicr_nsacr = 0;
536         memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
537 
538         cs->hppi.prio = 0xff;
539         cs->hppi.nmi = false;
540         cs->hpplpi.prio = 0xff;
541         cs->hpplpi.nmi = false;
542         cs->hppvlpi.prio = 0xff;
543         cs->hppvlpi.nmi = false;
544 
545         /* State in the CPU interface must *not* be reset here, because it
546          * is part of the CPU's reset domain, not the GIC device's.
547          */
548     }
549 
550     /* For our implementation affinity routing is always enabled */
551     if (s->security_extn) {
552         s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
553     } else {
554         s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
555     }
556 
557     s->gicd_statusr[GICV3_S] = 0;
558     s->gicd_statusr[GICV3_NS] = 0;
559 
560     memset(s->group, 0, sizeof(s->group));
561     memset(s->grpmod, 0, sizeof(s->grpmod));
562     memset(s->enabled, 0, sizeof(s->enabled));
563     memset(s->pending, 0, sizeof(s->pending));
564     memset(s->active, 0, sizeof(s->active));
565     memset(s->level, 0, sizeof(s->level));
566     memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
567     memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
568     memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
569     memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
570     /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
571      * write these to get sane behaviour and we need not populate the
572      * pointer cache here; however having the cache be different for
573      * "happened to be 0 from reset" and "guest wrote 0" would be
574      * too confusing.
575      */
576     gicv3_cache_all_target_cpustates(s);
577 
578     if (s->irq_reset_nonsecure) {
579         /* If we're resetting a TZ-aware GIC as if secure firmware
580          * had set it up ready to start a kernel in non-secure, we
581          * need to set interrupts to group 1 so the kernel can use them.
582          * Otherwise they reset to group 0 like the hardware.
583          */
584         for (i = GIC_INTERNAL; i < s->num_irq; i++) {
585             gicv3_gicd_group_set(s, i);
586         }
587     }
588     s->gicd_no_migration_shift_bug = true;
589 }
590 
591 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
592                                       bool secure_boot)
593 {
594     GICv3State *s = ARM_GICV3_COMMON(obj);
595 
596     if (s->security_extn && !secure_boot) {
597         /* We're directly booting a kernel into NonSecure. If this GIC
598          * implements the security extensions then we must configure it
599          * to have all the interrupts be NonSecure (this is a job that
600          * is done by the Secure boot firmware in real hardware, and in
601          * this mode QEMU is acting as a minimalist firmware-and-bootloader
602          * equivalent).
603          */
604         s->irq_reset_nonsecure = true;
605     }
606 }
607 
608 static Property arm_gicv3_common_properties[] = {
609     DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
610     DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
611     DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
612     DEFINE_PROP_BOOL("has-lpi", GICv3State, lpi_enable, 0),
613     DEFINE_PROP_BOOL("has-nmi", GICv3State, nmi_support, 0),
614     DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
615     /*
616      * Compatibility property: force 8 bits of physical priority, even
617      * if the CPU being emulated should have fewer.
618      */
619     DEFINE_PROP_BOOL("force-8-bit-prio", GICv3State, force_8bit_prio, 0),
620     DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions,
621                       redist_region_count, qdev_prop_uint32, uint32_t),
622     DEFINE_PROP_LINK("sysmem", GICv3State, dma, TYPE_MEMORY_REGION,
623                      MemoryRegion *),
624     DEFINE_PROP_END_OF_LIST(),
625 };
626 
627 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
628 {
629     DeviceClass *dc = DEVICE_CLASS(klass);
630     ResettableClass *rc = RESETTABLE_CLASS(klass);
631     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
632 
633     rc->phases.hold = arm_gicv3_common_reset_hold;
634     dc->realize = arm_gicv3_common_realize;
635     device_class_set_props(dc, arm_gicv3_common_properties);
636     dc->vmsd = &vmstate_gicv3;
637     albifc->arm_linux_init = arm_gic_common_linux_init;
638 }
639 
640 static const TypeInfo arm_gicv3_common_type = {
641     .name = TYPE_ARM_GICV3_COMMON,
642     .parent = TYPE_SYS_BUS_DEVICE,
643     .instance_size = sizeof(GICv3State),
644     .class_size = sizeof(ARMGICv3CommonClass),
645     .class_init = arm_gicv3_common_class_init,
646     .instance_finalize = arm_gicv3_finalize,
647     .abstract = true,
648     .interfaces = (InterfaceInfo []) {
649         { TYPE_ARM_LINUX_BOOT_IF },
650         { },
651     },
652 };
653 
654 static void register_types(void)
655 {
656     type_register_static(&arm_gicv3_common_type);
657 }
658 
659 type_init(register_types)
660 
661 const char *gicv3_class_name(void)
662 {
663     if (kvm_irqchip_in_kernel()) {
664         return "kvm-arm-gicv3";
665     } else {
666         if (kvm_enabled()) {
667             error_report("Userspace GICv3 is not supported with KVM");
668             exit(1);
669         }
670         return "arm-gicv3";
671     }
672 }
673